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A B S T R A C T

Urban Geography studies forms, social fabrics, and economic structures of cities from a geographic perspective.
Catalysed by the increasingly abundant spatial big data, Urban Geography seeks new models and research
paradigms to explain urban phenomena and address urban issues. Recent years have witnessed significant
advances in spatially-explicit geospatial artificial intelligence (GeoAI), which integrates spatial studies and
AI, primarily focusing on incorporating spatial thinking and concept into deep learning models for urban
studies. This paper provides an overview of techniques and applications of spatially-explicit GeoAI in Urban
Geography based on 581 papers identified using a systematic review approach. We examined and screened
papers in three scopes of Urban Geography (Urban Dynamics, Social Differentiation of Urban Areas, and Social
Sensing) and found that although GeoAI is a trending topic in geography and the applications of deep neural
network-based methods are proliferating, the development of spatially-explicit GeoAI models is still at their
early phase. We identified three challenges of existing models and advised future research direction towards
developing multi-scale explainable spatially-explicit GeoAI. This review paper acquaints beginners with the
basics of GeoAI and state-of-the-art and serve as an inspiration to attract more research in exploring the
potential of spatially-explicit GeoAI in studying the socio-economic dimension of the city and urban life.
1. Introduction

Urban Geography is concerned with the study of cities and ur-
ban life from a geographical perspective (Hall and Barrett, 2012). It
seeks to analyse, explain, and forecast changes in urban forms as well
as the socio-economic structures. As a specialised discipline within
Human Geography, Urban Geography addresses urban issues from po-
litical, socio-economic and ecosystem aspects at various scales (Smelser
et al., 2001). The scientific results of urban studies have increasingly
supported public investment, resource allocations, and urban plan-
ning (Mills, 1967; Thumboo et al., 2003; Oliveira and Pinho, 2010;
Fan et al., 2014; Bukuluki et al., 2020). Facing the rapid speed of
urbanisation and increasingly abundant data, the bigness of cities
often only can be explained through the bigness of data produced
from them (Shelton, 2017). Emerging sources of so-called ‘‘Big Data’’
and revolutionary technologies including high performance computing
(HPC) and Artificial Intelligence (AI) (Li, 2020) enabling new kinds
of discoveries of previously unforeseen knowledge unhampered by
longstanding theoretical approaches.

In the era of ‘‘Big Data’’ (Kitchin, 2014), up to 80% of big data is
‘‘spatial’’ with locational components attached (Leszczynski and Cramp-
ton, 2016). With the advanced development in remote sensors, GPS-
enabled applications and the popularity of mobile devices, as well as
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increasingly affordable data storage and computational technologies,
data are produced from a wide range of disciplines from commercial
business to scientific research and engineering. Such geotagged data
in large volume, high velocity, and abundant variety that exceed the
capacity of current common spatial computing platforms are defined
as spatial big data (SBD) (Jiang, 2016). The recent breakthrough in
machine learning, or more generally AI and more specifically deep
learning, enables a new research paradigm of data-driven science to
analyse, mine, and visualise massive SBD that are difficult to handle
using traditional spatial analysis methods (Li, 2020).

AI is a term frequently applied to machine learning or deep learning
algorithms aiming to simulate the intellectual processes of humans,
for example, the capability of reasoning, meaning discoveries, gener-
alisation, or learning from previous experience. The interplay of AI
and geography is not entirely new. The early thoughts trace back
to 1984 when Smith (1984) first proposed the idea of applying AI-
based techniques in geo-spatial problem-solving tasks. Later in the
90s, Openshaw and Openshaw (1997) published their influential book
entitled ‘‘Artificial Intelligence in Geography’’, which marked the be-
ginning of the Al revolution in geography and prompted the use of
Artificial Neural Networks (ANNs) within the discipline, which later
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formulated the foundations for the research theme of GeoAI. Nowadays,
AI in general, deep learning in particular, have been widely adopted to
address many geographical problems, from spatial object detection for
satellite imagery (Li et al., 2021b; Wu and Biljecki, 2021; Li et al., 2022)
to urban traffic forecasting (Li et al., 2018; Vázquez et al., 2020). It is
important to note that although AI methods may not necessarily refer to
deep learning-based approaches, for the scope of this paper and also to
following the recent trend of GeoAI development within the GIScience
discipline (Zhu et al., 2018; Li, 2020; Janowicz et al., 2020; Mai et al.,
2022), we will focus on papers in which (deep) neural network-based
methods are involved.

GeoAI functions as a promising solution technology for data or
compute-intensive geospatial problems with the help of AI, HPC, and
SBD. Many research projects have successfully applied AI for geospatial
problems by using models and algorithms from computer science with
no or minor modifications (Huang et al., 2018; Pereira et al., 2019; Zhu
et al., 2020a; Wu and Biljecki, 2022). However, such models and algo-
rithms by design do not explicitly adopt locations as parts of the feature
input; thus, they are rather formalised as a one-way direct import from
AI to Geography (Li, 2020; Janowicz et al., 2020). Those conventional
GeoAI methods have been massively contributing to the understanding
of urban issues in the past decade, such as urban function recognition
through remote sensing images (Zhou et al., 2020), understanding
geodemographics of urban and national populations (Singleton and
Longley, 2015; Gale et al., 2016), and urban gentrification (Reades
et al., 2019). However, although the models were applied to the spatial
data, the locational information of the data were not directly used
by the models. Taking unsupervised clustering methods in geodemo-
graphic classifications (Singleton and Longley, 2015; Gale and Longley,
2013) as an example, conventional classification methodologies lack
any explicit use of information on the geospatial context of an area.
The central ‘‘control by aggregation’’ concept of geodemographics (Farr
and Webber, 2001) is usually only applied to data attributes during the
clustering process, without accounting for the geospatial relationships
among area units. That is, conventional clustering algorithms account
only for proximity in the data attribute space but not in the geographic
space. As such, areas are essentially treated independently from their
neighbours. Thus, despite the term, geodemographic classifications
discussed in the academic literature are often a-(geo)spatial in their
mplementations.

Location is a key to synthesising multi-source spatial data and
eographic domain knowledge; spatial concepts contribute to different
ontextual platial understanding (e.g. mobility space and social space),
hich were often neglected in much existing research (Goodchild,
001). Li (2020) emphasised the importance of two-way knowledge
ransfer from both ‘‘AI’’ to ‘‘Geo’’ and ‘‘Geo’’ to ‘‘AI’’, which stressed
he idea of incorporating location and domain-specific spatial concepts
r rules (e.g. the first law of geography) into the AI models (Goodchild,
001; Janowicz et al., 2020). More specifically, spatially-explicit GeoAI
s defined as those models that can satisfy four requirements (Good-
hild, 2001): invariance test (the results of the models are not invariant if
he studied issues are relocated), representation test (spatial representations
f the coordinates, spatial relations, etc.), formulation test (formulations
f the algorithms makes use of spatial concept) and outcome test (the
nput spatial structures are different from the output). As such, spatially-
xplicit GeoAI models straightforwardly adopt locational information
rom the data in the computational process, taking into account spatial
ependence and heterogeneity, to address the ‘‘speciality of spatial’’
n geospatial problems (Gao, 2021). The spatially-explicit GeoAI mod-
ls have proved to outperform traditional non-spatial machine/deep
earning models in many geography-related tasks, such as image classi-
ication (Li et al., 2014; Chen et al., 2022; Ma and Li, 2022), geographic
nowledge graph summarisation (Yan et al., 2019), terrain features
etection (Zhou et al., 2021a), urban ecology (Zhang and Xie, 2022),
rban climate (Yu et al., 2021), geographic question-answering prob-
ems (Mai et al., 2019), and social sensing (Liu and De Sabbata, 2021;
2

in et al., 2021). n
In the existing review papers, an extensive summary of deep neural
etworks in various aspects of Urban Geography is presented in Grek-
usis (2019). The paper broadly covers a wide range of urban geog-
aphy tasks using deep neural networks, from extensive urban land
over change to urban socio-economic studies. However, most papers
eviewed focus on addressing geographic questions using or developing
eep learning techniques with no account of spatial components in
he AI models. Moreover, although the author included the socio-
conomic aspect as one of the themes to review, the paper identifies
clear research gap in utilising socio-economic data to analyse the

ocial dimension of the cities, which, however, should be one of the
ignificant focuses of urban geography studies (Castree et al., 2013).
onsidering that rapid urbanisation often results in substantial changes
f urban socio-economic fabrics (Turok and McGranahan, 2013), more
emanding analysis and interdisciplinary studies using progressively
ophisticated GeoAI methods are necessary in the era of ‘‘Big Data’’ to
ddress complex urban socio-economic issues (Leitner, 1989).

This study fills the gap in the existing reviews where social di-
ensions of the cities are often a neglected topic in (deep learning-

ased) GeoAI-involved quantitative urban studies (Grekousis, 2019)
nd GIScience (Janowicz et al., 2020; Li, 2020; Mai et al., 2022).
herefore, this paper provides a complementary scope of the GeoAI

n Urban Geography, focusing on the development and the use of
patially-explicit GeoAI in studying the socio-geographical dimension
f the city and city life. Urban socio-geographical studies seek to
nderstand the interactions between human and urban spaces and
nvironment on socio-economic levels in the phrase of consistent ur-
an development (Jabareen and Eizenberg, 2021), and how urban
laces are understood through human everyday activities (Agnew and
ivingstone, 2011). Therefore, we follow three independent but also
nterconnected scopes to perform the review:

• Urban Dynamics: includes studies of urban development (e.g.
urban growth/sprawl) and the changing flow of everyday urban
population and socio-economic activities.

• Social Differentiation of Urban Areas: includes studies related to
population demographic analysis (e.g. geodemographics), segre-
gation and social area analysis.

• Social Sensing: includes studies focusing on understanding ur-
ban places described through people’s activities, in particular
with the help of SBD (e.g. social media, volunteered geographic
information).

Fig. 1 illustrates how the three chosen scopes are connected. The
ocial differentiation of urban areas is often a consequence of urban
ynamics (Mack and McElrath, 1964), resulting in different living ex-
eriences for the residents in the cities and influencing how places are
ocially sensed by everyday activities. In turn, such platial understand-
ngs of the inhabitant impact how cities will evolve into (Shao et al.,
021) and the dynamics of the population flows (Guo et al., 2021).
he rest of the paper will briefly introduce deep neural networks and
patially-explicit GeoAI in Section 2; methods used for our systematic
eview in Section 3; the survey and results of the review output in
ection 4, with discussions and conclusions presented in Section 5.

. Deep neural networks and spatially-explicit GeoAI

In this section, we give a brief overview of the topic to readers who
ay not be fully acquainted with the concepts in focus.

.1. Neural networks, GeoAI and location encoding

In the short term, a simple neural network is a mathematical model
ith connections and weights that takes inputs and delivers outputs
s a network of nodes organised in layers. As shown in the right part
neural network in the box of Downstream Tasks) of Fig. 2, the neural

etwork consists of an input layer, an output layer, and two columns



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102936P. Liu and F. Biljecki
Fig. 1. Three connected scopes in urban socio-geographical studies.
Fig. 2. Location Encoding process, which converts locations of spatial objects (SO) into embedding space which can later be adopted in the neural networks for downstream tasks.
This image is a reproduction of Fig. 1 in Mai et al. (2022).
of hidden layers in between. Each layer has nodes called neurons
coupled through connections with initial weights. Through an iterative
process with a feedback mechanism (i.e. back-propagation), the neural
network adjusts the weights to minimise some pre-defined error (i.e.
loss) to satisfy specific termination or stopping criteria so that the
model performance is expected to be increased. The number of neurons
and layers can be modified depending on the complexity of the tasks
or requirements. The more complex the data, the more probable the
neural network will require additional neurons and hidden layers. A
simple neural network can be further developed into a deep neural
network by adding up more layers and neurons.

GeoAI further develops AI-based methods to imitate human percep-
tion in spatial reasoning, and the discoveries of spatial phenomena and
geographic dynamics (Gao, 2021). The trending question of ‘‘why spa-
tial is special’’ (Egenhofer, 1993; Gao, 2021) emphasises the importance
of location, spatial dependence and heterogeneity in the GeoAI, and it
drives spatial thinking and the use of spatial concepts crucial when de-
veloping spatially-explicit AI models (Zhu et al., 2018; Janowicz et al.,
2020). Fig. 3 demonstrates a comparison between a conventional GeoAI
method and a spatially-explicit GeoAI. The key difference between the
two methods is that spatially-explicit GeoAI includes a step of location
encoding so that both the data features and locational information can
be fed into a AI method for the learning tasks.

Location encoding is considered to be an essential step when de-
signing and developing spatially-explicit GeoAI models (Mai et al.,
2022). The general framework is shown in Fig. 2. Location encoding
is designed to represent (or encode) different spatial data types into
3

embedding (dense numerical representations expressed as a vector) so
that deep neural networks can use them. Those spatial data include,
for example, points of interest (PoI), travel trajectories (i.e. polylines),
postcode areas (i.e. polygons), streets and roads (represented by graphs
or networks), or satellite images (i.e. raster). As pointed out by Janow-
icz et al. (2020) and Mai et al. (2022), raster data are easy to be
encoded because the regular grid organisation can be straightforwardly
used by existing models such as convolutional neural networks (CNNs,
example shown in Fig. 4). Recent years have also witnessed a rising
number of sophisticated location encoding methods (e.g. Sinusoidal
location encoders (Qi et al., 2017; Mai et al., 2020), graph encoders (Cai
et al., 2020; Zhao et al., 2022), kernel-based location encoders (Yin
et al., 2019)) to represent locations in other spatial organisations (e.g.
points, graphs) into a high dimensional vector space through which to
incorporate different spatial information (e.g. distance, direction) into
the AI models.

2.2. Towards spatially-explicit GeoAI in urban socio-geographical studies

Mai et al. (2022) provided a comprehensive survey about the cur-
rent landscape of location encoding techniques in GeoAI. As compre-
hensive as their literature review is, they focus on GeoAI models in
a broad scope of the whole discipline of GIScience, which provides
some, however, limited, insights into urban socio-geographics oriented
studies, especially on the studies that have socio-economic perspectives.
Our paper focuses on spatially-explicit GeoAI applications in Urban Ge-
ography, particularly with studies involving human and socio-economic
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Fig. 3. Conventional GeoAI and spatially-explicit GeoAI.
Fig. 4. A typical CNN. The receptive field of a CNN aggregates spatial information from the raster data.
Source: (Satellite image adapted from Jan Norrman, via Wikimedia Commons, CC BY-SA 4.0; CNN adapted
from Aphex34, via Wikimedia Commons, CC BY-SA 4.0.)
aspects in the urban context, which aims to provide a complimentary
scope of how spatial and spatio-temporal components can be included
in GeoAI models addressing urban socio-geographic-related questions.

3. Review methodology

3.1. Overview

For the scope of this review paper, we include the location encoding
concept to identify papers that are spatially-explicit GeoAI models rele-
vant and with a focus on Urban Socio-geographical studies. To keep the
scope reasonable and to avoid simply reviewing the same papers as in
existing studies (Grekousis, 2019; Yang, 2021), we specifically exclude
the GeoAI models that were developed for remote sensing data analysis.
Thus, we focus on models developed or used with vector data (i.e.
points, polylines, polygons and graphs or networks) that are spatially
organised in more irregular formats. As our review paper focuses on
spatially-explicit GeoAI models and applications in Urban Geography
(with the three main scopes defined in Section 1) rather than reviewing
technological innovations of the models, we will not further classify
papers based on the location encoder types which defined in Mai et al.
(2022). Instead, we focus on how authors use or develop those models
and what tasks are they addressing.

We pursued the standard systematic review methodology in the dis-
cipline (Biljecki and Ito, 2021; Berthon et al., 2021; Yap et al., 2022) to
select papers relevant for this review, and the overall workflow for the
paper retrieval is outlined in Fig. 5. We developed applicable keywords
to fetch the initial collection of papers from the Web of Science (WOS)
from which we extracted information. To gather state-of-the-art, we
focused on papers published in the last four years (2018, 2019, 2020,
and 2021). Because the concept of spatially-explicit GeoAI is developed
fairly recently, to ensure that our review is adequately diverse and
4

covers the most spatially-explicit GeoAI models in Urban Geography,
we also included a screening of four academic conferences to se-
lect relevant papers: International Conference on Geographic Information
Science, International Conference on Geocomputation, ACM SIGSPATIAL
International Conference on Advances in Geographic Information System,
The Association of Geographic Information Laboratories in Europe (AGILE).
We only considered long/full papers published in the conference pro-
ceedings in the review because the short papers and abstracts may lack
necessary details of their methods and studies (Scherer and Saldanha,
2019). For papers by the same authors published both in conferences
and journals, we consider only the latter.

3.2. Eligibility criteria

We investigated WOS for all recent publications based on pre-
defined search syntax of keywords to identify an initial collection of
journal papers. The search syntax consists of two sets of keywords. The
first set fetched papers focusing on cities and the urban context, and the
second delineated publications involving deep neural network models.
Their intersection points out the direction of our review.

We set the expression ‘‘Urban* OR City* OR Place* OR Soci* OR
Census* OR Human* OR Population* OR Flow’’ as the first group
of keywords. The asterisk expands the search to include variations
of the key search terms, covering words such as ‘‘Urban areas’’ or
‘‘Place understanding’’. The search syntax broadly covers studies about
the cities’ social or socio-economic dimensions (related to the scopes
defined in Section 1). Because the keywords filtered out at this step
appeared in other domains that are irrelevant to the scope of this review
paper, we further limit the search to the following subject categories in
WOS: Environmental Studies, Geography Physical, Geography, Engineering
Civil, Urban Studies, Regional Urban Planning, Sociology and Social Science

Mathematical Methods.
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Fig. 5. The overall workflow for the systematic review.
The second set of keywords aims to identify articles that use deep
neural networks. We set the keywords as ‘‘GeoAI OR Deep Learning
OR Neural Network OR Embedding’’ for this step. It is important to
note that at this step, we did not only target spatially-explicit models
but to include all papers that involved deep neural networks. This
decision is because we notice the fact that although many papers are
using or developing spatially-explicit GeoAI models (e.g. Liu and De
Sabbata (2021), Zhu et al. (2021)), the authors will only put either
‘‘deep learning’’ or ‘‘GeoAI’’ or ‘‘neural network’’ or all of them in the
keywords to increase the visibility of their research. We included peer-
reviewed papers written in English and published in academic journals
in the selection pool (including early-access papers), finally collecting
581 papers from 2018 to 2021 (the final search was executed in the first
half of 2022). However, as the scope of this review paper focuses on
spatially-explicit GeoAI models, a further screening to decide whether
the papers are within the scope of this study is required.

After obtaining the initial literature pool, we proceeded to select
those relevant for our review manually: we screened the titles, abstracts
and methodologies of papers to assess their relevance. We set up the
following criteria for a paper to be included for this review:

• The (case) study area is an urban or peri-urban region.
• The paper is using or developing neural network-based GeoAI

methods to address social or socio-economic research questions
in the urban context within the scope defined in Section 1 (Urban
Dynamics, Social Differentiation of Urban Areas, and Social Sensing).

• The methods proposed in the study are spatially explicit, which
incorporate the component of location encoding or include spatial
thinking and concepts (spatial dependencies or heterogeneity)
that can address the irregular organisation of the spatial data (as
mentioned in Section 2) in the development of deep learning-
involved models and systems. This criterion is particularly crucial
in this review because although many papers put ‘‘GeoAI’’ as one
of their keywords to draw visibility and attention to their work,
the methods they adopted are non-spatial.

We took forward 22 papers that satisfy the criteria above after
screening the papers in the initial pool. Less than 4% of papers selected
(22 out of 581) show that the development of spatially-explicit GeoAI
in Urban Geography is still in its early phase. In addition, following
the same criteria, we included two papers published in the conference
proceedings. As such, we examined 24 papers, as shown in Table 1.
Detailed survey and analysis of the literature will be presented in
Section 4.
5

Table 1
List of the reviewed papers. (ANN—Artificial Neural Network;
DNN—Deep Neural Network; CNN—Convolutional Neural Network;
GNN—Graph Neural Network; CA—Cellular Automata.).

Paper Methods

Urban Dynamics (urban development)

He et al. (2018) CNN+CA
Xu et al. (2019) ANN+CA
Ou et al. (2019) Autoencoder+CA
Lu et al. (2020) ANN+CA
Zhai et al. (2020) CNN+CA
Rana and Sarkar (2021) ANN+CA
Gantumur et al. (2022)a ANN+CA

Urban Dynamics (urban population flows)

Zhang and Cheng (2019) CNN
Huang (2019) GNN
Yao et al. (2020) GNN
Zhang and Cheng (2020) GNN
Hu et al. (2021) GNN
Yang et al. (2021) GNN
Liu et al. (2021b) GNN
Xia et al. (2021) GNN
Li et al. (2021a) GNN
Zhu et al. (2022)a GNN

Social Differentiation of Urban Areas

Gervasoni et al. (2018) CNN
De Sabbata and Liu (2019) Geoconvolution+DNN
Monteiro et al. (2019) CNN
Zhang et al. (2021) CNN

Social Sensing

Zhu et al. (2020b) GNN
Liu and De Sabbata (2021) GNN
Zhu et al. (2021) GNN

aIndicates early access.

4. A survey on literature

4.1. Spatially-explicit GeoAI for urban dynamics

Urban dynamics seeks to evaluate the main components initiating
or being influenced by changes in urban areas. Among the numerous
factors impacting urban dynamics, the dynamics of urban development
(e.g. growth/sprawl) (Docampo, 2014), and the everyday transporta-
tion or travel activities of the population in the cities (Manley et al.,
2018) are of high significance. The former focuses on a long-term
temporal urban change, while the latter studies the more recent dy-
namics with a high temporal resolution. Urban development is or
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can be a spatial process (Sanders and Sanders, 2004), whereby once
an area changes, neighbouring areas can be affected by that process
independently or in conjunction with other factors. Research study-
ing the process of urban development and changes using machine
learning models indicates that the model performance can be en-
hanced by adding spatial components into the model (e.g. Reades et al.
(2019), Rigolon and Németh (2019)), which suggests the potential of
developing spatially-explicit GeoAI models.

The change in land-use patterns has long been a vital proxy to show
and predict urban development. Cellular automata (CA), a set of early-
stage AI methods (from the 1980s) (Gao, 2021) with the ability to
simulate urban development through a set of transition rules among
neighbourhoods and parameters (i.e. driving factors), has been widely
adopted within urban-related studies (Noszczyk, 2019). In recent years,
numerous research seeks the possibility of integrating neural network-
based methods mining suitable transition rules for the CA models better
to simulate the urban development or growth process (see Table 1,
under Urban Dynamics (urban development)) (He et al., 2018; Ou et al.,
2019; Xu et al., 2019; Lu et al., 2020; Zhai et al., 2020; Rana and Sarkar,
2021; Gantumur et al., 2022), incorporating socio-economic indicators
(e.g. accessibility to the point of interests, the spatial distribution of
infrastructures). CA-based models simulate the urban changes at the
(pre-defined) neighbourhoods levels, which take the locations of each
area into account; thus, the neural network-integrated methods are
naturally spatially-explicit. However, it is important to notice that most
research only adopted neural networks (e.g. multi-layer artificial neural
networks, unsupervised autoencoder) (Ou et al., 2019; Xu et al., 2019;
Lu et al., 2020; Rana and Sarkar, 2021; Gantumur et al., 2022) for min-
ing transition rules for the CA. They treated each area independently
rather than taking the spatial dependency (e.g. distance, directions
of the changes) of areas into the model; thus, the neural networks
they used did not have the step of location encoding for the study
areas. He et al. (2018) and Zhai et al. (2020) tried to incorporate spatial
dependency of the areas by using convolutional neural networks (CNN).
However, the receptive field used by CNN as grids to aggregate spatial
information failed to address the irregular and complex structures of
the spatial data. However, given the complexity of urban development
and the spatial dependency and heterogeneity of the spatial compo-
nents and objects involved (Longley and Tobón, 2004), we fail to see
many spatially-explicit GeoAI models developed other than the CA and
neural network-integrated methods.

In contrast, the studies on urban population flows have attracted
a wider interest in developing spatially-explicit GeoAI models. They
often fall into the discipline of Transportation, which heavily involves
traffic analysis (e.g. traffic congestion and prediction, road planning
and optimisation and traffic speed) and optimisation, which is not
within the scope of this review. Comprehensive reviews can be found
in (Do et al., 2019; Tedjopurnomo et al., 2020; Liu and Tan, 2021; Jiang
and Luo, 2021). Instead, we focus on reviewing papers that analyse the
implication of everyday urban population flows with spatially-explicit
GeoAI models on the urban environment understanding, which may
eventually improve urban life (e.g. crime reduction, green sustainable
development).

Travel patterns and the travel mode choice is a valuable proxy
to indicate urban socio-demographics (Lu and Pas, 1999; Xie et al.,
2016). Zhang and Cheng (2019) introduced an approach that adopted
smart card data (SCD) and a household survey, using a proposed CNN-
based method, to predict a passenger’s employment status. First, the
passenger’s weekly travel patterns (classified in different modes) were
extracted from the raw SCD into a three-dimensional image. In other
words, the temporal travel patterns between destinations are converted
into an image-like tensor representation which later is used for the
downstream classification task. Then, a thresholding multi-channel
CNN was introduced to infer an individual’s employment status. In this
6

study, the temporal patterns of travel behaviours were the focus of
the encoding phase, while the tensor only inherently represented geo-
locations of travel destinations; thus, the deep learning model presented
was not a spatially-explicit GeoAI defined in this review paper per
se. However, the efforts to develop such a model that could incor-
porate spatio-temporal information into a deep learning model were
nevertheless innovative and inspirational, which can be considered
an early effort in developing a spatially-explicit GeoAI model. Such
methods have proved to be practically helpful, and the authors later
employed similar methods to study geodemographics (which also link
to the discussion in Section 4.2) (Zhang et al., 2020), and urban traffic
flows (Ren et al., 2020).

Meanwhile, we have witnessed the vast majority of research incor-
porating spatial and spatio-temporal information of the urban crowd
flows and people’s everyday activities into their deep learning model
using graph representations (Mai et al., 2022), especially after the
recent proliferation of graph neural networks (GNNs) (Wu et al., 2020).
Graph neural networks handle the input of graph representation as
an adjacency matrix that can straightforwardly encode each spatial
object’s location as a node and the spatial dependency of the nodes as
links (see example in Fig. 6). In addition, the extensibility of GNNs to ei-
ther integrate with neural networks that can handle temporal variations
(e.g. LSTMs) or build a gated attention module in the networks offers
the possibility to include temporal information in the model, which
can greatly benefit the studies of urban dynamics. Huang (2019), Yao
et al. (2020), Liu et al. (2021b), Yang et al. (2021), Xia et al. (2021),
Li et al. (2021a) (see Table 1, under Urban Dynamics (urban population
flows)) adopted and developed graph-based neural networks to analyse
crowd flows that can be performed on much downstream analysis
based on the graph representations of street networks (e.g. bus lines)
or irregular structure of mobile data flows, such as human activity
community identification, everyday travel patterns analysis, etc. In
particular, Huang (2019), Yao et al. (2020), Li et al. (2021a) encode the
crowd flow analysis as a static graph which encodes the direction and
locations of the destination while Liu et al. (2021b), Yang et al. (2021),
Xia et al. (2021) additionally incorporate the temporal variations of
the population flows. Zhang and Cheng (2020), Zhu et al. (2022) can
be considered a practical use of GNNs to address urban issues (i.e.
regional crime forecast) with dynamic human activities datasets, which
reinforces the importance of spatio-temporal information incorporation
in the model.

4.2. Spatially-explicit GeoAI for social differentiation of urban areas

The rapid urban development process not only changes the scale
of the urban spatial organisation but also leads to an alteration in
the social organisation of people’s activities, which consequently re-
sults in the evident clustering of groups of people sharing similar
socio-economic characteristics (as well as ethnics and cultures) into
particular parts of the cities. Those spatial clusters were famously
(although controversially) described as ‘‘ghettos’’ (Van Liempt, 2011;
Walks, 2020) and have long been observed in many metropolitan and
economically active cities. Therefore, the social differentiation (e.g.
population demographics, segregation) of areas is often a consequence
of the urban development and growth (i.e. urbanisation) (Mack and
McElrath, 1964).

Geodemographic classification, socio-economic characterisation, and
quantitatively learning segregation are often a way to study such
systems of differentiation at the urban or national scale. Those meth-
ods are often created to summarise indicators for small areas’ (e.g.
pre-defined neighbourhoods) socio-economic, demographic and built-
environment characteristics (Harris et al., 2005), and have been heavily
relied on the clustering methods (e.g. k-means clustering (Singleton
and Longley, 2015; Gale et al., 2016)) or shadow (one-layer) neural
network (e.g. self-organising map (Olteanu et al., 2020)). Although
some research investigated the possibility of using street view images

with computer vision techniques to analyse the social differentiation



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102936P. Liu and F. Biljecki
Fig. 6. A typical GNN, inspired by Zhu et al. (2021). Graph convolution, in general, is defined as a filter moving over the graph’s nodes. It determines the area captured by the
filter by screening through the adjacency matrix. An intuitive understanding of the convolution process is for each node in the graph, and the graph convolution will aggregate the
information from its connected neighbours. By propagating through the hidden layers, GNN is able to produce useful feature representations of nodes in the graph, thus benefits
further downstream tasks, such as classification, link prediction or the generation of graph embeddings. The illustration contains a base map from OpenStreetMap, under CC BY-SA.
of urban areas (Gebru et al., 2017), those methods are considered as a
direct import from AI to geography (as mentioned in Section 1), and
they are out of the scope of this review paper. Limited research has
applied or developed deep learning-based spatially-explicit methods to
those topics.

As outlined in Table 1 (Social Differentiation of Urban Areas), CNNs
have been identified as a primary tool used for research exploring
the potential of AI-based methods on social differentiation of urban
areas (Gervasoni et al., 2018; Monteiro et al., 2019; Zhang et al., 2021).
However, as discussed previously in Section 4.1, the receptive field
used by CNN as grids requires spatial data in the organisation of grids
leading to a failure to address the irregular and complex structures
of the spatial data, in particular, the neighbouring effect of the small
areas (Reades et al., 2019). De Sabbata and Liu (2019) is the only paper
that occurred trying to incorporate the spatial information into the deep
learning models to analyse the small areas of social differentiation.
They proposed the idea of ‘‘geographic convolution’’ (geoconvolution)
to explore the potential contribution of geo-spatial patterns in creating
geodemographic classifications, example output is shown in Fig. 7.
Geoconvolution is defined by including neighbourhood averages of the
features (input values, pre-processed census data) representing area
objects in the learning process. However, geoconvolution is a compu-
tationally heavy approach, and preliminary results do not demonstrate
a clear advantage in implementing geoconvolution.

The lack of research on spatially-explicit GeoAI models in quanti-
tatively studying the urban social differentiation is for many reasons,
for example, the lack of consistently updated in-situ data (Gale and
Longley, 2013; Gray et al., 2019), the debate of quantitative–qualitative
divisions (Bryman, 2003; Morgan, 2013). However, the increasingly
abundant SBD (e.g. SCD as mentioned in Zhang et al. (2020)) is
nevertheless seeking new models and research paradigms to address
such a limitation.

4.3. Spatially-explicit GeoAI for social sensing

The urbanisation and the resulting social differentiation of urban
areas can lead to different living experiences for the residents in the
cities. Analysing how places are perceived and represented is crucial
to interpreting the underlying social and spatial practices involved
with enriched human activities such as political, social and economic
activities in space. The analysis of human conceptualisations of the
space often involves categorisations of some kind. Such summarisation
and categorisation processes of representative geographical phenomena
inform us of the understanding of socio-spatial practices in the places
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of a given space. Thus, understanding the representation of place is
a central problem in geographical studies (Purves et al., 2019), and
in particular crucial for Urban Geography studies (Short, 2017). Place
representation has a strong connection with information science and
information systems (Purves et al., 2019), and it often refers to the
overall information presented in an area with a given dataset (Ballatore
and De Sabbata, 2018). According to Graham et al. (2015), ‘information
has always had geography. It is from somewhere; about somewhere;
it evolves and is transformed somewhere; it is mediated by networks,
infrastructures, and technologies: all of which exist in physical, material
places’. In the past two decades, thanks to the development of digital
devices and the world wide web, human society has witnessed a radical
change in the information availability; such phenomena are termed as
‘‘information revolution’’ (Floridi, 2014) or ‘‘data revolution’’ (Kitchin,
2014). Although there remain concerns regarding the bias of human
participation on the Internet due to uneven geographies of the ICT
access (Graham et al., 2014), Fuchs (2008) and Shirky (2010) suggest
that the digitally mediated participation allows residents to play a more
pivotal role in creating and shaping the content and augmentations for
place understanding.

Given the proliferation of digital platforms and the increasing
amount of data production of activity-related user-generated content
(UGC), numerous research has adopted AI-based methods, particularly
deep neural networks, to study the places of spaces through UGC
production (Verma et al., 2018; Kang et al., 2021), or to monitor social
events and natural harassment (Frias-Martinez and Frias-Martinez,
2014; Sechelea et al., 2016; Zahra et al., 2017). Many of the research
apply deep neural networks on geo-referenced text (Hu et al., 2019;
Liu et al., 2022) or images (Jones et al., 2018; Zhang et al., 2018;
Kruse et al., 2021) to understand the semantics and activities of human
everyday life and the places, and a comprehensive survey can be
found in Janowicz et al. (2020), Liu et al. (2021a). However, research
towards spatially-explicit GeoAI model development using UGC to
study residents’ activities and urban places is still at an early phase.
As shown in Table 1 (Social Sensing), Liu and De Sabbata (2021) by
far is the only research that occurred using the GNN-based method
to encode text and image of social media posts as nodes and the
spatio-temporal distances among the posts as graphs to classify the
activity types of users at the urban scale. Their research shows that
spatio-temporal information can benefit activity learning through a
quantitative model and proves a clear advantage of spatially-explicit
GeoAI modes compared with conventional AI-based methods. Zhu et al.
(2020b) introduced a GNN-based approach incorporating the spatial
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Fig. 7. Geodemographic classification comparisons between Gale et al. (2016) and the geoconvolution model’s output in Leicester, United Kingdom.
Source: Image adopted from De Sabbata and Liu (2019).
Fig. 8. An example of quantifying place characteristics in urban areas using spatially-explicit GeoAI approach (i.e. GNN).
Source: Image adopted from Zhu et al. (2020b).
connections among places (the delineated places based on point-of-
interest data) to quantify place characteristics using both street view
images and check-in activities from social media, which is a typical
example of studies contributing to the quantitative understanding of ur-
ban places (Fig. 8). The authors later proposed a spatial regression GNN
to address various geographical questions where regression modelling
and predictions are needed for multivariate spatial data (Zhu et al.,
2021). The authors validated their model using check-in activities from
social media, and they proved that the spatially-explicit GeoAI model,
8

which incorporates conventional concepts of spatial analysis techniques
(i.e. geographically weighted regression), has a tremendous potential
in studying distribution patterns of everyday human activities; thus,
contributing to the study of urban places.

5. Discussion and conclusions

The purpose of this review was to summarise the scope and essence
of spatially-explicit deep learning models in Urban Geography topics,
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in particular focusing on the socio-economic aspects, such as urban
dynamics (e.g. urban growth, population flow analysis), social differ-
entiation of urban areas and social sensing, allowing common threads
to emerge. Embracing the recent trend of ‘‘AI for social good’’ (Tomašev
et al., 2020), it is important to notice that we have chosen a somewhat
specific scope of this study by reviewing papers that only use or
develop spatially-explicit models for the research to analyse the social
dimension of urban issues; thus, bridging the gap between the existing
literature that motivated by the engineering-driven urban questions
(e.g. Transportation, Construction) (Ma et al., 2019; Razavi, 2021;
Khallaf and Khallaf, 2021; Kumar and Raubal, 2021) and urban socio-
geographical studies. Pioneer reviews focused on reviewing the use of
AI-based methods in Urban Geography in general (Grekousis, 2019),
we are rather looking at papers using or developing spatially-explicit
GeoAI methods, which is currently a new and trending research topic
in Geography.

As a trending topic within Geography, the development and the use
of spatially-explicit GeoAI models in Urban Geography are in their early
phases even though the use of AI-based methods has been proliferated.
It is identified by the fact that we started from a literature pool with
581 papers between 2018 and 2021 but only 22 papers were selected
for the final reviewing process. This is not only because the use of
GeoAI is still a relatively new field in geography but also because the
social dimension of Urban Geography traditionally is often conducted
through qualitative and resource-intensive approaches. However, the
digital revolution of the spatial phenomena with a vast amount of SDB
production daily requires researchers to seek new research methods to
address urban issues.

As also pointed out by the previous review papers (Janowicz et al.,
2020; Li, 2020; Mai et al., 2022), graph representations of the spa-
tial data have opened up the opportunities to encode spatial and
spatio-temporal information intuitively, especially facing the irregular
structures of spatial data in nature so that the GNNs can handle such
data formats directly or injunctions with other methods. The papers
we reviewed also highlight the importance of incorporating a spatial
component in the graph-based deep learning models, thus, setting forth
the future research directions and objectives to devise spatial models.

However, there are some limitations rooted in the nature of such
research:

• Data: the development of deep learning-based methods requires
abundant and high-quality data. Traditionally, urban research
heavily relied on coarse aggregate statistics (often published
by the official channels, e.g. census) and smaller-scale surveys
(Glaeser et al., 2018). Although those data are high in quality
and spatial resolution, they are collected periodically (e.g. census
data are collected every ten years). As noted in Section 4.2, the
lack of consistently updated in-situ data is a barrier to developing
quantitative GeoAI models to understand or predict short-term
and long-term urban social differentiation. Nowadays, the in-
creasingly accessible SBD, particularly UGC, serves as a crucial
data source for urban studies. However, such data are produced
voluntarily by the web or application users. The uncontrolled data
quality and uneven representation of the population (e.g. social
media users in London tend to be wealthy, young and edu-
cated) (Ballatore and De Sabbata, 2018) are critical issues not
only for the development of GeoAI models but also introducing
bias in the interpretations of the results (Graham et al., 2014).

• Scale: scale is a missing point which was not explicitly discussed
in most of the research reviewed in this paper except Zhu et al.
(2020b). The research was claimed to be conducted at the neigh-
bourhood or small areas level. However, the choice and the
impact of the neighbourhood size remain inadequately discussed.
The lack of in-depth discussion of the scale issue is in particular
problematic for studies that use CA-based methods where the
variation of the geographical size could heavily impact the model
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performances (Li et al., 2020).
• Modifiable Areal Unit Problem (MAUP): MAUP is the statistical
bias that can affect the hypothesis tests’ results immensely. MAUP
affects results when spatial phenomena in the form of point-
based measures are aggregated into districts, and the consequent
summary values, such as totals, proportions, and densities, are
impacted by the aggregation unit’ shape and scale (Wong, 2004).
The MAUP are generally an issue for location encoding methods
using CNNs which require socio-economic data organised and
aggregated in the format of grids.

• Deep learning as black box: although many of existing research in
this paper have proven the deep learning-based GeoAI approaches
in spatial analysis useful, other researchers are criticising deep
learning for creating models that are black boxes. Therefore, the
models produce results but do not explain phenomena, and some-
times cannot be examined (Krishnan, 2019). Such a limitation
heavily impacts the use of GeoAI in modelling urban changes,
where the explanation of which factors correlates to the changes
are often needed. Moreover, the uncertainties within the data
can propagate through the learning process of the models and
further impact the accuracy of the results (Xing and Sieber, 2018).
The deep learning-based models developed and adopted in the
papers that we reviewed are still in the face of such a ‘‘black box’’
issue, which impacts the confidence in models’ output and leads
to uncertainties in the results.

Inspired by the recent development of Explainable AI (XAI) (Zhou
et al., 2021b), we argue those limitations bring up a new research
direction that multi-scale explainable spatially-explicit GeoAI models
should be developed to address urban issues. Meanwhile, we have
also witnessed the use of GeoAI models and spatial data in other
domains, for example, Architecture. These research lines often integrate
data collected from qualitative experiment-based methods investigat-
ing the interaction between human and the built environment into
the model development (Abdelrahman et al., 2022; Abdelrahman and
Miller, 2022), which have proved to be effective in improving model
performance. Thus, we argue that the future development of GeoAI in
quantitative urban socio-geographical studies could also use qualitative
methods (e.g. walking interviews) to capture the interaction between
human and urban spaces to better study the socio-economic aspects
of city life. This paper provides a complementary scope of the GeoAI
in Urban Geography, and we hope it will encourage more studies
exploring spatially-explicit GeoAI models to analyse the social and
socio-economic problems in the urban context.
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