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Abstract
Generative Adversarial Networks (GANs) are a type of deep neural network

that have achieved many state-of-the-art results for generative tasks. GANs can
be useful in the built environment, from processing large-scale urban mobility
data and remote sensing images at the regional level, to performance analysis
and design generation at the building level. We analyzed 100 articles to provide
a comprehensive state-of-the-art review on how GANs are currently applied to
solve challenging tasks in the built environment. Our results show that: (i) GANs
are replacing older methods in some problems and setting state-of-the-art perfor-
mances; (ii) GANs are opening new frontiers in previously overlooked problems,
such as automatically generating spatially accurate floorplan layouts; (iii) GANs
can be applied to different scales in the built environment, from entire cities to
neighborhoods and buildings; and (iv) GANs are being used in a variety of prob-
lems and data types, from remote sensing data augmentation, vector data gener-
ation, spatio-temporal data privacy protection, to building design generation. In
total, there are 26 unique application domains enabled by GANs; (v) however,
one common challenge in this field currently is the lack of high-quality datasets
curated specifically for problems in the built environment. With more data in the
future, GANs could potentially produce even better results than today.
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1. Introduction

Generative Adversarial Networks (GANs) are a type of deep neural network
that have achieved many state-of-the-art results for generative tasks such as data
augmentation, data synthesis, and design automation.

GANs are made up of two components, a generator and a discriminator pair.
The generator attempts to generate samples that will pass the scrutiny of the dis-
criminator, and the discriminator tries to distinguish the synthetic samples from
the real samples. During training, the generator and the discriminator pit against
each other in a zero-sum game, each trying to outperform the other. Eventu-
ally, a state of equilibrium is reached and the generator could produce synthetic
samples indistinguishable from the ground truth by the discriminator.

The most researched application of GANs is in computer vision, breaking
ground in image generation, translation, and enhancement (Wang et al., 2017b;
Aggarwal et al., 2021; Gui et al., 2021a). Equipping GANs with Convolutional
Neural Networks (CNNs) (Radford et al., 2015), GANs can generate realistic-
looking synthetic photos of human faces, street view images, and satellite im-
ages that could pass as real photos to humans (Brock et al., 2018; Zakharov
et al., 2019; Karras et al., 2021; Zhao et al., 2021a; Toker et al., 2021; Biljecki
and Ito, 2021). GANs can also be used in content-aware image inpainting to fill
missing areas in an image (Li et al., 2017; Yeh et al., 2017; Pathak et al., 2016).
Some GAN architectures even allow for semantic control of the generated im-
ages (Isola et al., 2017; Park et al., 2019). A mask-image pair can be used for
training, where the model could learn to translate color-coded masks into real-
istic images or to translate photos into different stylistic expressions (Zhu et al.,
2017).

In addition to images, the generative prowess of GANs can be applied to
other data formats as well. By designing different neural network layers in the
generator and discriminator, sequential data such as text and unstructured data
such as graphs can all be ingested and learned by the network. This data-agnostic
nature has expanded the potential applications of GANs to a wider range of gen-
erative problems and has already established the state-of-the-art in many appli-
cations such as speech enhancement, music composition, fault detection, and
graph-based prediction (Pascual et al., 2017; Dong et al., 2018; Lee et al., 2017;
Wang et al., 2018a). In addition to generating data, GANs can also be applied to
data upsampling, data privacy protection, and data augmentation, as they excel
in learning and reproducing the data distribution of the target dataset (Beaulieu-
Jones et al., 2019; Litjens et al., 2019; Bowles et al., 2018; Quintana et al., 2020;
Yan et al., 2020; Rachele et al., 2021; Wu and Biljecki, 2022).
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The built environment hosts a large amount of data in different formats and
on different scales. As GANs have been shown to be applicable to solving a
variety of tasks, researchers have also begun to apply GANs to domain-specific
problems in the built environment.

As this paper will demonstrate, GANs have been applied in more than 26 dif-
ferent domains of applications relevant to the built environment, from sharpen-
ing remote sensing images for urbanization studies (Pham and Bui, 2021; Bittner
et al., 2019), to reconstructing neighborhood 3D models (Du et al., 2020; Kelly
et al., 2018) and creating floor plans (Nauata et al., 2020; Uzun et al., 2020).

In this paper, we present a state-of-the-art systematic review of 100 stud-
ies on the application of GANs in the built environment on all scales and data
types, covering novel ideas applied at the city, district, and building level. We
provide an analysis of key GAN model architectures that are applicable in the
built environment and a hierarchical organization of current subtopics that have
been tackled by researchers in recent years. To the best of our knowledge, this
is the most comprehensive and wide-ranging review on this topic. The review
will inform readers about the state-of-the-art applications of GANs in the built
environment and offers future research opportunities that push the boundaries of
Artificial Intelligence in the urban context.

In Section 2, we examine existing related reviews, and Section 3 provides
a primer on the architecture of GANs and introduces their capabilities to read-
ers who are unfamiliar with this type of deep learning model. In Section 4, we
describe our methodology for systematic review. Section 5 presents the quan-
titative and qualitative insights of the review with a meta-analysis. It breaks
down the corpus by the problems addressed and the scale of the data from cities
and districts to the building scale, and describes the applications of GANs in the
built environment, focusing on three key topics, Data Synthesis, Data Augmenta-
tion, and Design Automation. Section 6 summarizes the key lessons learned and
common limitations and outlines four research opportunities in the applications
of GANs in the industry.

2. Related work

To our knowledge, there are three review papers that complement our work
by looking at related topics from different perspectives.

Chaturvedi and de Vries (2021) provide an overview on the use of machine
learning algorithms in urban land use planning. The review provides an overview
of various machine learning approaches that are useful for modeling, simulating,
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and predicting urbanization patterns. A wide range of machine learning algo-
rithms are covered, ranging from classical models like Random Forests to Deep
Learning techniques like Convolutional Neural Networks. It briefly touches on
the use of GANs in simulating urban growth as an alternative to procedural tools.

Gao et al. (2022) deliver a comprehensive systematic review of the applica-
tion of GANs for spatiotemporal data. The review explores different forms of
spatiotemporal information such as musical data, ECG and meteorological data,
social network data, pedestrian trajectories, etc. Some of the datasets covered in
the review are relevant to urban planning. For example, it shows that GANs can
be applied to impute, augment, or generate pedestrian trajectory data, point of
interest data, or traffic data for urban analytics.

Hughes et al. (2021) take a different route and explore how GANs could
enable creative workflows that collaborate with human designers. The review
reported different applications of GANs for the creative and design industries.
One section features the application of GANs to help architects and urban plan-
ners generate floorplans and visualize the implications of land use decisions in
real time.

Comapred to these previous work, our review focuses on a cross section that
examines the application of GANs to all types of data that are applicable to the
built environment. We specifically look at the application of GAN on all aspects
in the industry, focusing on the breath of the application of GAN in the building
environment.

3. Overview of GANs

As briefly covered in the Introduction, GANs are constructed with a gener-
ator network paired with a discriminator network. During forward propagation,
the loss function calculates the difference between the generated sample and the
ground truth. The loss is then backpropagated to the generator as feedback to
improve the generated results (see Figure 1).

The very first GAN introduced by Goodfellow et al. (2014) is only capable of
generating black-and-white facial images with some semblance of the original.
After using more stable loss functions such as Wasserstein loss (Arjovsky et al.,
2017) and optimal transport loss (Salimans et al., 2018) and deeper network
layers such as convolutional layers (Radford et al., 2015), state-of-the-art GANs
can now generate images indistinguishable from human perception.

GANs can be classified into two main categories: unconditional and condi-
tional GANs. Unconditional GANs generate results based on randomly initiated
noise vectors, giving users little control over the results they generate apart from
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Figure 1: General architecture of a GAN. During forward propagation, random noise is passed
into the generator to generate a fake sample (if a conditional vector is used, the GAN becomes
a conditional GAN and the user can influence the outcome of the generator). The discriminator
takes in both the real and fake samples to determine which is real. Then a loss gradient is
calculated using a loss function, and the respective losses are back-propagated to the Generator
and Discriminator. There is no restriction on the format of the real and fake samples, as long as
the neural network architecture of the Generator and Discriminator adapts to the data formats.

tweaking the training dataset. Conditional GANs allow the user to input some
additional information to ‘guide’ the model to generate the intended dataset, of-
fering more granular control on the generated results.

There are multiple ways to customize a GAN to fit different generative tasks
and different data formats. In general, every GAN is designed on the basis of its
generative task and on its input-output data type. This is due to the fact that the
generator and discriminator networks in a GAN require specialized deep learn-
ing layers to process different datatypes for the best results. For example, image
generation GANs are often equipped with an autoencoder generator with con-
volution layers (Isola et al., 2017; Zhu et al., 2017; Park et al., 2019; Karras
et al., 2019) to generate high-resolution RGB images. At the same time, the dis-
criminator also needs convolution layers to assess the quality of the generated
images. This type of model architecture will work only on image data but not
on text data. Similarly, text-to-image GANs learn the relationship between input
text and output images using generators with Attention layers or long-short-term
memory layers (Xu et al., 2017) that could understand contextual information
in input texts and discriminators with convolution layers to assess the difference
between the generated images and the ground truth images.
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Although GANs need to be designed for each input-output data pair, the ap-
plications that could arise from each data pair are manifold, as researchers could
customize the information contained in the input-output datasets to apply the
models to specific fields. For example, in their seminal paper, Isola et al. (2017)
proposed an image-to-image translation algorithm that takes the semantic infor-
mation defined in the input image and generates photorealistic images following
the semantic information. The paper showcased the application of the algorithm
to different data pairs, such as painting landscape photos with simple color-coded
masks, coloring hand-drawn sketches, and inpainting missing pixels in images.
Although each application is unique, the underlying datasets for all applications
are still image pairs. The same model architecture has been used with only a few
parameter tweaks that optimize the model for each data pair (see Figure 2). An-
other example is AttnGAN (Xu et al., 2017), which can synthesize semantically
correct images from visual descriptions, learning the relationship between nouns
and prepositions in natural languages. With it, architects had used it for design
inspiration by translating poems into actual images for their design projects.

Figure 2: An example of a GAN for image-to-image translation using OpenStreetMap data. The
generator and discriminator are optimized for image data generation and classification, respec-
tively (Wu and Biljecki, 2022).
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This information-agnostic trait has made GANs much more accessible to re-
searchers outside the field of computer science, as more focus is on collecting
domain-specific data, which leverages the domain expertise of researchers in
other fields. Presently, the entry barrier to experimenting with GANs is made
even lower, as many powerful GAN models tackling different tasks have been
made open-source. This allowed researchers from fields outside of computer
science to gain access to these models. In applying GANs to the built environ-
ment, researchers in the field have ridden the wave of these open-source reposito-
ries and designed spin-off models fine-tuned to the tasks specific to the industry.
Notable open source repositories that are being used in the built environment in-
clude, but are not limited to, pix2pix (Isola et al., 2017), SEASAME (Park et al.,
2019), CycleGAN (Zhu et al., 2017), StyleGAN (Karras et al., 2019, 2020), At-
tnGAN (Xu et al., 2017), and GraphGAN (Wang et al., 2017a).

4. Methodology

4.1. Overview and time frame
This systematic review was conducted based on the updated PRISMA guide-

lines (Page et al., 2021) to identify, select, and review studies. The initial pool
of articles is identified using Scopus and Web of Science. Then we review the
abstracts of these articles to assess their eligibility. The full text of the eligible
papers is then examined in detail and relevant data is extracted for comparative
analysis. We focus on papers from 2018 to 2021, since most papers on the ap-
plication of GANs in the built environment start from 2018. A random sampling
is conducted for papers before 2018 and there are no unique cases that are not
already covered in the aforementioned period.

4.2. Search strategy
Figure 3 outlines the search and screening strategy. First, a pool of papers

containing the relevant keywords (‘Generative adversarial network’ and ‘GAN’)
are identified in their title, abstract, or keywords. This ensures a high diversity
of papers that employ GANs in one way or another prior to further search.

Next, we applied topical keywords to sift out papers that address the built
environment. The keywords are: ‘3d building’, ‘urbanization’, ‘urban design’,
‘urban planning’, ‘urban analysis’, ‘geospatial data’, ‘geographical data’, ‘street
view’, ‘architectural design’, and ‘building design’. These keywords cover stud-
ies that span from the city scale to the building scale and different types of appli-
cations, from data processing to design automation.
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Figure 3: PRISMA flow diagram for literature selection.

4.3. Study selection and data extraction
After the search, we screened the abstracts of the articles in the initial pool

to create a corpus of articles that are relevant for this review using the following
criteria: (1) the study uses GANs to address problems in the built environment
on the urban, district, or building scale; (2) the article is in English; and (3) the
article describes the implementation of GANs using relevant data from the built
environment and not a computer science paper that uses BE data such as satellite
and street view images for metric computation.

Of the initial 314 studies identified using topical keywords, 100 articles have
been selected for review. For each article, we extracted several metadata for
a quantitative understanding of the body of literature in Section 5 (e.g., data
format, GAN architecture, data size, application domain, and application scale).

As is the case with other systematic reviews, we acknowledge the possibility
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of exclusion of relevant articles during the search and screening process. Nev-
ertheless, considering the large literature body and the multitude of application
domains covered, we are confident that our review does not suffer from signifi-
cant bias, is sufficiently covering the current trends of this domain, and presents
a comprehensive and meticulous snapshot of the state-of-the-art.

5. Review

Here, we introduce the findings from the selected corpus in four subsections.
We first classify the types of data based on the scale of the problems to be tackled.
Then, we explain the popular GAN architectures used in the corpus and their
respective data formats. Finally, we present an overview of applications of GANs
in the built environment based on three thematic clusters.

5.1. Data types and scales in the Built Environment

Figure 4: Data Types and Scales Used by GANs in the Built Environment.

The built environment houses a wide range of data types covering informa-
tion at different scales. Data captured at one scale will only be most useful at
the same scale where it is captured, therefore, it is crucial to connect the differ-
ent data types to the scale that the data cover so that the best GAN methods can
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be selected for scale-sensitive tasks. Figure 4 shows the data types used in the
training of GANs in the built environment. The ten data types can be classified
into data at three scales, City, District, and Building. Most of the data types are
scale-specific while street view images and facade images can be used across
scales.

Data at City level. At the city level, researchers in the field mainly utilize
remote sensing image datasets or spatio-temporal datasets to answer city-scale
problems such as urban mobility simulation and urbanization growth prediction.
Another focus at the city level is urban land use planning. Researchers have
shown that GANs could learn existing land use design principles and apply them
to new areas with sufficient design sensibility.

Data at the city scale are mostly large datasets ranging from 100k to 500k
images or data points. With these data, common research questions include, but
are not limited to: Can we detect changes or simulate urbanization processes
throughout the years (Albert et al., 2018; Chen et al., 2019; Hou et al., 2020)?
Can we generate street view images from contextual information from satellite
images (Deng et al., 2018; Tang et al., 2019; Regmi and Borji, 2018)? Can
we create an AI that finds the best land use configuration (Wang et al., 2020)?
Can we create a 3D representation of a city out of 2D images (Kim et al., 2020;
Bittner and Korner, 2018; Kelly et al., 2018)? Can we estimate or impute missing
structured data to aid downstream analysis (Yang et al., 2021; Zhang et al.,
2019b; Johnsen et al., 2021)?

Data at District level. The district level refers to studies focusing on neigh-
borhoods or a few urban blocks. At this level, data that contain information on
urban fabric become more prominent. However, the sizes of the datasets are
generally much smaller than those at the city level, ranging from one thousand
to fifty thousand.

At this level, street view images are being used to quantify spatial quality
by feature extraction, and researchers are attempting to use GANs to redesign
streetscapes with better spatial quality. At the same time, building facade images
and 3D models are also being used in GANs for novel ways to reconstruct urban
districts, rivaling the performance of procedural approaches.

Common research questions on this scale include, but are not limited to: Can
GANs be used for effective 3D urban reconstruction (Kelly et al., 2018; Du et al.,
2020)? Can we interpolate the urban fabric from one area to another (Yao et al.,
2021; Shen et al., 2020; Wu and Biljecki, 2022)? Can AI assist human designers
in masterplanning (Ye et al., 2021)?

Data at Building level. At the building level, architectural drawings such as
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floorplans, mechanical, electrical, and plumbing (MEP) drawings, and sectional
drawings are widely experimented with. Researchers have shown that GANs
could generate sensible technical drawings and help with plan coloring. Certain
GAN processes can also act as a design interpreter, translating hand sketches
into colored architectural renderings. More recently, researchers have started
exploring how to represent the spatial arrangements of these drawings in graphs
instead of images, allowing GANs to learn spatial correlations between different
spaces in a building.

In addition to these data, photos of buildings such as artistic renderings and
facade images have also been used for style classification and damage restora-
tion. A smaller set of articles focus on building performance data, increasing the
accuracy of building performance prediction with GANs (Chokwitthaya et al.,
2020, 2019).

In general, datasets at the building level are more heterogeneous and context-
specific, making the collection of a set of similar data much more difficult. Nev-
ertheless, GANs still proved useful in these relatively smaller datasets and intro-
duced creative and innovative solutions at the building level.

Common research questions on this scale include, but are not limited to:
Can AI generate architectural drawings that are spatially optimized (Uzun et al.,
2020; Nauata et al., 2020, 2021)? Can AI restore old building facades in disre-
pair (Zhao et al., 2020; Zhang et al., 2018)? Can GANs generate design inspi-
ration for architects and planners (Chen and Stouffs, 2021; Huang et al., 2021)?

5.2. Data sources and availability
GANs are data-hungry deep learning algorithms that require a large amount

of computation resources to reach optimum convergence and realistic results. As
explained above, problems in the built environment are scale-specific, and GANs
designed for the problems require data collected at the intended scale to be most
effective.

Half of the articles in the review reported using an external dataset obtained
from public databases. Table 1 shows a summary of these datasets used in the
corpus. Most of the datasets are created to benchmark deep learning model per-
formance to advance relevant research rapidly and are available for direct down-
load. Although generally used in the field of Computer Vision, these datasets
contain relevant information in the built environment across different scales.
Data obtained from service platforms such as OpenStreetMap and Google Street
View require API access, and the quota for academic use varies by platform.

The other half of the corpus used datasets that were generated independently
by the researchers. These datasets might be curated from online sources such
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Figure 5: Histogram of GAN applications by problem scale.

as ArchDaily or Pinterest, or are provided by government organizations for the
specific study. Some researchers also generated datasets by taking actual photos
with cameras.

In addition to data access, data size is also an important factor in the training
of GANs. Of the 100 papers in the corpus, 71 have reported the size of the
datasets used in the research. Figure 6 presents a histogram on the size of the
datasets used in the corpus on three different scales. We see that at the city level,
the size of the dataset spans from hundreds to millions. The extremely large
datasets are movement trajectory datasets which contain spatio-temporal data of
thousands of tracking points over a long span of time. At the building level,
smaller datasets are more common, since those are generally images of building
facades or floorplans collected manually by the researchers.

5.2.1. GAN variants for the Built Environment
Although noticeable progress has been made in the application of GANs in

the domain, there is no standardized naming convention for the GANs used in
the papers. In some cases, researchers give a new name to their GAN model
after tweaking certain parameters in a stock model (Liao et al., 2021) or after
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Table 1: Publicly accessible datasets by coverage.

Coverage Source Format Size Cited

City

Baidu Street View Street View variable 1
CVUSA Street/Satellite 30k+ 2
CartoDB Maps/Satellite variable 1
Cityscapes Street View 20K+ 2
Dayton Street/Satellite 70K+ 2
Ego2Top Cross View Video 230 1
GADM GIS Data 29K+ 1
Google Street View Street View variable 4
Google Maps Maps/Satellite variable 3
Road damage Street View 1500 1
Grab-Posisi GPS 8m+ 1
HERE Map Raster Maps variable 1
OpenStreetMap GIS Data variable 1
Paris Street View Street View 50k+ 5
Massachusetts Satellite 1500+ 3

District

ADE20K Photos 27K+ 2
BDD100K Photos 100K+ 1
Microsoft COCO Photos 160k+ 2
Places2 Photos 10m+ 1
PASCAL VOC Photos 10k+ 1

Building

EAIS Floorplans 300+ 3
LIFULL HOME Floorplans 100k+ 2
ROBIN Sketches 200 1
ZSCVFP Vector Floorplans 10k+ 2
lianjia.com Floorplans 100+ 1

applying stock models to a customized pipeline (Chan and Spaeth, 2020). In
other cases, the researchers did not refer their method to existing repositories,
but the architecture implemented was similar to open source repositories (Kim
et al., 2018).

This non-standardized nomenclature could be confusing to readers new to
the field and make cross-referencing between relevant studies difficult. To clear
up the confusion, we have classified the method nomenclatures found in the cor-
pus by input-output data pairs. There are a total of 4 categories based on our
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Figure 6: Dataset size used by GANs in the Built Environment group by data scales.

taxonomy, and Figure 7 shows the distribution of different GAN classes used in
different thematic clusters documented in this study.

Figure 7: Number of papers under each GAN classification and thematic cluster.

Image Generation GANs GANs excel at image generation. Image Gen-
eration GANs are unconditional GANs with deep learning layers that generate
photorealistic images from input noise vectors, and generally have more com-
plex architectures than Data Generation GANs mentioned below. When GAN
was first introduced by Goodfellow et al. (2014), the images generated were of
low resolution. Adding deep convolution layers to the vanilla GAN architecture,
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Radford et al. (2015) managed to generate higher resolution and colored images
of human faces. Research in Image Generation GANs continued with more sta-
bilized training processes (Roth et al., 2017), new generative algorithms (Karras
et al., 2019, 2020), and better semantic accuracy (Karras et al., 2021).

StyleGAN3, the current state-of-the-art in this domain, is able to generate
hyperrealistic high resolution images of human faces, animals, landscape, and
street view images. Another branch of applications of Image Generation GANs
is in image inpainting. Rather than generating images from randomly initi-
ated vectors, image-inpainting GANs help to complete missing pixels or restore
blurry patches in an image taking information from the surrounding context. No-
table GANs that are used in the corpus include UCTGAN and DeepFill (Zhao
et al., 2020; Yu et al., 2018).

Data Generation GANs Data Generation GANs are conditional or uncon-
ditional GANs that could generate data other than images. Data such as text,
GPS, and mobility data can be processed by these GANs to generate new data
samples that are similar to the ground truth, and papers in the corpus use this
type of GANs to generate more data samples for better downstream learning.
In addition, these GANs can be used to translate one dataset into another, and
the combination of the input-output pairs does not need to be of the same data
format. For example, AttnGAN (Xu et al., 2017) uses attention layers for text
understanding and then uses a deep convolutional neural network to generate im-
ages from decoded text. TrafficGAN (Zhang et al., 2019b) uses conditional vec-
tors to encode traffic demands and generates spatial-temporal datasets of traffic
conditons based on the demands.

Image-to-Image GANs One of the most popular uses of GANs is in image-
to-image translation. This type of GANs can translate one kind of image data
into another. In most use cases, it is used to translate segmentation masks into
photorealistic images. For example, generating realistic street view images from
color-coded street object labels or picturesque scenery from color masks that in-
dicate object types. This application was first published by Isola et al. (2017) as
‘pix2pix’ and was further improved in pix2pixHD (Wang et al., 2018c), SPADE
(Park et al., 2019), and SESAME (Ntavelis et al., 2020). One limitation of
the pix2pix family of GANs is that each training sample needs to be a set of
paired images. As GANs are data hungry, training datasets could easily exceed
tens of thousands of image pairs. In problems where the pairing of the training
samples could not be automated, a large amount of human labor is required to
generate a suitable dataset for training. To solve this limitation, CycleGAN in-
troduced Cycle-consistent loss (Creswell et al., 2018), which enables unpaired

15



image translation. CycleGAN no longer requires paired samples during training
and learns to translate between two image datasets from all images. This feature
significantly speeds up data preparation, making CycleGAN experiments much
more scalable in tasks that lack paired datasets.

GraphGANs GraphGANs are GANs that are capable of using graph data as
input or generating graphs as output. Graphs are a type of unstructured data that
can describe topological data with nodes and edges. In the built environment,
researchers are starting to use graphs to describe spatial relationships at different
scales (e.g. road networks at the city level, floorplan layouts at the building
level). Compared to recording these data in images and structured data, graphs
allow GANs to generate more spatially sensible results (Nauata et al., 2020).

5.3. Applications of GANs in thematic clusters
In this section, we discuss common research topics that have been addressed

by GANs in the built environment. Upon examining all the papers, we developed
a two-tier system to classify the papers meaningfully. We first classify the studies
into three main generative tasks based on how the generated samples from the
GAN model are used.

1. A task is classified as Data Synthesis if the output data format or nature is
different from the input, and can be used qualitatively and quantitatively
for downstream workflows.

2. A task is classified as Data Augmentation if the output is similar to the
input, but of a higher quality in resolution or completion, and can be used
qualitatively and quantitatively for downstream workflows.

3. A task is classified as Design Automation if the output data format or na-
ture is different from the input and cannot be used quantitatively for down-
stream processes. However, the output provides qualitative value that in-
spires or automates certain processes during a workflow.

Then, each paper under these three tasks is further differentiated by their
respective application domains. There are a total of 26 application domains in
the three generative tasks. We hope that this taxonomy is helpful to readers in
navigating the wide landscape of current applications (see Figure 5 and Figure 8).

5.3.1. Data Synthesis
Data synthesis refers to applications where GANs are used to generate syn-

thetic results that can be used both qualitatively and quantitatively.
3D Urban Reconstruction Kim et al. (2020) used GANs in their 3D city

model generation pipeline to generate terrain maps from semantic masks of street
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Figure 8: Number of papers under each theme and application.

views. The terrain map is combined with property vectors extracted with a Con-
volutional Neural Network from RGB street view images to automatically create
a realistic 3D city model.

The methods proposed by Kelly et al. (2018) and Du et al. (2020) focus
more on improving the level of detail of the generated 3D models (see Figure 9).
In both studies, multiple GANs are linked to generate texture and label maps for
facades, roofs, and windows. The method of Kelly et al. (2018) also uses a super-
resolution process to enhance the resolution of the generated texture. Using the
textures and label maps, 3D details are added to the input level of detail 1 3D
model, making the model much more lifelike. Additionally, style preferences
can be set in the pipeline to give users greater control over the final results.

Building Performance Simulation/Optimization Building performance mod-
eling is important in understanding the thermal and daylight comfort of a build-
ing. However, existing building performance models only describe historical
events and observations, and contextual factors that influence human-building
interactions, such as the decision to switch on and off interior lighting and venti-
lation, are ignored. Using GANs, Chokwitthaya et al. (2019, 2020) can generate
synthetic datasets to estimate the effect of building performance on human deci-
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Figure 9: FrankenGAN by Kelly et al. (2018).

sions and vice versa. Also on the topic of building performance, He et al. (2021)
show that GANs are effective metamodels for daylight simulation, achieving R-
square score of 0.959 when compared against state-of-the-art daylight simulation
tools.

Cross-View Image Translation Cross-view refers to the method to generate
images with drastically different views, such as street view images from satellite
images and vice versa. This task is challenging because understanding, cor-
responding, and transforming the appearance and semantic information across
views is a complex computational problem (see Figure 10).

Figure 10: SelectionGAN by Tang et al. (2019).
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When training a vanilla pix2pix model on these datasets, the results often
suffer from blurred patches and semantically incorrect objects. Using more ad-
vanced GAN architectures, such as those based on customized convolution lay-
ers (X-Fork, X-Seq) (Deng et al., 2018; Regmi and Borji, 2018, 2019), attention
layers (SelectionGAN) (Tang et al., 2019; Ding et al., 2020), or Cycle-consistent
losses, (Tang et al., 2020a) researchers are now able to translate between satellite
and street view images with accurate semantic structure and in high resolution.

The state-of-the-art models are achieved using large datasets that contain
street view and satellite image pairs (Dayton, CVUSA, and Ego2Top). These
datasets range from 30k image pairs to 50k image pairs and have greatly accel-
erated research in this field.

Data Estimation and Urban Simulation Data Estimation refers to the var-
ious applications of using GANs to predict missing data using contextual infor-
mation obtained from the training dataset. In many applications, GANs can learn
the complexities of the training data and reproduce similar data patterns when
given a new condition. For example, Zhang et al. (2019b, 2020b) have created
a method to estimate traffic condition changes of a region prior to deployment
to aid city planners to evaluate the impact of different traffic design schemes.
TrafficGAN used a large taxi inflow dataset to learn the fundamental patterns of
how traffic conditions evolve with changes in travel demand and the underlying
structure of the road network. The generator is able to generate realistic traffic
conditions given not-yet-observed travel demand. Furthermore, the performance
of TrafficGAN outperforms existing traffic estimation techniques.

Another example of using the power of GANs in data estimation is to sim-
ulate population density and distribution on all scales of the built environment.
Zhang et al. (2020a) used call detail records of mobile phones to forecast accu-
rate population density up to a spatial resolution of 125 x 125 square meters over
different time periods. Furthermore, Johnsen et al. (2021) used GAN to estimate
the demographic profile (e.g., type and composition of households, income, and
social demographics) of urban residents in new neighborhood developments to
measure the social impacts of new real estate developments.

Data estimation can also be applied to image data. Zhu et al. (2020a) used an
image conditional GAN to estimate terrain data, which outperformed traditional
interpolation techniques, and Shen et al. (2020) have shown that a pix2pix model
can be used to transfer urban morphology from one place to another. Yao et al.
(2021) built on this technique to generate neighborhood footprints at different
densities of the surrounding urban fabric.

At the city scale, Albert et al. (2018) are among the first to apply con-
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ditional GANs to simulate urbanization patterns under different conditions in
cities. More recently, Ibrahim et al. used a GAN to estimate future housing
growth patterns for different demographic groups in Doha, offering a new data-
driven method for population and urbanization simulation. Additionally, Sun
et al. (2021a) are able to predict the future land use and land cover change of
Shenzhen in the future by learning from historical urbanization patterns from
1988 to 2015.

Façade, Satellite and Street View Generation One of the most popular uses
of GANs is in the generation of photorealistic images. Researchers in the Built
Environment have stress-tested image generation GANs with different types of
domain-specific datasets. Using CycleGAN with a self-curated historical ar-
chitecture dataset, Sun et al. (2022) trained a model that generates traditional
building facades from semantic masks with customized decoration styles. This
method could be scaled up to a city-wide platform that can automatically provide
urban restoration options from the aspect of architectural heritage conservation.

In addition to building facades, street view images and satellite images can
also be generated from semantic guidance or randomized noise vectors. Due to
the availability of large datasets of street view and satellite images, many im-
age generation GANs used these datasets as benchmarks (cite pix2pixHD, Gau-
GAN). For example, using StyleGAN, an open source image generation GAN,
Steinfeld (2019) generated a walk-through video of a fictional neighborhood
stitched from a series of spatially continuous synthetic images. (Zhao et al.,
2021a) have also generated high-resolution satellite images with StyleGAN and
warned about the danger of data contamination and malicious use of such im-
ages as untrained eyes are now unable to distinguish the real from the fake. In
the research of Wang et al. (2019a) and Venator et al. (2021), lighting conditions
(i.e. day and night) can also be varied in addition to image semantics to generate
street view images based on different times of the day.

To push the boundary further, researchers have designed GANs with com-
ponents that specifically improve semantic guided street view generation. Tang
et al. (2020b) created a GAN with three generation branches, that is, global im-
age level generation, local class level generation, and pixel level fusion weight
map generation. The result of LGGAN is superior to general models such as
SPADE in semantic street view generation and also in cross-view image trans-
lation. Zhu et al. (2020b) also introduced a customized GAN based on seman-
tic region-adaptive normalization that can achieve superior results in street view
generation. Furthermore, the method can also be used to generate interior scenes.

Cartographic Style Transfer Maps are an important visual medium that

20



conveys information about a city and district. Inspired by the technique of style
transfer in image editing, researchers can take two cartographic images, a content
image and a style reference image (one with a different style than the content),
and blend them together so that the generated map retains the information in the
content map, but “painted” in the style of the style reference map. Using GANs,
researchers have converted simple styled maps captured from OpenStreetMap
into the style of Google Map (Kang et al., 2019) or historical maps. It is also
possible to convert Google Map and other mapping styles into satellite images
and vice versa using CycleGAN and pix2pix (Xu and Zhao, 2018; Zhang et al.,
2020c; Li et al., 2020).

Figure 11: MapGAN by Li et al. (2020).

Semantic Segmentation and Change Detection Semantic segmentation is
the task of clustering the pixels of an image that belong to the same object class.
It is a form of pixel-level prediction, since each pixel in an image is classified
according to a category. Semantic segmentation is particularly useful in describ-
ing and quantifying the information contained in images. It unlocks a wealth of
data as quantifiable data can now be extracted from photos taken at any scale,
accelerating our understanding of the built environment through satellite, street
view, and building images.
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As GANs could generate images from semantic masks, the process can be
reserved to train GANs to generate semantic masks from RGB images as well.
The most popular model used in this task is pix2pix, followed by CycleGAN.
Researchers in the field have applied this process on road networks at the city
level (Shi et al., 2017; Varia et al., 2019), building footprints at the district level
(Wu et al., 2018; Abdollahi et al., 2020; Sun et al., 2021b), and architectural
elements such as windows, doors, and walls at the building level (Alawadhi and
Yan, 2021). One notable application of the extracted semantic masks is in change
detection. Chen et al. (2019) and Hou et al. (2020) create pipelines to detect and
quantify urbanization changes over the years by extracting semantic information
from time series remote sensing images.

5.3.2. Data Augmentation
Compared to data synthesis, data augmentation refers to processes in which

GANs are used to enhance input data by cleaning, restoring and increasing reso-
lution. Applications of these are mostly used as an intermediate step to help the
final output.

Figure 12: ST-FVGAN by Yang et al. (2021). The percentage represents how much data was
removed from the ground truth as input for the upsampling process.

Data Upsampling In urban big data problems such as traffic condition mon-
itoring, the collected data may have missing values that would impact the anal-
ysis result. To overcome this limitation, Yang et al. (2021) created ST-FVGAN
to impute missing time series traffic data (see Figure 12). The GAN is capable
of considering the spatiotemporal correlation between different data points and
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is more accurate than traditional imputation methods. Furthermore, Wang et al.
(2018b) used a GAN to up-sample Sina Weibo microblog comments, generating
synthetic text examples to augment the existing dataset for better downstream
prediction of traffic conditions using natural language processing models.

Facade Restoration Facade Restoration studies the possibility of restoring
missing pixels in facade images from contextual information given in the input.
Many researchers have proposed different GAN architectures that can be used to
fill in missing information in an image with semantic consistency (Zhang et al.,
2018; Li et al., 2019; Zhao et al., 2020; Liu et al., 2021; Qin et al., 2018). In
some cases, a building with more than 50% missing pixels could still be restored
with realistic elements.

Satellite Image Enhancement Satellite images are useful in large-scale ur-
banization studies. However, high-quality satellite images are expensive, and
open-source datasets often suffer from quality issues such as low resolution and
the presence of clouds.

Using a GAN-based model, Pham and Bui (2021) created a method to in-
crease the spatial resolution of freely available Landsat imagery with four re-
flectance bands (red, green, blue, near-infrared) and the panchromatic band. The
output images have higher spatial resolution and are more spatially convincing.
This enhanced dataset allowed researchers to access historic satellite images in
high definition and thus allowed studies over time.

Ikeno et al. (2021) has shown that GANs can be used to remove clouds from
satellite images and make building footprints beneath the clouds much more vis-
ible for a downstream building footprint segmentation model. By using GANs to
augment the training data for the downstream model, the mean intersection over
union (mIoU) score improved from 0.622 to 0.651.

Digital Surface Model Enhancement Digital Surface Models (DSM) con-
tain terrain elevation information that can be used in automatic urban 3D recon-
struction. However, accurate 3D information extraction requires high-resolution
DSMs scanned using expensive airborne laser scanners (Pang and Biljecki, 2022).
A group of researchers managed to reduce the cost of obtaining high-resolution
DSMs by enhancing the resolution of more readily available low-res DSMs gen-
erated from stereo satellite images by using a GAN based on pix2pix (Bittner and
Korner, 2018; Bittner et al., 2019). The output result greatly improves from the
low-res stereo DSMs and closely matches the DSMs collected through airborne
lasers. Wang et al. (2021) took one step further to generate fully vectorized level
of detail 2 building models from enhanced DSMs and achieved state-of-the-art
performance when applied city-wide (see Figure 13).
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Figure 13: Enhancement and vectorization of digital surface models using GAN by Wang et al.
(2021).

Street View Cleaning and Inpainting Similar to clouds in satellite images,
street view images also face quality problems, such as obstructed views and
rains. Hettiarachchi et al. (2021) show that GANs can effectively remove rain
streaks from street views to improve image clarity. This means that street view
recording can continue in the rain without deteriorating the quality. Zhang et al.
(2021) has combined object detection algorithms with GANs for image inpaint-
ing to create a novel pipeline that removes road obstructions and subsequently
repairs empty pixels using contextual information in the background. This en-
ables highly accurate reconstruction of areas blocked by unwanted objects, such
as a tree canopy or street signs, enhancing the quality of the data for downstream
operations (see Figure 14).

Floorplan Cleaning Floorplans contain spatial and structural information of
buildings. In practice, floorplans have many annotations to help human under-
standing. However, these annotations are a hindrance to machine understanding.
One research direction in helping machines read floorplans is to encode raster
floorplans into vector representations. To this end, researchers have developed
GANs that detect building elements, such as walls, doors, and windows from
complicated floorplans and convert them into a unified style for downstream ma-
chine learning. These algorithms are usually image-to-image GANs based on
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Figure 14: Automatic object removal and inpainting by Zhang et al. (2021).

pix2pix and are enhanced with a subsequent vectorization algorithm to return
vectorized floorplans in labeled primitives (Kim et al., 2018, 2021; Cho et al.,
2020; Dong et al., 2021).

5.3.3. Design Automation
Design Automation refers to applications where GANs are used to generate

synthetic results that could aid designers and planners in the design process. The
results could provide inspiration for design or speed up decision-making and
production processes.

3D Model/Scene Generation In the industry, floorplans and sectional draw-
ings are used to describe the details of a project. Together, they contain infor-
mation required for constructions in the 3D space. Using a similar idea, Zhang
and Blasetti (2020) generated multiple floorplans and sectional drawings using
StyleGAN and CycleGAN to construct 3D models inspired by modern architec-
ture and Gothic churches. Taking another approach, Yu (2020) used pix2pix to
generate color-coded masks as a more machine-readable version of floorplans
and sectional drawings to reconstruct and redesign the spatial layout of a neigh-
borhood and construct a 3D model from the masks using a similar concatenation
technique.

In interior design, 3D artistic renderings are populated with furnishings and
decor to convey different design styles. Currently, designers need to manually
modify the textures of each object in a rendered scene to convert them into dif-
ferent styles. Zhang et al. (2019a) created a GAN to automate this process and
modify the textures of 3D furniture models based on stylistic expressions learned
from a real image dataset. To enhance the realism of the scenes, the method
can also populate different interior decors such as plants, magazines, and photo
frames that suit the chosen style. Furthermore, the GAN can also mix between
different styles, generating new styles and color schemes that are not yet seen in
the training dataset.
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Design Analysis Researchers have also explored using GANs to analyze data
to help architects and planners in preliminary studies.

For example, Wang et al. (2019b) used InfoGAN to classify and quantify
street architecture styles in an unsupervised manner without needing prior man-
ual labeling data. Since the model is not trained with labeled data, planners
could use it to identify new classes that might not have been representative under
human-directed classification.

In urban planning, data on how existing neighborhood characteristics im-
pact resident behavior could help planners understand the effectiveness of design
schemes. However, these data are limited in availability and spatial quality in-
dicators (e.g., greenery, building setbacks, and dwelling structure) and are also
difficult to quantify. Combining unsupervised classification of images with sur-
vey data, Rachele et al. (2021), Zhao et al. (2019), and Wijnands et al. (2019) are
able to quantify the relationship of neighborhood characteristics with resident
health and behavioral data, and elements of the streetscape with data on urban
cyclist safety. Furthermore, the relationship learned by AI can be used to suggest
better design solutions, as latent vectors that represent different elements (e.g.,
vegetation heights, vegetation density, and building density) can be adjusted to
generate new images that suggest better spatial designs for specific functional
spaces learned by the models.

In addition to images, GANs can also be used to perform spatial behavior
analysis. Wang and Huang (2019) conducted a case study where Space Syntax
is used together with a GAN to simulate pedestrian movement dynamics and
identify crowded hot spots in a commercial area.

Figure 15: Automated coloring of Masterplans by Ye et al. (2021).

Design Assistance Design Assistance refers to automation processes that can
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speed up certain tasks in a designer’s workflow. Qian et al. (2021) experimented
with GANs to generate hand sketches from architectural photography. Using a
similar algorithm, Sharma et al. (2019) created a method to retrieve CAD floor
plans from hand-drawn sketches.

Ye et al. (2021) trained a custom GAN architecture with 5,000 masterplan im-
ages to colorize masterplan drawings. The results are judged to be aesthetically
similar to manual renderings after 3450 unique pairwise comparisons by 150 sur-
vey participants (see Figure 15). At the building scale, Chan and Spaeth (2020)
created a method to generate water-color building sketches from line drawings.
The model can also be used to generate photorealistic renderings from colored
sketches.

Navarro-Mateu et al. (2021) attempted to train a conditional GAN that gen-
erates 3D massing models based on two-dimensional color grids with different
colors hinting at different massing types (eg. empty, block with windows, block
with sloped roofs).

Design Inspiration Just like creating artworks using GANs, some designers
have used GANs in design speculation, using generated images from GANs di-
rectly in their work or obtaining design cues from the results. Danchenko (2021)
used StyleGAN to rapidly generate different architectural renderings for clients
before engaging in manual design, speeding up the early ideation stage with AI-
generated mood boards. Pasquero and Poletto (2020) used a CycleGAN to learn
the growth pattern of Physarum polycephalum, a unicellular organism with com-
putational abilities and self-organizing behavior. The GAN simulates the growth
logic of the organism and is deployed to test the potential of non-human intelli-
gence in solving problems of urban remetabolization and in computing scenarios
of urban morphogenesis.

Campo (2021) used AttnGAN, a GAN that interprets text into images, to gen-
erate materials and color patterns for the design of a school. Text descriptions of
activities conducted in functional spaces (e.g. multipurpose hall, classrooms) are
translated into abstract images. These images are then reinterpreted and mapped
to the respective buildings to complete the design.

Chen and Stouffs (2021) used StyleGAN2 to generate photorealistic building
renderings from a large dataset collected from ArchDaily and Dezeen. The latent
vectors within the trained model were modified to influence the model output in
the intended direction. Huang et al. (2021) used architectural imagery generated
by a DCGAN as visual guides for designers to generate elevation drawings. In
this experiment, AI dictates the design direction and human designers fulfill the
instructions. Key elements of the generated image are interpreted by architects
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as architectural elements, and four different elevations are combined into a 3D
model inspired by the images hallucinated by GANs.

Design Optimization In an architecture project, architects must engage en-
gineers to ensure the feasibility of the design. Liao et al. (2021) created Struct-
GAN, a method based on pix2pixHD to indicate the position of structural walls
in a floorplan of high-rise residential buildings. It is also able to propose the
location suitable for windows and outdoor gates. After consulting a professional
panel, the generated structural plans come close to expert design and can pro-
vide quick preliminary structural design schemes for architects and structural
engineers, improving the design efficiency and quality of building structures.

Also using pix2pix, Sato et al. (2020) created a GAN that could generate the
layout of the fire extinguishing system (FE) from the input floorplans. Using
a metric that calculates the coverage of the FE system, the FE plans produced
were close to the original FE designs. Furthermore, the system produces the
output in 45 seconds, which is drastically faster than the conventional manual
workflow. The system realizes the prompt engineering study learned from past
as-built information, which contributes to data-driven decision making.

Figure 16: Generating Palladian villa plans by Uzun et al. (2020).
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Floorplan Generation One of the first research areas of GANs in the built
environment is the ability of GANs to generate spatially sensible floorplans. Us-
ing a GAN equipped with deep convolution layers (DCGAN), users can generate
different layouts by adjusting the latent vector (Newton, 2019a,b). However, the
generated results suffer from distortion and could not be used directly in the de-
sign process. Uzun et al. (2020) made a breakthrough in showing that DCGANs
are capable of learning and reproducing floorplans in the style of Andrea Palladio
after 6000 epochs of training (see Figure 16). Compared to the original floor-
plans, the reproduced floorplans are statistically and visually similar, although
the spatial layouts are not satisfactory. (e.g., wrong organization of rooms and
undesirable room sizes).

To improve the spatial layouts within the generated floorplans, researchers
experimented with conditional GANs as it would support the encoding of indi-
vidual spaces. In this way, users will be able to define parameters such as the
size of the unit and the position of the rooms and walls in the generated floor-
plans (Zheng et al., 2020; Huang and Zheng, 2018). Rather than creating design
options, this method simplifies the drawing process as designers simply need to
draw colored boxes to generate production-ready floorplans that are colored and
furnished with the correct elements. Research in this direction is mainly driven
by datasets such as SCUT-AutoALP (Liu et al., 2020), which contains a large
repository of colored floorplans with semantic masks and vector information,
highlighting the importance of high-quality datasets for GAN performance.

The generative power of GANs is also used for floorplan optimization. In-
stead of generating floorplans from scratch or colored floorplans for presentation,
Zhao et al. (2021b) used pix2pix to generate simplified spatial layouts of hospital
floorplans. Using a bounding box as input, the model is able to generate good
quality color-coded masks associated with different spatial functions in a hospi-
tal which has real engineering applications. However, the layouts are similar to
human design, as it is limited by the provided training data, which is created by
human designers.

Figure 17: HouseGAN, a graph-based floorplan generator by Nauata et al. (2020).
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Spatial Layout Generation Thus far, all floorplan generation tasks are in-
trinsically treated as image generation tasks. While the generated floorplans are
visually compelling, none of the methods described above offer spatially com-
pelling results (that is, a sensible spatial hierarchy between living rooms and
bedrooms). This limitation is due to the inability of image generators to learn
the spatial relations encoded in the input images. To overcome this, graph data
and graph neural networks are introduced to encode and represent the spatial
relationships between rooms. In a graph, floorplans are no longer represented
by pixels, but by a collection of nodes and edges. As et al. (2018) and Eisen-
stadt et al. (2019) first demonstrated that GANs can be used to generate building
topology graphs to quickly iterate through different spatial layouts based on dif-
ferent user requirements. Using a dataset of graphical floorplans represented in
graphs, House-GAN (Nauata et al., 2020, 2021) improved on previous research
to generate graphical floorplans from graph inputs. Multiple floorplan repre-
sentations can be generated from the same topology while adapting to different
boundary and size conditions. Furthermore, floorplans can be converted to vec-
tor data to create 3D models. This research offers a full innovative workflow
in which AIs can suggest floorplan designs based on user requirements, and ar-
chitects could improve the generated plans directly in a compatible CAD format
(see Figure 17).

Since graph data are not limited by pixel resolution, layout generation at the
city level is also now possible. Wang et al. (2020) embedded the spatial charac-
teristics (e.g. value-added space, poi distribution, traffic condition) of different
residential areas in a graph, and a GAN is used to learn the difference between
well-planned and poorly planned areas. Owaki and Machida (2020) encoded
road network information collected from OpenStreetMap in a spatial graph and
trained a model to generate secondary and tertiary road networks given the con-
textual information.

Photo-realistic Rendering Artistic renderings of 3D models are currently
generated through ray-tracing renders. Due to the fast inference speed of GANs,
some researchers have speculated that GANs could speed up the rendering pro-
cess, saving computational costs in the long run. Hong et al. (2020) and Gui
et al. (2021b) used GANs to render different lighting conditions to speed up de-
sign iterations and Yang et al. (2019) are able to translate raw 3D geometries
into interior scenes with rendering effect without actual ray-tracing computation.
The custom framework is capable of producing more realistic and aesthetically
pleasing renderings at both the detail and semantic levels compared to pix2pix.
However, more research is needed to create production-ready renderings.
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6. Discussion

6.1. General Observations
GANs are powerful deep learning models that can generate realistic repre-

sentations of any form of data. All of these data formats can find their respective
utility in the built environment at different scales. For example, satellite and
GPS data for urban analytics, street view images for spatial quality transfer at
the district level, graphs for spatial layouts at the building level.

From our review, it is evident that many innovative applications have been
proposed, ranging from data augmentation, data synthesis, to design automation
as mentioned in Section 5.3. Some of the applications in the review are alterna-
tives to current workflows. For example, 3D urban reconstruction using GANs
can be achieved through traditional procedural modeling (Kelly et al., 2017). Im-
age feature extraction or semantic segmentation can also be achieved using other
deep learning techniques (Minaee et al., 2020).

However, most applications covered by the corpus are GAN-only, offering
unprecedented breakthroughs in AI in the built industry in tasks such as spatial
layout generation, cross-view translation, and building facade restoration. Some
applications in the review have already been implemented by commercial com-
panies (He, 2020). We hope to see more of these technologies applied to the
industry in the future.

As shown by the three thematic clusters in Section 5.3, GANs can be used
independently or as part of a methodology. When used standalone, the experi-
ments generally focus on design automation and data synthesis. When used as
part of a methodology, GANs are used to upsample, up-res, or fill in missing data
to optimize the performance of downstream processes.

The availability of open-source GAN repositories has greatly sped up re-
search on the applications of GANs in various fields. Of the many GAN variants,
image-to-image translation GANs are most popular in the built environment.
This group of GANs, represented by pix2pix and CycleGAN, is highly versatile
and offers state-of-the-art results for many applications. One of the most inno-
vative uses is cross-view image translation, where aerial or satellite images can
be converted into street view images with high fidelity and semantic accuracy
(Deng et al., 2018; Regmi and Borji, 2018, 2019; Tang et al., 2019; Ding et al.,
2020; Tang et al., 2020a). Another useful application is to generate functional
architectural drawings, such as MEP pipe layouts or shear wall layouts that rival
professionally created content (Liao et al., 2021; Sato et al., 2020).

GANs that process non-image data, such as graph, GPS, mobility, and build-
ing performance data, have also been extensively experimented in the corpus.
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However, versatile repositories with plug-and-play features such as pix2pix are
currently lacking, and high-quality datasets in this domain are generally closed
to public access, raising the technical barrier of entry. As such, breakthroughs
in this field, such as House-GAN and TrafficGAN, are mostly led by computer
scientists or engineers rather than planners or designers.

6.2. Common Limitations
Data availability
Access to standardized and high-quality datasets is crucial to the develop-

ment of GANs. As explained in Section 5.2, most openly accessible datasets are
maintained by initiatives outside the built environment. Datasets that are specif-
ically created for problems in the industry are much more limited.

For certain data types, such as satellite images and GPS data, the dataset
used for training is large enough to harness the full power of GANs. On the
other hand, many applications are carried out with much smaller datasets. This
is especially prominent at the building scale as it is difficult to obtain a large set
of high-quality dataset, and most research at this level resorted to collecting data
individually. As a result, papers with low quality datasets have only scratched
the surface of what GANs could help in the respective tasks, and the generated
results are expected to be better as the quality of dataset improves.

An example of the impact of data quality can be seen from the solutions
to floorplan layout generation. In earlier papers (Newton, 2019b,a; Huang and
Zheng, 2018), the generated floorplans were largely unsatisfactory as the dataset
was limited to a size of 100 images. In a later paper, Uzun et al. (2020) used a
dataset of 2,525 floor plans with a uniform image style across samples to gen-
erate more realistic results. However, the model was still unable to learn the
spatial correlations between different rooms in a floorplan as this information
is not explicitly encoded in images. To overcome this limitation, HouseGAN
converted a large dataset of 117,000 floorplans images into graph representa-
tions before training and obtained groundbreaking results in floorplan generation
(Nauata et al., 2020). While the results of HouseGAN were already state-of-the-
art, the authors were able to improve the results again by using a higher quality
dataset in their next paper (Nauata et al., 2021). Compared to the original raster
image dataset, the vector dataset is larger and does not require additional conver-
sion, which eliminates the propagation of errors to downstream processes. The
higher variety in the new dataset also expanded the model’s ability to generalize
to new conditions.

Computation Cost Another limitation of GANs is the high computational
cost of running GAN models. Since GANs are equipped with two deep neural
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networks (generator and discriminator), the computational cost of GANs is even
higher than that of many other deep learning methods. Training a StyleGAN
at 1024x1024 resolution to match the photorealistic result shown in the original
implementation requires 41 days and 4 hours using 1 Tesla V100 GPU and 6
days 14 hours using a 8 GPU cluster (Isola et al., 2017). Therefore, researchers
must understand the cost of GANs and use them to perform tasks in which GANs
excel. For example, although GANs can be used in semantic segmentation and
sometimes achieve slightly better results, the computational resource needed to
train the model is too great to justify large-scale deployment of such models for
the task of semantic segmentation.

6.3. Research Opportunities
Large, high quality datasets As mentioned in the previous section, data

availability is the common limitation for all GAN applications. In papers offering
refreshing takes on the application of GANs, the authors often had to collect a
large dataset before applying the model. Currently, only a handful of curated
datasets are published for public use, and the landscape of open datasets in the
built environment is still barren. To push the existing application of GANs to
new heights, high-quality datasets can be published to improve the performance
of models and serve as benchmarks for subsequent papers.

3DGANs A few papers in 3D reconstruction gave us a sneak peek into the
untapped potential of 3DGANs. However, the existing methods covered in the
corpus did not use 3D models in the training of GANs. Instead, multiple 2D
images are stitched together to form 3D models. With more 3D data available in
the future (e.g. 3D models and point clouds), GANs can be applied on 3D data
formats directly using generators that support these datasets. Currently, GANs
that could generate 3D models have already been created, and their potential
application to the built environment remains untapped.

GraphGANs Graph data is an excellent data format that contains spatial re-
lationships, which is a crucial property in the built environment (Liu and Biljecki,
2022). The contextual information carried by graphs has already made a break-
through in floorplan generation. Many more properties in the built environment
can be represented in graphs, for example, urban road networks, neighborhood
masterplans, and building occupancy. As fundamental research on graph rep-
resentational learning and graph GANs continues to involve, future research of
their application in the industry would bring AIs with much greater spatial intel-
ligence across all scales.

Human-GAN Interaction Although GANs require high computational cost
during training, their inference can be instantaneous. In the corpus, we have
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seen how GANs can be used by architects as a tool for design inspiration. Also,
in the field of human-computer interaction, designers have experimented with
using GANs to visualize real-time changes in urban streetscapes based on design
decisions made with an augmented reality setup (Noyman and Larson, 2020).
These papers free our imagination of the capabilities of GANs when combined
with more intuitive operational logic and a future where architects and planners
would use GANs as copilots in design projects.

7. Conclusion

Combining the power of GANs with the growing wealth of data available in
the built environment, groundbreaking AIs can be created to help humans in ur-
ban understanding and to create innovative solutions to problems in the industry.
Through examining 100 recently published papers, we have shown that GANs
are now being used in 26 different applications at the city, district, and building
scale. Some studies in the corpus have used GANs to solve problems that were
unsolvable using traditional methods, and others have used GANs to optimize
current workflows. The primary limitation that holds back research in GANs in
the industry is the lack of high-quality datasets that are specifically designed to
address problems in the built environment. Furthermore, studies that have set
the state-of-the-art in their respective tasks also require more user-friendly inter-
faces to bring these applications into mainstream workflows to benefit planners,
analysts, and designers.
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