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A B S T R A C T   

Characterising and analysing urban morphology is a continuous task in urban data science, environmental an-
alyses, and many other domains. As the availability and quality of data on them have been increasing, buildings 
have gained more attention. However, tools and data facilitating large-scale studies, together with an interdis-
ciplinary consensus on metrics, remain scarce and often inadequate. We present Global Building Morphology 
Indicators (GBMI) — a three-pronged contribution addressing such shortcomings: (i) a comprehensive list of 
hundreds of building form multi-scale measures derived through a systematic literature review; (ii) a method-
ology and tool for the computation of these metrics in a database suited for big data and comparative studies, and 
release the code freely and open-source; and (iii) we carry out the computations using high performance 
computing, generating a public repository with data quantifying the form of selected urban areas around the 
world, and demonstrate their value with novel analyses comparing morphological parameters across cities. GBMI 
introduces a formalised, structured, modular, and extensible method to compute, manage, and disseminate urban 
indicators at a large scale and high resolution, while the precomputed dataset facilitates comparative studies. The 
theory and implementation traverse multiple scales: at the building level, both individual and contextual ones 
based on encircling buildings by multiple buffers, and aggregations at several hierarchical administrative levels 
and at multiple grids. Our open dataset, comprising billions of records on a growing scope of urban areas 
worldwide, is the most comprehensive instance of morphological data parametrising the individual building 
stock, supporting studies in urban analytics and a range of disciplines.   

1. Introduction 

Urban form has been studied for decades and a large number of 
publications has focused on characterising it with numerical metrics, 
revealing patterns of the built-up fabric and underpinning investigations 
on their interplay with a multitude of phenomena (Hermosilla, Palomar- 
Vázquez, Balaguer-Beser, Balsa-Barreiro, & Ruiz, 2014; Sharifi, 2019; 
Silva, Oliveira, & Silva, 2014; Wang, Madden, & Liu, 2017). As buildings 
dominate the urban landscape, they are often an indispensable compo-
nent of such studies, particularly in recent years with the growing vol-
ume of building data and they are being increasingly interwoven with 
multifaceted aspects such as energy, wind, solar radiation, thermal 
comfort, noise, transportation, carbon emissions, health, urban 
vibrancy, bikeability, population dynamics, and urban planning (Botta 
& Gutiérrez-Roig, 2021; Byrne, Hewitt, Griffiths, & MacArtain, 2021; 
Chen et al., 2022; Chen, Han, & Vries, 2019; Heris, Middel, & Muller, 
2020; Ito & Biljecki, 2021; Milojevic-Dupont & Creutzig, 2020; Paiva, 
Santos, & Rossetti, 2018; Ryu, Park, Chun, & Chang, 2017; Stojanovski, 

2019; Szarka & Biljecki, 2022; Tian & Yao, 2021; Tong & Kang, 2021; 
Usui, 2020; Wang, Cot, Adolphe, Geoffroy, & Sun, 2017; Wang & Deb-
bage, 2021; Wong, Tan, Kolokotsa, & Takebayashi, 2021; Wu, Lu, Gao, 
& Wang, 2022; Yu, Chen, & Wong, 2020; Yuan et al., 2020; Zhang et al., 
2019; Zhang, Wu, Zhu, & Liu, 2019). 

We identify three major research gaps in this domain, which we 
tackle in this cohesive and integrated paper. First, even though great 
strides have been made in the field and there is a mountain of research 
papers focused on parametrising buildings under the umbrella of urban 
form, to the extent of our knowledge, there is no review or inventory, 
nor a consensus on them. In this paper, we conduct a systematic review 
to identify commonly used indicators and shape a framework, and 
present the results together with observations from the review. With 
scalability and multidisciplinarity in mind, we focus on indicators that 
do not require data that are not widely available (i.e. we use building 
footprints) and those that do not require complex simulation software 
that is exclusive to a particular domain and not scalable. While we 
encounter a heterogeneous landscape of metrics and terminological 
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disparities, we identify common patterns and derive a list of indicators 
that may serve a kaleidoscopic set of topics, and introduce new deriv-
ative parameters, furthering possibilities in this domain. 

Second, tools to compute such building form metrics are scarce, and 
they may not be suited to handle large-scale needs. As the scale of 
morphological analyses, in particular on street networks, is growing and 
sometimes including nation-wide studies and beyond (Boeing, 2020; 
Liu, Chen, Li, & Chen, 2020; Zhou, Lin, & Bao, 2021), we believe that 
work supporting wide ranging analyses using building data is necessary 
and timely. Considering the growth of building data, e.g. open govern-
ment data on buildings and large-scale data released by companies 
(Heris, Foks, Bagstad, Troy, & Ancona, 2020; Sirko et al., 2021) and 
academia (Zhang et al., 2022), studies using buildings will only grow in 
importance in the future. Our paper presents the development of a tool 
to implement the computation of hundreds of indicators structured 
following the review and the creation a large-scale database, which is 
suited for big data management and analyses, as we demonstrate with 
several examples. Implementing the work as a database rather than as 
desktop tool as most of related work (Section 2), has many advantages 
that will be elaborated later. The developed code is free and open- 
source, it is extensible (e.g. allowing the addition of new indicators if 
necessary), customisable (e.g. supporting different forms of input and 
output data), and flexible (e.g. it can be used to compute the indicators 
anywhere at nearly any scale and resolution). 

Third, while the computation of such indicators may be laborious, 
consuming time of researchers, especially in studies that are increasingly 
including multiple locations (Kraff, Wurm, & Taubenböck, 2020), there 
are no publicly available datasets with precomputed indicators that can 
be readily used. Having a ready-to-use dataset may save substantial 
effort to researchers, proliferate urban morphology among less compu-
tationally inclined researchers, and enable quick comparative studies 
involving multiple cities, which is uncommon (based on our review 
presented in Section 3). We engage the developed method and high 
performance computing to calculate indicators of buildings in many 
cities around the world where such data are available (mostly thanks to 
OpenStreetMap (OSM)), and aggregate them according to zones defined 
by both a global administrative and a global gridded population dataset 
at fine scale. The precomputed datasets are accommodated in a public 
repository, a continuous and growing effort. This part also affirms the 
large-scale feasibility of our work and confirms the advantages of the 
database approach, as the generated dataset is of unprecedented size, 
covering many urban areas in the world that are well mapped in OSM 
and containing billions of records. At the same time, the database 
maintains simplicity and efficiency, and provides ease of extracting data. 
Further, while we focus on OSM, the developed software architecture is 
versatile and the approach is dataset-agnostic, as different and multiple 
datasets can be used to derive the metrics, allowing customisation and 
suiting one’s needs. We release this dataset as open data under a liberal 
license so that anyone can use it without restrictions. To the extent of our 
knowledge, this dataset presents the most comprehensive one in this 
domain and, together with the established methodology, we hope that it 
will contribute to the field in multiple ways. Our work by design enables 
computation at any scale and at any location, and given the worldwide 
focus as demonstrated with the datasets and novel analyses that we 
showcase in this paper, we title our contribution as Global Building 
Morphology Indicators (GBMI). 

The paper is organised as follows. Section 2 expands the introduction 
by affirming the relevance of building indicators in urban morphology 
studies and discusses related work. Section 3 presents the compendium 
of indicators characterising building morphology, which are derived 
from a systematic literature review. In Section 4, we present the 
implementation portion of GBMI: an open-source software that gener-
ates a structured and easily accessible database, and a large-scale dataset 
that we release as open data. An insight in the generated data is given 
with several analyses in Section 5 suggesting urban textures and fin-
gerprints of cities, and asserting the importance of the work for both 

studying patterns within single cities and comparative analyses, another 
scientific contribution. Section 6 discusses the work revealing chal-
lenges, limitations, and opportunities, while Section 7 concludes the 
paper. 

2. Background and related work 

2.1. Examples of urban form studies relying on data of buildings 

There are many examples of using building data to parametrise the 
urban form. Some are given in this section to provide an understanding 
of the applications across various disciplines. 

Urban morphology has been an integral component of the work by 
Chen et al. (2020) on microclimate simulations. They zero in on several 
indicators, such as building coverage and total exterior wall area, mainly 
derived from a climate study showing their association to air tempera-
ture (Jin, Cui, Wong, & Ignatius, 2018). Further examples of microcli-
mate studies relying on quantitative urban form metrics are many (Ng, 
Yuan, Chen, Ren, & Fung, 2011; Tong et al., 2018). 

The paper of Zhu et al. (2020) is another environmental work, 
describing the effect of urban morphology on the solar capacity of ten 
cities and discussing what urban form is most desirable to effectively 
harness solar energy. Similarly to others, they take into account the 
average height of buildings in an area, but also the standard deviation of 
the values to indicate their variation in a study area. In the same domain, 
Morganti, Salvati, Coch, and Cecere (2017) determine seven indicators 
and investigate their association with the solar availability on façades of 
buildings. The analysis has been carried out at the neighbourhood level 
in two cities, and it reveals that the two most useful indicators for this 
purpose are the ratio of the built-up area to the urban site area (named as 
gross space index) and the ratio of the area of the walls of buildings to 
the urban site area (named as façade-to-site ratio). There are scores of 
studies in this domain, using a different set of indicators and datasets (de 
Lemos Martins, Adolphe, Bastos, & de Lemos Martins, 2016), suggesting 
a lack of consensus or the variability of the importance of different 
metrics across different geographies. 

2.2. Related work 

There has been some work on developing inventories of indicators, 
implementing their computation, and generating open datasets. None-
theless, most of such work is rather in the street network department. 
For example, Boeing (2021) presents an open dataset of street network 
indicators with worldwide coverage, generated using a free and open- 
source software (Boeing, 2017). 

Lemoine-Rodrguez, Inostroza, and Zepp (2020) assess the spatial 
structure of 194 cities over 25 years, based on a set of landscape metrics, 
identifying clusters of similar cities and various patterns. Their dataset is 
released openly (Lemoine-Rodriguez, Inostroza, & Zepp, 2020). The 
method relies on a coarse land use dataset and it is rather focused on the 
city level. A related effort is the dataset by Demuzere, Bechtel, Middel, 
and Mills (2019). Their work is focused on classifying local climate 
zones (LCZ) based on indicators at the block-level. Our approach regards 
individual buildings and it provides indicators at a fine spatial resolution 
and at multiple scales, and it could be used as an input to compute LCZs. 

When it comes to data, the work that is perhaps the most related to 
ours is the one of Heris, Foks, et al. (2020). They use a nation-wide 
building footprints dataset of the United States and rasterise it at high 
resolution (30 m), computing six metrics for each cell. This dataset has 
been released as open data. However, the number of indicators is 
limited, the resolution is fixed, the work does not regard administrative 
units, and the dataset is focused on a single country. A related effort is 
presented by Li, Liu, Zhang, Xue, and Li (2021), focusing on dozens of 
cities in China, with similar shortcomings and the dataset does not 
appear to be released openly. 

There has been previous exploratory work that is focused on 
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indicators that quantitatively measure the urban form. Fleischmann, 
Romice, and Porta (2020) examine the state of the art of quantitative 
analysis of the urban form. Among other aspects of the review such as 
delineating applications and purposes of the quantitative studies, the 
paper formalises a framework of metrics to characterise the urban fabric. 
However, the study is rather general, as it is not focused on buildings 
only. For a related work, see also (Dibble et al., 2017). In our review, we 
focus primarily on understanding the inventory of indicators and the 
data that was used to compute them. We have encountered and devised 
some unlisted indicators that we implement in our work. 

Basaraner and Cetinkaya (2017) overview 20 indicators to charac-
terise the shape complexity of building footprints — they investigate 
their usefulness and the computational complexity they entail. The 
study indicates that only a handful are sufficiently distinct (e.g. several 
pairs exhibit strong correlations), suggesting that it is of no use to have 
many different indicators characterising the same aspect. We learn from 
their work, but at the same time, we design our approach as modular, so 
additional indicators can be added easily if necessary. 

Tool-wise, to the extent of our knowledge, arguably the work that is 
most akin to ours is the recent one by Jochem and Tatem (2021). They 
have developed an R package for calculating 2D morphology metrics 
from building footprints. Such development affirms the importance of 
deriving indicators based on building datasets and having easily avail-
able solutions to do so. Our work presents the following distinctions and 
contributions. First, we encompass a substantially larger suite of in-
dicators derived from a systematic literature review. Second, our work 
includes the additional dimension of vertical indicators where building 
height data are available. While we are aware that 3D datasets are not 
available as widely as those in 2D, and thus, there are many areas for 
which such indicators cannot be computed for the time being, the share 
of metrics calculated from the vertical extent of the built environment in 
literature cannot be discounted. Third, a pillar of our work is an open 
dataset, bypassing employing software and running the computations. 
Fourth, our architecture is a structured database, which may be more 
suitable for handling big data and large-scale analyses, as demonstrated 
by later sections. As confirmed by a recent review of Fleischmann, 
Feliciotti, and Kerr (2021), a database tool has not yet been developed in 
this field, a gap we seek to bridge in this paper. 

3. Catalogue of indicators 

3.1. Review methodology 

The first part of our triad (inventory, software, and data) is intended 
to shape the structure and list of indicators, starting with identifying 
those that are used commonly in the field. For that, we follow the typical 
approach of systematic literature reviews: we select relevant keywords 
and search for a set of papers, after which we filter papers relevant for 
our study, and then extract relevant information from them. 

We have searched Scopus for papers that contain the following terms 
in the title, abstract or keywords: ‘urban’, ‘building’, and ‘morphology’. 
The query, which was performed in early January 2021, returned 1566 
results. Considering the large number of papers and that a very 
comprehensive literature review is not the main purpose of this paper, it 
is not feasible to comb through all of them. As a way to reduce the pool 
of papers, we decided to focus on a subset containing the latest pub-
lished papers. An advantage of this approach is that the survey will 
reflect the state of the art and the current status of the related studies. 
Therefore, we have selected the latest 100 published papers. In the 
screening phase, we have examined the title and abstract of each paper 
in the initial pool. We have proceeded to include a paper in our review 
only if it is a quantitative paper focusing on indexes derived from 
building data. For example, we have excluded qualitative and descrip-
tive studies and those in which buildings merely play a minor role. After 
applying such inclusion criteria, filtering left us with 43 papers for a 
closer review. For each paper identified as relevant, we have extracted 

the list of building indicators, and secondary information such as reso-
lution at which the indicators have been computed, type of building 
data, and data source. 

3.2. Summary, observations, and considerations 

The literature review has been important in guiding the development 
of the inventory of indicators that we present in the next section, it 
highlighted the breadth of building form indicators, and it affirmed that 
urban form studies are largely disconnected, using a non-standardised 
set of metrics, even within the same research lines. There are several 
further relevant observations we unpack in this section. 

A seemingly straightforward and unambiguous task such as 
recording the list of building-related indicators found in publications, 
together with auxiliary information such as understanding the data 
source(s), was hampered by a few issues. 

First, we have observed that a number of papers is not forthcoming in 
listing and explaining the metrics used in the analysis. In certain cases, 
for some listed indicators, it is not clear what they represent and how are 
they computed. Furthermore, it is not always evident what data source 
and type was used to derive the metrics. Such issues hinder the assess-
ment how feasible is the implementation of some indicators. 

Second, as indicated by Fleischmann, Romice, and Porta (2020), 
morphological studies exhibit terminological inconsistencies, which we 
can attest to based on our exploration of papers. Besides multiple terms 
indicating the same concept appear regularly in publications (e.g. met-
rics, indicators, parameters, factors), we notice that disciplines collide in 
terminology, using different terms for the same indicator. 

Third, the granularity and definition of indicators may be subject to 
different interpretations. For example, footprint area, height, and vol-
ume of a building are three archetypal measures across multiple do-
mains. However, it is common practice to compute the last of the three 
by multiplying the first two (Asadi, Arefi, & Fathipoor, 2020). A ques-
tion is raised whether the volume should be considered as a distinct 
indicator, or simply a derivative indicator from the footprint area and 
height as more fundamental indicators, and thus, not counted as a 
unique indicator. We have decided to include such multiplicity if 
encountered more than once. Hence, in our work, volume is considered 
as an indicator, and the same goes for other derivative indicators such as 
the ratio of the building height to its footprint area (Hu, Dai, & Guld-
mann, 2020). Further examples of such derivative indicators include the 
area not covered by buildings (i.e. total area minus building coverage 
area) (Li, Wu, Lin, Li, & Du, 2020), ratio of the width and length of the 
footprint (Tikhonova & Beirão, 2020), façade to site ratio (i.e. sum of the 
product between the perimeter and the average building height in the 
area) (Litardo et al., 2020), surface to volume ratio (Othman & Alshboul, 
2020), total area of urban envelopes divided by the corresponding flat 
area (Zhu et al., 2020), and absolute compactness (i.e. measuring the 
compactness of settlements by dividing the building volume by the zone 
area) (Mohabat Doost, Buffa, Brunetta, Salata, & Mutani, 2020). Ac-
counting for all such combinations would be futile. Nonetheless, we 
have broken down such indicators to make sure we include the lowest 
common indicator used to compute them. Therefore, while we do not list 
them all explicitly, all these can be computed with our tool if necessary, 
given its modular nature and since they are usually computed from 
existing fundamental indicators that we include in our list. 

Moving forward to the observations, in the majority of cases (three 
quarters), the studies focus on aggregating indicators of buildings at the 
level of a zone. The zones, which depending on the context, data, and 
size, are also called areas, plots and sites, may be represented as regular 
grids or irregular delineations such as administrative or census areas. 
There are different instances of irregular zones, such as administrative 
areas, land use parcels of variable size, and clusters of urban form (Li, 
Zhou, Gong, Seto, & Clinton, 2020; Song, Leng, Xu, Guo, & Zhao, 2020). 
On the other hand, gridded zones are by definition regular and specified 
by a resolution, and are common. Their sizes vary, and some researchers 
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opt for multiple levels of aggregation in the same study, e.g. grids 
varying from 100 to 1000 m (Ribeiro, Martilli, Falls, Zonato, & Villalba, 
2021). The indicators that are aggregated are based on the common 
descriptive statistic measures to indicate central tendency and disper-
sion of a distribution, such as mean and standard deviation, and are 
sometimes combined with another value (Li, Schubert, Kropp, & Rybski, 
2020; Liao, Hong, & Heo, 2021). For example, such indicators include 
the coverage of building footprints (i.e. sum of footprint areas of all 
buildings in a zone divided by the area of the zone, obtaining the site 
coverage in percentage) and the average building footprint area. 

Between the indicators derived independently for each building and 
the subsequent aggregated indicators derived at the level of irregular or 
regular zones, there are contextual indicators, i.e. zonal indicators at the 
building level, that are computed for each building from its surround-
ings, most often from circular buffers around each building (Milojevic- 
Dupont et al., 2020; Song, Lu, & Xing, 2020). They are computed for 
each building, but are dependent on the surrounding buildings, unlike 
independent indicators such as the complexity of a footprint of a 
building. An example of such indicator derived from the neighbouring 
context is the mean distance from the building in focus to all other 
buildings in a buffer. Further, these contextual building-level indicators 
may be aggregated at the level of a zone, e.g. mean of the mean distances 
between buildings, resulting in hierarchical summary statistics and 
indicating the interrelated and sequential nature of metrics. Conse-
quently, in our catalogue, we outline three groups of indicators: 
building-level independent, building-level buffer, and zone-level in-
dicators. In our implementation and dataset, we maintain multi-
scalability in mind. Thus, the building-level buffer and zone-level 
indicators are computed at different scales and resolutions, suiting the 
diverse needs of various disciplines. 

Data-wise, most studies rely on a single source of data, but overall, a 
variety of datasets is observed, e.g. vector building footprints occa-
sionally containing also relevant attributes (most common), point 
clouds, semantic 3D city models, satellite imagery, street view imagery, 
and digital surface models (Aktas et al., 2020; Chen, Qiu, et al., 2020; 
Zhu et al., 2020). In spite of the different provenance of data, many of 
the indicators, e.g. footprint area, are common and can be computed 
from different datasets. 

In the studies, not all indicators are computed from geometric data, 
and attributes are in some instances also considered as morphological 
parameters (Carlucci, Zambon, & Salvati, 2019). For example, it is 
common to come across studies estimating the building height from the 
number of storeys multiplied by an assumed fixed floor height (Ku & 
Tsai, 2020; Li, Koks, Taubenböck, & van Vliet, 2020; Liu, Xu, Zhang, & 
Shu, 2020; Peng et al., 2020). Such computations imply relaxed data 
quality requirements, as such approach may be prone to errors. 

Most of the studies focus on a neighbourhood or a city, but there are 
exceptions, e.g. comparative studies including dozens of cities (Kraff 
et al., 2020; Liu, Wang, Qiang, Wu, & Wang, 2020). 

The median number of building indicators used in the included pa-
pers is 4, with nearly all studies having a single-digit amount of in-
dicators, barring a few instances, e.g. the one by Milojevic-Dupont et al. 
(2020) including approx. 80 metrics thanks to different scales (e.g. 
multiple buffers), derivative indicators, and summary statistics. 

This exploration was instrumental in developing the catalogue of 
indicators presented next (Section 3.3). Still, we have not moved for-
ward with all the indicators we have identified. First, some indicators 
are highly localised and categorical. For example, some papers catego-
rise buildings into a few height classes (Cao et al., 2020; Ribeiro et al., 
2021; Xia & Li, 2021), and count the share of these classes in an area (e. 
g. percentage of buildings that are taller than 20 m). These indicators are 
variations of existing indicators (e.g. building height) and they can be 
readily computed from the data that our tool generates and the dataset 
that we have released, if necessary. In fact, such an approach would also 
give researchers greater flexibility to define their own classes and 
thresholds, as they are not universal across studies. 

Second, there are a few indicators that we have not included as we 
focus on those that can be computed from widely available datasets (i.e. 
building footprints) and at a large-scale, not requiring additional and/or 
scarce datasets, and not using specialised software. These are mostly 
intricate indicators in the microclimate domain (Sadeghi, Wood, Samali, 
& de Dear, 2020; Yuan et al., 2019), such as frontal area density, that is, 
“the area of building surface that approach the dominant wind direction 
in the area” (Ma & Chen, 2020). Another example is the sky view factor, 
which is influenced by buildings but also by other urban features, thus 
requiring also vegetation and other data to compute it (Palme, Privitera, 
& Rosa, 2020; Xia, Yabuki, & Fukuda, 2021). Further, such indicators 
are computationally complex to compute (Yuan & Chen, 2011), so 
scaling them would be computationally impossible, and some studies 
suggest that they may not always add much in comparison to other 
building form indicators (Gao, Zhan, Yang, & Liu, 2020). 

3.3. Inventory of indicators of the urban form pertaining to buildings 

We have structured the metrics into three groups: those that are 
computed for each building based on its characteristics or its sur-
roundings (presented together in Section 3.3.1) and those that are 
calculated at a spatial unit such as a plot by aggregating building-level 
indicators gathered from buildings in that area (Section 3.3.2). 

In spite of the clear differentiation between these building-level and 
aggregated indicators, they are intertwined. Computing some building- 
level indicators first requires computing a set of building level in-
dicators, aggregating them at higher level, and then computing them 
back at the building level (e.g. rank in the size of each building in 
comparison to other buildings in the area). 

3.3.1. Building-level indicators 
Metrics computed at the building level are the essence of virtually all 

morphometric studies. However, only a minority of studies we have 
reviewed focuses on such indicators and rather concentrates on their 
aggregations at a higher level zone. Still, these indicators are essential in 
computing the aggregated counterparts, thus they should be given 
proper attention. 

The building-level indicators are listed in Table 1. Some of the in-
dicators are illustrated in Fig. 1, while Fig. 2 extends the exemplification 
by depicting building-level indicators that have been derived from the 
buffer encircled around the building. 

We identify 17 indicators that are computed from the building 
characteristics alone, in which the surrounding context plays no role; 
and 26 indicators that are computed from buildings surrounding it. All 
these indicators may be used to calculate derivative indicators 
encountered in the literature review. Further, for each indicator, it is 
possible to compute the rank as the percentile of the metric in the zone in 
which the building is located. For example, the percentile of the foot-
print area with respect to a particular zone (in our implementation, we 
include multiple such values since we regard multiple zones). This 
metric is also an example of how different levels are linked, as it cannot 
be computed solely from individual buildings, requiring aggregation at 
the zone. 

The indicators are mostly self-explanatory, with a couple requiring 
additional explanation. There are three indicators that are computed 
from the minimum bounding box (MBR) of the building footprint: 
length, width, and area. Further, there are four indicators that para-
metrise the shape of the footprint: shape complexity, shape compact-
ness, equivalent rectangular index, and number of vertices (Angel, 
Parent, & Civco, 2010; Basaraner & Cetinkaya, 2017). 

The contextual metrics — calculated for each building from build-
ings that are in the buffer around it — are: number of neighbours, dis-
tances, area of footprints, and ratio neighbour height to distance. The 
last three are a list, which is encapsulated using eight statistical mea-
sures: minimum, median, mean, maximum, sum, standard deviation, 
index of dispersion (D; also known as variance-to-mean ratio), and 
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coefficient of variation (CV; also known as relative standard deviation). 
In total, there are 43 indicators at the building-level, which are 

doubled to 86 if considering their ranks in the corresponding zone. 
However, in various ways implementing them, such number may actu-
ally multiply. For example, in our implementation (Section 4), we 
calculate buffers of three fixed size (25, 50, and 100 m), increasing the 
number of metrics. Further, in our calculations, we use multiple zones 
(e.g. grid, district, city, province), thus, the ranks of each metric are then 
computed for each hierarchical zone, multiplying the number of in-
dicators. This example suggests why it might be difficult to create a list 
of indicators, and how the addition of an indicator traverses multiple 
levels, compounding complexity despite the seemingly straightforward 
nature of building indicators. 

3.3.2. Aggregated indicators 
The urban form is most often studied in an aggregated manner, at 

irregular or regular zones such as a plot, administrative unit, and grid 
cell (tile). The aggregated measures stem from the building-level metrics 
(Section 3.3.1) of all buildings in the zone and are summarised with 
descriptive statistics, which we have listed in the previous section. Such 
indicators are simply permutations of descriptive statistics and the 
introduced metrics, e.g. mean shape complexity of all buildings in the 
zone. This outlook supports many studies, including those that focus on 
understanding the entropy of an indicator, e.g. variation of heights of 
buildings in a study area, which is important for climate change miti-
gation (Adelia, Yuan, Liu, & Shan, 2019; Usui, 2020). Such variation 
may be measured by one of the calculated dispersion metrics (e.g. index 
of dispersion) or by understanding their range (i.e. maximum minus 

minimum). Further, we have encountered studies that use the minimum 
and maximum value of an indicator in a zone as an aggregated measure 
(Cao, Luan, Liu, & Wang, 2021), which we support as well. Permuting 
the combinations should allow computing most, if not all, such deriva-
tive indicators that are calculated as an integration of two or more 
metrics. 

We have noticed that while summary statistics of certain indicators 
are common, their permutations (all summary statistics for all in-
dicators) are not all covered in literature. Therefore, contributing to the 
field, our approach expands the identified indicators, potentially 
revealing the usability of new indicators, which is advantageous for 
supporting derivative indicators that we have encountered in literature, 
e.g. a combination between using the mean building area with the 
building height in an area (Cao et al., 2020). In our implementation, we 
have excluded computing summary statistics where it is not meaningful 
to do so (e.g. sum of number of floors of all buildings). Thus, in Table 2 
we denote which of the indicators we have included in our imple-
mentation. Some of them illustrated in Fig. 3. 

In theory, the catalogue has 177 indicators at the zone level. When 
ranks are considered, the list doubles to 354. Further, note that each of 
the contextual indicators that is summarised in eight ways (see Table 1) 
may be expanded to have these statistics aggregated further according to 
the same descriptive statistics (e.g. coefficient of variation of the mean 
distance to buffered neighbours in a zone), and with ranks added, that 
results in 690 indicators at this level. 

In practice, it is not sensible to compute them all, especially when 
having multiple levels of aggregation as in our implementation. There-
fore, in the tool, we do not include the ‘double nested’ summary in-
dicators, and consider only the mean values when computing the ranks. 

We believe that the presented framework and list of urban form in-
dicators is the most exhaustive one presented in literature hitherto, to 
the extent of our knowledge, and with the addition of new ones, presents 
a contribution and novelty in the field. 

4. Implementation: Software and open dataset 

4.1. Overview 

Our implementation includes the development of a software to 
compute urban form indicators using building footprint data and zone 
data, and a large-scale high-resolution dataset that was generated using 
the tool. Both are described together in this section to ease the under-
standing of the process. 

In our approach, we decide to rely on a database management system 
for all the steps (ingesting and processing data, computation of in-
dicators, and their storage), which has not been investigated before. We 
do that for multiple reasons: efficiency, organisation, robustness, 
modularity, scalability, and extraction. A database also allows upgrade 
with new datasets, and easy querying and extraction of only the data 
that are required, meaning that the generated datasets can be used in a 
wide range of statistical and geospatial software, not being confined to 
one software tool or programming language. Further, this approach 
means that our solution is cross-platform. 

The tool that we develop is a sequential set of Python and SQL scripts 
that are used to set the scene and process input data (building footprints 
and defined zones) to build a PostgreSQL database spatially enabled 
with PostGIS. The Python scripts allow a high degree of customisation as 
a number of indicators can be toggled on or off. Thereafter, a series of 
hundreds of statements is run to compute the indicators and store them 
in a structured hierarchy of tables. Further, export scripts are prepared 
as well to allow exporting data. Having a database approach does not 
exclude user-friendly desktop software — these scripts enable export of 
the database in many different geospatial formats that can be plugged in 
directly in nearly all GIS software and programming environments, 
leveraging the best of both worlds. The architecture of GBMI is illus-
trated in Fig. 4. 

Table 1 
List of indicators at the building level (both the independent and contextual 
instances, together with their ranks at the corresponding zone).  

Indicator Data type Unit 

Footprint area Decimal m2 

Perimeter Decimal m 
Height Decimal m 
Height to footprint area ratio Decimal m-1 

Volume Decimal m3 

Wall area Decimal m2 

Envelope area Decimal m2 

Number of vertices Integer  
Complexity Decimal  
Compactness Decimal  
Equivalent rectangular index Decimal  
MBRa Length Decimal m 
MBRa Width Decimal m 
MBRa Area Decimal m2 

Orientation (azimuth) Decimal degree 
Number of storeys Integer  
Floor area Decimal m2 

Number of neighboursb Integer  
Site coverage in the bufferb Integer  
Distance to neighboursb   

– Minimum Decimal m 
– Median Decimal m 
– Mean Decimal m 
– Maximum Decimal m 
– Sum Decimal m 
– Standard deviation (SD) Decimal m 
– Index of dispersion (D) Decimal m 
– Coefficient of variation (CV) Decimal  

Neighbour footprint areab   

– Same 8 descriptive statistics as above   
Ratio neighbour height to distanceb,c   

– Same 8 descriptive statistics as above    

a MBR – Minimum Bounding Rectangle. 
b The size of the buffer varies in literature. In our implementation, we create 

three buffers using the following values: 25, 50, and 100 m. 
c The last contextual indicator measures the ratio between the average height 

of buildings in a buffer and the distance among them. 
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Our implementation takes primarily OpenStreetMap as the source of 
building data, and two particular multi-scale zonal datasets (Section 
4.2). However, the tool can be used with other types of building and 
zone data (e.g. if researchers have a more suitable building and/or zonal 
dataset, they may use our method with their data). 

Both the dataset and the code used to generate it have been released 
as open data and open-sourced, under the Creative Commons license. As 
much as possible, we have designed our work to adhere to the principles 
laid out by the growing initiatives for openness and reproducibility in 
GIScience (Nüst et al., 2018; Wilson et al., 2021). The code and dataset 

Fig. 1. Illustration of independent indicators at the building level.  

Fig. 2. Illustration of contextual aspects computed at the building level based on its surroundings.  
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are released openly. Both contributions are supported with extensive 
documentation. 

4.2. Input data 

4.2.1. Building footprints (OpenStreetMap) 
OpenStreetMap (OSM) is the leading instance of volunteered 

geographic information globally (Yan et al., 2020). Its use to charac-
terise the urban form is extensive and it is often used in urban 
morphology studies (Barrington-Leigh & Millard-Ball, 2019; Boeing, 
2020; Crooks et al., 2015; Jehling & Hecht, 2021; Valdes et al., 2020; 
Zhou et al., 2021), thanks to the increasing quality of data and con-
tributors including also corporate stakeholders (Anderson, Sarkar, & 
Palen, 2019; Barrington-Leigh & Millard-Ball, 2017; Li et al., 2020). 
With the increasing quality (primarily completeness) and attention on 
buildings in OpenStreetMap (Hacar, 2022; Nievas et al., 2022), they 
have been used more often, including in some papers we have identified 
in our literature review (Section 3.3), e.g. (Esch et al., 2020; Liu et al., 
2020). The trend of relying on OpenStreetMap as a reliable source of 
building data is also evident from recent papers focusing on a variety of 
use cases, including generating 3D building data (Braun, Padsala, Mal-
mir, Mohammadi, & Eicker, 2021; Feldmeyer, Nowak, Jamshed, & 
Birkmann, 2021; Keil, Edler, Schmitt, & Dickmann, 2021; León et al., 
2021; Mocnik, 2021; Palliwal, Song, Tan, & Biljecki, 2021). Despite 
focusing on OSM for scalability and global applicability, our tool sup-
ports other data sources too. 

4.2.2. Zones 
The tool supports both irregular (e.g. plots, vectors) and regular (e.g. 

grids, rasters) datasets for zones. Either of the two is required, but we 
have computed both for the sake of completeness and demonstration of 
both variants of zones. An advantage of using an administrative dataset 
is that we can enrich a building dataset with additional information from 
the dataset, such as the name of the district in which it is located, 
facilitating querying (e.g. when one needs to examine the data of a 
particular place) and linking to other data enabling studies across 
multiple disciplines. 

Administrative boundaries (GADM). The global administrative 
boundaries is obtained from the Database of Global Administrative 
Areas (GADM),1 an open dataset that provides administrative hierar-
chical divisions starting from level 0, the national level, up to 6 levels, e. 
g. districts. We have loaded all the zones at all levels, constructing a 
multi-scale database. A hint of these boundaries is given in Section 5 in 
which we provide maps of indicators aggregated at administrative 
levels. 

Grid (WorldPop). For the grid, we have used a multi-scale global 
raster released by WorldPop (Lloyd et al., 2019; Lloyd, Sorichetta, & 
Tatem, 2017; Tatem, 2017; WorldPop, 2018), at a resolution of 30 
arcseconds (approx. 1 km at the equator). The raster contains 220 
million cells, with an average size of 0.6 km2, with a population estimate 
for each one, based on dasymetric redistribution (Stevens, Gaughan, 
Linard, & Tatem, 2015). We also include a finer variant of the raster, at 
100 m resolution, providing flexibility to users. Together with the 6 
levels from the administrative dataset, we have 8 zones, thus, we have 8 
layers of aggregated metrics (Section 3.3.2). While we could have 
created our own grid, we decided to use an existing one by an estab-
lished project such as WorldPop, easing linking to their data and further 
analyses. As the tool is flexible when it comes to the input vector data for 
zones, it allows other input data such as smaller plots and morphological 
cells when more appropriate for certain studies (Fleischmann, 2019; 
Fleischmann, Feliciotti, Romice, & Porta, 2020). 

4.3. Computing the indicators 

The indicators are computed with SQL statements and dozens of 
tables are generated for each hierarchy. Beyond the indicators that we 
have listed in Section 3.3 (barring the denoted exceptions) and despite 
semantic building data rarely discussed in literature, our tool regards 
attribute data and preserves it should a need to use it arise. For example, 
a dataset on the age of each building is used by Li, Koks, et al. (2020) to 
calculate the degree of mixing of building ages arguing that such metric 

Table 2 
Urban form measures at the aggregated level, derived from the indicators of the buildings in the corresponding area.  

Building-level indicator Summary statistics 

Count Min Med Mean Max Sum SD D CV 

Buildings ●         
Footprint area  ● ● ● ● ● ● ● ● 
Perimeter  ● ● ● ● ● ● ● ● 
Height  ● ● ● ●  ● ● ● 
H/Fa  ● ● ● ●  ● ● ● 
Volume  ● ● ● ● ● ● ● ● 
Wall area  ● ● ● ● ● ● ● ● 
Envelope area  ● ● ● ● ● ● ● ● 
No. of vertices  ● ● ● ● ● ● ● ● 
Complexity  ● ● ● ●  ● ● ● 
Compactness  ● ● ● ●  ● ● ● 
Equiv. rectangular index  ● ● ● ●  ● ● ● 
MBRb Length  ● ● ● ●  ● ● ● 
MBRb Width  ● ● ● ●  ● ● ● 
MBRb Area  ● ● ● ● ● ● ● ● 
Orientation  ● ● ● ●  ● ● ● 
No. of storeys  ● ● ● ●  ● ● ● 
Floor area  ● ● ● ● ● ● ● ● 

No. of neighbours  ● ● ● ●  ● ● ● 
Site coverage in the buffer  ● ● ● ●  ● ● ● 
Dist. to neighbours  ● ● ● ●  ● ● ● 
Neighbour footprint areas  ● ● ● ● ● ● ● ● 
Neighbour H/Dc  ● ● ● ●  ● ● ●  

a H/F — height-to-footprint area ratio. 
b MBR – Minimum Bounding Rectangle. 
c H/D indicates the ratio height-to-distance. 

1 http://gadm.org/. 
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Fig. 3. Examples of aggregated indicators, divided in two groups.  
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indicates urban vibrancy. 
By implementing three sizes of buffers (25, 50, and 100 m), triplicate 

metrics of the same indicator have been computed (e.g. the mean dis-
tance between buildings in a buffer is available thrice), supporting 
studies with variable buffer zones (Milojevic-Dupont et al., 2020; Zhang, 
Cui, & Song, 2020). All these parameters are flexible and easy to modify. 

4.4. Exporting the data and repository 

The computed indicators may be straightforwardly queried in the 
database. The indicators can be exported at different levels and in 
multiple formats: CSV, shapefile, GeoPackage, and GeoTIFF. The docu-
mentation contains examples of several scripts for querying and 
exporting data into different data formats, both tabular and geospatial. 

To facilitate data distribution and release a ready-to-use dataset, we 
have computed a dataset for a number of cities, and released it as open 
data in a repository. The database covers cities and countries which we 
attested to being well mapped in OSM, and the list is continuously 
growing with the addition of new locations, as the repository is intended 
to be a continuous development. In the Section 5, we give examples of a 
subset of the repository. 

5. Examples of data and analyses 

This section provides an insight in the implementation described in 

Section 4 by showcasing the data for more than a dozen cities around the 
world with diverse cultural, geographical, and morphological signa-
tures, and we also included a few countries to affirm the large-scale 
nature of the work. These examples serve also as an insight in their 
interlinking, as in them, we will demonstrate breaking down the nation- 
wide data at multiple administrative levels further down in the hierar-
chy (regions, cities, neighbourhoods), and some advantages of man-
aging the data in a database, e.g. querying to extract only the data we 
need for use in other software. 

With these analyses, we seek to investigate the following research 
questions: what is the spatial distribution of the urban form in a selected 
set of cities? How does it vary among urban areas within the same 
country and around the world? How are the indicators associated among 
themselves? Can we link the computed metrics with various socio- 
economic variables and what are their relationships? 

Starting from the basics, Fig. 5 presents the computed data from 
London across multiple levels of indicators. First, the compactness of 
building footprints in the study area is visualised. This metric is an 
example of an indicator that is computed for each building in isolation. 
In contrast, in the second map, we visualise an indicator that requires 
information on other buildings, i.e. the surrounding context — number 
of neighbours in 100 m buffer. Such indicators are thereafter aggregated 
at corresponding grid (cell) and administrative areas together with all 
other buildings in the same zone. The two maps on the right are ex-
amples of these: site coverage (share of area of a zone covered by 

Fig. 4. Flow of the system. The datasets in the square brackets are those that we have used for generating the dataset, while the software is agnostic supporting other 
formats and datasets as well. All the computations are performed and kept in the database, which allows easy query and extraction of data. Our export scripts support 
multiple geospatial formats. 

Fig. 5. Example of computed indicators at different levels for a part of London. Sources of building and administrative data: (c) OpenStreetMap contributors, GADM.  
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building footprints), both in a gridded aggregation (100 m) cells and 
administrative zones. 

Moving on to cross-city analyses, in Table 3, we present a few sum-
mary statistics for a selected set of cities. Note that two indicators (the 
10th and 90th percentile of the footprint area) are not standard part of 
GBMI. They double as an example of the flexibility of our work, enabling 
easy computation of new indicators if necessary. 

Another advantage of the database approach is querying — we can 
find particular examples of zones or buildings we are interested in based 
on the series of metrics that are computed, e.g. a building in a city that is 
around both the median footprint area and median complexity (i.e. 
average building in a city), or finding extreme cases of buildings and 
zones. 

In Fig. 6, we visualise the distribution of site coverage for cities, 
revealing characteristic urban fingerprints and asserting the advantage 
of our structured and hierarchical approach for conducting comparative 
analyses. 

Fig. 7 presents a nation-wide dataset and the hierarchical structure of 
the work, with a visualisation of an indicator, exposing differences in the 
urban form at a national scale. The administrative dataset matches the 
subdivisions of Switzerland: cantons (level 1), districts (level 2), and 
sub-districts (level 3). 

Urban form indicators and other proxies are often used for studying 
economic vibrancy and establishing the relationship with demographic, 
real estate, political, and other characteristics of urban areas (Botta & 
Gutiérrez-Roig, 2021; Chen, Zhang, & Zheng, 2021; Gebru et al., 2017; 
Kim, 2020; Lindenthal, 2017; Xia, Yeh, & Zhang, 2020). The adminis-
trative records in our dataset allow associating it with a variety of 
datasets that are available at different levels of administrative divisions 
to support such research. Associating the same nation-wide dataset with 
corresponding socio-economic indicators obtained from the federal 
government reveals their associations (Fig. 8). For example, the per-
centage of employment in an area appears to be moderately correlated 
with multiple disparate indicators. 

Next, we show another hint at comparative analyses among cities 
(Fig. 9). We extract several metrics of three cities using another nation- 
wide dataset (New Zealand), by querying the database, and visualise 
them in a radar chart. The cities are compared across several metrics that 
are computed at cells within each city. The values have been normalised 
to enable comparison, thanks to which we can observe similarities and 
differences among cities. 

Fig. 10 gives an insight in a contextual building-level indicator 
aggregated to the grid: the distance of a building to its nearest neighbour 
in its 25 m buffer, with the indicator aggregated at 100 m cells in 
Singapore. The map reveals distinct patterns of the urban form, which 
are corroborated with a cursory glance at the texture of the city-state — 
the western part (Clementi, top left example), is a typical high-rise 
setting in which buildings are well separated from each other. On the 

other hand, Katong (at the bottom right) is known for its densely packed 
shophouses, terraced houses, and detached properties. Such indicators 
are crucial in microclimate simulations. 

Shifting our attention to shapes, Fig. 11 visualises the distribution of 
complexities of buildings by city. It reveals distinct patterns of building 
morphology across the cities, which is interesting to associate with local 
cultural and architectural characteristics. Ulaanbaatar stands out, likely 
due to its large number of gers, circular dwellings used by nomads in 
Mongolia. The two Dutch cities (Delft and Amsterdam) are next to each 
other in the plot, suggesting that a similar architecture predominates 
nationally. Further, these two cities exhibit a bimodal distribution, 
possibly due to the mix of new and old architecture, i.e. the famous canal 
houses (grachtenpand), whose architecture has been shaped by taxation, 
presenting interesting examples how the effect of regulations may be 
reflected in the quantitative urban form indicators that we compute. 

So far, we have presented examples of single indicators. Studying the 
multiplex relationships among indicators is common (Basaraner & 
Cetinkaya, 2017; Gisbert, Mart, & Gielen, 2017; Schwarz, 2010). As an 
example, we focus on three sets of association between various 
indicators. 

First, in Fig. 12 we present scatter plots revealing the association of 
footprint complexity and the density of buildings in several cities, 
derived at the 100 m level. The plots suggests a common property of the 
urban form that the more buildings there are in a zone, the less complex 
they are. 

Second, Fig. 13 indicates the correlation of dispersion metrics of the 
same indicator. Standard deviation (SD), index of dispersion (D), and 

Table 3 
Summary statistics per city — footprint area (10th percentile, mean, 90th percentile; in square metres), mean compactness, mean length 
(metres), and standard deviation of complexity. Two new indicators have been computed additionally to demonstrate the extensibility of 
the work. 

Fig. 6. Site coverage distribution across selected cities around the world.  
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coefficient of variation (CV) are not necessarily always perfectly corre-
lated, affirming the importance of computing all three of them. The 
importance of such multiplicity is also asserted by others, e.g. Wang, 
Geoffroy, and Bonhomme (2021) use multiple descriptive statistics of 
the same indicator. 

Third, plotting the measures of dispersion of two different indicators 
together enables us to understand their relation. Fig. 14 provides the 
relationship of the variation of the size of a building (index of dispersion 
of footprint areas) and their shape (index of dispersion of footprint 
complexities) in a 100 m cell. The values are aggregated at the city level, 
and help in understanding the diversity of buildings across multiple 
cities, from detecting cookie cutter neighbourhoods or cities to identi-
fying those with a highly variable architecture. 

To give an impression of the scale of the data presented in this sec-
tion, we note that 110 tables are produced in the database and the 
exported files of the exemplified administrative regions take 223GB in 
size. To generate the examples, we have used R and QGIS, making the 
entire pipeline of GBMI and this paper entirely free and open-source 

Fig. 7. Hierarchical and structured integration of data. These plots and maps were derived from footprint areas of all buildings in Switzerland, and aggregated at 
multiple levels. Note that for space constraints the plot does not indicate all levels, and in the lowest level we omitted some zones. 

Fig. 8. Correlation between a selected set of indicators computed at the mu-
nicipality level in Switzerland (level 3 in Fig. 7) and a set of demographic data 
available as open data by the federal government. Source of statistical data: 
Swiss Federal Statistical Office — Regional portraits 2021: key data of 
all communes. 

Fig. 9. A visualisation of multivariate data extracted from the dataset of New 
Zealand. Legend of the indicators (clockwise from top): width of the minimum 
bounding rectangle (mean), length of the minimum bounding rectangle (coef-
ficient of variation and mean), azimuth (mean), equivalent rectangular index 
(mean), compactness (mean), and complexity (mean). 

Fig. 10. A map visualising the spatial pattern of the minimum distance among 
buildings in high-resolution tiles across Singapore. The photographs are cour-
tesy of Unsplash contributors. 
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(PostgreSQL/PostGIS, OpenStreetMap and zonal data, and the 
mentioned statistical and geospatial software). 

6. Discussion 

6.1. Limitations 

Our work is mainly limited by shortcomings of input data, which are 
out of our control. In our implementation, we focus on OSM, as it is a 
centralised repository of building data from around the world, with 
some locations mapped better than others. While in many places around 
the world, especially urbanised areas, building footprints have reached 
full completeness, in many areas heterogeneous completeness has been 
noticed by researchers (Varentsov, Samsonov, & Demuzere, 2020). For 
some of the indicators, imperfect building completeness may not be a 
significant issue. Provided that the sample is sufficiently representative, 
indicators that measure central tendency and dispersion, such as mean 
area and their standard deviation, may be accurate even if the full 
completeness is not reached. Further, the rapid growth of OSM, 
including in less developed countries (So & Duarte, 2020; Yuan et al., 
2018), assures the addition of more cities in the repository. Also, recent 
datasets openly released by companies, such as Microsoft (United States) 
and Google (Africa) (Heris, Foks, et al., 2020; Sirko et al., 2021), and the 
growing volume of data released openly by governments (Biljecki, 
Chew, Milojevic-Dupont, & Creutzig, 2021), provide confidence that 
much of the globe could be processed in the future and included in our 
repository. 

Fig. 11. Distribution of complexities of building footprints by city.  

Fig. 12. The relationship between the complexity of buildings and their normalised number in a zone. These two aggregated indicators are usually negatively 
correlated, with some exceptions. 

Fig. 13. The relationship between three summary indicators suggesting the 
dispersion of a particular indicator (complexity). 

Fig. 14. Various urban form metrics, when aggregated at city level, enable us 
understanding flavours of cities and facilitate comparisons. 
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The completeness of attributes is another issue that will have a direct 
effect on the quality of the generated data, but there is some optimism as 
an increasing number of locations around the world, including in 
developing countries, is being covered with high completeness of se-
mantic information (Biljecki, 2020). Building height datasets are a 
bottleneck in many areas around the world, diminishing the scalability 
of indicators that require the building height. Data on building heights 
that are fully complete are in some cases available from authoritative 
(government) datasets in form of building footprints enriched with 
attribute information on heights or as point clouds obtained from 
airborne lidar, but these are limited to few geographic areas. Despite 
commendable advancements in large-scale mapping of buildings using 
satellite remote sensing techniques, there are still no global open data-
sets on heights of individual buildings, and many instances are gener-
ated at a coarse spatial resolution (e.g. average building height at the 
scale of a block), limited in coverage, and/or their positional accuracy 
may not be fully adequate for studying the urban form at high resolution 
(Chen, Zhang, Wong, & Ignatius, 2020; Esch et al., 2022; Frantz et al., 
2021; Geis et al., 2019; Li et al., 2020; Li, Herfort, Huang, Zia, & Zipf, 
2020; Tian, Tsendbazar, van Leeuwen, Fensholt, & Herold, 2022; Zhu 
et al., 2022). This limitation solely pertains to our input dataset (OSM) 
and geographies with completeness issues. Recent open data de-
velopments such as the work of Dukai et al. (2020); Dukai, Peters, 
Vitalis, van Liempt, and Stoter (2021), Peters, Dukai, Vitalis, van 
Liempt, and Stoter (2022), and Yang and Zhao (2022), which offer 
nation-wide building open datasets including heights of buildings, give 
some assurance. As our work is designed to be data-agnostic, supporting 
other input geospatial datasets such as high quality instances released by 
governments and researchers, it remains an issue only in the generated 
dataset rather than the developed methodology, and using such datasets 
will alleviate this issue. 

6.2. Directions for future work 

While datasets such as point clouds and higher LoD 3D models give 
the means to additional indicators (Bonczak & Kontokosta, 2019; Chen, 
Qiu, et al., 2020), in the context of our work, it is unlikely that highly 
detailed 3D data will become available widely any time soon. We focus 
on the form of data that is available at a large scale, and we believe that 
2D building footprints with attributes will continue to reign for a long 
time in such studies. 

In our case, we have used the particular grid as it based on a dataset 
containing population data, potentially being useful for further analyses 
analysing the relationships with socio-economic variables (an example 
of such analysis is illustrated in Fig. 8). Notwithstanding, our tool allows 
using any other grid as input, so the database could be further amal-
gamated with other types of data from other sources that are used in 
urban form studies, e.g. energy consumption (Chen, Wu, & Biljecki, 
2021), air temperature (Xu, Chen, Zhou, Wu, & Liu, 2020), land cover 
and land use (Byahut, Patel, & Mehta, 2020; Hertwig et al., 2020), wind 
(Allen-Dumas et al., 2020), and liveability and sustainability measures 
(Benita, Kalashnikov, & Tunçer, 2021; Patias, Rowe, Cavazzi, & Arribas- 
Bel, 2021). 

In future work, it might be beneficial to recompute the indicators on 
another dataset of spatial boundaries and release such data openly as 
well, making use of other freely available large scale gridded population 
datasets (Palacios-Lopez et al., 2019) and aligning it to complementary 
work in urban morphology such as a recently released global open 
dataset on street network indicators (Boeing, 2021). Connecting our 
datasets with others may support an even wider range of studies that 
rely on indicators from multiple topographic features (Gamero-Salinas, 
Kishnani, Monge-Barrio, López-Fidalgo, & Sánchez-Ostiz, 2020; Lind-
berg & Grimmond, 2011; Song, Zhang, & Han, 2021). Further, recent 
developments in urban morphology employ deep learning and street 
view imagery (Biljecki & Ito, 2021; Chen, Zhang, & Zheng, 2021; Wurm 
et al., 2021). A viable direction for future work would be to bring them 

together and complement our approach. 
Formalised data integration is another potential future direction of 

this project. As building datasets are disseminated in formats that allow 
storing attribute content in a standardised manner to facilitate data 
exchange and interoperability, we will investigate integrating the met-
rics in the building dataset using a more formal approach. For example, 
CityGML, a prominent standard for managing and exchanging 3D 
building data (Kutzner, Chaturvedi, & Kolbe, 2020), allows extending it 
with schemas to store additional attributes (Biljecki et al., 2021), which 
may be applicable to the metrics we computed. 

Finally, data on the urban form have been involved in temporal 
studies to study its evolution, with those derived with remote sensing 
techniques dominating such papers (Colucci, Ruvo, Lingua, Matrone, & 
Rizzo, 2020; Zhao, Weng, & Hersperger, 2020). Our approach enables 
temporal studies, as data from different periods may be processed 
separately and compared in a consistent manner. However, in future 
work, it might be beneficial to enable storing such data concurrently and 
provide better support for it. 

7. Conclusions 

Spatial data has for a long time been instrumental in characterising 
urban areas with regard to land use, street networks, and buildings, but 
not without research gaps and limitations. This work, focusing on 
building data and accompanying their unprecedented growth, presents a 
triplex contribution in understanding the structure of cities. 

First, we compiled a thorough overview of metrics to quantify the 
urban form, based on an exploration of recent work and supplemented it 
with an introduction of a new array of indicators, forming a structured 
approach. We believe that this is the most comprehensive list on 
building-related morphological indicators hitherto and that — given the 
stringent nature of the review — our paper doubles also as a ‘mini review 
paper’, and we have also shared some observations encountered during 
the review. We have derived a comprehensive list of hundreds of in-
dicators at multiple scales. While we do not establish a claim that our 
work serves as an authoritative and conclusive list of metrics of building 
morphology and while we do not attempt to impose a consensus on 
them, we hope that the framework will contribute towards their 
standardisation and definitive catalogue. Considering the breadth of 
indicators we include in GBMI, and that our literature review reveals 
that nearly all studies use less than 10 indicators, we believe that it may 
inspire researchers to experiment with metrics they would not have 
taken into account otherwise, potentially furthering applications and 
revealing new insights. Next, we believe that a combination of multiple 
metrics may introduce new applications in studying the urban form. 
Furthermore, fellow researchers are welcome to add new indicators in 
our modular and extensible open-source pipeline. We also believe that 
our inventory will serve researchers working on other types of urban 
data such as point clouds, from which many of the same set of indicators 
can be extracted. 

Second, a key contribution is the implementation of a free and open- 
source solution, which is database-based, a novelty in the field. It sup-
ports the computation of the indicators at a very large scale and allowing 
using different input datasets and varying parameters, serving a multi-
tude of studies across a range of disciplines. Statistic computations could 
be done directly in the database or exported to a set of files and used in 
statistical and geospatial software (Section 5). 

Third, generation of detailed ready-to-use datasets, and their open 
release, providing a convenient instance that may be found useful by 
others and minimising their efforts in computing such data on their own, 
especially if they do not have access to high performance computing 
facilities. Considering the growing coverage of the dataset, we believe 
that our work may contribute towards having more studies that include 
more than one city, and cover cities that have previously not been 
subject of studies, as our literature review (Section 3.3) reveals that 
cross-city studies are still not common and that large swaths of land are 
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not subject of research. The examples in Section 5 present just a fraction 
of the possibilities. Further, we believe the same examples present a 
scientific contribution as some analyses have not been conducted before. 
Thanks to the administrative tags, bridges to other data can be estab-
lished, with the work leading to new explorations and revealing previ-
ously unexplored relationships with a variety of indicators, some of 
which are novel. 

In conclusion, one of the principal contributions of GBMI is that it 
presents a method for formalised, structured, modular, and extensible 
computation and management of urban indicators at a massive scale and 
high resolution, while the precomputed dataset allows easy and fast 
comparative studies in a variety of software, which is an advancement 
with respect to related work. 

Our work is designed to carry on as a continuous development, pri-
marily continuing the computations for further locations. 
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Kraff, N. J., Wurm, M., & Taubenböck, H. (2020). The dynamics of poor urban areas - 
analyzing morphologic transformations across the globe using earth observation 
data. Cities, 107, Article 102905. https://doi.org/10.1016/j.cities.2020.102905 

Ku, C. A., & Tsai, H. K. (2020). Evaluating the influence of urban morphology on urban 
wind environment based on computational fluid dynamics simulation. ISPRS 
International Journal of Geo-Information, 9, 399. https://doi.org/10.3390/ 
ijgi9060399 

Kutzner, T., Chaturvedi, K., & Kolbe, T. H. (2020). CityGML 3.0: New functions open up 
new applications. PFG. Journal of Photogrammetry, Remote Sensing and Geoinformation 
Science, 88, 43–61. https://doi.org/10.1007/s41064-020-00095-z 

Lemoine-Rodrguez, R., Inostroza, L., & Zepp, H. (2020). The global homogenization of 
urban form. An assessment of 194 cities across time. Landscape and Urban Planning, 
204, Article 103949. https://doi.org/10.1016/j.landurbplan.2020.103949 

Lemoine-Rodriguez, R., Inostroza, L., & Zepp, H. (2020). Urban form datasets of 194 
cities delineated based on the contiguous urban fabric for 1990 and 2015. Data in 
Brief, 33, Article 106369. https://doi.org/10.1016/j.dib.2020.106369 

de Lemos Martins, T. A., Adolphe, L., Bastos, L. E. G., & de Lemos Martins, M. A. (2016). 
Sensitivity analysis of urban morphology factors regarding solar energy potential of 
buildings in a brazilian tropical context. Solar Energy, 137, 11–24. https://doi.org/ 
10.1016/j.solener.2016.07.053 

León, J., Vicuña, M., Ogueda, A., Guzmán, S., Gubler, A., & Mokrani, C. (2021). From 
urban form analysis to metrics for enhancing tsunami evacuation: Lessons from 
twelve Chilean cities. International Journal of Disaster Risk Reduction, 58, Article 
102215. https://doi.org/10.1016/j.ijdrr.2021.102215 

Li, H., Herfort, B., Huang, W., Zia, M., & Zipf, A. (2020). Exploration of OpenStreetMap 
missing built-up areas using twitter hierarchical clustering and deep learning in 
Mozambique. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 41–51. 
https://doi.org/10.1016/j.isprsjprs.2020.05.007 

Li, H., Liu, Y., Zhang, H., Xue, B., & Li, W. (2021). Urban morphology in China: Dataset 
development and spatial pattern characterization. Sustainable Cities and Society, 71, 
102981. https://doi.org/10.1016/j.scs.2021.102981 
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Valdes, J., Wöllmann, S., Weber, A., Klaus, G., Sigl, C., Prem, M., Bauer, R., & Zink, R. 
(2020). A framework for regional smart energy planning using volunteered 
geographic information. Advances in Geosciences, 54, 179–193. https://doi.org/ 
10.5194/adgeo-54-179-2020 

Varentsov, M., Samsonov, T., & Demuzere, M. (2020). Impact of urban canopy 
parameters on a Megacity’s Modelled thermal environment. Atmosphere, 11, 1349. 
https://doi.org/10.3390/atmos11121349 

Wang, B., Cot, L., Adolphe, L., Geoffroy, S., & Sun, S. (2017). Cross indicator analysis 
between wind energy potential and urban morphology. Renewable Energy, 113, 
989–1006. https://doi.org/10.1016/j.renene.2017.06.057 

Wang, B., Geoffroy, S., & Bonhomme, M. (2021). Urban form study for wind potential 
development. Environment and Planning B: Urban Analytics and City Science. https:// 
doi.org/10.1177/2399808321994449, 239980832199444. 

Wang, M., & Debbage, N. (2021). Urban morphology and traffic congestion: Longitudinal 
evidence from US cities. Computers, Environment and Urban Systems, 89, Article 
101676. https://doi.org/10.1016/j.compenvurbsys.2021.101676 

Wang, M., Madden, M., & Liu, X. (2017). Exploring the relationship between urban forms 
and CO2 emissions in 104 Chinese cities. Journal of Urban Planning and Development, 
143, 04017014. https://doi.org/10.1061/(asce)up.1943-5444.0000400 

Wilson, J. P., Butler, K., Gao, S., Hu, Y., Li, W., & Wright, D. J. (2021). A five-star guide 
for achieving replicability and reproducibility when working with GIS software and 

F. Biljecki and Y.S. Chow                                                                                                                                                                                                                     

https://doi.org/10.1016/j.scs.2020.102387
https://doi.org/10.1016/j.apenergy.2019.114409
https://doi.org/10.1007/s10980-020-01084-8
https://doi.org/10.1016/j.scitotenv.2020.140589
https://doi.org/10.1016/j.uclim.2020.100703
https://doi.org/10.1080/20964471.2019.1625151
https://doi.org/10.1038/sdata.2017.1
https://doi.org/10.1038/sdata.2017.1
https://doi.org/10.1016/j.uclim.2020.100702
https://doi.org/10.1016/j.scs.2020.102526
https://doi.org/10.1371/journal.pone.0242010
https://doi.org/10.1371/journal.pone.0242010
https://doi.org/10.1080/13658816.2020.1829627
https://doi.org/10.3390/su12114443
https://doi.org/10.1016/j.egypro.2017.09.533
https://doi.org/10.1016/j.egypro.2017.09.533
https://doi.org/10.1016/j.landurbplan.2011.01.004
https://doi.org/10.1016/j.landurbplan.2011.01.004
https://doi.org/10.1007/s10518-021-01303-w
https://doi.org/10.1007/s10518-021-01303-w
https://doi.org/10.7717/peerj.5072
https://doi.org/10.1016/j.uclim.2020.100706
https://doi.org/10.1109/isc2.2018.8656934
https://doi.org/10.3390/su11216056
https://doi.org/10.3390/su11216056
https://doi.org/10.1016/j.compenvurbsys.2020.101584
https://doi.org/10.1016/j.enbuild.2020.110531
https://doi.org/10.1016/j.enbuild.2020.110531
https://doi.org/10.1016/j.landurbplan.2021.104148
https://doi.org/10.1016/j.apenergy.2020.115844
https://doi.org/10.14358/pers.21-00032r2
https://doi.org/10.14358/pers.21-00032r2
https://doi.org/10.1016/j.atmosres.2020.105220
https://doi.org/10.1016/j.apacoust.2016.08.025
https://doi.org/10.1016/j.apacoust.2016.08.025
https://doi.org/10.1016/j.enbuild.2020.110010
https://doi.org/10.1016/j.landurbplan.2010.01.007
https://doi.org/10.1016/j.landurbplan.2010.01.007
https://doi.org/10.1016/j.buildenv.2018.09.040
https://doi.org/10.1016/j.buildenv.2018.09.040
https://doi.org/10.1016/j.apacoust.2013.07.027
https://doi.org/10.1016/j.apacoust.2013.07.027
http://refhub.elsevier.com/S0198-9715(22)00053-9/rf0555
http://refhub.elsevier.com/S0198-9715(22)00053-9/rf0555
http://refhub.elsevier.com/S0198-9715(22)00053-9/rf0555
https://doi.org/10.1016/j.geoforum.2020.02.008
https://doi.org/10.1007/978-981-15-8783-2_1
https://doi.org/10.3390/ijerph17228354
https://doi.org/10.3390/ijerph17228354
https://doi.org/10.1177/2399808320988560
https://doi.org/10.1371/journal.pone.0107042
https://doi.org/10.1371/journal.pone.0107042
https://doi.org/10.3390/su11020548
https://doi.org/10.1371/journal.pone.0266484
https://doi.org/10.1371/journal.pone.0266484
https://doi.org/10.1038/sdata.2017.4
https://doi.org/10.1016/j.landurbplan.2021.104316
https://doi.org/10.1016/j.landurbplan.2021.104316
https://doi.org/10.1177/2399808321995822
https://doi.org/10.1080/17549175.2020.1753227
https://doi.org/10.1016/j.envres.2021.111045
https://doi.org/10.1016/j.buildenv.2017.11.013
https://doi.org/10.1177/2399808320977867
https://doi.org/10.5194/adgeo-54-179-2020
https://doi.org/10.5194/adgeo-54-179-2020
https://doi.org/10.3390/atmos11121349
https://doi.org/10.1016/j.renene.2017.06.057
https://doi.org/10.1177/2399808321994449
https://doi.org/10.1177/2399808321994449
https://doi.org/10.1016/j.compenvurbsys.2021.101676
https://doi.org/10.1061/(asce)up.1943-5444.0000400


Computers, Environment and Urban Systems 95 (2022) 101809

17

algorithms. Annals of the American Association of Geographers, 111, 1–7. https://doi. 
org/10.1080/24694452.2020.1806026 

Wong, N. H., Tan, C. L., Kolokotsa, D. D., & Takebayashi, H. (2021). Greenery as a 
mitigation and adaptation strategy to urban heat. Nature Reviews Earth & 
Environment, 1–16. https://doi.org/10.1038/s43017-020-00129-5 

WorldPop. (2018). Global 1km population. https://doi.org/10.5258/SOTON/WP00647 
Wu, J., Lu, Y., Gao, H., & Wang, M. (2022). Cultivating historical heritage area vitality 

using urban morphology approach based on big data and machine learning. 
Computers, Environment and Urban Systems, 91, Article 101716. https://doi.org/ 
10.1016/j.compenvurbsys.2021.101716 

Wurm, M., Droin, A., Stark, T., Geiß, C., Sulzer, W., & Taubenböck, H. (2021). Deep 
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