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A B S T R A C T   

Gathering knowledge about physical settings and visual information of places has long been of interest to a wide 
variety of fields as they affect the experience of observers. Previous studies have relied on on-site surveys, low- 
throughput methods, and limited data sources, which especially hinder analyzing waterscape features. Thus, 
detecting the relationships between the human perception results of large-scale urban water areas and the 
waterfront features at high spatial resolutions remains challenging, and worldwide studies have not been con-
ducted. We investigate an alternative: a data-driven waterscapes evaluation approach based on computer vision 
(CV) to analyze water view imagery (WVI) in 16 cities around the world and measure how people perceive scenes 
using virtual reality (VR). We bring attention to WVI – the counterpart of street view imagery (SVI) on water 
bodies, which is readily available for many cities thanks to the usual SVI services, but has been entirely over-
looked in research hitherto. Specifically, a deep learning model, which has been trained with 500 segmented 
water-level photos, was developed to analyze them, achieving the mean pixel accuracy (MPA) of 94%, which 
advances state of the art. These panoramic images have been assessed through a virtual experience survey in 
which 60 participants indicated their perceptions across multiple dimensions. Afterwards, a series of statistical 
analyses were conducted to determine the visual indicators that drive perceptions, and the relationship between 
the people’s subjective visual perceptions and objective waterscape environment as seen by machines has been 
established. The results take researchers and watercourse planners one step toward understanding the in-
teractions of the perceptions and semantics of water areas globally. The large-scale dataset we produced in this 
research has been released openly as the first such instance of open segmented water view imagery, and it is 
intended to support future studies.   

1. Introduction 

Urban water areas (e.g. rivers, bays, lakes) supply diverse services 
and play important roles, including ecological, cultural, recreational, 
and aesthetic ones (Liu et al., 2021; Hua and Chen, 2019; Gr et-Regamey 
et al., 2016; Vollmer et al., 2015; Keten et al., 2020). A significant body 
of literature has highlighted the beneficial effects of blue space (i.e. 
urban riverscapes) (Bao et al., 2022; Xiao et al., 2022). The importance 
of the urban water environment in promoting the health and well-being 
of city dwellers cannot be overstated (Vert et al., 2020; De Vries et al., 
2016). These areas also reflect the city’s identity and qualities and often 
appealing to both residents and visitors. Water is, in fact, a key natural 

resource in urban regions, and it is inextricably linked to urban dwellers’ 
lives, leisure, and commercial activities. As a distinctive aspect of urban 
water perception, the water tour line is a way for tourists to experience 
the city (Venverloo et al., 2021). To enhance urban water tourism, high- 
quality water level landscapes are crucial, and they can notably reflect 
the characteristics of a city (Li et al., 2021). As one of the most important 
approaches for the public to perceive the landscape, vision accounts for 
76% on environment satisfaction (Krause, 2001; Jeon and Jo, 2020), 
and the water level perspective can provide residents and visitors with a 
unique visual experience. It is necessary to understand which water-
scape features (percentage of landscape elements, ecology and cleanli-
ness of the natural conditions, etc.) influence visitors’ perceptions 
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favorably, for example, which variables have more significant impacts 
on waterfront quality and how the landscapes may be enhanced. 

Most studies on river landscapes mainly start from the perspective of 
the river bank (Sun et al., 2021; Xin et al., 2022). Researchers perform 
on-site observations and/or take photos for remote perception. These 
approaches can only analyze the characteristics of the waterside, and 
cannot ‘sense’ on-water perspectives, which may differ substantially. 

Only a few studies use the water-level perspective to observe 
waterscapes. For example, Li et al. (2021) has utilized images 
(perspective, not panorama) to evaluate visual quality from an on-water 
perspective of a part of the river in Guilin, China. However, the scale and 
scope of this research are limited because they only analyze the river-
scape in the karst landform. Comparative analysis of multiple areas, 
especially across different cities, is often a neglected topic in the existing 
literature. Due to the fact that imagery collection on the water level is 
inconvenient, data obtained on a large scale is time-consuming and 
labour-intensive; hence, global urban water level studies are challenging 
to conduct. Further, the lack of open data hinders this research domain 
and limits our understanding of its current space and landscape, char-
acteristics and distribution. Therefore, objective visual evaluation and 
efficient perception of large-scale water level landscapes remain a 
challenge. 

Catalyzed by the rapid development of map services and volunteered 
geographic information (VGI), a massive volume of geo-tagged images 
have been compiled and made publicly available that portray nearly 
every corner of a city (Yan et al., 2020; Li et al., 2018; Taecharungroj 
and Mathayomchan, 2020; Richards and Friess, 2015). With the explo-
sive growth of street view imagery (SVI) and crowdsourced photos, 
these data sources can offer a wealth of opportunities for geo-related 
studies and are commonly employed in urban environment analysis 
(Song et al., 2020; Li et al., 2015; Zhang et al., 2018). Many data sources 
for built environment studies are available through Google Street View 
(GSV), Baidu, Mapillary, and other platforms, which have been widely 
used in urban studies (Biljecki and Ito, 2021). 

In this study, we investigate whether we can use SVI data, similar to 
how numerous studies examine urban streets environment using GSV or 
Baidu Total View (BTV) imagery, to evaluate the city’s waterscapes 
widely following the little-known fact that — while the word street is 
prefixed to the term street view imagery — the data is not restricted to 

roads and streetscapes (Wang et al., 2022; Liu et al., 2016; Li et al., 2015; 
Li et al., 2018). After a global exploration, we identified dozens of cities 
with continuous linear water-level photos on GSV and Mapillary. As this 
kind of data is relatively unknown, there are virtually no use cases taking 
advantage of it. Scientific literature has not been documented that these 
types of SVI platforms may also have a water perspective for some lo-
cations. In fact, the awareness and use are so rare that — to the extent of 
our knowledge — there is not even a term for it. We name these on-water 
photos Water View Imagery (WVI), as a counterpart (or subset) of SVI 
collected on water-level (Fig. 1). 

Simultaneously, advances in computer vision (CV), such as semantic 
segmentation and object detection, have accelerated ways to automat-
ically and objectively analyse a large number of photos in the built 
environment (Ibrahim et al., 2020; Yao et al., 2021; Dang and Li, 2021; 
Biljecki and Ito, 2021). Some researchers have used human eye-level 
photographs and drone-based images to investigate landscape features 
using CV in the built environments (Seiferling et al., 2017; Wilkins et al., 
2022; Luo et al., 2022; Dang and Li, 2021), thus CV is not new to 
landscape analysis, but CV application in the waterscape visual evalu-
ations is few and far between. Only a few studies have looked at the 
river’s visual landscape aspects (Li et al., 2021), but to a limited extent, 
and comprehensive and large-scale quantitative waterscape analysis is 
lacking. Another void in this research line is the lack of understanding of 
the differences in perceptions between ground and water-level per-
spectives. No CV and WVI combined large-scale successive subjective 
visual perception or objective evaluation study have been conducted 
yet, which is another gap we seek to bridge with this paper. Apart from 
that, studies employing CV on various types of urban imagery at the 
ground-level have relied on general datasets to train deep learning 
models to visually evaluate the environment (Cordts et al., 2016). 
However, for studies focused on waterscapes, these datasets may fall 
short, and there has been no processed water imagery dataset of the 
water landscapes available openly so far, which is another impediment 
of river environment analysis as it may be better suited for this research 
thread. We believe that it is beneficial to generate an open dataset to be 
shared with the scientific community to enhance the waterscape 
research line and provide reference for future landscape improvement 
by defining the relationship between environmental features and human 
perceptions. 

Fig. 1. Examples of water view imagery of four cities found in a crowdsourced street view imagery platform. This paper reveals the availability of such data and it 
investigates their usability. Source: (c) Mapillary contributors. 
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Considering the developments in CV and the massive amount of geo- 
tagged images on water, we believe that research marrying the two is 
needed and timely. In short, our study questions are threefold: (1) How 
can the continuous visual characteristics (e.g. green visibility and sky 
visibility) and human perceptions (e.g. beauty, depression, liveliness) of 
urban waterscapes be quantified and compared? (2) How will the 
physical urban waterscapes affect people’s subjective perceptions when 
experiencing these water level perspectives? (3) Can we take advantage 
of existing water-level imagery in mainstream SVI services, bypassing 
the need for own data collection, to support analysis of multiple cities 
and to understand the characteristics of global waterscapes?. 

2. Background and related work 

2.1. Visual perception and evaluation of waterscapes 

Visual perception and evaluation have become the mainstay for re-
searchers, practitioners, and governments to understand the landscape 
quality of public regions (e.g. streets, rivers, parks) (Duchowski and 
Duchowski, 2017; Liao et al., 2022). For decades, the visual qualities of 
street canyons have been studied by a number of researchers. There have 
been in-depth analyses of the street green visibility (Cai et al., 2018), 
bikeability (Ito and Biljecki, 2021), walkability (Leslie et al., 2007), and 
so on among different cities, and the impact of street landscape features 
on people’s sense of safety, comfort, attractiveness, and other topics 
(Zhang et al., 2018; Larkin and Hystad, 2019). In contrast, research on 
the visual characteristics of urban river canyons, lakes, bays, and other 
open water landscapes is limited, inhibiting landscape planning and 
future development of such places, even though the waterscape is one of 
the city’s most essential natural landscape elements (Silva et al., 2013). 
Some research evaluated the landscape safety pattern from large-scale 
land-use types and environmental elements of the river corridor (Gar-
giulo et al., 2020). However, such large-scale analysis based on land-use 
types can only obtain the general spatial characteristics of river corri-
dors, rather than the visual perceptions of human beings. To visually 
examine the spatial surroundings, some researchers used static discon-
tinuous human perspective photographs to obtain multi-dimensional 
remote impression of aspects such as beauty, vitality, and ecology of 
urban rivers, lakes, and other waterscapes (Sun et al., 2021; Yamashita, 
2002; Pflüger et al., 2010). These studies provide a reference for people 
to comprehend the distribution features of river space and landscape 
elements by objectively describing the visual characteristics of relevant 
places. However, these studies have not considered the continuity of 
visual perception, they can only statistically characterize one or few 
discontinuous perspectives rather than a sequence of continuous 
viewpoints. 

To the extent of our knowledge, the paper of Li et al. (2021) is the 
most relevant to ours. It quantitatively analyzes the quality of river-
scapes from an on-water perspective using ordinary 2D photographs in 
the karst landform area of Guilin, China. The continuous perception 
approach of waterscapes can provide an understanding of the linear 
landscape environment, which will serve as a foundation for landscape 
quality evaluation and future optimization and enhancement. In addi-
tion, other studies also adopt continuous visual perception means to help 
researchers understand the landscape traits; for example, Jin and Wang 
(2021) conducted virtual dynamic and continuous simulations of three 
sports modes on the Beijing Hangzhou Grand Canal: boating, running, 
and cycling, which can improve the understanding of landscape char-
acteristics in the context of sports. Another continuous visual perception 
study also advocated that the scenery around the urban river can be 
perceived dynamically (Cheng and Wang, 2021). This research analyzed 
the landscape characteristics of riverside parks using pictures and 
analyzed people’s physiological responses while perceiving these 
photos, which provides a better understanding of the riverside settings. 
Continuous visual perception, as opposed to single-point visual 
perception, is better suited to linear spaces such as rivers. Similar studies 

can provide a strong grasp of riverfront scenery and are appropriate for 
small-scale evaluation (Cao and Zhang, 2020; Xin et al., 2022). How-
ever, relevant research efforts are time-consuming and labour-intensive, 
and scaling up approaches remains challenging. As a result, researchers 
are grappling with how to visually analyze waterscape elements across a 
wider range, and how to scientifically measure people’s perceptions 
while observing the scenery. 

2.2. Automated landscape analysis with computer vision 

The efficiency of various research disciplines has substantially 
improved as a result of the continuous development of advanced tech-
nology, particularly the constant use of artificial intelligence and deep 
learning technologies in the built environment (Ibrahim et al., 2020; 
Ghermandi et al., 2022; Sun et al., 2022; Li et al., 2022; Wang and 
Biljecki, 2022). Collaboration between urban planning, geographic in-
formation science (GIS), computer science, and other disciplines can 
also help to improve the depth and breadth of knowledge about various 
urban places and landscape contexts (Biljecki and Ito, 2021; Kandt and 
Batty, 2021; Liu and Biljecki, 2022). The advancement of CV algorithms, 
as well as the increase in the number of relevant datasets, has aided in 
these large-scale and multi-regional studies (Badrinarayanan et al., 
2017; Cordts et al., 2016; Luo et al., 2022). CV technology can be 
divided into three categories: image semantic segmentation, object 
recognition and instance segmentation (Ahmed et al., 2021; Li et al., 
2022). The study scope of applying semantic segmentation to analyze 
urban landscape is currently highly broad, as are the data sources. For 
urban spatial studies and natural environment research, many scholars 
use readily available street view imagery offered by map suppliers or 
crowdsourced platforms such as Google, Baidu, and Mapillary (Xia et al., 
2021; Hosseini et al., 2022). Because street view photographs can be 
taken on a wide scale in a short amount of time and contain a lot of 
information about ground elements, they offer a lot of potential in urban 
studies (Zhang et al., 2018; Yao et al., 2019; Chen et al., 2020; Kotowska 
et al., 2021). For example, using GSV data and a computer vision al-
gorithm, the research by Seiferling et al. (2017) measures the vegetation 
covering proportion to quantify the green viewing rate of urban street 
spaces. This method achieved the ability to quantify the existence and 
distribution of trees from the perspective of human viewpoints. Aside 
from the human perspective, other research combines CV technology 
with drone photos, using UAV oblique perspective photographs to 
semantically separate diverse landscape aspects in a large-scale envi-
ronment, improving our comprehension of landscapes (Meng et al., 
2021; Osco et al., 2021; Lyu et al., 2020; Luo et al., 2022). The use of a 
combination of satellite images and CV to interpret urban roofscape 
information (Wu and Biljecki, 2021), building characteristics (Li et al., 
2019; Wheeler and Karimi, 2020), green space distribution (Liu et al., 
2019; Huerta et al., 2021), and vacant land identification (Mao et al., 
2022) also became an important tool to understand landscapes. 

However, there are certain barriers in the way. The absence of 
adequate semantic segmentation datasets to train the segmentation 
models, for example, has become a serious impediment to the use of 
computer vision in some specific fields. The Cityscapes dataset provides 
an opportunity to study urban SVI data (Cordts et al., 2016), Aeroscapes 
(Nigam et al., 2018), Urban Drone Dataset (UDD) (Chen et al., 2018), 
Semantic Riverscapes Dataset (Luo et al., 2022) and other datasets 
provide the possibility to study urban landscape with perspectives of 
UAVs. These datasets are essential for deep learning model training. 
Although studies utilize computer vision to study the environment 
around the river, there is currently no publicly available imagery se-
mantic segmentation dataset from the water-level perspective. 

J. Luo et al.                                                                                                                                                                                                                                      
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3. Methodology 

3.1. Identifying water view imagery datasets 

We manually checked major cities worldwide on the mainstream SVI 
platforms, and found that 27 cities on GSV and 10 cities on Mapillary 
have water view imagery. Because our paper is the one ‘inaugurating’ 
and bringing attention to the concept of WVI, we provide more infor-
mation on the imagery identified in practice. By browsing the water-
scape photos on the two platforms, we compared and analyzed the 
characteristics of WVI of different cities we found across four aspects: 
length of shooting on water level, lens obstacles, light condition, and 
field of view, which are features that are important for this research 
(Table 1). 

After surveying WVI qualities in the identified cities, 16 diverse and 
geographically distributed urban water areas, including rivers, canals, 
and bays spanning Europe, North America, and Asia are selected as our 
study areas. These water areas are located in Amsterdam, Bangkok, 
Boston, Chicago, Istanbul, London, Memphis, Minneapolis, Paris, 
Phnom Penh, San Diego, San Francisco, Tokyo, Venice, Warsaw, and 
Washington. All of these selected study areas are located in cities (built 
environment areas); therefore, we believe that these areas are compa-
rable with each other. We consider the overall quality of these water 
level panoramic imagery adequate for our subsequent analysis. We ob-
tained WVI sampled each 50 m. In each study area, we randomly picked 
water routes of equal lengths (5 km; around 100 continuous panoramic 
photos) to minimize bias of variable lengths. As a result, we selected 
about 1600 panoramic images of 16 cities as our dataset, a mix of Google 
Street View and Mapillary. It is important to note that in the SVI domain, 
it is rare to have studies that include more than one data source, which 
may be considered as another contribution of this work. 

3.2. Water view imagery dataset for semantic segmentation 

As there is no open water level imagery semantic segmentation 
dataset, we capture and segment one, which is designed for semantic 
segmentation of water level scenarios and can assist waterscape-related 
segmentation applications. Out of the 1600 images, we selected 500 
high-resolution images and segmented each. We named this dataset 
Water View Imagery dataset and released it openly, supporting future 
studies in the waterscape domain. Given the commercial nature and 
restrictive licence of Google Street View, all images in the released 
dataset come from Mapillary, which are subject to a liberal licence 
thanks to its crowdsourcing nature. These segmented photos are from 8 
cities water areas (Amsterdam, Bangkok, Chicago, Istanbul, Japan, 
London, Paris, and Venice). We refer to the classification criteria of 
Cityscapes dataset and related research (Cordts et al., 2016; Li et al., 
2021), and according to our research goals and the landscape elements 
characteristics of these images, a total of 15 categories were selected for 
annotation (i.e. semantic segmentation), namely: water, sky, terrain, 
traditional building, modern building, revetment, bridge, car, truck, 
bicycle, boat, tree, grass, people, and void. To separate vegetation 
around the river, we break down greens into tree and grass, based on the 
peculiarities of river landscapes. Similarly, we regard multiple groups of 
buildings: traditional buildings, and modern building. Each image was 
manually annotated at the pixel level with EISeg software (Hao et al., 
2021). 

We have released this dataset openly for public use, together with 
documentation. As far as we know, this is the first worldwide semantic 
segmentation open dataset using water view imagery, and it has been 
released1 under the Creative Commons Attribution-NonCommercial- 
ShareAlike 4.0 International license (CC BY-NC-SA 4.0). 

3.3. Objective visual evaluation 

Many ready-to-use models, FCN, SegNet, U-net, PSP-net, SegFormer, 
etc., can detect objects and perform segmentation of imagery (Badri-
narayanan et al., 2017; Xie et al., 2021). We select SegFormer, a cutting- 
edge Transformer framework that considers efficiency, accuracy, and 
robustness, for semantic segmentation (Xie et al., 2021), based on the 
characteristics of WVI data and applicability in waterscapes. The Water 
View Imagery dataset is used to train a CV model for image segmentation. 
To ensure the robustness of the reported model, we have adopted the 
common practice of randomly splitting the dataset into two portions: 
training (90%) and validation (10%). The training and validation pro-
cesses were assessed using mean pixel accuracy (MPA), which is the 
ratio of correctly predicted pixels to the total pixels, and mean Inter-
section over Union (mIoU), the ratio of the intersection area of the 
predicted pixels and ground truth pixels to their union area. To ensure 
that the simulated visual field and sight are close to the real experience 
of people, we turned the panoramic imagery into ordinary perspective 
images in six directions, and the heading parameters were set to 0, 60, 
120, 180, 240, and 300, respectively. Each image has a 60-degree visual 
field, which mimics human eyes view (Walker et al., 1990; Li et al., 
2015; Zhou et al., 2019). Thus, we summarized the percentage of 
various visual elements in every image and, via Eq. 1 (where Pi is the 
average proportion of every visual element and Vi denotes the propor-
tion of visual elements in one direction image), to calculate the average 
of each sampling point to represent the average status of the position. 
Finally, after training the SegFormer model using the WVI dataset, we 
can objectively examine the percentage of these categories of landscape 
features in various pictures by classifying the 15 types of elements in the 
panoramic water level imagery at the pixel level (Fig. 2). 

Pi =

∑6

i=1
Vi

6
{i ∈ (1, 2,⋯, n} (1) 

Based on the previous research experience of visual landscapes (Li 
et al., 2015; Gong et al., 2018) and combined with the characteristics of 
river environment (Li et al., 2021), we adopt 6 visual indexes for 
waterscape evaluation, including green visibility factor (GVF), water 
visibility factor (WVF), sky visibility factor (SVF), hard revetment factor 
(HRF), dynamic factor (DF), and building visibility factor (BVF). We 
define Eqs. (2)–(7) to calculate the scores of the 6 evaluation indexes. 
Among them, vegetation is one of the most important landscape ele-
ments in the riverscapes, and the GVF includes tree and grass, which 
affects the ecology and natural degree of the watercourse (Richards and 
Friess, 2015). Water is the main element in riverscape; thus, WVF plays a 
substantial important role in vision. HRF and BVF are significant in-
dicators reflecting the intensity of artificial construction in a river and 
surrounding areas. Among them, the HRF includes river revetment and 
bridges, and the BVF include traditional buildings, modern high-rise 
residential buildings, commercial office buildings, etc. SVF can mea-
sure the openness of the river space, and also has a great impact on 
people’s vision, and DF can measure moving objects such as people, cars, 
and boats. 

GVFi =
1
n
∑n

i=1
Treen +

1
n
∑n

i=1
Grassn

{i ∈ (1, 2,⋯, n}

(2)  

WVFi =
1
n

∑n

i=1
Watern

{i ∈ (1, 2,⋯, n}

(3)  

1 The dataset is available athttps://github.com/ualsg/Water-View-Imager 
y-dataset. 
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Table 1 
Overview of cities in which we identified water view imagery in GSV or Mapillary.  

city country waters name length of shooting lens obstacles light condition field of view 

Google Street View  

Amsterdam Netherlands Amstel, etc. over 30 km light good panorama 
Bangkok Thailand Chao Phraya over 30 km light good panorama 
Belgrade Serbia Danube over 30 km heavy good panorama 
Boston USA Charles River 13 km light good panorama 
Bratislava Slovakia Danube 11 km heavy good panorama 
Brisbane Australia Brisbane River 28 km light medium panorama 
Budapest Hungary Danube over 30 km medium good panorama 
Chicago USA Chicago River over 30 km no good panorama 
Hong Kong China Victoria Harbour 25 km heavy good panorama 
Istanbul Turkey Golden Horn 23 km light good panorama 
London UK Thames over 30 km light good panorama 
Memphis USA Mississippi over 30 km light good panorama 
Miami USA Miami River over 30 km medium medium panorama 
Minneapolis USA Mississippi over 30 km no good panorama 
New York USA Hudson, etc. over 30 km heavy good panorama 
Ottawa Canada Ottawa River 7.7 km medium good panorama 
Paris France Seine 19 km light good panorama 
Phnom Penh Cambodia Tonle Sap, etc. over 30 km light good panorama 
San Diego USA San Diego Bay over 30 km light good panorama 
San Francisco USA San Francisco Bay over 30 km light good panorama 
Sydney Australia Sydney Harbour 4 km heavy good panorama 
Tokyo Japan Ebitori, etc. over 30 km light good panorama 
Venice Italy Grand Canal 11 km light good panorama 
Voronezh Russia Voronezh River 1 km light medium panorama 
Warsaw Poland Vistuna River over 30 km medium good panorama 
Washington USA Potomac, etc. 21 km medium good panorama 
Yakutst Russia Lena River 5 km heavy bad panorama  

Mapillary  

Amsterdam Netherlands Amstel, etc. over 30 km unstable good panorama & ordinary 
Bangkok Thailand Chao Phraya 10 km unstable unstable panorama & ordinary 
Chicago USA Chicago River over 30 km unstable unstable panorama & ordinary 
Hong Kong China Victoria Harbour 10 km unstable unstable ordinary 
Istanbul Turkey Golden Horn 12 km unstable good panorama & ordinary 
London UK Thames 8 km unstable unstable ordinary 
Macau China Canal de Shizimen 16 km medium medium panorama 
Paris France Seine over 30 km unstable unstable panorama & ordinary 
Tokyo Japan Ebitori River, etc. 18 km unstable unstable panorama & ordinary 
Venice Italy Grand Canal 12 km unstable unstable panorama & ordinary  

Fig. 2. Workflow of this study. Sources of maps and images: (c) OpenStreetMap contributors and Google Street View.  
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SVFi =
1
n
∑n

i=1
Skyn

{i ∈ (1, 2,⋯, n}

(4)  

HRFi =
1
n

∑n

i=1
Revn

{i ∈ (1, 2,⋯, n}

(5)  

DFi =
1
n
∑n

i=1
Carn +

1
n
∑n

i=1
Truckn +

1
n
∑n

i=1
Bicn +

1
n
∑n

i=1
Boatn +

1
n
∑n

i=1
Peon

{i ∈ (1, 2,⋯, n}
(6)  

BVFi =
1
n
∑n

i=1
TBn +

1
n
∑n

i=1
MBn

{i ∈ (1, 2,⋯, n}

(7)  

3.4. Subjective visual perception 

People’s evaluations of the physical environment are mostly ob-
tained through ‘subjective’ or ‘perceptual’ approaches in built envi-
ronment studies (Tabrizian et al., 2020; Li et al., 2022; Zhang et al., 
2018). To capture human responses, several research frequently uses 2D 
pictures or panoramic photos as visual stimuli representing in situ ex-
periences of the environment (Li et al., 2021; Ma et al., 2021; Zhang and 
Zhang, 2021). One of the most famous urban environmental perception 
case is ‘Place Pulse’ by MIT, which contains a wealth of information for 
landscape perception studies (Dubey et al., 2016). This dataset includes 
photos of city environment from around the world that can be used to 
measure six characteristics, including the safety, lively, boring, wealthy, 
depressing, and beautiful of photographic settings. However, there is not 
much information about waterscapes in this dataset, and it needs to be 
discussed further whether it can accurately reflect people’s perceptual 
data in waterscape settings. We employ the same perceptual indicators 
as this type of urban landscape in our research, and we use virtual reality 
equipment to view the scenarios of the WVI waterscape panoramas from 
all angles and score them. The reason why we chose these six perceptual 
indicators is that, according to earlier research, they were representative 
of people’s urban perception (including both positive and negative as-
pects of perception) (Dubey et al., 2016; Wang et al., 2019; Zhang et al., 
2018; Yao et al., 2021). 

We randomly chose 5 to 10 panoramas of each city for the subjective 
perception of water landscapes. To obtain subjective perception results, 
we invited 60 participants to evaluate these 140 scenarios in a labora-
tory environment using five tablets (iPad) we provided. Although such 
devices can only provide a non-immersive virtual environments for VR 
perception, it can avoid dizziness and nausea caused by the use of head- 
mounted displays (Lee et al., 2020; Zhang et al., 2020; Birenboim et al., 
2019; Maffei et al., 2016; Liao et al., 2022). Thus, we use the iPad as our 
VR display and questionnaire survey device to allow more people to 
participate in this study. The mean age among the 60 participants was 
23.7 years; 65% were male (n  = 39) and 28.3% were graduate students 
(n  = 17). The study protocol was approved by the Institutional Review 
Board of the National University of Singapore (reference code: NUS-IRB- 
2022–191). 

To avoid the impact of fatigue caused by long-time viewing of these 
pictures, we randomly divided 140 WVI panoramic images from 16 
cities into 10 groups with 14 images in each group. Therefore, each set of 
panoramic imagery is evaluated by 6 participants. Before the partici-
pants experience, they need to spend about one minute browsing all 14 
WVI pictures to get an overall impression of the water-level scenes. 
Then, the participants perceived each panoramic image 360 degrees in 
turn; after experiencing each panorama, participants rated each through 

multiple dimensions: safe, lively, boring, wealthy, depressing, and 
beautiful using the 7-point Likert scale (Likert, 1932). The final score of 
each scene is the average of the participants’ scores. On average, the 
duration of each perception was 17 min. 

4. Results 

4.1. Objective visual analysis results 

4.1.1. Comparison of overall proportion of watersacpe elements among 
cities 

With a MPA of 93.69% and a mIoU of 49.53%, our trained SegFormer 
model under the Transformer framework performs well in the imagery 
semantic segmentation task, meeting the experimental conditions. Fig. 3 
illustrates the results of segmenting 15 elements of river landscapes. 

Following a statistical analysis of the visual evaluation findings of 16 
waterscapes among cities (Table 2), we discovered that the proportion of 
water and sky elements, which make up the primary landscape elements 
of water areas, is relatively high, with an average of 46.58 % and 37.12 
%, respectively. Among them, Venice has the smallest average propor-
tion of water elements, accounting for 42.32%, while San Diego has the 
highest average proportion, accounting for 50.69%, and the standard 
deviation is 0.025. The water area with the highest average proportion 
of sky element is Phnom Penh, which is 46.32%, and the smallest is 
Chicago, with only 14.85%, and the standard deviation is 0.088. In 
contrast, the average proportions of tree, modern building, traditional 
building, revetment and bridge are relatively small. The average pro-
portion of trees is 6.18%, the minimum value is 0.82%, located in San 
Diego, the maximum value is 16.23%, located in Minneapolis, and the 
standard deviation is 0.054. The average difference between modern 
building and traditional building is small, which are 3.00% and 2.97% 
respectively. Among them, the largest proportion of modern architec-
ture is Chicago, accounting for 17.47%, and the least is Memphis, only 
0.09. Traditional buildings account for the largest proportion of 23.28%, 
located in Venice, and Minneapolis, with the least proportion of 0.29%. 
The average proportion of revetment and bridge is less, only 2.24% and 
1.2%. The maximum and minimum average proportion of revetment are 
7.82% and 0.61%, respectively, in Chicago and Memphis, while the 
maximum and minimum average proportion of bridge are 4.83% and 
0.21%, respectively. The average proportion of boat, grass, car, and 
other landscape elements is less than 1%. 

Using the six visual evaluation indexes constructed to statistically 
analyze the overall water characteristics of 16 cities, including GVF, 
BVF, WVF, SVF, HRF, and DF (Fig. 4). GVF is made up of both trees and 
grass, and the highest average GVF value is 16.27 %, which is found in 
Minneapolis, while the lowest value is 0.82%, which is found in San 
Diego. BVF is composed of traditional building and modern architecture. 
The maximum average value of BVF is 24.06%, which is located in 
Venice, while the minimum average value is located in Minneapolis, 
which is only 0.58%. DF includes five categories: bicycle, car, truck, boat 
and people, so it can be used as the evaluation index of water space 
vitality. The maximum average value of DF is 2.85%, which is located in 
Amsterdam, and the minimum average value is only 0.11%, which is 
located in Memphis. The other three evaluation indexes of WVF, SVF 
and HRF are composed of water, sky and revetment respectively; 
therefore, their values are consistent. 

4.1.2. Analyzing characteristics in each city 
To facilitate understanding and to compare the waterscapes of 

different cities, we provide continuous plots of 16 cities, each with its 
own set of water features (Fig. 5). The waterscape spaces we investi-
gated are primarily linear environments along the watercourse, with a 
number of indexes. Consequently, we choose to illustrate the waterscape 
characteristics of various locations using a stacked area plot. The 
waterscape dynamic features of Paris, Warsaw, and Washington are 
relatively similar, as can be inferred from the plot, and the six types of 
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evaluation indicators demonstrate balanced distribution on the whole 
and varying in some locations. Among them, the average proportion of 
GVF in the three cities is comparable, about 9%. The proportion of 
greenery rate in these urban waterscapes is not high, but the overall 
distribution is relatively balanced, and the average proportion of WVF 
and SVF in the three cities is very large, exceeding 75%. Paris has a 
slightly greater average share of BVF, HRF, and DF than the other two 
cities, at 4.76%, 5.17%, and 1.21%, respectively. In the other two cities, 

the average share of BVF, HRF, and DF is less than 2%. Boston and 
Minneapolis have a lot of similarities when it comes to their water-
scapes. The average GVF of waterscape in these two cities, for example, 
is very high, reaching 14.91% and 16.27%, respectively, but the for-
mer’s fluctuation in greenery is very noticeable in space, whilst the 
latter’s change is considerably more muted. WVF and SVF share many of 
the same properties, while the spatial change characteristics of Boston 
are significantly lower than those of Minneapolis, the average 

Fig. 3. Examples of water view imagery semantic segmentation performed in the work.  
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proportion of these two sets of features is rather high, and the sum of the 
two is close to 80%. Other factors have proportions and spatial distri-
butions that are similar to those of Warsaw and Washington. The fea-
tures of Amsterdam and Chicago, on the other hand, are vastly different 
from those of the previous places. In Amsterdam and Chicago, the 
average share of SVF is small, at 23.34% and 14.85%, respectively, yet 
there is a noticeable variation in space. Both have a high overall pro-
portion of WVI (47.12% and 43.31%, respectively), as well as a high 
geographical volatility. The average percentage of GVF in Amsterdam is 
roughly 15.65%, which is about three times that of Chicago, and both of 
them fluctuate in space. The same traits may be seen in DF, and 
Amsterdam’s average DF is 2.85%, which is over three times that of 
Chicago (0.97 percent). HRF and BVF, on the other hand, have dia-
metrically opposed features. Amsterdam’s average HRF is only 3.34%, 
which is less than half of Chicago’s (7.82 percent). The average BVF in 
Amsterdam is 6.09%, compared to 22.58% in Chicago; however both 
cities differ substantially in terms of space. Venice has great distinc-
tiveness when compared to other cities’ waterscape features. In Venice, 
there are few trees, and thus, their GVF proportion is tiny (1.14 percent), 
whereas the average ratio of BVF is very high (24.06 percent), with a 
huge spatial variation. Similarly, SVF, HRF, and WVF all display sig-
nificant spatial shifts, although DF’s changing features are less obvious. 
Other cities, on the other hand, exhibit the features that WVF and SVF 
account for a high share of the population on average, and the 
geographical change of six categories of assessment indicators is not 
apparent. 

4.2. Subjective visual perception results 

From the subjective perception result of different cities (Fig. 6), we 
observe that the average scores of 16 cities in safe, lively and beautiful 
are less varied, which are 4.43, 4.21 and 4.34, respectively. Boston has 
the highest average value in the three items (safe, lively, and beautiful), 
followed by Chicago, Amsterdam, Venice and Washington, with an 
average score of more than 5.0. Phnom Penh and Bangkok, on the other 
hand, were ranked last and second to last, respectively, with an average 
score of less than 3.0. Chicago has a very high wealthy value of 6.55, 
followed by Venice, Amsterdam, Tokyo, London, Paris, and San Diego, 
all of which have scores ranging from 4 to 5, while some cities have 
wealthy scores lower than the average of 3.32, including Phnom Penh, 
Warsaw, and Memphis. The average depression score in 16 cities is 3.03, 
with Chicago having the highest value of 5.86, which is significantly 
higher than Tokyo’s (3.89), the second, while Bangkok, Phnom Penh, 
London, and other cities are close behind, with values of 3.89, 3.44, and 
3.40, respectively. Boston (1.52), had the lowest depression score, and 
this demonstrates that its urban waterscape may provide a great sense of 
relaxation, and that individuals will not become depressed as a result. 
Phnom Penh (6.01) had the highest score in boring’s rating, followed by 
Bangkok (5.36) and Memphis (4.95). In contrast, Venice scored the 
lowest, only 2.83, followed by San Diego (2.97), Amsterdam and Boston 
both scored 3.13. 

4.3. Relationship between objective visual analysis and subjective visual 
perception 

Pearson correlation analysis with objective visual analysis indexes 
was applied to validate the multicollinearity of the six indexes, and the 
pairwise comparison matrix of the correlation coefficients based on the 
bilateral significance test is shown in Table 3. The results indicated that 
most of the correlation coefficients of the indices have a low or negative 
correlation, which illustrates that the explanatory variables are rela-
tively independent of each other. 

We analyzed survey responses using a stepwise regression analysis, 
where the mean subjective perception ratings of the 140 scenes were the 
dependent variable, and the CV-based objective evaluation indexes were 
the independent variables. Stepwise regression is a method of fitting Ta
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regression models in which the choice of predictive variables is carried 
out by an automatic procedure, and it can effectively reduce autocor-
relation (Wu et al., 2020). In our study, we used a bidirectional elimi-
nation approach for stepwise regression. 

Table 4 shows the results of regression analysis between subjective 
visual perception and objective visual analysis indicators. We can 
observe the influence degree of visual indicators from the value of betas 
— standardization coefficient and the * implies the significance level. 
Overall, we discovered that different objective visual indicators 
contribute significantly diverse amounts to perceived contents. The 
proportion of HRF and DF, for example, is positively connected with 
‘wealthy’ scores, but SVF and GVF are negatively correlated. GVF has a 
slightly negative influence on ‘wealthy’, whereas SVF has a more sig-
nificant negative impact. This demonstrates how a waterscape with a 
hard revetment and places with more boats and vehicles may easily 
convey a sense of wealth to people, while open places with a high pro-
portion of sky and natural rivers with more vegetation cover, on the 
other hand, will not give a sense of wealth. HRF had a positive impact on 
‘depression’ in this study, whereas SVF and GVF had a negative effect on 
‘depression’ (Wang et al., 2019; Wang et al., 2019). As a result, too much 
artificial hard revetment in the water landscape will not only increase 
people’s perception of prosperity, but also their feeling of ‘depression’. 
Natural variables like SVF and GVF, as well as dynamic factors such as 
boats and cars, can successfully lessen people’s feelings of ‘depression’. 
GVF and DF have a beneficial influence on people’s perceptions of 
‘beautiful’, whereas SVF has a negative impact. Positive of ‘beautiful’ 
contributors include not only green vegetation like trees and grass, but 
also dynamic signs like boats on the water, cars and people along the 
shore. As a result, the beauty of a waterscape is the result of a mix of 
artificial and natural elements. At the same time, we can observe how 
excessive sky visibility or an open waterscape can detract from the 
beauty of the waterscape. This conclusion is remarkably comparable to 
the research by Zhang et al. (2018) and others’ street perception studies. 
People’s sense of safety is also very important for urban waterscape. In 
our research, we can find that BVF, GVF, HRF and DF all have a positive 
impact on the sense of ‘safe’; among them, BVF and GVF have a strong 
positive impact on it. Furthermore, we can see that ‘lively’ is positively 
connected with GVF and DF, but negatively with SVF. ‘Boring’ was 
negatively correlated with DF, WVF, GVF, and BVF, and the influence 
degree of these four factors increased. This emphasizes the relevance of 
riparian vegetation and dynamic objects in improving the waterscape’s 
vitality value. Simultaneously, the combination of these elements plus 
BVF can effectively alleviate waterscape boredom. 

5. Discussion 

5.1. The perspective of water view imagery 

The city’s waterscape is inextricably linked to the lives of its in-
habitants. The area’s diverse sorts of the physical environment will have 
an impact on human feelings, activities, and even physical and mental 
health (Bedla and Halecki, 2021). In the same way that urban streets, 
parks, and community environments have become research directions 
for multiple disciplines, the significance of the built environment’s 
waterscape has been recognized by different fields of research. WVI data 
gives a unique view of urban watercourses from the water-level 
perspective, and it is an important data source for people to under-
stand the waterscapes. It is beneficial for in-depth study of the charac-
teristics of urban waterscape and the design of water tour routes through 
visual perception analysis of WVI data. We used computer vision to 
provide an impartial visual evaluation of the waterscape in 16 cities in 
six aspects in this context. We also employed virtual reality to gather 
people’s subjective perceptions of these waterscapes, such as their 
feelings of safety, liveliness, and boredom when viewing these water 
scenes (Fig. 7). The findings of this research reveal a number of previ-
ously unknown phenomena. Venice and Amsterdam, for example, are 
both in Europe and have well-known canals and water tourism routes. 
There are several parallels and contrasts between the two cities’ water 
features. Venice and Amsterdam are both quite visible in terms of ar-
chitecture and dynamic elements, but there are significant disparities in 
terms of green visibility. Green vegetation is rarely visible on boat tours 
in Venice, but in Amsterdam, on the other hand, greenery is extensive. 
The subjective perceptions evoked by the two cities’ waterscapes are 
strikingly similar. The two cities, for example, are in the top four in 
terms of safety, lively, beauty, and wealth, while their depression scores 
are in the middle. Venice came in bottom place in terms of boredom, 
while Amsterdam came in 12th. The Seine River in Paris and the Thames 
River in London are two of Europe’s most well-known rivers. The two 
metropolitan waterscapes score in the top 7 in terms of architectural 
visibility, the proportion of hard revetment, and the percentage of dy-
namic factors, according to the objective visual evaluation results; Paris 
ranks fifth in green viewing rate, while London ranks tenth. In other 
words, touring on ships cannot see much more vegetation while 
appreciating London’s waterscape. In people’s six subjective percep-
tions, the two cities are almost equally ranked, and not particularly high. 
Furthermore, the waterscapes of Chicago, Phnom Penh, and other cities 
have distinct characteristics, a finding that could have been reached only 
through a global comparative study such as ours. 

5.2. Impact mechanism 

With respect to a related previous study (Li et al., 2021), our research 

Fig. 4. Comparison of the distribution of two example indexes among cities: (a) proportion of SVF; and (b) proportion of GVF.  
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covers a wider range, more cities and richer dimensions of people’s 
subjective perception. This study brings attention to the concept of 
water view imagery, and to an extent, it doubles as a position paper. 
Further, the research quantitatively exposes the relationship between 
the physical environment of water perspectives and the human experi-
ence of the place using regression analysis. Specifically, the green 
viewing rate of on-water perspective, we discovered, has a favourable 
impact on several perceptual indexes such as safety, vitality, and beauty 

of the urban waterscapes. At the same time, the greenery has been 
shown to reduce people’s feelings of depression and boredom, which is 
consistent with the findings of many street view green viewing rates 
studies (Wang et al., 2019; Li et al., 2015; Kang et al., 2020). Therefore, 
it can be demonstrated that the influence of greenery on people’s 
perception applies not only to streetscapes, but also to riverscapes. 
Furthermore, dynamic factors such as boats and cars are linked to 
people’s perceptions of vitality. Our findings reveal that these dynamic 

Fig. 5. Objective visual analysis results of each city.  

J. Luo et al.                                                                                                                                                                                                                                      



Ecological Indicators 145 (2022) 109615

11

elements contribute to a sense of safety and beauty in the waterscapes 
and are positively connected with wealth and adversely correlated with 
depression and boredom. The SVF or openness of the urban waterscape, 
in addition to DF and GVF, is a significant factor. People’s perceptions of 
waterscape liveliness will be considerably diminished if sceneries are 
too open. As a result, improving the vegetation coverage on the river 
bank, attracting ships, cars, and choosing a route with less openness for 
water tourism are all valuable strategies for enhancing the vitality of 
urban waterscapes. Urban inhabitants’ mental health is also a critical 
research topic, and many studies have shown that waterscape can help 
urban residents feel less stressed (Völker et al., 2018; Subiza-Pérez et al., 
2020). More vegetation, more open waterscape and dynamic elements, 
and less hard revetment on the river bank, according to our research, are 
all beneficial to lessening people’s feelings of depression, and this could 
serve as a guide for creating restorative waterscapes and choosing water 
tour routes. Besides, our study samples are sufficiently representative 
because these water areas come from different continents and countries; 
thus, the relationship to perceptions is much clearer than before. In 
essence, people’s feelings toward ground objects are reflected in urban 
perception; therefore, policymakers should pay attention to the visual 
proportion of various ground elements. 

5.3. Limitations, challenges and future directions 

This study faces some challenges and limitations. Firstly, although 
we have found WVI data from dozens of cities, the WVI imagery quality 
of different places varies, and there is still a lack of global sequential 
waterscape photographs with a consistent angle. For example, we could 
not find any WVI panoramic image from South America and Africa on 
different platforms. Some city’s water level panoramic images have 
obstacles, which will have a certain impact on the comprehensive un-
derstanding of the waterscapes. Therefore, although we found a total of 
more than 30 cities with continuous WVI data on the two platforms 
(Table 1), we finally selected only 16 of them as the research areas. Data 
sources have a significant impact on urban waterscape research, but 

Fig. 6. The average subjective perception result of each city.  

Table 3 
Correlation analysis with visual evaluation indexes.   

GVF BVF WVF SVF HRF DF 

GVF 1      
BVF − 0.362** 1     
WVF 0.001 − 0.745** 1    
SVF − 0.189* − 0.754** 0.571** 1   
HRF − 0.023 0.345** − 0.258** − 0.639** 1  
DF − 0.096 0.406** − 0.342** − 0.428** 0.227** 1 

* p<0.05 ** p<0.01  

Table 4 
Stepwise regression analysis results.  

Dependent 
Variables 

Independent 
Variables 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t p VIF R2 Adjusted 
R2 

F 

B Std. 
Error 

Beta 

Wealthy Constant 5.366 0.53 – 10.125 0.000** – 0.601 0.589 F (4,135)=50.856,p =
0.000 GVF − 6.203 1.317 − 0.272 − 4.709 0.000** 1.129 

HRF 18.144 4.33 0.303 4.19 0.000** 1.775 
DF 24.8 10.127 0.151 2.449 0.016* 1.29 
SVF − 6.404 1.167 − 0.443 − 5.486 0.000** 2.204 

Boring Constant 9.389 1.766 – 5.315 0.000** – 0.253 0.23 F (4,135)=11.401,p =
0.000 GVF − 5.466 1.391 − 0.348 − 3.93 0.000** 1.416 

BVF − 5.242 1.246 − 0.572 − 4.206 0.000** 3.343 
WVF − 9.429 3.464 − 0.337 − 2.722 0.007** 2.764 
DF − 31.021 9.223 − 0.275 − 3.363 0.001** 1.204 

Depressing Constant 4.703 0.425 – 11.075 0.000** – 0.613 0.602 F (4,135)=53.534,p =
0.000 GVF − 8.094 1.056 − 0.436 − 7.668 0.000** 1.129 

SVF − 4.411 0.935 − 0.375 − 4.716 0.000** 2.204 
HRF 21.726 3.47 0.446 6.262 0.000** 1.775 
DF − 24.451 8.115 − 0.183 − 3.013 0.003** 1.29 

Beautiful Constant 5.491 0.384 – 14.304 0.000** – 0.326 0.311 F (3,136)=21.883,p =
0.000 GVF 3.695 1.376 0.197 2.685 0.008** 1.08 

SVF − 4.79 0.961 − 0.402 − 4.986 0.000** 1.309 
DF 25.988 10.751 0.192 2.417 0.017* 1.275 

Lively Constant 5.335 0.368 – 14.511 0.000** – 0.398 0.385 F (3,135)=29.799,p =
0.000 GVF 6.009 1.318 0.316 4.557 0.000** 1.081 

SVF − 5.057 0.92 − 0.419 − 5.498 0.000** 1.304 
DF 22.175 10.361 0.161 2.14 0.034* 1.271 

Safe Constant 3.45 0.156 – 22.067 0.000** – 0.389 0.37 F (4,135)=21.447,p =
0.000 GVF 5.982 1.017 0.428 5.881 0.000** 1.17 

BVF 3.69 0.674 0.453 5.474 0.000** 1.51 
HRF 5.527 2.657 0.151 2.08 0.039* 1.162 
DF 14.785 7.449 0.147 1.985 0.049* 1.213  
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Fig. 7. Ranking of objective visual analysis and subjective visual perception of different cities.  
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with the continued expansion of crowdsourcing data, additional study 
options will be available in the near future. Secondly, as it is the case 
with most street view studies, the images may have been taken during 
different seasons. We realized this heterogeneity and verified the images 
of different regions to avoid the study being influenced by seasonal 
changes, such as the difference between winter and summer vegetation 
in high latitudes. Thirdly, this is the first study on the connection be-
tween visual elements in waterscape imagery and human perception at a 
large-scale. Human vision is one of the primary means by which we 
perceive our surroundings. Yet, we acknowledge that human perception 
of the water environment is not solely visual; it is also influenced by the 
culture people experience, the sounds they hear, and the activities they 
engage in, which are difficult to portray through visual imagery (Li 
et al., 2021). The research on human perception of various water 
landscapes may be expanded in the future to include more dimensions 
such as point of interest (POI), soundscape analysis, and so on. In 
addition, as a comprehensive comparative study of multiple cities, this 
study rarely considers the difference of characteristics in different sec-
tions of the same city, and subsequent studies can choose different 
sections of the same river for self-comparison. 

High quality image semantic segmentation dataset is the principal 
fuel of computer vision related research. We collected 500 photographs 
of various types of water features from eight cities on Mapillary and 
labeled them at pixel level. This is the first open semantic segmentation 
dataset from the standpoint of water that we are aware of. With the help 
of this dataset for understanding these water landscapes semantically, 
the findings of this study can be used to directly assist urban waterscape 
design concepts and projects, as well as the selection of water tour routes 
in various cities. Furthermore, using rendering technology, the results of 
this study can be used to analyze the future scenes of an urban water-
scape and predict perceptions of future scenarios. For example, the 
generative adversarial nets (GAN) can be used to show a specified pro-
portion of visual factors in order to establish various urban scenes (Sun 
et al., 2022; Wu and Biljecki, 2022; Wu et al., 2022), as well as to give 
information for the transformation and optimization of the urban water 
areas. This research also paves the way for the enhancement of urban 
digital twins, which may incorporate human perception data into the 
scene knowledge of urban waterscapes and create a two-way coupling 
between the digital system, the physical environment, and human 
perception (Luo et al., 2022). 

6. Conclusion 

Rivers, lakes, bays and other waterscapes in cities are important 
ecological resources. Waterfronts also serve a multitude of purposes, 
including leisure and enjoyment for city dwellers and visitors. Large- 
scale quantitative assessment of waterscape characteristics of different 
areas and measuring human subjective perception of diverse water-
scapes have always been difficult due to a lack of proper data and pro-
cessing technologies. The contributions of this paper are as follows. 

Firstly, this study brings attention to water view imagery (WVI) — a 
counterpart of ground-level street view imagery that is taken on water, 
but unlike its ground-level sibling, it is virtually unknown and not taken 
advantage of. We promote the concept, identify continuous waterscape 
imagery of different cities in Asia, Europe, North America, and Oceania 
using GSV and Mapillary, and assess their characteristics and quality in 
dozens of cities. With the developed methodology and obtained results, 
we demonstrate that they can be used for a particular (and novel) pur-
pose in urban planning. We hope that by giving currency to this kind of 
data, and thanks to the dataset we created and released openly, we will 
witness the development of further use cases relying on this overlooked 
urban dataset. Another contribution is general and to research arena 
relying on street view imagery: to maximise the scope of the study, we 
tap into multiple datasets (Google Street View and Mapillary), which is a 
rarity as virtually all SVI-driven studies use a single data source (Biljecki 
and Ito, 2021). 

Secondly, we apply computer vision technology to analyze the pro-
portion of visual elements in different waterscape photos to understand 
the information of different scenes, achieve the automatic and efficient 
visual analysis of waterscape environments, and quantitatively evaluate 
the objective visual features of 16 cities around the world. One of the 
findings is that some cities have more heterogeneous riverscapes than 
others that tend to be monotonous along the paths we have focused. 
Furthermore, this study used VR equipment to obtain human perception 
results in six dimensions: safe, lively, beautiful, wealthy, depressing, and 
boring, based on a comprehensive survey. 

Finally, it quantitatively analyzes the relationship between the 
objective visual analysis results and the subjective visual perception 
results of different scenes, and discusses the objective visual factors 
affecting human subjective visual perceptions through a regression 
analysis. Specifically, green vegetation can induce positive perception, 
while hard revetment will drive feelings of depression, and perception of 
liveliness will be considerably reduced if the scene is too empty, which is 
compatible with the literature in related fields focusing on other types of 
landscapes. We also discovered that, according to results in SVI studies 
focused on the ground, these relationships have similarities with those of 
streetscapes, such as greenery playing an important role in reducing 
feelings of depression and boredom. 

The findings of this study can be used to promote research and 
practice in urban waterscape design, water transportation routes selec-
tion, as well as demonstrate the utility of employing computer vision to 
do visual evaluations of large-scale waterscapes. At the same time, this 
research may serve as a guide for scholars interested in learning more 
about the objective visual qualities and subjective perception outcomes 
of various urban waterscapes. 
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