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ABSTRACT:

LoD2 models include roof shapes and thus provide added value over their LoD1 counterparts for some applications such as estimating
the solar potential of rooftops. However, because of laborious acquisition workflows they are more difficult to obtain than LoD1 models
and are thus less prevalent in practice. This paper explores whether the type of the roof of a building can be inferred from semantic
LoD1 data, potentially leading to their free upgrade to LoD2, in a broader context of a workflow for their generation without aerial
campaigns. Inferring rooftop information has also other uses: quality evaluation and verification of existing data, supporting roof
reconstruction, and enriching LoD0/LoD1 data with the attribute of the roof type. We test a random forest classifier that analyses
several attributes of buildings predicting the type of the roof. Experiments carried out on the 3D city model of Hamburg using 12
attributes achieve an accuracy of 85% in identifying the roof type from sparse data using a multiclass classification. The performance
of binary classification hits the roof: 92% accuracy in predicting whether a roof is flat or not. It turns out that the two most useful
variables are footprint area and building height (i.e. LoD1 models without any semantics, or LoD0 with such information), and using
only them also yields relatively accurate results.

1. INTRODUCTION

Roof is a key part of a building, and its top surface is frequently
modelled in 3D GIS, benefiting applications that require the knowl-
edge of the roof type and geometry. However, such information
is not always available, as in practice many CityGML/CityJSON
(Gröger et al., 2012; Ledoux et al., 2019) datasets are modelled in
LoD1 (without roof shapes) and without the roof type attribute,
and acquiring them is mandated from LoD2. But even then the
attribute about the roof type is often absent.

The research question we seek to answer in this paper is whether
it is possible to predict the type of the roof of a building with-
out roof measurements, i.e. from a certain set of attributes using
machine learning. Inferring the roof type in that context may be
important for four use cases.

First, generating LoD2 models without having to map them with
traditional approaches. Bypassing aerial surveys is the main mo-
tivation for this work, and we focus on this aspect.

Second, for data quality and verification of existing LoD2 mod-
els (e.g. gauging the quality of the roof reconstruction), i.e. to
detect whether a roof in existing data is modelled wrongly. It
may happen that during an automatic reconstruction from lidar
a roof type is misinterpreted resulting in a reconstruction of a
rooftop with a wrong attribute and inaccurate geometry (Akca
et al., 2010; Gooding et al., 2015). There is research on bench-
marking the quality of the roof reconstruction in 3D city models,
but it is mostly focused on geometric accuracy rather than the-
matic (Oude Elberink and Vosselman, 2011; Rottensteiner et al.,
2014), so work such as this one might contribute in filling that
void. Besides the imperfection of reconstruction workflows, the
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results may be affected by noisy observations. An advantage of
our approach is that we use a different set of data, which might
be affected by a smaller magnitude of error, thus deriving better
predictions of the roof type and therefore serving as a reference.

Third, roof reconstruction might be aided with information about
the roof type. This work also goes hand in hand with the tra-
ditional approach of acquiring LoD2 models with data obtained
from aerial surveys. For example, during the automatic recon-
struction from lidar point clouds having the information about
the type of the roof may be a useful lead for the reconstruction
algorithms and might greatly contribute to the quality of the gen-
eration of LoD2 models. Again, our approach uses another set
of data, so coupling our predictions with roof reconstruction may
contribute to the overall increase of accuracy. This idea has been
investigated by Henn et al. (2013).

Fourth, as 3D city models may have the information about the
roof type in the form of attribute without their geometry, this work
may also be useful in enriching LoD0 (e.g. cadastral datasets) and
LoD1 models with this attribute.

The scope of our work is predicting the type of the roof, which
is the first step for generating their geometry required for LoD2
models. Therefore, much of the paper is shaped around the con-
text of generating LoD2 models from LoD0/LoD1 datasets with-
out elevation measurements (the first use case).

2. BACKGROUND AND RELATED WORK

2.1 Use of building roof information

While LoD2 models containing roofs are in general more desir-
able than LoD1 models, a recent study suggests that the value of
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details in 3D city models is driven by the intended use case (Bil-
jecki et al., 2018). Another study (Wong and Ellul, 2018), involv-
ing a questionnaire, is more apposite suggesting that information
on the rooftop (whether descriptive in the attribute form or as
LoD2 geometry) may be useful for some use cases and stake-
holders, but irrelevant for others. Therefore we have to consider
the value of LoD2 over LoD1 from a use case context. At the
same time, it should not be neglected that the increase of LoD
also increases complexity (Ellul and Altenbuchner, 2013).

While in general LoD2 models may or may not improve the qual-
ity of spatial analyses, some analyses require LoD2 at minimum.
For example, Weiler et al. (2019) argue that having an LoD2 is
essential for rooftop photovoltaic estimations (and in a broader
context for energy estimations, e.g. for more accurate calcula-
tions of the thermal boundaries of a building (Pasquinelli et al.,
2019)). Similar conclusions are reached by Peronato et al. (2016).

Lindenthal (2017) analyses the urban form and proves that the
shape homogeneity among neighbouring homes has implications
on the valuation of real estate. The geometry of the roof is an
important factor in the study.

Schröter et al. (2018) use the roof type to get more insight about
buildings in characterising the vulnerability of residential build-
ings to flooding.

The final example of a use case is general visualisation. From
the visual point of view it is more attractive to have LoD2 models
rather than LoD1.

2.2 Mapping building roofs

LoD2 are usually acquired using data obtained with airborne laser
scanning or photogrammetry (or their combination), either man-
ually or automatically using model-driven, data-driven or hybrid
methods. There has been a great deal of research on that topic (Henn
et al., 2013; Jung and Sohn, 2019). However, in 2019 lidar cov-
erage (especially open data) still seems to be a luxury (Mathews
et al., 2019), inhibiting the availability of LoD2 models.

Another interesting aspect to note is that the literature review sug-
gests that much research dealing with LoD2 generation and roof
reconstruction focuses on generating the geometry, while in many
cases ignoring the thematic aspect (attribute) of the type of the
roof without ever storing it as an explicit attribute.

Other techniques for procuring 3D models with roof shapes in-
volve generating them from architectural/BIM datasets (Stouffs
et al., 2018), and procedural modelling (Müller Arisona et al.,
2013), but those account for just a fraction of datasets in practice,
where the latter not always representing an accurate representa-
tion of the reality.

2.3 Related work

Henn et al. (2012) classifies building types from LoD1 models
and other data using Support Vector Machines (SVM) for the se-
mantic enrichment of low resolution building data. The obtained
accuracy greatly depends on the building type class, ranging from
55% to above 90%. The same classifier (SVM) has been used by
Römer and Plümer (2010) to identify architectural styles in 3D
city models. Related work is done also by Neidhart and Sester
(2004), Meinel et al. (2009), and Hecht et al. (2015).

In a subsequent work, Henn et al. (2013) find the most proba-
ble roof type with SVM, using this information to aid the roof

Figure 1. Semantic CityGML LoD2 model of Hamburg.

reconstruction. The achieved accuracy ranges from 70 to 97%,
depending on the roof class. This work is quite relevant to ours,
and we use some of the predictors and observations in our work.
However, our work differs from theirs for not making use of some
predictors that can be derived only from aerial surveys such as in-
clination of roof planes (our goal is to investigate whether we can
obtain the same outcome without such information).

Awrangjeb et al. (2018) proposed a data-driven method for the 3D
building roof reconstruction which has been subsequently used
for building change detection. Jung et al. (2017) introduced an
automatic 3D building reconstruction approach which in particu-
lar enforces geometric regularities on reconstructed roof models
using MDL. Wu et al. (2017) applied a graph-based method based
on hierarchical structure analysis of building contours acquired
from bipartite graph matching for the reconstruction of building
models from airborne LiDAR data.

Biljecki et al. (2017) reveal that it is possible to predict the height
of buildings from 2D data with a reasonable accuracy, leading to
an automatic generation of LoD1 models without elevation data.
The attribute of the year of construction of a building can also
be derived from other standard building attributes (Biljecki and
Sindram, 2017), which we use in this work.

Allani-Bouhoula and Perrin (2008) reconstruct LoD2 models from
LoD0 footprints (inferring the height of buildings and roof types)
analysing local regulations. The achieved accuracy is between
88% and 91%. However, the short nature of the paper leaves
many aspects unclear, e.g. it does not provide sufficient informa-
tion for replication and the method seems to be very localised.

On the indoor side of 3D GIS, Loch-Dehbi et al. (2017) and De-
hbi et al. (2018) predicted indoor models and developed a classi-
fication of room types and room shapes from sparse indoor data.

This literature review indicates that 2D and 3D data may reveal
additional properties about the built environment, and we use re-
lated work as a basis to predict the roof type from similar data.

3. METHODOLOGY

3.1 Dataset and predictors

We have used the open datasets of Hamburg1 for training and test-
ing the classification. For the ground truth we used the CityGML
LoD2 model (Figure 1), which contains the attribute describing
the type of the roof for each building.

We extract a dozen of attributes that serve as predictors, poten-
tially hinting at the type of the roof. They are listed in Table 1
describing them in details with examples.
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Table 1. Variables in the classification with their description and examples. Source of the open datasets: Hamburg1 and OpenStreetMap.

Predictors The exemplary building comprises three building parts with different roofs. We focus on the main part.

1 Function In our dataset we encountered 168 building functions (for more de-
tails see AdV (2019)), but a single one (residential building) ac-
counts for 58% of instances in the dataset, followed by garages
(10%). The function is assigned to the entire building, so we make
an assumption that it is equal for all building parts.

2 Building height We have used the building part height available as attribute in the
dataset. It is usually also available as an attribute in cadastral records,
and if not – it can be extracted from the geometry of LoD1 models.
The specification of the data (AdV, 2019) states that the building
height in the dataset is from the base of the building to the highest
point of the roof, and its accuracy is ±1 m.

3 No. of storeys Similarly as the attribute above, the information on the number of
storeys above ground is available in the dataset and it is one of the
standard pieces of information included in building datasets such as
those from cadastre. While the number of storeys is also a measure
of the vertical extent of the building as the height, it will later become
obvious that it does not duplicate information.

4-9 Footprint geometry We calculate various geometric characteristics of the footprint: (4)
area, (5) orientation, (6) complexity, (7), perpendicularity, (8) nor-
malised perimeter index (Angel et al., 2010), and (9) side ratio. The
advantage of these measures are that they are always available and
they can be calculated also from LoD0 models. The geometry of the
footprint follows the outline of the roof, so it may be important.

10 No. of adjacent ob-
jects

We calculate the number of direct neighbours (i.e. number of fea-
tures in the buffer of 1 m). In this case the main building part of the
building has two adjacent objects.

11 No. of neighbours We set up a buffer of 30 m around each building part to calculate the
number of neighbours. The composition of the surrounding context
of a building may be a useful predictor of the form of the roof.

12 OSM objects The number of amenities within 100 m may be relevant as well. The
source of the data is OpenStreetMap. The consideration of amenities
is inspired by the work of Henn et al. (2012) for the classification of
building type. Amenities are used in predictions in GIS, e.g. Bakillah
et al. (2014) used OSM amenities to predict the population count.

Roof type (label) The dataset has 6 types of roofs (classes), see Figure 2 for all exam-
ples. While the modelling guidelines (AdV, 2019) describe 15 roof
types in Germany, in our dataset we have found less classes than that.
For additional experiments (Section 4.2) we also added a new label
with binary classes: whether a roof is flat or not.

1The principal dataset used in this research is the LoD2 model of Hamburg, available at http://suche.transparenz.hamburg.de/dataset/
3d-stadtmodell-lod2-de-hamburg2. The data is released under ‘Data licence Germany – attribution – Version 2.0’. The licence is available at http:
//www.govdata.de/dl-de/by-2-0. Some illustrations generated in this paper feature also the LoD1 model and the digital terrain model of the study area.
These datasets have been obtained from http://suche.transparenz.hamburg.de/dataset/3d-stadtmodell-lod1-de-hamburg1 and http://suche.
transparenz.hamburg.de/dataset/digitales-hohenmodell-hamburg-dgm-106, respectively. The publishing authority of all datasets is Freie und Hansestadt
Hamburg, Landesbetrieb Geoinformation und Vermessung.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019 
14th 3D GeoInfo Conference 2019, 24–27 September 2019, Singapore

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W8-27-2019 | © Authors 2019. CC BY 4.0 License.

 
29



(a) Flat roof. (b) Gabled roof. (c) Hipped roof. (d) Mixed form roof. (e) Pitched/shed roof. (f) Pyramid roof.

Figure 2. The six types of roofs (i.e. classes) in our study dataset.

Except some leads from related work (Section 2.3) we do not
have any indication that these are by any means useful in the clas-
sification, but most of them do not cost anything to obtain and are
always available (also in LoD0 datasets). It is relevant to note
that while CityGML provides code lists for attributes (Gröger et
al., 2012), in this dataset the roof type and building function are
informed separately of the standard with local code lists.

About half of the predictors are related to the geometry of the
footprint (essentially LoD0). Analysing the geometrical proper-
ties of footprints has been a key indicator in other 3D GIS work
using machine learning (Dehbi et al., 2016; Hu et al., 2018). We
deem that the footprint is key information, primarily because the
outline of the rooftop follows the shape of the footprint, and
might be instrumental in the classification. For example, from
common sense we can a priori speculate that it is unlikely that
a building with a circular-like footprint will have a gabled or
pitched roof. This observation has also been highlighted by Henn
et al. (2013). Furthermore, we have used OpenStreetMap (OSM)
for one predictor, extracting the surrounding context.

The majority of buildings in the study area comprise multiple
building parts with each part having a single rooftop. This is an
important aspect because a building may have multiple rooftops
and therefore it may comprise multiple roof types (see the exam-
ple of the building in Table 1). Therefore in this work we focus
on building parts and treat them separately. While most attributes
are assigned to building parts, another relevant characteristic is
that building function is attributed to the building level rather than
building part. Therefore we assume that all building parts within
the same building have the same function.

We use random forest classification (Breiman, 2001), and imple-
ment it in Python with scikit-learn (Pedregosa et al., 2011). For
the data management we use 3DCityDB (Yao et al., 2018). In to-
tal we have about 707k buildings and building parts, and we use
70% of them for training the classification, and the rest for test-
ing it and assessing the performance of the work. We tested other
models such as SVM obtaining similar results, but we decided
not to clutter the paper with additional information that improves
the results only marginally.

3.2 Discovery

To develop the classification approach and to give a better under-
standing about the used dataset we have carried out a discovery,
resulting in useful information and a few insightful plots. Fig-
ure 3 suggests that low-rise buildings dominate the study area,
likely being highly influenced by the large share of garages. Flat
roofs dominate the landscape (Figure 4), again likely garages play
a significant role. The share of roof types is unequal (e.g. pyramid
roofs account for just 0.4% of the data) resulting in an imbalanced
training dataset. It also appears that the building part height plays
an important role (e.g. 78% of building parts with flat roofs are
low-rises, in contrast with 59% for mixed-form roofs).
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Figure 3. Distribution of heights of buildings/parts.
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Figure 4. Share of roofs by type in the study area.

Figure 5 further indicates the relevance of including the height,
but this time also coupled with the information on the number of
storeys.

4. RESULTS

4.1 Multiclass classification

The classification gives an accuracy of 85% in predicting the roof
type using the 12 variables listed in Table 1. The accuracy is
somewhat lower than the one obtained by Henn et al. (2013), but
it is difficult to compare the methods and results side by side be-
cause their method uses information obtained using lidar data,
while exactly the opposite is the goal of our paper (to develop a
method that does not require elevation data). We believe that the
slight difference in their favour is owing to the inclusion of some
variables that can be obtained only from point clouds.
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The performance is given for each roof type in Figure 6. While
the results are as in related work depending on the roof type, it is
interesting to note that the performance between roof types differs
between our results and those derived by Henn et al. (2013). Their
most reliable classification is of gabled roofs (97%), while ours
is for flat roofs (also 97%). The detection of hipped and pyramid
roofs has poor performance in both methods, likely due to the
imbalanced dataset. Many roofs that are not flat and gabled are
misclassified as gabled roofs.
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Figure 6. Performance of the multiclass classification.

The next important insight in the classification is the relevance of
each predictor. By far the two most important variables are foot-
print area and building height, with footprint complexity being
the least useful indicator of the roof type.

4.2 Binary classification

The classification presented so far was a multiclass classification,
considering 6 types of roofs. In this section, we consider the bi-
nary classification: determining whether the roof is flat or not.
There are multiple reasons for working in this direction. First,
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Figure 7. Performance of the binary classification.
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reducing the number of classes may result in a higher accuracy.
Second, the detailed taxonomy of roofs may not always be impor-
tant, and despite the reduced amount of information the binary
decision whether the roof is pitched or flat may still be useful,
and having such predictions with a higher accuracy may be more
relevant than the classification presented in Section 4.1.

The accuracy we achieve for this classification is higher: 92%.
The confusion matrix is given in Figure 7, again asserting that
the accuracy varies across classes.

We expect that there are use cases in which this binary classifica-
tion will be useful (also meaning that no roof geometry is actu-
ally needed for the use case, just the attribute on the roof type).
For example, estimating the suitability for greening a roof (flat
roofs are more suitable for vegetating them than any other type
of pitched roof), establishing drone landing sites, and planning
evacuation of buildings from air.

It seems that the feature importance between the two classifica-
tions differs resulting in their different ranking (Figure 8).

In both classifications, the most important predictor is the one
(footprint area) not related to 3D, which is available in LoD0,
giving confidence that in the future we might achieve LoD2 mod-
els from LoD0 data, and not only from LoD1 (elaborated more
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in Section 5.2). The importance of the building height however
should not be discounted, as it comes second in importance. As
it is clear from previous examples this is also common sense: the
taller the building is, it is less likely that it has a non-flat roof.
However, the relationship is not trivial (see Fig. 9). Some of the
other predictors are also relevant, but to a much smaller extent.

4.3 Dealing with very sparse data

Figure 8 gives a valuable insight in the relative importance of the
predictors used (Table 1). We have investigated the performance
of the classification using only the two most important predictors
(area and height), developing two additional classifications (mul-
ticlass for the 6 roof classes, and binary). The multiclass classifi-
cation performance is 75%, while the binary comes at 81%.

5. DISCUSSION AND FUTURE WORK

5.1 Accuracy

The achieved accuracy levels vary depending on the number of
involved classes and the specific roof class, with the best scenario
being identifying whether a roof is flat or not using 12 predictors
(we achieve an accuracy of 92%). The usefulness of these results
ultimately depends on the intended use and applications (see the
discussions in Sections 1, 2.1, and 4.2). For some of these, a de-
gree of error could be more than acceptable, while not for others.

On the other hand, we do not have access to the performance
measures of automatic roof reconstruction methods using lidar
data in terms of detecting the categorical information about the
roof type, but we can take the liberty to speculate that they are
not perfect either and our results actually might not deviate that
much from them. For future work it will be beneficial to compare
the performance using additional predictors, and to compare the
method to the identification of the roof type from methods using
point clouds for the reconstruction (or even combine the two, as
suggested in the introduction of the paper as the third use case).

5.2 Road map to LoD2 models without aerial surveys

In this paper we have obtained the roof type of buildings, but
not the geometry, i.e. we identify the roof type as a categorical at-
tribute. Generating the geometry of the roof and fitting on a build-
ing resulting in an LoD2 model will be part of future work, com-
posing a broader project in automatically deriving LoD2 mod-
els from sparser datasets (LoD0/LoD1) using machine learning

(Figure 10). In that context, with this paper we have made a sub-
stantial advancement — predicting the roof type. However, while
the roof type is the most important characteristic of a roof, it is
not the only one. In order to generate the geometry, obtaining real
LoD2 models, we would need to infer additional information, e.g.
height of the eaves and the ridge, orientation of the geometry of
the roof, and other measures (depending on the type of the roof,
e.g. flat roofs would have none of these, but hipped roofs would
require also additional measures such as ridge length, see Fig-
ure 2c). Achieving that goal will require predicting additional
parametres, and the required information and complexity of that
task will depend on the roof type.

5.3 Limitations

5.3.1 Lack of reliable data and uniformity This paper ad-
dresses the coverage of LoD2 models, and attempts to improve
it by establishing a new method for their generation with ma-
chine learning. At the same time, we need LoD2 models with
the ground truth of roof types so we can train our classification
system. A limitation of the work is that there might not be many
suitable datasets to do so, and the performance of the classifica-
tion should improve with the increase in the diversity of the data
(i.e. combining data from multiple countries). While the number
of LoD2 datasets is growing, they are not always rich in seman-
tics. For example, they may have the roof geometry mapped in
great detail, but unfortunately at the same time omitting the at-
tribute on the roof type, required for our method.

In the particular case of Hamburg we do not have many roof
types. The dataset is dominated by two roof classes (Figure 4),
inhibiting the diversity of training data and usefulness in other ge-
ographic areas. Therefore, as we have been dealing with a dataset
that has a disproportionate number of classes, the classifier is bi-
ased towards specific roof types.

Finally, there is no guarantee that the training data is free of er-
rors. For example, Figure 3 suggests that there are errors in the
used dataset, since some building heights are unrealistically short.
The same probably goes for other predictors we used, such as the
number of storeys, for which we have no guarantee that they are
entirely accurate. For future work, a comprehensive inspection of
the data and manual verification of the attributes is advised.

5.3.2 Multiplicity of roofs LoD1 models may come in mul-
tiple forms based on the complexity and partitioning of the foot-
print (e.g. see the discussion in (Biljecki et al., 2016)). In our
experiments we have used building parts that are obtained from
LoD2 models, and those include refined building parts with each
having a separate rooftop. However, in LoD0 and LoD1 datasets
of the study area, buildings are modelled as single objects even if
they are composed of distinct parts that have variable roof heights
and roof types (see Figure 11 for the LoD1 representation of our
exemplary building from Table 1, which in this case is covered
by only one footprint while in reality it is composed of three parts
with three rooftops). Therefore in such cases a reliable classifica-
tion might not be possible. However, that is a problem also in the
traditional approach of the reconstruction of LoD2 models from
lidar data (Alexander et al., 2009).

Future work will require automatic segmentation of footprints to
detect building parts with distinct rooftops. Most of the work
partitioning a building involves 3D data such as point clouds (De-
hbi and Plümer, 2011; Commandeur, 2012; Oude Elberink et al.,
2013), thus doing that with footprints alone will be complex.
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Figure 10. Proposed pipeline from LoD0 footprints to LoD2 models without aerial survey measurements. For previous work (inferring
heights of buildings from footprints, generating LoD1 models) see (Biljecki et al., 2017).

Figure 11. LoD1 counterpart of the LoD2 building exemplified
in Table 1. The multiplicity of roofs within the same footprint
might hamper future work.

6. CONCLUSIONS

Our work suggests that generating LoD2 models without roof
measurements might be a viable possibility in future because we
show that it is possible to predict the roof type from sparse data
i.e. lower LoD datasets (LoD0 and LoD1). The implementation is
not complex and it was done entirely using open-source software
and open data, facilitating replication. The work is also useful for
other purposes such as supporting roof reconstruction and verify-
ing existing data. The impediments of the work are imbalanced
data and multiplicity of roof types in a building.

Several ideas for future work are presented in Section 5, and are
mostly focused on achieving the LoD0 → LoD2 pipeline (Fig-
ure 10). Additional directions for future work include conflating
other sources of data increasing the number of predictors. Fur-
thermore, we did not apply the inferred patterns to test the clas-
sification in another distant geographic area such as another con-
tinent. While we do not have a proof at the moment, we believe
that the classifier should work with a comparable performance at
least in nearby (German) cities, owing to the similar architecture.
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AdV, 2019. Prüfplan für Gebäudemodelle LoD1/LoD2 Ergebnis der
Projektgruppe ‘3D-Geobasisdaten’ der Arbeitsgemeinschaft der Ver-
messungsverwaltungen der Länder der Bundesrepublik Deutschland
(AdV). Technical report.

Akca, D., Freeman, M., Sargent, I. and Gruen, A., 2010. Quality as-
sessment of 3D building data. The Photogrammetric Record 25(132),
pp. 339–355.

Alexander, C., Smith-Voysey, S., Jarvis, C. and Tansey, K., 2009. Inte-
grating building footprints and LiDAR elevation data to classify roof
structures and visualise buildings. Computers, Environment and Ur-
ban Systems 33(4), pp. 285–292.

Allani-Bouhoula, N. and Perrin, J.-P., 2008. Architectural rules for three-
dimensional reconstruction. In: CGIM ’08 Proceedings of the Tenth
IASTED International Conference on Computer Graphics and Imag-
ing, Innsbruck, Austria, pp. 237–242.

Angel, S., Parent, J. and Civco, D. L., 2010. Ten compactness properties
of circles: measuring shape in geography. The Canadian Geographer
54(4), pp. 441–461.

Awrangjeb, M., Gilani, S. and Siddiqui, F., 2018. An effective data-driven
method for 3-d building roof reconstruction and robust change detec-
tion. Remote Sensing 10(10), pp. 1512.

Bakillah, M., Liang, S., Mobasheri, A., Jokar Arsanjani, J. and Zipf,
A., 2014. Fine-resolution population mapping using OpenStreetMap
points-of-interest. International Journal of Geographical Information
Science 28(9), pp. 1940–1963.

Biljecki, F. and Sindram, M., 2017. Estimating building age with 3D
GIS. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-4-
W5, pp. 17–24.

Biljecki, F., Heuvelink, G. B. M., Ledoux, H. and Stoter, J., 2018. The
effect of acquisition error and level of detail on the accuracy of spatial
analyses. Cartography and Geographic Information Science 45(2),
pp. 156–176.

Biljecki, F., Ledoux, H. and Stoter, J., 2016. An improved LOD speci-
fication for 3D building models. Computers, Environment and Urban
Systems 59, pp. 25–37.

Biljecki, F., Ledoux, H. and Stoter, J., 2017. Generating 3D city models
without elevation data. Computers, Environment and Urban Systems
64, pp. 1–18.

Breiman, L., 2001. Random Forests. Machine Learning 45(1), pp. 5–32.

Commandeur, T., 2012. Footprint decomposition combined with point
cloud segmentation for producing valid 3D models. Master’s thesis,
Delft University of Technology.
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