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Abstract. The task of architectural image recognition for both
architectural functionality and style remains an open challenge. In
addition, the paucity of well-organized, large-scale architectural
image datasets with specific consideration for the domain of
architectural design research has hindered the exploration of these
challenging tasks. Drawing upon images from the professional
architectural website Archdaily®, and leveraging state-of-the-art
deep-learning-based classification models, we explore a hierarchical
multi-label classification model as a potential baseline for the task
of architectural image classification. The resulting model showcases
the potential for innovative architectural discipline-related analyses
and demonstrates some heuristic insights for visual feature extraction
pertaining to both architectural functionality and architectural style.
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1. Introduction
The emerging awareness, and pertinent discussion, regarding the application of
machine learning techniques is permeating the architectural discipline of both
its methodology and epistemology. Architectural image classification models
with high performance show potential as informative tools for a series of
architecture-related tasks. For example, classifying the functionality of individual
buildings can be useful for urban utility planning and population density mapping
at a finer level of urban intrinsic scale (Kang et al. 2018; Hoffmann et al. 2019);
identifying visual features of building instances can assist the investigation of the
impact of built environment characteristics (Nguyen et al. 2018; von Platten et
al. 2020); and recognition of emerging architectural styles can provide novel
insights into the trend of modern architectural design practice. Nevertheless,
architectural image classification can deviate from conventional image recognition
tasks due to the convoluted inter-class relationships between different architectural
categories and styles (Xu et al. 2014), as there is no standard criterion regarding
the definition of architectural types and styles concerning visual features, and
some architectural types and styles can be interdependent and the corresponding
latent features may not be identically distributed. Hitherto, only limited efforts
have been made to address the task of individual building instance classification
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(Kang et al. 2018). Meanwhile, although existing architectural style-focused
datasets can be adapted to some interesting machine learning-based applications
such as style transformation, the predefined styles involved in existing datasets
are mostly of historical significance and might have limited application potentials
in real-world design scenarios. Although it would be worthwhile to explore the
variety of modern architectural styles that are somehow ill-defined in current
architectural literature, few previous studies have explored the task of architectural
style prediction with a perspective of modern architectural design practice.

Thus, the task of architectural image recognition for both architectural
functionality and style remains an open challenge. However, the paucity
of well-organized, large-scale architectural image datasets has hindered the
exploration of these challenging tasks. Even though there are generic data
banks available with tagged images, it can still be tricky to find specific datasets
of architectural images for various purposes and the quality of images is not
guaranteed with respect to architectural design. Hence, there is a necessity for new
large-scale architectural image datasets with hierarchical labelling and different
levels and details of annotations, which could be useful for the training of deep
neural networks or other machine learning techniques for architectural design
research. Shalunts et al. (2011) have collected a small dataset with 400 building
facade images labelled by architectural styles for the classification task of cultural
heritage buildings. Llamas et al. (2017) have compiled a publicly available dataset
with more than 10,000 images sorted in 10 types for classifying architectural
elements of interest in imagery of heritage buildings. Xu et al. (2014) have
extracted and fine-tuned an architectural style dataset from Wikimedia with 25
architectural style classes tailored for architectural style classification, and each
class has images ranging from 60 to 300 with a total number of roughly 5,000.
Recently, Kang et al. (2018) have built a dataset to facilitate the training and
evaluation of building instance classifiers using street view images, while using
geographic information retrieved from online map services for labelling. The
dataset has a training set of size 17,600 and a test set of 2,058. However, the dataset
only possesses 8 classes, and the environmental context of the images retrieved
from street view websites is somehow homogeneous, which has made the image
dataset limited pertaining to the level of diversity.

We compiled an architectural image database called AIDA, short for
Annotated Image Database of Architecture, composed of building imagery with
high-diversity and high-coverage for general-purpose deep learning-based model
training. The new dataset provides an enhanced platform for the evaluation of the
performance of existing deep learning-based models, as well as encouraging the
creation of new ones. We also offer a series of multi-label architectural image
classifiers with integrated classification labels, including scene classes (indoor
and outdoor-street-level) and architectural functionality categories. The obtained
architectural image classifier showcases the potential for many innovative
architectural discipline-related analyses. Also, it provides some heuristic insights
with respect to visual feature extraction in the context of architectural design
research.
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2. Construction of AIDA
To ensure the quality of imagery concerning architectural design and satisfy
the requirement of a broad spectrum of coverage, images are retrieved
from professional architectural website Archdaily®, an architecture projects
broadcasting website with probably the largest online repository of architecture
projects worldwide. The crawled images, one image per architectural project,
have been manually filtered to meet specific requirements for training tasks for
architectural design research: the photos need to be real-world photography and
need to be focused on the architecture. Unqualified or irrelevant images have been
discarded. Images retrieved from Archdaily® have been annotated with ground
truth category labels acquired from the website. To ameliorate class imbalance,
architectural categories with too few or too many images have been omitted to
compose a condensed image database. Images are further categorized into two
scene classes: outdoor-street-level and indoor, with 25 architectural categories
each (image samples are shown in Figure 1). The number of images in each
architectural category of each scene class varies from 20 to 1,400, and the total
number of images in AIDA is 14,659 (Figure 2). Noticeably, the underlying
inter-relationships between different architectural categories might distinguish the
newly collected database from conventional scene classification datasets.

Figure 1. Image samples from two scene classes, outdoor-street-view and indoor, and various
architectural categories of AIDA (source: https://www.archdaily.com/).

Figure 2. Number of images per category in AIDA, sorted in ascending order; AIDA contains
14,659 images from 25 architecture categories.
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3. AIDA-CNNs: hierarchical (multi-label) architectural image classification
Compared with flat classification tasks, hierarchical classification can be a more
efficient approach to organize the enormous amount of information involved and
can be cast to more real-world applications; classes are pre-established as different
levels of hierarchy, either a tree or a directed acyclic graph (DAG) structured class
taxonomy (Silla & Freitas 2011). The AIDA database has a DAG class taxonomy
as each child class—architectural category—can be directed back to more than
one parent class—scene class. Hence, the hierarchical classifier might be more
suitable for the AIDA database compared with flat classifiers.

Most approaches in the context of hierarchical classification can be regarded
as multi-label classification and categorized into local or global classifiers. Local
classifiers explore the class structure in a top-down manner with a series of
classifiers; global classifiers employ a single classifier dealing with the entire class
structure (Silla & Freitas 2011). The local classifier per parent node (top-down)
approach adopts one multi-label classifier for each parent class in the hierarchy to
distinguish between its child classes or, alternatively, a multi-label classifier for
each hierarchical level. Instead, the global classifier approach takes into account
the dependencies between classes in a more straightforward way and a single yet
relatively complex classification model is constructed, treating the class hierarchy
as a whole for a single run of the classification algorithm (Freitas & Carvalho
2007). Compared with the modularity for local training of the classifier, global
classifiers have the advantage of learning a global model for all the classes in a
single run yet adding complexity to the adopted model.

To fuse the scene classification and architectural category classification as
an integrated task, we adopt a global classifier in the context of hierarchical
classification as the basic, multi-label classification framework. Figure 3
illustrates the proposed hierarchical image classification model framework: an
integrated CNN model as the global classifier takes in the labeled architectural
images and produces predicted labels of both the scene classes and the architectural
categories, which are then separately interpreted as two hierarchical classifiers.

Figure 3. The proposed hierarchical image classification model framework.
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3.1. TRAINING

We chose two state-of-the-art CNN architectures for image classification tasks,
namely ResNeXt (Xie et al. 2017) and DenseNet (Huang et al. 2017), to construct
the baseline CNN models. While adopting the basic model structure of ResNeXt
and DenseNet, the output layers of both models are modified using a sigmoid
function for the output layer to suit the multi-label classification task. Such
modification also enables the analysis of inter-relationships of architectural classes
probabilistically and offers a latently rational explanation of the gradual transition
and mixture of visual architectural features with soft probabilistic assignments.

The image database is still not sufficiently large to properly train the selected
models with over millions of parameters from scratch; at least an order of
magnitude more instances relative to the trainable parameters of the model would
be sufficient (Google Developers, n.d.). Therefore, the convolutional layers of the
networks have been trained using the transfer learning approach. Fine-tuning a
pretrained CNN for new training tasks with novel datasets has been proven to be
efficient, as local features like edges and corners generated by the bottom layers of
the neural network are usually similar for different types of imagery. In contrast,
the high-level features extracted by the top layers are task-dependent. For the
model training, 11,730 images from the dataset have been randomly selected for
training and 2,929 for testing, while 20% of images from the training samples have
been selected as validation data to monitor the training status of the networks. For
the experimental implementation, we chose the corresponding network version of
the ResNeXt andDenseNet models with relatively better performance based on the
evaluation provided by PyTorch (Paszke et al. 2019), respectively, ResNeXt-101
and DenseNet-161, where the numbers 101 and 161 in the nomenclature denote
the depth of the specific version of the network models.

Both networks are initialized with corresponding model checkpoints provided
by PyTorch, which were pre-trained on the ImageNet database (Deng et al. 2009),
and the output layers were initialized in a random manner by adopting a uniform
distribution. The training adopted a batch size of 32 and used the adaptive moment
estimation algorithm (Kingma & Ba 2014) with a learning rate of α = 10−3,
exponential decay rate for the first moment estimates β1 = 0.9, exponential decay
rate for the second-moment estimates β2 = 0.999, and ϵ = 10−8 for training.
The binary cross-entropy loss function was used and a drop out rate of 20% was
adopted for the neurons of fully connected layers. Data augmentation was used
for the training data with the following settings: (a) random crop size of 224×224
pixels with resize range of 0.8-1.0 of initial input size 256×256 pixels; (b) random
rotation with a range from -15 to 15 degrees; (c) random horizontal flip with a
probability of 50%. All training and testing were performed with PyTorch (Paszke
et al. 2019) on 2 Nvidia Tesla V100 32GB GPUs.

Three classification accuracy metrics have been calculated using scikit-learn
(Pedregosa et al. 2011), including weighted precision, weighted recall and
weighted F1 score, which are typically used metrics for multi-label targets. The
nomenclature “weighted” indicates that the averaging performed on the calculated
metric is weighted by the number of true instances of each label, which accounts
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for the impact of latent label imbalance. Precision p = true positive / (true positive
+ false positive) is the ratio of true positive predictions to the total predicted
positive instances. Recall r = true positive / (true positive + false negative) is
the ratio of true positive predictions to all instances in the corresponding class.
F1 score F1 = 2(rp)/(r + p) is the weighted average of precision and recall,
and considers both false positive and false negative instances, which can be useful
if the class distribution is uneven. As can be seen from the calculated accuracy
metrics in Figure 4, both networks have fluctuations for the weighted F1 score
at the early stage, plausibly caused by the uneven distribution among different
classes. Meanwhile, DenseNet-161 has outperformed ResNeXt-101 based on
the three accuracy metrics (weighted precision, weighted recall and weighted F1
score) calculated over different training epochs.

Figure 4. DenseNet-161 obtains slightly higher accuracy compared to ResNeXt-101.

3.2. TESTING

To testify the model performance on the two hierarchical levels, we further
evaluate the trained classifiers on the scene classes and architectural categories
separately using the test set. Figure 5 illustrates the corresponding overall accuracy
and accuracy of each scene class at different training epochs of ResNeXt-101
and DenseNet-161. DenseNet-161 achieves slightly better performance on the
scene classification task with 96% accuracy compared to ResNeXt-101 with 95%
accuracy.

Figure 5. Comparison of the overall accuracy of the scene classes between ResNeXt-101 and
DenseNet-161(left) and accuracy of each scene class of DenseNet-161 (right).

A comparison of the overall accuracy of the architectural categories between
ResNeXt-101 and DenseNet-161 (Figure 6 left) shows that DenseNet-161 also
slightly outperforms ResNeXt-101 on the architectural image classification task.
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It is worth noting that the overall accuracy of architectural category classification
fluctuates at early epochs, plausibly caused by the divergent accuracy value
among different architectural categories during initial epochs (Figure 6 right).
The discrepancy of accuracy between different architectural categories gradually
decreases as the number of epochs increases, which might also contribute to the
fluctuation phenomenon of the weighted F1 score over all target classes at the early
stage.

Figure 6. Comparison of the overall accuracy of architectural categories between ResNeXt-101
and DenseNet-161 (left) and top-1, top-3 accuracy per category of DenseNet-161 (right).

To further examine this phenomenon, the mean and standard deviation of
the accuracy per architectural category are calculated for both ResNeXt-101 and
DenseNet-161 (Figure 7). The mean accuracy per architectural category increases
while the standard deviation decreases with the increase of the number of epochs
as anticipated. DenseNet-161 has a higher mean and lower standard deviation
of accuracy per architectural category during the early training epochs, while the
difference gradually eliminates as the number of epochs increases.

Figure 7. Comparison of the mean (left) and standard deviation (right) of top-1 accuracy per
architectural category between ResNeXt-101 and DenseNet-161.

3.3. EVALUATION

Table 1 uses t-SNE (Van der Maaten & Hinton 2008) to visualize the
high-dimensional space of the image classification manifolds by giving each
predicted datapoint a location in a two-dimensional map. We demonstrate the
predicted class projection via t-SNEwith DenseNet-161 trained at different epochs
using the full dataset and the test set respectively: the separation between different
classes becomes gradually more pronounced as the number of epochs increases.
The separation between the two scene classes is already distinguishable after 30
epochs, while for the architectural categories, the situation is more convoluted.
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Table 1. Predicted class projection via t-SNE with DenseNet161-based hierarchical multi-label
classifier trained at different epochs using the full dataset and the test set of AIDA.

To examine the disentanglement between architectural categories, the
normalized confusion matrix is plotted based on the AIDA test set evaluated
with DenseNet-161 trained at epoch 70 (Figure 8). Some pairs of architectural
classes have entangled relationships with each other, indicating the complex
inter-class relationships between different architectural categories, as mentioned
in the introduction.

Figure 8. Normalized confusion matrix for architectural category prediction with
DenseNet-161 trained until epoch 70 (showing only 11 selected categories), demonstrating the

convoluted inter-class relationships between different architectural categories.

To further examine the latent stylistic relationship between architectural
categories, we projected the prediction of each image of the “Apartments” category
in the test dataset with DenseNet-161 at epoch 70 using t-SNE and examined a
series of images from different prediction clusters. Surprisingly, the projected
prediction mapping reveals some latent inter-class style relationships. We used the
Gradient-weighted Class ActivationMapping (Grad-CAM) proposed by Selvaraju
et al. (2017) to produce coarse localization maps with highlights of important
discriminative regions of the image which correspond to the predictive decision of
interest. Red regions of the heatmap correspond to high scores for class prediction
significance (Figure 9).
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Figure 9. (a) Prediction of “Apartments” category with DenseNet-161 at epoch 70 projected
using t-SNE; (b) Sample images with feature activation maps produced using Grad-CAM:
images from clusters 1 have been correctly classified as “Apartments”, while images from

clusters 2 have been incorrectly classified as “Offices”.

We note that the architectural category classification has an intrinsic
relationship with some stylistic characteristics of the corresponding architectural
image: the images mistakenly classified as another architectural category in
clusters 2 are in possession of some common visual features, such as the solid
white cubic geometry recurring in cluster 2. Meanwhile, the images which are
correctly classified are also in possession of some similar visual features, such as
the grid pattern of images from cluster 1.

4. Discussion and summary
We explored two multi-label architectural image classifiers with integrated
classification labels, including scene classes and architectural functionality
categories, trained on a new architectural image dataset with hierarchical
labelling. The resulting model showcases the potential for innovative architectural
discipline-related analyses.

The latent stylistic relationship between different architectural categories
has revealed heuristic insights with respect to visual feature extraction in the
context of architectural design research. The architectural image classification
models can capture some deeper representations of higher-level visual features
which can be related to the interpretation of architectural stylistic characteristics.
Such property can be leveraged for architectural style identification and
induction. The classification models can also be leveraged to develop an
architectural style relationship network and provide architectural style analysis
for individual buildings, which might distinguish itself from existing architectural
style classification models relying on predefined historical styles with limited
application potentials in real-world design scenarios.

5. Data availability statement
Some or all data and code that support the findings of this project are available
from https://dataverse.harvard.edu/dataverse/AIDA_AIDA-CNNs.
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