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ABSTRACT:

Urban heat island (UHI) is considered a serious environmental issue in highly urbanized cities such as Singapore. To better quantify
the UHI intensity, the local climate zones (LCZ) classification scheme was adopted to characterize land covers, and describe and
compare their thermal performance. There are three commonly used LCZ classification approaches: manual sampling, World Urban
Database and Access Portal Tools (WUDAPT) processing method using remote sensing, and geographical information system
(GIS)-based method. Based on the current implementation of WUDAPT Level 0 method in the classification work in Singapore,
the principal limitations are expounded. To overcome the deficiencies, street view imagery (SVI), which carries substantial urban
spatial information, is regarded as a promising data source. This paper reviews the potential of SVI to better estimate certain LCZ-
related properties, such as sky view factor (SVF). As it allows a detailed view on the ground objects, SVI opens up the possibility
of identifying surface properties such as albedo, as well as anthropogenic heat sources. Although it is not a novel idea, there has
been a lack of a comprehensive use of SVI in assisting LCZ classification from the ground up, especially in a high-density city such
as Singapore. This paper overviews potential ways to incorporate SVI and identifies challenges such as coarse temporal resolution
and spatial coverage constrained to drivable roads.

1. INTRODUCTION

The rise of urbanization and its impact on local thermal cli-
mate has been widely documented in scientific literature (Patra
et al., 2018; Li et al., 2016; Lin et al., 2020). The urban heat
island (UHI), an observation where urban air temperature is
higher than in the rural area, has been reported for cities and
regions worldwide. UHI effect is due to the agglomeration of
diverse man-made structures that has replaced the natural land-
scape. However, the descriptions of urban and rural charac-
teristics were deemed too broad, leaving vague definitions and
gaps between the two extremes, where the physical and clima-
tological characteristics in-between are not clearly defined.

To help classify the various of rural-urban regions, Stewart and
Oke (2012, 2015) developed the ‘local climate zones’ (LCZ)
classification scheme for UHI studies, to provide a framework
on studying the UHI and develop a widely accepted standardiz-
ation of rural-urban parameterization. LCZ comprises 17 zone
types at the local scales, where each type describes a unique
surface structure, land cover, construction materials and human
activity. The LCZ system was initially developed to assist UHI
researchers, but it has derivative uses for city planners, land-
scape ecologists, and global climate change investigators. LCZ
has a long history of application in numerous studies, in which
mostly deals with climatic mappings. Based on the recent lit-
erature review, LCZ classifications have been applied to ana-
lyze outdoor thermal comfort in various urban settings (Lau et
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al., 2019; Ren et al., 2022), or evaluating regional climate and
WRF (Weather Research and Forecasting) model performance
(Wong et al., 2019).

Since an accurate LCZ map can contribute to a better study of
urban climate issues with the concept of urban morphological
details and human activity, efforts are continuously made to im-
prove the existing LCZ classification methods. This study aims
to evaluate conventional approaches and devise potential im-
provements. A LCZ classification case study is used to demon-
strate the advantages and principle limitations of the commonly
accepted method and the possible issues when adopting Geo-
graphical Information System (GIS) based method. Based on
that, the potential improvement by Street View Imagery (SVI)
and its feasibility are discussed. Although it is not a novel
idea, there has been limited research on applying SVI to im-
prove LCZ classifications (Demuzere et al., 2019; Wang et al.,
2018a). The potential of SVI lies on its ground level informa-
tion, which provides a level of detail that is not available from
remote sensing data.

The current methodology and practice of LCZ classification ap-
proaches are reviewed in Section 2. A case study showing the
procedure of developing a LCZ map for Singapore is presented
in Section 3, while the evaluations is discussed in Section 4,
which leads to the potential improvements and the feasibility
study of the new method utilizing SVI in Section 5.
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2. LCZ: CURRENT METHODOLOGY AND
PRACTICE

2.1 LCZ Classifications

LCZ classification is based upon urban morphology, built-up,
and surface cover (pervious and impervious). They are divided
into 17 standard classes comprises 10 built-up types (LCZ 1 to
10) and 7 vegetation types (LCZ A to G), as illustrated in Fig-
ure 1 (Stewart and Oke, 2012). In addition, the 17 categories
have 4 variable land cover properties. These classes have differ-
ent microclimatic conditions, and they are associated with the
air temperature, which provides a generic framework for UHI
studies. After its development, the LCZ classification scheme
was adopted as an international standard to classify the land
cover and describe its thermal performance (Stewart and Oke,
2012; Demuzere et al., 2021; Aslam and Rana, 2022; Quan and
Bansal, 2021).

Figure 1. Local climate zones classifications, based on Stewart
and Oke (2012).

2.2 Current methodologies on classifying LCZ

From previous studies, there are three known methods to per-
form LCZ classification according to the data sources and ana-
lytical methods: manual sampling, remote sensing (RS), and
GIS.

Manual sampling requires a lot of human labor and is ineffi-
cient, which is then regarded as an unsuitable method in devel-
oping a LCZ map for a city. Remote sensing (RS) relies on
object-based image analysis and machine learning techniques,
which is common for continental or regional assessment, but
can misclassify some built-type LCZs because of the limitations
in detecting building geometry characteristics. Efforts have
been been exercised to standardize methods on using RS data;
they have been criticized for being unjustified and unstandard-
ized (Quan and Bansal, 2021; Geletič and Lehnert, 2016). GIS
method requires a complete set of raster and vector-based plan-
ning data (Zheng et al., 2018; Lelovics et al., 2013) to conduct
LCZ classification (Perera and Emmanuel, 2018; Chen et al.,
2020; Rodler and Leduc, 2019; Hidalgo et al., 2019; Estacio et
al., 2019; Kotharkar and Bagade, 2018).

The community ‘The World Urban Database and Access Portal
Tools’ (WUDAPT) provides a fast and low-cost product of
LCZ classification based on both RS images and software tools,
which called WUDAPT Level 0 (Mills et al., 2015; Bechtel et
al., 2019, 2015). WUDAPT Level 0 classifies the local morpho-
logies into different LCZs and provides a 2D LCZ map in a city
level. Based on its results, WUDAPT Level 1 and Level 2 gath-
ers details on each urban elements and develops a 3D model.

The objective behind the WUDAPT initiative is to use the LCZ
classification framework as the starting point for characterizing
cities in a consistent manner and provide open access to data.

From the first introduction of LCZ mapping in urban environ-
ments, its implementation has bifurcarted into the RS and GIS
streams. The RS stream has gained popularity because of its re-
liance on available satellite imageries for selective cities in the
world and formalized methods by WUDAPT community. GIS
method does not have an internationally standardized proced-
ure yet, and comparison studies between RS and GIS method
are not conclusive about which one is more superior (Quan and
Bansal, 2021).

2.3 Significance of developing a LCZ map in Singapore

As a highly dense and tropical city-state, it is an imperative
for Singapore to develop an LCZ map that is better in classi-
fying different built-types and land cover types to study urban
microclimate and UHI-related issues. The study by Wong and
Yu (2005) has indicated a 4°C UHI impact in Singapore, which
was based on mobile measurements between the central and
forest/central cachment areas. Furthermore, a qualitative and
quantitative assessment on Singapore urban morphology con-
curs with the previous finding where the land usage will influ-
ence urban temperature (Jusuf et al., 2007). In the day time,
high surface temperature is found at industrial area, while com-
mercial area exhibits the highest at night time. This finding
suggests the necessity of developing accurate islandwide LCZ
classifications for Singapore.

An accurate LCZ map can describe the urban morphological in-
formation and the corresponding thermal performance at each
site. Based on the results, a communication bridge can be estab-
lished between urban planners and meteorologists to understand
and discuss the effects of urban form on urban microclimate,
which can help develop environmental friendly and functional
city design.

3. RS METHOD IN CLASSIFYING LCZ: SINGAPORE
CASE STUDY

In this Singapore case study, WUDAPT level 0 method using
RS dataset, is utilized for classifying LCZ types. The LCZ
classification workflow of WUDAPT level 0 method follows
the standard processing procedures stated by WUDAPT com-
munity. The preliminary LCZ map in Singapore is shown in
Figure 2.

Figure 2. Preliminary LCZ classification map in Singapore.
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Currently, the WUDAPT level 0 method is a satellite image-
based 2-dimensional LCZ classification method that commonly
accepted and utilized (Mughal et al., 2019). Landsat 8 satellite
images with minimum cloud cover were selected and down-
loaded as input data into SAGA GIS. There were 15 LCZ
samples of each classification type manually selected in Google
Earth as the training groups. Then the LCZ maps with differ-
ent resolutions were computed using random forest algorithm
with the selected training samples. Samples in the valida-
tion group were then utilized to verify the classification accur-
acy. The training groups were improved until the accuracy met
the requirements, by manually reselecting more suitable LCZ
samples.

The following sections will briefly elaborate the current LCZ
workflow and relevant dataset source limitation. Then, a pro-
posed urban morphology quantification at ground scale is intro-
duced to complement the deficiencies of satellite imagery.

4. EVALUATION AND LIMITATION

Two key issues arise when implementing the original LCZ
framework in real-world LCZ mapping: low spatial resolution
of RS data and subjective judgement for the selection of the
training areas for WUDAPT level 0 method.

Figure 3. Examples of misleading green roofs: comparison
between aerial view and street view imagery in Google Maps.

For the WUDAPT level 0 method, the identification of training
areas is a difficult and time-demanding task. The LCZ scheme
was not initially developed for mapping based on the spectral
properties from satellite imagery. Instead, the 17 classes were
differentiated according to many factors including land cover
composition, urban fabric, functional use and anthropogenic
factors. The geometric and surface cover properties distinguish-
ing LCZ types (Figure 1) are often difficult to infer from satel-
lite imagery. For example, viewers often find that building geo-
metry is blocked by trees and vegetation, or roof gardens are
misinterpreted as ground level turfing, shown in Figure 3.

Furthermore, many studies have focused on generating LCZ
maps using remote sensing data, but nearly all have used tra-

ditional land use/land cover (LULC) map accuracy metrics,
which penalize all map classification errors equally, to evalu-
ate the accuracy of these maps (Johnson and Jozdani, 2019).
Lipson et al. (2022) identified this top-down limitation, as there
is inconsistency in data from various users and regions. They
propose to use high resolution surface datasets that represent
bottom-up method to obtain high fidelity 3D shapes of build-
ings and trees. However, such datasets are not yet available
widely.

It is found difficult to develop a 3D model which describes
every urban structure components, especially vegetation and
ground surfaces. As for buildings, most cities do not have their
complete and available appropriate geospatial datasets (Biljecki
and Chow, 2022). Even with the building model, the overlap-
ping values of the determing parameters of the LCZ classes in
the method specifications may also lead to the misclassification.
One can look at the LCZ table and notice that there are many
overlaps in the given values of geometric properties for each
class, i.e. the classes are not mutually exclusive. It means when
more LCZ parameters are used for classification, it is difficult to
guarantee that the values of site metadata match well with those
in the standard LCZ datasheet. There is an example of the mis-
classification of an LCZ 5 into LCZ 10 when directly match the
given values of the LCZ determing parameters, shown in Fig-
ure 4. The given parameters such as pervious surface fraction
and sky view factor determine the area to be LCZ 10 while it is
an obvious LCZ 5 without industrial structures.

Figure 4. An example of the misclassification from LCZ 5 into
LCZ 10 with the direct matching method (comparison between

vector GIS data and satellite imagery in Google Earth).

Problems also arise when applying LCZ classification scheme
based on the given values of geometric, surface cover, thermal,
radiative, and metabolic properties for local climate zones. The
urban morphology characteristics of each cities are different
(Biljecki and Chow, 2022), and this is particularly the case for
megacities such as Singapore, Tokyo, and Jakarta. Cities in
Northern Europe tend to be more open-built, while in Asia are
often more densely built. Hence, using the same classification
standard, the given values of each LCZ class may not fit these
high-density megacities.

Consecutively, the gaps in urban morphology characteristics
between lowly and highly dense cities can lead to over or un-
derestimated urban geometry, especially building footprints and
heights, which is a common issue found in assessing high dens-
ity urban areas. For example, LCZ4 is defined with 20–40%
Building Surface Fraction (BSF), 30–40% Impervious Surface
Fraction (ISF), and 30–40% Pervious Surface Fraction (PSF).
These properties are difficult to extract from satellite imagery
based on human interpretation, even from high-resolution im-
agery. Another issue is that LCZ4 and LCZ5 have similar sur-
face fractions but differ in the height of roughness elements
(<25 m for LCZ4 and 3–10 m for LCZ5). These two open
types are difficult to label without 3D data.

Therefore, in high-density cities, such as Singapore, urban
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types are difficult to be distinguished without secondary data
sources. Some researchers have attempted to conduct LCZ
classifications for Singapore. Mughal et al. (2019) developed
Singapore LCZ by following WUDAPT level 0 methodology
using Landsat 8 images and building height data. Mean-
while, Matthias et al. (2019) used cloud-computing resources
of Google Earth Engine as an alternative approach of the WUD-
APT method. Hence, these studies are limited on obtaining
street-level information, which is essential to determine the
characteristics of urban geometry and other elements. This
situation is where data such as street view imagery (SVI) can
provide better information.

5. POTENTIAL FOR IMPROVEMENTS

5.1 Street view imagery for LCZ classification

Street view imagery (SVI) is an emerging yet promising data
source that provides rich urban spatial information, and has
gained growing recognition recently owing to its usefulness,
widespread availability and the increasing ease to process im-
ages in large batches (Ma et al., 2019; Mahabir et al., 2020;
Biljecki and Ito, 2021). SVI data is commonly provided by
commercial services such as Google Street View (GSV), and
crowdsourced platforms such as Mapillary and KartaView. SVI
has enabled and enhanced a wide spectrum of applications in
urban-related topics including spatial data infrastructure, pub-
lic health, urban greenery, transportation, mobility, perception,
socioeconomics, and so on (Branson et al., 2018; Cheng et al.,
2018; Zhang et al., 2019a; Pelizari et al., 2021; Li et al., 2021;
Yao et al., 2021; Inoue et al., 2022; Qiu et al., 2022; Hosseini et
al., 2022; Byun and Kim, 2022; Guan et al., 2022).

According to the guidelines by Stewart and Oke (2012) to
use the LCZ classification system, relevant site metadata must
be collected to quantify the surface properties of the thermal
source area for a temperature sensor. Stewart and Oke (2012)
state that such data is best collected through a field visit, but sec-
ondary sources of site metadata could be used if a site survey
is not possible. SVI has been frequently used in place of site
visits for environmental audit purposes, especially for studies
that span across large spatial scales or focus on multiple cities
which often makes site visits virtually impossible (Rundle et
al., 2011; Hara et al., 2015; Yin et al., 2015; Fry et al., 2020; Ito
and Biljecki, 2021).

In contrast to RS imagery, which has a top-down view, SVI
provides a ground-level perspective that can be immensely
valuable in estimating certain LCZ-related properties, such as
sky view factor, street canyon aspect ratio, and height of rough-
ness elements, which are difficult to obtain from optical re-
mote sensing imagery. Further, SVI allows a closer and more
detailed view on the ground objects, potentially aiding in the
verification of surface properties including permeability, admit-
tance, and albedo, as well as the identification of anthropogenic
heat sources. Thus, using SVI as ancillary data for LCZ clas-
sification presents great potential in improving the classifica-
tion accuracy. More specifically, we found that SVI could sub-
stantially improve the measurement or verification of all LCZ-
related properties except for building surface fraction, for which
remote sensing imagery would provide more accurate measure-
ment. The next two sections (5.2 and 5.3) detail how effectively
SVI could potentially enhance the determination of each LCZ-
related property — either regarding their measurement or their

verification, and briefly discuss the feasibility of implementa-
tion based on existing studies. Section 5.4 describes potential
ways to incorporate SVI in the LCZ classification process. We
have also identified potential challenges associated with SVI as
a data source in Section 5.5.

5.2 Improvement in direct measurement or estimation

Sky view factor Similar to green view factor and building
view factor, sky view factor (SVF) is a dimensionless variable
between 0 and 1 that represents the proportion of the area of
visual hemisphere covered by sky (Liang et al., 2020), as shown
in Figure 5. This indicator is commonly used to measured the
canyon geometry in certain portion of a city, which has a sig-
nificant impact on urban heat islands (Oke, 1981). Rather than
calculating street-level SVF based on field survey, SVI open a
great opportunitiy to obtain the SVF measurements with fine-
scale and high-coverage (Middel et al., 2018; Biljecki and Ito,
2021). This approach is examined by Wang et al. (2018a); De-
muzere et al. (2019), who aggregate the spherical fractions of
sky into LCZ maps to generate parameter means of SVF.

Although SVF estimation requires a complicated from images
processing to deep learning model training, there are some use-
ful tool occurs to mitigate the difficulty. For example, (Li-
ang et al., 2020) introduce an easy-to-use GIS-integrated tool
(GSV2SVF) to obtain SVF conveniently, which could be integ-
rated as one of evaluation processes of LCZ.

Figure 5. Example of original SVI panorama processed into a
visual hemisphere for sky view factor calculation, together with

the segmented result.

Figure 6. Comparison of the two SVF calculations by using SVI
and using SAGA GIS method. The number in the brackets

indicates how many SVI points were averaged to obtain the SVF
value for each grid. Building footprints were obtained from

OpenStreetMap.

We attempted to use some SVI data to measure SVF and com-
pare the difference between SVI and SAGA GIS method. This
data is obtained from Google through an open source script
that emulates the browser (Tang and Long, 2019). The pan-
oramic SVI are downloaded every 20 meters along the road
network. The semantic segmentation model is used to extract
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the pixel fraction of the sky. Specifically, we used the Dee-
pLabV3+ model (Chen et al., 2018) trained on Cityscape data-
set (Cordts et al., 2016), which includes 19 classes of labels
(e.g. sky, vegetation, building, etc.). Figure 6 illustrates how
SVI could potentially improve the SVF parameter. As SVI data
have considered the view obstruction due to buildings, trees,
and other objects, the SVF values tend to be lower compared to
SAGA GIS method, which relies on building data only. As most
streets in Singapore are complemented with arrays of trees, this
example amplifies the significance of SVI.

Aspect ratio Similar to SVF, aspect ratio is another built en-
vironment factor that has significant impact on thermal com-
fort (Ali-Toudert and Mayer, 2007). However, traditional as-
pect ratios measurements require laborious field surveys, which
inhibit large-scale investigation. While commonly used GIS-
based approaches could enable large-scale investigation, they
heavily rely on the availability of built environment data, such
as building height and road condition information, which is of-
ten unavailable. To sense the street canyon geometry rapidly,
Hu et al. (2020) developed a deep multitask learning framework
to classify it into three levels. Among them, H/W-based (Level
1) divides street canyons into four categories based on canyon
height (H) to canyon width (W) ratio, indicating the possibility
to measure aspect ratio based on SVI instead of building height
data.

Terrain roughness class Davenport et al. (2020) classified
8 terrain roughness types: sea, smooth, open, roughly open,
rough, very rough, skimming, and chaotic. Each roughness
type is associated with a different landscape description, such
as open water, featureless landscape with little obstacles, flat
land with low vegetation, open land with low buildings high
crops, large farms with forest clumps, dense urban areas with
low or high building-height variation, and so on (Davenport et
al., 2020). These characteristics are usually difficult to determ-
ine through satellite images, but can easily be visually assessed
from SVI. Although there is no existing study that focus on clas-
sifying terrain roughness using SVI, machines can potentially
be trained to automatically detect the terrain roughness type
around a location using SVI. Although Digital Elevation Mod-
els (DEMs) could provide information on terrain elevation, it
represents the bare surface and does not provide precise obser-
vation at a local scale, which could make it difficult to identify
objects that can influence the classification such as low vegeta-
tion and crops. SVI could thus be used to provide more precise
information.

5.3 Improvement in verification

Impervious and pervious surface fractions Under the land-
cover category, impervious and pervious surface fractions are
the main contributors to land surface temperature that could fur-
ther perpetuate urban heat issues. However, due to the obscura-
tion of vegetation and man-made structures, the traditional ap-
proach relies heavily on manual measurements or low precision
estimates from remote sensing (Imhoff et al., 2010). Thanks to
various training data created according to different research pur-
poses, SVI enable researchers to measure different surface frac-
tion according to the proportions of certain elements (Figure 7).
For example, Middel et al. (2019) aggregate 33 semantic classes
from SIFT Flow dataset into four surface types, including im-
pervious surfaces and pervious surfaces. To be specific, im-
pervious surfaces include urban features such as bridges, cross-
walks, roads, sidewalks, roofs, etc., while the index of pervious

surface is generated from classes such as fields, grass, rivers and
sea. This method is further examined by Zhang et al. (2019b),
who compare the surfaces fraction generated from spherical and
planar aspects and verify street view can provide better estima-
tion for land surface temperature.

Figure 7. Example of impervious and pervious features
(purple–road, pink–sidewalk, green–grass) extracted based on

model trained on Cityscape dataset (Cordts et al., 2016).

Height of roughness elements According to physical prop-
erties of LCZs, the height of roughness elements is considered
from two aspects: building heights and tree/plant heights.
These two indicators are usually unavailable at city scale and
largely rely on field surveys. To address this obstacle, Wang et
al. (2018b) apply scale-independent, fixed-sized street objects
to recalibrate the heights of vegetation based on SVI. Similarly,
Yuan and Cheriyadat (2016) and Zhao et al. (2019) integrate
building footprints and SVI to estimate building heights at small
scale. Although these methods provide opportunities to obtain
the height of buildings/vegetation based on SVI, the elements
within areas that are vehicle-inaccessible, are difficult to meas-
ure. To generally describe height conditions of an area, alternat-
ive datasets, such as remote sensing images, synthetic aperture
radar (SAR) images and aerial LiDAR data, could have better
performance.

Surface admittance, surface albedo, and anthropogenic
heat flux Although no existing studies have specifically fo-
cused on deriving a method to automatically extract, from SVI,
climate-related building surface properties such as admittance
and albedo, SVI undeniably provides a more detailed view that
would make it much easier to identify building surface ma-
terials, which could then be used to verify surface admittance
and albedo data obtained from other sources. It is also easy
to visually assess the land use type around an area using SVI
(e.g. residential, commercial, industrial, etc.) which could help
verify the expected range of anthropogenic heat flux in that
area given the observed land use type. Automated approach
using computer vision has also been devised. For example,
Kang et al. (2018) proposed a deep-learning approach to clas-
sify the functionality of individual buildings, into categories in-
cluding industrial, office building, house, retail, etc. This ap-
proach could provide insights for verifying anthropogenic heat
flux data, automatically over a large spatial scale. Yang and
Wang (2021) and Arjunan et al. (2021) used computer vision to
automatically detect external air-conditioner units, which could
also provide information on anthropogenic heat sources.

5.4 Potential ways to incorporate SVI

Sample locations within areas of classification interest could
be randomly selected, and street view panoramas at these loca-
tions could be obtained from a SVI service via their API. Then,
LCZ-related properties such as aspect ratio and terrain rough-
ness class could be labeled, and properties including impervi-
ous or pervious surface fraction, height of roughness elements,
surface admittance albedo and anthropogenic heat flux could be
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verified, by a panel of experts, or by a crowdsourced group of
trained workers (e.g. through Amazon Mechanical Turk), sim-
ilar to the crowdsourcing methods adopted in various studies
(Hara et al., 2012, 2015; Kruse et al., 2021). Sky view factor, on
the other hand, shows the highest potential to be automatically
extracted from SVI, which is affirmed by an increasing num-
ber of studies. Information extracted from these sample points
could be integrated with other datasets to support the classific-
ation of LCZs.

SVI could also be used to identify places suitable for placing
temperature sensors. According to the guidelines by Stewart
and Oke (2012), a sensor should ideally sample from a single
LCZ, and the land cover and exposure characteristics of the
location should be representative of the designated LCZ (e.g.
sheltered street canyon with paved ground for LCZs 1-3). SVI
allows us to remotely view the detailed setting of an urban en-
vironment. Thus, if sufficiently recent, SVI could also be used
in place of field visits to search for suitable places for placing
the sensor.

5.5 Potential challenges

Unlike satellite imagery which has consistent and global cov-
erage, the spatial coverage of SVI is not complete and can be
inconsistent across different years (i.e. a location covered by
SVI in one year may not be covered in another year). This
limitation means that it could be difficult to use SVI to im-
prove LCZ classification for areas with low SVI availability,
and it could be difficult to ensure the same effectiveness of SVI
on LCZ classification for a multi-year study. Further, SVI is
mostly collected along roads. Although it is useful for estimat-
ing properties such as sky view factor and street canyon aspect
ratio, information for areas beyond the streets may be difficult
to infer. Image quality issues, such as blurriness, which could
be heterogeneously present in a SVI dataset, could also make
observation difficult. Very tall buildings near the camera could
exceed the image frame, making it difficult to estimate canyon
aspect ratio or building height. Certain ephemeral characterist-
ics of land cover (e.g. snow cover, dry or wet ground, bare trees)
could be hard to detect using SVI, as SVI may not be updated
in a timely manner. It is thus important to consider both spatial
and temporal characteristics of SVI data, when designing the
methodology to incorporate SVI to classify LCZs, especially
for multi-year studies.

6. CONCLUSION

This study discussed the advantages and limitations of manual
sampling, GIS and remote sensing for LCZ classification, an
instrumental concept in climate studies. Based on the current
implementation of WUDAPT Level 0 method in the classific-
ation work in Singapore, low spatial resolution of RS data and
subjective judgment for the selection of the training areas can
result in unsatisfactory accuracy for WUDAPT Level 0 method,
requiring research on alternative approaches.

In addition, issues in the commonly used GIS-based classi-
fication method can be found due to lack of data and unclear
method specifications. Problems also arise when applying the
same LCZ classification scheme based on the given values
of geometric, surface cover, thermal, radiative, and metabolic
properties to determine the LCZ types in cities with different
urban morphology characteristics, such as densely built Asian
megacities and open-built cities in Northern Europe.

To improve LCZ classification, SVI, which conveys substan-
tial urban spatial information, provided by commercial services
such as Google Street View (GSV) and crowdsourced platforms
such as Mapillary and KartaView, is regarded as a promising
data source. It has been used in LCZ studies, but rarely and to a
limited extent (to estimate the sky view factor) and in this paper
we argue that its potential goes further than that: it can be util-
ized to also better estimate certain LCZ-related properties such
as street canyon aspect ratio and height of roughness elements.

In particular, accurate SVF plays an important role in classify-
ing LCZ types. It cannot be simulated by a GIS-driven model
without precise vegetation information, or remote sensing im-
agery with a top-down view, but can be easily obtained from
SVI with a ground-level perspective. This has been illustrated
with the preliminary study presented, which reinforces the case
of using ground level data to determine the SVF. Furthermore,
SVI allows a detailed view on the ground objects, opening up
the possibility of identifing surface properties including per-
meability, admittance, and albedo, as well as anthropogenic
heat sources, while it is difficult to be captured by both GIS-
based method and WUDAPT Level 0 method.

The lesson from Singapore case study indicates that LCZ clas-
sification process at high-density urban areas, where tall build-
ings and trees are prominent, requires higher fidelity data sets at
the ground level. This preliminary feasibility study indicates the
potential ways to incorporate SVI and the potential challenges.
Further studies will be focused on the implementation. We will
conduct experiments to evaluate the accuracy of the LCZ clas-
sification method relying on SVI, and the integration between
SVI and the commonly used GIS-based and WUDAPT Level 0
methods.
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