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ABSTRACT:

Construction materials play an important role in environmental impacts and make cities big resource consumers. To assess the
sustainability of cities, the combined use of Life Cycle Assessment (LCA) and Material Flow Analysis (MFA) is considered effective
to analyze construction material stock and flows. However, exhaustive data is required for such analyses, making LCA and MFA
difficult to apply at the urban scale. Building information, the essential ingredient, is rarely available openly. Common approaches
to gather the required data include both obtaining it directly from available datasets, e.g. open data from official sources, and
indirectly generating data based on available data, e.g. using machine learning to fill the missing gaps. This research develops a
data collection guideline for buildings’ geometrical features, components and materials at the urban scale in the context of LCA and
MFA. First, it identifies the basic steps of urban-scale building stock modelling and the list of data requirements. Second, the factors
influencing the data collection are pointed out. In line with these guidelines, this research picks Singapore as a study area, reviewing
the relevant authoritative open data sources and methodologies to estimate missing data. Finally, the suggestion on implementation
of data collection are provided. When the data collection for urban scale stock modelling is limited by uncertain reality conditions,
identifying and combining open datasets and data generation methods for data preparation is a necessity.

1. INTRODUCTION

In recent years, the estimation of construction material stock
and flows at different geographical scales to analyze their en-
vironmental impact and achieve the use of secondary resources
has gradually gained attention. To support policymakers and
planners, it is indispensable to be able to predict and analyze
urban material needs, as well as the evolving dynamics of the
building stock. Most existing studies apply material intensity
(MI) to estimate the total material stock that each study area
has. However, building materials are often presented in com-
plex assemblies of a material mixture integrated within com-
ponents and structural systems, being difficult to recover dir-
ectly. Even though quantifying aggregated building stock can
help find the way of secondary material utilisation, there is still
a need to estimate materials’ specific forms (nature and phys-
ical state) and reconstruction technologies. To tackle this issue,
more detailed stock modelling methods which combine geo-
graphic scales with building/component scales are needed for
future urban materials circularity.

Existing methods to model the building material stock mainly
include top-down and bottom-up approaches (Heeren and Hell-
weg, 2019). Top-down approaches collect data and information
from historical macro-economic statistics, which do not expli-
citly consider individual physical factors specific to each type of
building. Using a bottom-up approach, indicators for standard
building material composition are defined, and a measure such
as floor area is used to create a stock model for all buildings.
Hence, bottom-up methods are typically used to study construc-
tion material flows and stock, allowing to trace all flows, from
product, construction, and use to end of life and recovery stages.
∗ Corresponding author

A bottom-up stock model with building geo-referenced inform-
ation can support MFA and LCA studies at a more detailed
level. However, at a large scale, developing a bottom-up model
requires sufficient information to connect building character-
istics with material data, and modellers always have difficulty
obtaining sufficient and accurate data, even when considering
data from local and transnational data providers. For instance,
building type and year of construction, which are essential for
analyzing and distributing material-saving potentials in future
scenarios for the city, are not available in many countries be-
cause of privacy issues and lack of data. A data-lite and proxy
approach for stock modelling at the entire city scale consists
of collecting quantitative information on building stock char-
acteristics to identify building archetypes. However, a lack of
accurate data for specific archetypes can cause significant un-
certainties. Monteiro et al. (2018) noted that a lack of urban
building data is a hindrance to research progress and is rarely
addressed comprehensively in literature.

One approach to address these shortcomings is combining stat-
istical survey data with archetype databases developed. In addi-
tion, improving the availability of geo-referenced data and us-
ing GIS are other approaches that can optimize the archetype
bottom-up approach by adding time and space dimensions to
the stock model and visualizing the material analysis results.
These approaches and model outcomes are all influenced by
data collection and input data. The existing MFA and LCA
studies usually focus on specific cities/regions. However, the
sources and approaches of one city to collect data might be dif-
ferent from another city, considering the available data sets are
dissimilar. In this way, it is difficult to replicate the data collec-
tion approaches and compare the outcomes of MFA and LCA
studies. Recently, the importance of tackling data issues and
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developing data collection guidelines are realized by some re-
searchers (Goy et al., 2020). To the best of the authors’ know-
ledge, no studies have discussed the collecting data issue in sup-
port of building stock modelling on an urban scale.

This paper investigates the data collection of building mater-
ial stock with geo-spatial characterization at the urban level. It
reviews and evaluates both available datasets and data genera-
tion methods, emphasizing the need to conduct a comprehens-
ive data collection for the different steps of modelling material
stock. As such study is at the urban-level, it selects Singapore,
an import-dependent country, as study area to adopt the data
collection guidelines we outlined. This paper is structured as
follows. Section 2 describes an overview of existing work. Sec-
tion 3 summarizes the basic workflow of developing the large-
scale material stock model and points out the data required.
Section 4 reviews the data sources and data generation methods
that can be applied for Singapore following the guidelines. Sec-
tion 5 discusses the current data situation and data challenges of
the case study, and section 6 concludes this paper.

2. LITERATURE REVIEW

It is a societal challenge to reduce the environmental impact
of material consumption caused by infrastructure (e.g. build-
ings). As such, there is an inherent need to develop research
approaches for transforming traditional material management
patterns into sustainable and manageable ones. An increas-
ing emphasis on analyzing material systems at the urban scale
can help data management, visualization and, ultimately, de-
veloping a dynamic, spatial material stock model to improve
the performance of simulating and assessing material flows. In
recent years, numerous researchers have demonstrated that spa-
tial proximity affects the analysis of urban materials’ stock and
flows (Augiseau and Barles, 2017). Almost all types of flows,
stocks, trades, events, processes, distribution, lifetime and phe-
nomena that researchers seek to explain in building material
systems must occur in specific geographical locations. To map
the building material system with geographical information, 3D
city models are gradually being used as a visualization method
to spatially represent both the natural and built/artificial features
on a 3D scale (Khayyal et al., 2022).

Understanding cities as complex systems, a 3D model for a
sustainable urban material system depends on reliable high-
resolution data. Data acquisition technologies such as air-
borne imaging using UAVs and Light Detection and Ranging
(LiDAR) can provide the necessary data for constructing urban
3D models. However, generating 3D models from remote sens-
ing such as aerial or satellite imagery can be a costly, time-
consuming and labor-intensive process. Besides, aerial or satel-
lite imagery sources are not generally open to the public. As
Chen et al. (2019) mentioned, more cities are moving to making
open data available and making their use more efficient to sup-
port cities’ material reuse and environmental goals. However,
city models in 3D are more likely to be available in developed
countries with higher economic levels or countries with national
mapping agencies (Augiseau and Barles, 2017). In contrast, na-
tional mapping agencies and available resources in most devel-
oping countries for modellers to produce a 3D model are few.
Nevertheless, there is a dearth of free high-level of detail 3D
city models are available for use in many cities (Girindran et
al., 2020).

Current studies show that different data resources, in combin-
ation, have the information content and geographical encod-

ing potential to produce a single spatial material stock model.
For example, Heeren and Hellweg (2019) collected data on all
Swiss residential buildings from two national databases to form
a 3D representation to derive the surface of construction ele-
ments and calculate the material stock. Mastrucci et al. (2017)
collected geo-referenced footprints and attached attributes of
Luxembourg buildings, such as building age and type, and air-
borne LiDAR data from available geo-spatial datasets provided
by the municipality. Evans et al. (2017) described the British
building stock using a 3D model called ‘3DStock’, collecting
data from two existing national datasets. Buffat et al. (2017) ac-
quired 89% of footprints data from a cadastral survey and used
OpenStreetMap (7%) and the Swiss cartographic SwissTLM
dataset (4%) to fill data gaps. They further used Digital Surface
Model (DSM) and Digital Terrain Model (DTM) raster datasets
from the Swiss Federal Office of Topography to generate build-
ing heights and obtained building characteristics data from the
Federal Register of Buildings and Dwellings.

In summary, it appears that most existing studies in this domain
collect data from official government datasets. The main is-
sue with this is a reliance on the availability of complete data
sources for building information, which in reality does not exist
in many urban areas. Urban material stock and flows analysis
is therefore restricted in its widespread application by a lack of
readily available datasets, as well as the labour-intensive pro-
cesses required to produce those datasets (e.g. 3D city models
or LiDAR data). Building documentation and resources are not
available in most municipalities to develop such an effort from
scratch. Within this context, some studies try to develop ef-
fective, data-lite modelling workflows adapted to current urban
data structures or use open data sources to generate required
data using simplified methods. For instance, Deng et al. (2022)
developed urban stock modelling workflows using ‘building ar-
chetypes’ to represent a group of similar buildings. Others at-
tempted to make up the data gap by generating data themselves.
Deng et al. (2021) determined building types and formed the
material stock model by integrating point-of-interest (POI) and
community boundary datasets. Wurm et al. (2021) applied deep
learning to generate data from aerial images and conduct build-
ing stock inventorying at a city scale.

For Singapore, the existing building stock can be an essential
source of secondary materials. Some previous studies (Arora
et al., 2019) quantified the materials and components of public
residential buildings constructed by the Housing & Develop-
ment Board (HDB) in Singapore. HDB is a government agency
that ensures housing for all Singaporeans. The data was col-
lected from HDB Property Information (https://data.gov.sg/), a
tabular dataset containing a score of attributes for each build-
ing managed by HDB. However, for other (non-residential and
private residential) buildings, it is much more challenging to ob-
tain the required data comprehensively. Hence, accurate estima-
tions of the material and building component stock in Singapore
are still lacking. Therefore, after introducing the data collection
guidelines, this study takes Singapore as a case study to identify
datasets that can be directly collected and how other data can be
estimated or generated using big data technologies.

3. DEVELOPING A GEO-REFERENCED BUILDING
STOCK MODEL AT THE URBAN SCALE

3.1 Data Methodology

This study sets out to examine the data required for city-level,
geographically specific building material stock modelling, ap-
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plying a bottom-up approach combined with GIS. A disag-
gregated data collection is necessary to form a spatial-temporal
GIS database integrating building data from different sources.
Based on existing research applying GIS technology and com-
bining a bottom-up method and spatial analysis to analyze
building material stock at a large scale, the methodology in-
cludes three basic steps: 1) geo-spatial processing to improve
the data structure; 2) spatialization of building material data; 3)
establishing a dynamic and spatial model to simulate material
stock and flow.

3.1.1 Step 1: Geo-spatial Processing to Improve the
Data Structure Geo-spatial processing is the conversion of
location-agnostic data structures to data explicitly associated
with locations on earth. This step aims to arrive at an urban-
scale GIS dataset that includes information on each building.
For instance, buildings can be recorded as polygons with geo-
graphic locations. Building attributes also need to be recorded,
including any building characteristics that relate to the calcula-
tion of materials, such as footprints, height, structural system,
type, age, material, etc.

Upon preparing the datasets, the next step is to form the 3D
urban model for mapping the building material information spa-
tially. Using CityGML is the most straightforward approach to
represent cities and urban areas for storing and exchanging geo-
metrical 3D data of individual buildings (Wang et al., 2021). A
Level of Detail (LoD) ranging from 0 to 3 is considered when
describing datasets in CityGML, with geometric accuracy in-
creasing with the level of detail. Models at LoD1 to LoD3
include three different types of elements, respectively: a box
shape, sloped roofs, and texture on the exterior (such as win-
dows and doors). The LoD for large-scale building material
models typically ranges from 1 to 2 (Goy et al., 2020). The res-
ulting 3D map of the urban area should be updated regularly,
following any update of the data.

3.1.2 Step 2: Spatialization of Building Material Data
Traditionally, many building and property-related datasets, es-
pecially with respect to building material information, have ex-
isted only in document format, not associated with any geo-
graphical data. Estimating the type and quantity of materials
in the building stock is essential to successfully assess the en-
vironmental impact of construction material systems on a city
level. In order to achieve this objective, a common approach
is to identify a series building archetypes according to building
functions and periods of construction and develop an archetype
database. Specifically, the elements/components of reference
building (such as walls, floors, roofs and windows) (see Figure
1) can be determined for each building archetype group. Then,
a building’s function and year of construction can be used to
match to an archetype building with corresponding material-
intensity coefficients. In this way, the layers of materials, com-
position, and thickness of every building element/component
can be identified. After developing the fine-scale archetypes,
which stand for different building groups, the results could be
extrapolated to a larger level (region/urban) using the up-scaling
factors such as the number of buildings per type or the floor area
per type.

The synthesis of archetypes mainly involves two steps: seg-
mentation and characterization. For the segmentation, the in-
vestigated building stock will be separated into categories based
on building age and type. For the characterization, it will be ne-
cessary to determine specific material intensities per cubage and
assign material properties to different archetypes representing

the previously defined categories, either by using a real build-
ing sample or an ‘average’ virtual building based on statistical
data.

Figure 1. Building elements.

To quantify the spatio-temporal patterns of material stock at the
urban level, it is necessary to analyze the unique geographic
location of each building and map these to the reference arche-
type groups. In this way, the non-spatial material parameters
can be assigned to individual buildings and analyzed for any
specific urban area (e.g. considering administrative boundaries)
using a clustering algorithm. Visualizing the results assists in
identifying the presence and concentration of main construction
materials within the city. This process is crucial to the accuracy
and flexibility of the 3D material model, which in turn depends
on the amount of data available in terms of both building struc-
tures and usage data.

3.1.3 Step 3: Establishing a Dynamic and Spatial Model
to Simulate Material Stock and Flows Once the geo-
referenced massing models and building archetype data are ob-
tained, these can then be combined into an urban material sim-
ulation model. The final goal is to establish a dynamic and spa-
tially explicit model that can represent and simulate the build-
ing material stock and flows at a city, regional, country, or even
global level. Hereto, one needs to identify the end-of-life scen-
arios (demolition, transport, processing and disposal) for every
material and building element/component. For example, the
environmental impact of material flows during whole-building
life cycle stages such as construction, retrofit, refurbishment,
renovation, demolition and reuse of buildings should be identi-
fied and manifested. In principle, considering the dimension
of time, material flow or inventory models can be dynamic-
ally built for a single year or longer time-scale, retrospectively
(Gontia et al., 2020) or prospectively. However, the determ-
ination of end-of-life scenarios is still largely data-dependent,
and time scale, construction, and flow rates can reach differ-
ent accuracy levels depending on data availability. Quality and
coverage of data vary considerably from country to country and
even within a single city.

Spatial dynamics is another essential consideration in analysing
material stock and flows systems. For the spatial dimension,
developing a model combining Material Flow Analysis (MFA)
and GIS is considered an effective approach. Such model can
be used to analyze the spatial distribution and stock density (de-
rived in relation to land area) and visualize the spatial hetero-
geneity of construction material stocks. A flow-driven urban
building material model and spatially explicit MFA model
ideally can describe material flows from one place to another
(e.g. transporting construction waste from a demolishing build-
ing to a landfill). However, current research has not yet pro-
posed any effective method to resolve the mismatch accrued
during these flows or processes, such as when transport is con-
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sidered on a daily or monthly scale, while the estimation of
demolition rate is compiled on an annual or decadal scale.

In conclusion, spatial data achieved by transforming non-spatial
information into geo-referenced maps forms the basic advant-
age of integrating building materials with spatial analysis. In
addition, spatio-temporal patterns, trace material flow pro-
cesses, and sources and hotspots of building material systems
can be quantified based on a dynamic and spatial model to un-
derstand the drivers of the urban material system.

3.2 Data Needs

The data necessary for material stock modelling (including Life
Cycle Analysis (LCA)) can be categorized as either geometrical
features or as material data of buildings. This section describes
the required data and their essential data characteristics.

3.2.1 Building Geometrical Features Data The geomet-
rical features of a building dataset mainly include geo-
referenced building footprints, building elevation data, and
building characteristics such as year of construction and build-
ing type (see Table 1).

Content Potential sources/method
Footprint/floor OSM databases and official

datasets
Building height Datasets/DSM and DTM
Attributes (age/type) Statistical source
Building gross volume Computed: height × footprint
Area of walls Computed

Table 1. Building geometrical features data.

Building footprints Building footprints can be used to indic-
ate the boundaries of a building, associate other spatial datasets
such as building materials data and estimate building dimen-
sions. Building footprints should be provided as geo-referenced
vector polygons corresponding to individual buildings. The
quality of building footprint data is essential and building foot-
prints from a cadastral survey generally have the best quality, as
they are measured in the field by professionals. Many cadastral
authorities maintain individual building footprints, as well as
building attributes, such as their address, owner or construction
date. However, a cadaster may not yet contain a digital record
of every building’s footprint, and availability may be restric-
ted by data privacy and relevant data policies. Alternatively,
open datasets such as OpenStreetMap (OSM) data can be used
to obtain building footprints. Other methods can also be used
to acquire building footprints, such as LiDAR and oblique pho-
togrammetry, etc.

Building height The building height is an essential parameter
to form a 3D building material model. Combined with build-
ing footprints, building heights can be used to virtually extrude
a shoe-box model of buildings. Multiplied by lengths, build-
ing heights serve to obtain wall surface areas, which are related
to the calculation of material mass. The number of floors can
also be obtained, by dividing the building height by the aver-
age height of a single floor. Height data can be derived from
analysing airborne LiDAR data and a DTM. A DSM and Di-
gital Elevation Model (DEM) can also potentially be used to ex-
tract building heights. The height of residential and commercial
buildings can also be calculated through multiplying the num-
ber of storeys by the floor-to-floor height, which is relatively
fixed. The floor height for residential and commercial buildings

may be assumed to be 3 m and 4 m, respectively (Deng et al.,
2022). Some open 2D spatial datasets, such as OSM, also con-
tain some height data. However, in many countries and areas,
the third dimension is poorly represented in such datasets (less
than a few percents of the buildings have height information in
OSM) (Milojevic-Dupont et al., 2020; Biljecki, 2020).

Building characteristics Building attributes required for a
material stock model typically include building type and con-
struction year. Building type determines the use of the building,
its layout (one floor or more), and its proximity to neighbour-
ing properties (e.g. detached, semi-detached, terraced houses).
Construction year can be used to identify the updates of build-
ing regulation codes, changes in the structural system, material
types and construction technologies.

These attributes can be used to generate building archetypes.
In most research, these attributes are collected from na-
tional/regional building attributes library datasets. If no build-
ing libraries are available, these may be inferred from other
relevant datasets. For example, some housing websites con-
tain considerable information relating to specific building types,
such as year of construction, address, rental prices, etc.

3.2.2 Building Elements and Materials Data Compared
with building geometry data, non-geometric data such as ele-
ments/components and material data (see Table 2) are relatively
difficult to collect. In a large city, where there are thousands
of buildings, it is almost impractical to collect non-geometric
data for all of them. Therefore, it is necessary to develop build-
ing archetypes to represent different groups of similar buildings
throughout the study area, based on building type and period
of construction. When information about materials, building
elements and their state of renovation is not available for indi-
vidual buildings, these can be assigned to buildings in the stock
according to the archetypes they match. Aside from data on
building elements/components and data on building materials,
other non-geometric data considered are data prepared for LCA.

Content Potential sources/method
Material types and quantity 1) Divide building stock by

building type and age
2) Identify reference building
components

Material intensity/density 3) Identify characteristics of
building components
4) Determine component’s
layers and thickness

Mass of each component Computed
(volume×intensity)

Service life of components Lifetime modelling
Lifetime of materials Statistical or reference data
Material flow of materials Computed
Material treatment data Statistical or reference data

Table 2. Building elements and materials data.

Data about building elements/components After segment-
ing the buildings in the study area based on building type and
construction period to obtain the archetype buildings, inform-
ation on building elements/components should be collected to
describe these archetypes. This information relates to the struc-
tural system, components’ amounts, types, and characteristics.
Buildings of different periods generally have different structural
systems and construction techniques adopted, which determine
the type and amount of building components.
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Information on structural building systems from different peri-
ods can be extracted from an archive and literature database.
When not available, research papers on relevant construction
details can also serve as a source. To identify the information
related to building components, especially for residential build-
ings, building libraries are commonly used in many countries
and regions. Alternatively, building component (and material
layer) information can be identified based on building librar-
ies from other countries with similar construction practices, or
from statistics, technical standards, regulations, and the expert-
ise of experts. Main outer components, such as outer walls, and
main inner components, such as floors and inner walls, should
all be listed, as they contribute significantly to material usage in
buildings.

Data about building materials The archetype’s structural
system is relevant to decide on material type (timber, steel,
concrete etc.), quantity and the refurbishment approach (re-
lated to LCA study). Calculating material quantity at differ-
ent levels requires material data with different levels of detail.
At the material level, the material stock of buildings is usu-
ally calculated using MI of different materials. The MI indic-
ators are related to the material types, building function and
the year of construction. At the component level, more de-
tailed material data such as material layers, respective densities
and thicknesses will need to be identified for each building ele-
ment/component. The data for such material information can
come from diverse sources, including construction department
publications and handbooks providing standardized classifica-
tion information and sample material inventories and character-
izations.

Using all the information collected on building components, the
mass of a particular material can be calculated from compon-
ents’ volume, area, or number, as well as its density or weight.
For example, the material mass of a particular building category
can be obtained by multiplying the gross volume of this build-
ing category with the specific MI for this material and building
category. The total material stock then results from adding up
the material masses for all building categories and materials.

Data prepared for LCA Upon obtaining the material stock,
it is necessary to define prospective scenarios for analyzing the
future material flows dynamically and the environmental im-
pacts they would cause. The information prepared for LCA
mainly includes the sampled service life for building elements,
the lifetime of different building materials, flows (mass per
time) of materials and the data of all material treatment pro-
cesses such as transportation. Transportation data corresponds
with urban transport and energy consumption of related activit-
ies such as cars, buses, motorbikes, trucks, as well as air traffic,
for the treatment process of raw materials extraction, processing
and material import. With this information, researchers can as-
sess the environmental impact of buildings and materials over
their life cycle.

Potential data sources leading to the synthesis of the life-
cycle inventory include national and regional governmental
corporations, national statistics, technical and science reports,
guidelines, and previous studies.

3.3 Definitions and Influencing Factors of Data Collection

Since a wide range of data is required to develop a material
stock model at the urban scale, data collection is a complex

process, joining data from different sources. Hence, it is ne-
cessary to identify and review any factors influencing this data
collection. These factors mainly include availability, accessib-
ility, and data quality.

3.3.1 Data Availability The availability of building data is
usually defined as its existence in any format (e.g., paper or
digital format). As Goy et al. (2020) proposed, data availability
at the urban scale is influenced by four main factors:

1. Location (city/country): The level of engagement with re-
spect to building monitoring by municipalities and gov-
ernments varies from one country to another. In some
countries, the law necessitates a detailed characterization
of buildings at a local level.

2. Time resolution: Annual construction material consump-
tion data is more accessible compared to hourly data.
Hourly data involves more complex monitoring, pro-
cessing, and storage efforts.

3. Level of aggregation (from a single building to a larger
area): Databases are always described by different levels
of aggregation. It is much more challenging to collect in-
dividual building characteristics for the whole city.

4. Features and building types: Geometrical building inform-
ation is more commonly available because of the applica-
tion of advanced technologies such as airborne LiDAR or
photogrammetry during land registration. However, other
building characteristics, such as age, type, and structural
system, are typically not documented at an urban scale.

3.3.2 Data Accessibility Data accessibility refers to how
easily data can be accessed and used for material stock mod-
elling. Some datasets may be available but not freely accessible
to the public. Moreover, some data may be available in a paper-
based form (construction documents) which needs to be trans-
formed into electronic data before developing the digital stock
model.

In recent years, more and more administrative entities have
started to make some simple building information available on
websites or online databases (e.g. building footprints). How-
ever, they commonly do not include the building height, age,
component materials, or structural features. Even when such
detailed data is not accessible to the public, it is available from
the design and construction phase, especially in the case that
BIM modelling has been adopted for building design. Address-
ing data accessibility issues and sharing available data is critical
to improving current data challenges.

3.3.3 Data Quality Data quality is another important con-
sideration as it directly affects the data collection work and the
results from the analysis of a material system. Firstly, detailed
building data is usually obtained from diverse databases and
correlated features might not be consistent. Inconsistent correl-
ations may be caused by measurement errors when developing
the database. One solution is to merge different building data-
bases based on their geo-location and reconcile any data gaps.

Secondly, considering a lack of data availability or accessibility,
some assumptions and simplifications may need to be made for
the study area. For example, when the required measurement
data are unavailable, models often need to be made with ana-
logies based on building data from neighbouring countries. Al-
though these data have been validated for accuracy when study-
ing the adjacent countries, it is impossible to assess the data
accuracy when applied to the selected study area.
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The effectiveness of data is another critical factor affecting
its accuracy. Due to a lack of regular surveys and updates
on construction data, modellers often need to use older data,
which may inaccurately describe the current state of the mater-
ial stock. In conclusion, data quality should be assessed before
data collection and application, and a more thorough data clean-
ing should be conducted to ensure the quality of the datasets
prepared for modelling.

3.4 Data Collection Approaches

While there is an increase in availability of datasets from cities
and countries, such datasets are often spread across different
sources and available in various formats for varying spatial and
temporal scales. Hence, conducting data collection and improv-
ing datasets require multiple approaches. Two main categories
of approaches can be distinguished: first, to merge data from
accessible datasets; second, to generate required data applying
appropriate technologies to accessible data.

Accessible datasets can be distinguished as official data sources
and alternative ones. Official datasets are owned and authorised
by government agencies. Data from official datasets tend to be
more accurate, however, official datasets are not always open
to the public. Alternative data sources may include data from
private projects, open-access datasets, academic research, vo-
lunteered geo-information and some survey data (see Figure 2).
Modelling building information, typically requires integrating
data from several sources into a single data model.

Figure 2. A classification of various data collection approaches

4. THE INVESTIGATION OF DATA SOURCES IN
SINGAPORE

Based on the previous analysis of required data and factors in-
fluencing building stock modelling, this study adopts Singapore
as an example to review potential datasets and data generation
methodologies following the standard data collection guideline.
Potential data sources include open-access datasets, academic
research data and government datasets, etc. Quality assessment
metrics are developed based on the influencing factors identi-
fied above.

4.1 The Development of Quality Assessment Metrics

4.1.1 Assessment metrics of open datasets For the assess-
ment of open datasets, both data properties (data availability
and accessibility) and data quality of the datasets are assessed.
Data properties include 1) whether the dataset is free to down-
load and use, or requires payment, and 2) the type of dataset
reviewed (government/volunteer-driven data source, etc.). Data
quality assessment metrics include:

1. Data scale and size: how large an area the data covers
(city/district/neighborhood).

2. Data resolution: for example, pixels per inch for data in
images format. For data in a 3D model format, the data
resolution can be described using LoD.

3. Data accuracy: accuracy of geometric data mainly in-
cludes positional, shape (surface and edge), and orienta-
tion accuracy.

4. Data completeness: comprehensiveness or wholeness of
the data, used to evaluate gaps or missing information.

5. Time (data age) accuracy: related to the effectiveness of
data and frequency of data update.

6. Data formats: uniform data format and ability to remove
formatting errors.

Among these metrics, time accuracy is one of the biggest chal-
lenges of data quality because the building sector and construc-
tion activities are dynamic. Due to the absence of data updates
and regular surveys, the investigation of the timeliness of data
updates mainly focuses on whether the dataset is updated regu-
larly.

4.1.2 Assessment metrics of data generation methods
The assessment of data generation methods mainly focuses on
1) inputs required to apply the method; 2) the professional
knowledge required; 3) whether easy to update or not; 4) the
limitations of the method. These metrics can be used to identify
the usability of data generation methods when targeting differ-
ent study areas. For example, some methods require input data
not available in many countries and as such cannot be used.
In addition, the expertise needed to use the method determines
how difficult it is for modellers to apply this method.

As for assessing the quality of the data generated by different
approaches, at this stage, this study mainly reviews the qualit-
ative and quantitative evaluation of data generation provided by
the existing research that proposed the approach. Some metrics
are typically used to evaluate the generated data. For instance,
the extraction results of building footprints or rooftops data are
usually evaluated using intersection over Union (IoU), mean
IoU (mIoU), Precision, Recall, F1-score, accuracy and Frame
Per Second (FPS). However, since the proposed data generation
approaches are applied to various study areas, verifying the data
quality generated by different methods is difficult. This study
considered to identify the available inputs and apply potential
methods to the same urban area (Singapore) and compare the
data generation results using the a serious of metrics.

4.2 Review and Assessment of Datasets

This study first reviewed the open data sources that can be used
to collect building geometry and material data (link to sum-
mary table 3). In summary, OSM offers building footprint data
for Singapore, however, height data is not included except for
some specific regions in the city centre. Also, no research has
yet assessed the quality (accuracy) of this height data. One
map (OneMap@sla.gov.sg) is an authoritative national map in
Singapore but is only available in image format, not in vector
format.

Two other potential geometric data sources are Virtual Singa-
pore and the 3D Singapore Sandbox. Virtual Singapore is an
ongoing project championed by the National Research Found-
ation (NRF) to map Singapore in 3D. It is intended to be an
authoritative 3D digital platform for use by the public, private
companies, people and researchers. The 3D Singapore Sand-
box developed by Singapore Land Authority (SLA) currently
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provides users access to SLA’s 3D geospatial data, including
3D models of over 160,000 buildings in Singapore. However,
researchers cannot download the data or output data results even
though they are encouraged to use the 3D geospatial data to de-
velop and test new applications and services.

4.3 Review and Assessment of Data Generation Methods

Geometric and non-geometric building information is rarely
available at an urban scale especially for developing countries.
When some data is unavailable, it is essential to fix the data gap
by generating the missing data. Hence, this study also reviews
and assesses potential data generation methods (link to sum-
mary table 4). When there are multiple data generation meth-
ods available to generate the same data based on the same input
data, a typical method was chosen for review and assessment.

The raw material for generating building footprints data mainly
includes satellite images and drone data, enabling features to be
digitized from high-resolution imagery. Modellers can apply
deep learning technology such as a convolutional neural net-
work (CNN) to automatically extract building features from re-
mote sensing images. In recent years, automated feature extrac-
tion has made significant progress, especially when combining
GIS with deep learning. This can benefit developing countries
that do not have access to current data or the budget to get an
accurate real-life map. However, the accuracy of using deep
learning to extract building footprints is still questionable. As
a result, some researchers combine the object detection task,
which extracts feature values along with bounding boxes, and
the semantic segmentation task, which classifies each pixel ac-
cording to its properties.

For the generation of building height data, LiDAR allows high
accuracy measurements but is not always available. Girindran
et al. (2020) propose to combine the free version (low resolu-
tion) global Digital Surface Model (DSM), and Digital Eleva-
tion Model (DEM). Other methods that can be used to generate
building height data also exist. In summary, building height in-
formation for Singapore may be generated using: 1) The num-
ber of storeys in a building; 2) Singapore regulations (e.g. FAR)
and building footprints; 3) Shadows in high-resolution imagery;
4) Deep learning in combination with other building/city attrib-
utes such as footprints, facades and urban form.

For other required data, such as the year of construction, prior
research has combined deep learning with map data, LiDAR
data, or street view images. However, the accuracy of a data-
driven building age estimation model will never be perfect. An
as-built survey with extensive manual work is the only accur-
ate way to assign a correct construction date to all buildings.
Moreover, the combination of street-view images and a mobile-
sensing approach is considered helpful in collecting informa-
tion on building components and materials. Using data col-
lected by mobile-sensing on target buildings within a district
or urban area, modellers can develop the archetype database to
build the material stock model at an urban scale.

5. DISCUSSION

This study summarized data requirements for material stock
modelling and provided a guideline for the data collection step
of the 3D material stock modelling. This model can be used to
quantify the urban construction material stock, describe build-
ing stock development over time, point out the hot-spot material

with high environmental impact and analyze the effectiveness
of recycling strategies. Through reviewing available datasets
and potential data generation methods, this study found that
most available urban data in Singapore is 2D. For example,
building footprints can be collected from OSM; Chen (2020)
assessed the quality of Singapore residential building data in
OSM and found that 97.67% of public residential building foot-
prints are mapped in OSM. However, OSM data for Singapore
does not include building heights, except for a specific region
in the city centre. Even though OSMbuildings, an open source
3D map viewer, generates a 3D model for Singapore, a default
height value is used for the extrusion when no specific data is
available. While Virtual Singapore’s 3D mapping of Singapore
includes building heights, it is still unclear whether the data will
be shared with the public in the future.

Collecting building data on residential buildings is still relat-
ively feasible in Singapore. HDB flats contribute about 75%
to the residential building stock, with the remaining made up
of condominiums and landed properties. Property information
such as maximum floor level and year of construction of HDB
flats can be obtained directly from the Open Government Data
Portal, Singapore (data.gov.sg/). HDB Housing unit drawings
and layouts can be used to identify the building components.
For the collection of other, non-residential buildings’ geospa-
tial data, archetypes could be developed. This methodology
provides a path to classify buildings by usage categories and
to determine the relevant building parameters for LCA stud-
ies (Buschka et al., 2021). Building types and years of con-
struction of non-residential buildings can either be manually
collected from various websites (e.g., URA SPACE) or gener-
ated using some available inputs such as street view images and
historical satellite imagery. Thoma et al. (2014) developed a
method for the classification of building types and periods lead-
ing to the material composition of buildings in Zurich, Switzer-
land. A similar method can be applied to Singapore based
on knowledge acquired from building history research, old
newspapers (NewspaperSG) and archives (National Archives of
Singapore). In addition, combining open-access Digital Surface
Model (DSM), Digital Elevation Model (DEM), and 2D build-
ing footprints is a potentially useful method to generate building
height data in Singapore.

Building material data, such as the MI factors, may be collec-
ted from the Singapore Building and Construction Authority
(BCA). For example, concrete is the most used construction
material in Singapore, and volume of concrete can be com-
puted by multiplying appropriate MI coefficients with accu-
mulated usable floor areas. It is worth noting that MI coef-
ficients relate to building type and year of construction. Na-
tional concrete and steel consumption data can also be obtained
from the Singapore Ministry of Trade and Industry (MTI). The
building material flows data refer to the number of materials
consumed by the construction industry and should be tracked
within a certain period of time. New constructions and refur-
bishment are considered material inflows, while buildings de-
molished/refurbishment are treated as material outflows. For
HDB flats, HDB annual reports provide demolition data, which
can be used to calculate outflow of materials. Reports published
by BCA also provide some information on the material stock of
cement, steel, and aggregates. The number of materials con-
sumed during any period of time/number of years, can be cal-
culated using a raster technique from the difference between the
respective datasets for the two different years.
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6. CONCLUSION

This study outlines a data collection guideline for large-scale
bottom-up building material stock modelling. Firstly, the work-
flow of material stock modelling is identified. After that, the
data required for different modelling steps are pointed out,
showing that a large amount of disaggregate data is needed for
urban scale modelling. Hence, conducting a comprehensive
data review to identify and integrate potential data sources is
essential. Before reviewing the datasets, the factors influencing
the input data quality are analyzed and metrics are developed
for the assessment of these data sources. Facing the issue of
hidden information at the urban scale, modellers first need to
recognize which data can be collected from open datasets and
which should be generated using technology approaches. Fi-
nally, this study reviews the most relevant open datasets and
data generation methods for Singapore and provides sugges-
tions or strategies for modellers. Specifically, government data-
sets and other open datasets are identified as the first choice
for data collection because the quality of these datasets are
controlled. Applying machine learning and some sensing ap-
proaches to generate required data is another useful approach
for data collection. However, modellers need to have access to
sufficient input data required to apply such approach and have
the necessary professional experience. Future work will apply
the recommendations from this study to the implementation of
data collection and develop a high-resolution 3D building ma-
terial stock model for Singapore.
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