
International Journal of Applied Earth Observations and Geoinformation 115 (2022) 103094

1

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

journal homepage: www.elsevier.com/locate/jag

A comprehensive framework for evaluating the quality of street view imagery
Yujun Hou a, Filip Biljecki a,b,∗

a Department of Architecture, National University of Singapore, Singapore
b Department of Real Estate, National University of Singapore, Singapore

A R T I C L E I N F O

Keywords:
Street-level imagery
Crowdsourcing
Geospatial data
Quality assessment framework
Heterogeneity

A B S T R A C T

Street view imagery (SVI) is increasingly in competition with traditional remote sensing sources and assuming
its domination in myriads of studies, mainly thanks to the omnipresence of commercial services such as Google
Street View. Similar to other spatial data, SVI may be of variable quality and burdened with a variety of errors.
Recently, this concern has been amplified with the rise of volunteered SVI such as Mapillary and KartaView,
which – akin to other instances of Volunteered Geographic Information (VGI) – are of heterogeneous quality.
However, unlike with many other forms of spatial data, there has not been much discussion about the quality
of SVI datasets, let alone a standard and mechanism to assess them. Further, current spatial data quality
standards are not entirely applicable to SVI due to its particularities. Following a multi-pronged method, we
establish a comprehensive framework for describing and assessing the quality of SVI. We present a categorised
set of 48 elements that suggest the quality of imagery and associated data such as geographic information and
metadata. The framework is applicable to any source of SVI, including both commercial and crowdsourcing
services. In the implementation, which we release open-source, we assess several quality elements of SVI
datasets across 9 cities. The results expose varying quality of SVI and affirm the importance of the work.
Given the exponential volume of studies taking advantage of SVI, but largely overlooking quality aspects, this
work is a timely contribution that will benefit data providers, contributors, and users. It may also be applied
on other forms of image-based VGI, and underpin establishing a formal international standard in the future.
On a broader perspective, while providing an overdue definition of SVI, this work also reveals issues and open
questions that impede delineating and assessing this diverse form of urban and terrestrial imagery.
1. Introduction

In recent years, street view imagery (SVI) has become an increas-
ingly prevalent and important source of ground-level geographic in-
formation, adding to the variety of datasets that describe the complex
and ever-changing urban environment (Kang et al., 2018; Ma et al.,
2019; Laumer et al., 2020; Mahabir et al., 2020; Biljecki and Ito,
2021; Yin et al., 2021). While initially engaged mostly for viewing
urban landscape, navigation, and qualitative assessment of the physical
environment, recent advances in image processing technologies such
as computer vision led to SVI being increasingly used for quantitative
research (Biljecki and Ito, 2021). A multitude of applications based
on SVI have emerged, touching on a wide range of domains including
spatial data infrastructure (Yin et al., 2021; Hosseini et al., 2022; Ning
et al., 2022a), urban health (Kang et al., 2020), built environment
quality (Li et al., 2021b), urban activities (Zhang et al., 2020; Yao
et al., 2021; Hawes et al., 2022), urban change (Naik et al., 2017; Byun
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and Kim, 2022), urban mobility (Zhang et al., 2019; Li et al., 2022),
urban perception (Dubey et al., 2016; Kruse et al., 2021; Guan et al.,
2022; Inoue et al., 2022; Qiu et al., 2022; Wei et al., 2022), urban
climate (Ignatius et al., 2022), flood vulnerability assessment (Ning
et al., 2022b), transportation (Wang et al., 2022), energy (Sun et al.,
2022), safety (HE et al., 2022), building risk assessment (Pelizari
et al., 2021), greenery (Branson et al., 2018), 3D reconstruction (Pang
and Biljecki, 2022), geo-localisation (Cheng et al., 2018), geospatial
artificial intelligence (Liu and Biljecki, 2022) and so on.

SVI is available through both commercial and crowdsourcing ser-
vices. Well-known commercial SVI services (e.g. Google Street View)
rely on systematic and standardised data acquisition approaches and
cover about 100 countries. Crowdsourcing services have appeared as
well, giving rise to volunteered street view imagery (VSVI) (Mahabir
et al., 2020). These are prominently Mapillary and KartaView, which
embrace a different model — images are irregularly contributed by a
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decentralised network of volunteers around the world, akin to other
forms of Volunteered Geographic Information (VGI), and the uploaded
images are free and open for anyone to use. Other than commercial
SVI and VSVI, some researchers opt for own data collection for various
reasons, e.g. to have imagery from a specific time of the day or weather
season, to maintain consistency, and acquire imagery from study areas
that are not covered by commercial or crowdsourcing services (Peng
et al., 2018; Verma et al., 2019; Ao et al., 2019; Bochkarev and
Smirnov, 2019; Gorgul et al., 2019; He et al., 2020; Wang et al., 2021;
Ogawa et al., 2021; Kim and Lee, 2022).

While SVI arguably achieved the status of a key geospatial dataset
and its importance across dozens of use cases shows no sign of waning,
quality has surprisingly not been much subject of research. The main
research gap is that, despite spatial data quality playing a prominent
role in remote sensing, VGI, and spatial data infrastructures (SDI), there
has been no quality standard that establishes quality elements of SVI
and enables their assessment.

Further, the recent traction of VSVI has catalysed an increasingly
pressing need to address the aforementioned lack of a quality standard
for SVI, as its data quality inevitably becomes more heterogeneous
following the expansion of volunteered data. For example, Mapillary,1

prominent platform to provide VSVI, currently has more than 1.5
illion images gathered since its public inception in early 2014 (Juhász
nd Hochmair, 2016). However, similar to other forms of VGI (Good-
hild, 2007), VSVI data are heterogeneous in quality and suffer from
ssues such as inaccuracy, incompleteness, and inconsistency. While
ata quality challenges for the conventional types of VGI (e.g. Open-
treetMap, Flickr images, geotagged tweets, etc.) have been extensively
iscussed in literature (Goodchild, 2007; Haklay, 2010; Goodchild and
i, 2012; Keßler and de Groot, 2013; Ali and Schmid, 2014; Barron
t al., 2014; Antoniou and Skopeliti, 2015; Fonte et al., 2017; Jonietz
t al., 2017; Langley et al., 2017; Senaratne et al., 2017; Seto et al.,
020; Biljecki, 2020; Yan et al., 2020), VSVI presents as one emerging
nd distinct form of VGI with its own unique data quality challenges,
hich have rarely been addressed in the literature. Although some

tudies have examined the completeness and user contribution patterns
f VSVI (Juhász and Hochmair, 2016; Ma et al., 2019; Quinn and
lvarez León, 2019; Mahabir et al., 2020), there still lacks a com-
rehensive framework to address thoroughly the various data quality
hallenges found in VSVI, together with the properties of imagery. This
opic is also important because such errors can propagate and affect
ownstream analyses and applications.

Fig. 1 illustrates an example of multiple issues and properties of
VI, and how further use may be affected by these, similar to the topic
f error propagation with other types of spatial data (Ranacher et al.,
016; Bruno and Roncella, 2019; Mocnik and Westerholt, 2021). First,
n image (A) may be blurry and of poor quality, leading to unreliable
nalyses. Second, in an image (E) collected by another contributor on
he same road, the sight of roadside greenery is obstructed by a vehicle,
nd when such image is processed (i.e. image segmentation; see G) and
sed in an analysis (e.g. estimation of the amount of visible greenery,
common application of SVI), it may lead to underestimation (cf.

he adequate image D taken at the same location as E and segmented
F)). Note that this influence is subject to the application scenario —
or example, if the application is identifying vehicle types (instead of
stimating the amount of visible greenery), the vehicle in (E) would
robably not be considered obstructing. Third, the image A is lateral
nd non-panoramic, not facing the front view of the road as it is in
ore common cases (see D and E), but such information is not always

vailable in the metadata, which is potentially consequential when used
n automated analyses in which such imagery is not expected. Further,
t is important to understand the timeliness and positional accuracy (see

and C) of the data to establish its fitness for purpose.

1 https://www.mapillary.com/
2

In this paper, we comprehensively discuss the topic of quality of
SVI and propose a framework to define its quality-related properties. In
practice, the specific types and combinations of quality issues encoun-
tered by SVI users could differ depending on the application scenario.
Thus, while the framework is comprehensive, it is also designed to be
general such that it can be tailored flexibly when applied to specific sce-
narios. The framework has several benefits, e.g. establishing a common
and formalised understanding for SVI quality, facilitating the evalua-
tion of ‘fitness for purpose’ of an SVI dataset, and enabling comparative
quality analyses for different datasets and geographies. Further, in
our overarching paper we define SVI to facilitate the discourse on
quality, provide examples of the implementation of the framework,
and discuss potential applications of the framework in practice to
address SVI quality. While our work is motivated by heterogeneous
VSVI, it is generic, applicable to any SVI source including commercial
services. The framework serves as an overview guide and can be
tailored and applied with flexibility to different application scenarios,
as understandably, the quality issues faced in different scenarios could
be different.

2. Background and related work

2.1. Availability, collection, and uses of SVI

Discussing the quality of SVI first requires an overall understanding
of how the data is collected and used. The former reveals potential
sources of uncertainty, while the latter indicates the potential ways for
quality issues to affect usability.

Google Street View (GSV) is the most frequently used data source
for SVI-based urban studies (Biljecki and Ito, 2021), unsurprisingly
given its prevalence around the world. GSV images are collected in
a standardised way: car-mounted panoramic camera systems are used
for capturing public drivable roads; and in some areas, backpack-
mounted cameras are used to supplement the coverage of narrow paths,
especially those within landmarks and open spaces (e.g. public parks),
as well as certain indoor spaces (Anguelov et al., 2010). Moreover,
images are usually collected in the daytime and under good weather
and lighting conditions, and they tend to be consistent in coverage,
following an all-or-nothing approach (Quinn and Alvarez León, 2019).
In some countries in which GSV is not available, e.g. China, similar
services have emerged, e.g. Tencent Street View or Baidu Total View.

In contrast, Mapillary and KartaView have surfaced as popular
VSVI platforms. The images are captured in various weather condi-
tions, seasons and times of the day, using different imaging devices
(e.g. mobile phones, tablets, action cameras, professional capturing
rigs, etc.), and by differently experienced contributors (Neuhold et al.,
2017). Such diversity leads to heterogeneous quality. The intermittent
nature of contribution also means that coverage is not consistent, both
geographically and temporally.

Researchers have employed SVI for various use cases, such as en-
riching spatial data infrastructure, assessing urban health, understand-
ing urban perception, analysing transportation, estimating urban green-
ery and so on (Biljecki and Ito, 2021). Most of these studies involved,
as an essential part of their methodology, extracting relevant features
from the images (either manually or automatically using computer
vision), and subsequently using these features together with the im-
age metadata (e.g. location, time of capture) or other datasets (e.g.
socioeconomic data) for further analysis. For example, in numerous
walkability and bikeability studies, researchers have utilised SVI in
place of field assessments to detect the relevant physical environment
features; subsequently, these features were used to evaluate acces-
sibility (Hara et al., 2012, 2015; Ito and Biljecki, 2021), inventory
walking or cycling infrastructure (Ferster et al., 2020; Ding et al., 2021;
Venkatesh et al., 2021; Kang et al., 2021; Ning et al., 2022a), or study
how perceived walkability affects health (Wang et al., 2019; Zhou et al.,
2019). Thus, conceivably, aspects including but not limited to image
quality, spatial coverage, timeliness, and metadata availability are key

to the quality of SVI and can affect its usability.

https://www.mapillary.com/
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Fig. 1. Examples of some quality issues and characteristics of SVI. In our work, we provide a comprehensive series of quality elements and establish a framework to characterise
the properties of SVI. Many of the quality aspects will have an adverse affect (i.e. error propagation) on a spatial analysis (e.g. obstructions may affect the estimation of greenery
in streetscapes).
Source: A, D, E, F, G — downloaded from Mapillary and processed; B, C — OpenStreetMap contributors.
2.2. SVI quality challenges documented in research

Here we have reviewed and gathered various prominent quality
challenges faced in SVI-driven research, which we adopt in our frame-
work.

Image quality. Common issues include poor lighting conditions, blur-
riness and variable weather conditions, and in some cases, outdoor
images could be mixed with indoor images such as those taken inside
tunnels and shops, making it difficult to select the suitable images for a
use case (Li et al., 2018; Law et al., 2019; Lauko et al., 2020; Miranda
et al., 2020). A significant amount of distortion could be present in
some images, especially those with equirectangular projection. Using
these images directly without correction for geometric measurements
could yield inaccurate results (Yin et al., 2015).

Obstruction. Obstruction by dynamic objects is another frequently cited
issue, where objects of interest are blocked by passing traffic and
people (Najafizadeh and Froehlich, 2018; Bin et al., 2020; Hu et al.,
2020; Novack et al., 2020).

Coverage. Unbalanced spatial coverage occurs on both commercial and
crowdsourcing platforms. For crowdsourcing platforms, as contribu-
tions are intermittent and uncoordinated, not all roads are captured and
some areas might lack contributors. At the smaller scale, collection also
tends to favour major roads (Szczepańska and Pietrzyk, 2020).

Timeliness. The temporal coverage of SVI is another consideration, as
it is often heterogeneous and updates may be sporadic. In the same
city, some parts could be updated more frequently than others, which
could lead to inconsistent coverage as the places are not captured in
the same period. Update frequency is also a common issue encountered
3

(Miranda et al., 2020; He et al., 2020). Infrequent data collection makes
it hard to gather up-to-date information and conduct temporal analyses
such as change detection. Time is an important consideration also
because there may be mismatch between the collection time of imagery
and the targeted period of a study, leading to biases and inaccurate
results (Larkin and Hystad, 2019; Chen et al., 2020). For example,
images taken in winter are not suitable for greenery studies that involve
measuring the amount of visible greenery (He et al., 2020).

Metadata availability. The image metadata provides useful information
that can be used to filter unsuitable images. Applications such as built
environment audit require images that are looking at specific places,
so information including location, heading, and pitch would be useful
in facilitating the selection of suitable images (Rundle et al., 2011). In
general, the topic of metadata of SVI does not seem as developed as it
is for some other types of spatial data (Labetski et al., 2018; Quarati
et al., 2021).

2.3. Existing work on SVI quality

While quality issues have been briefly mentioned in many studies
that use SVI as the data source, as shown in Section 2.2, there are
currently few studies that focus predominantly on the topic of SVI
quality, and these studies mostly zero in on a few selected aspects (i.e.
spatial coverage and user contribution patterns) instead of providing
a comprehensive quality evaluation framework (Juhász and Hochmair,
2016; Ma et al., 2019; Quinn and Alvarez León, 2019; Mahabir et al.,
2020; Fry et al., 2020).

Juhász and Hochmair (2016) conducted a global assessment on
the spatial completeness of Mapillary along the major roads. A more
detailed evaluation was done comparing the coverage of Mapillary
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and GSV for 11 areas in the US and northern Europe, along various
road types (i.e. main, residential, pedestrian or cycle paths) on Open-
StreetMap (OSM). Contributor behaviour was also analysed, examining
factors such as duration of active mapping, mapping distance, etc.

It was not until a few years later that the state of Mapillary was
examined again, by Ma et al. (2019), featuring an exploratory analysis
of the contributor behaviour. The study found inequality in Mapillary
contribution, as a large amount of data was contributed by a small
number of users, and the geographical distribution of data and users
was unbalanced. Greater seasonal variations were observed in Mapil-
lary than in OSM, as mapping can be done remotely (e.g. using aerial
images) but SVI has to be captured in the field (i.e. on the streets).
The study also found that the time property of many images were
inaccurate, suggesting that inaccuracy of metadata could be a concern,
among other quality issues.

Quinn and Alvarez León (2019) conducted a comparative assess-
ment of the spatial coverage of GSV, Mapillary and OpenStreetCam
(currently known as KartaView), in 24 cities around the world. A more
detailed case study was carried out in 25 Brazilian cities. Differing from
other studies, the assessment was qualitative in nature and manually
conducted by three evaluators independently. It was found that while
GSV often has either almost full or no coverage for a place, VSVI offers
more evenly distributed coverage.

Mahabir et al. (2020) compared Mapillary and KartaView in terms
of spatial coverage and contribution patterns, for four US cities. Dif-
fering from other studies, the coverage was not calculated in terms of
how much of the street network is covered, but the cumulative length
of all available sequences in each 1 𝑥 1 km grid cell. It was shown that
coverage patterns vary spatially, and most contributions were found
along local roads and in populated areas. The amount of data per
cell was found to be significantly positively related to the population
density per cell.

Fry et al. (2020) assessed the spatial availability, image age, and
image age variance of GSV in Latin American cities. Among a reg-
ularly spaced grid of 530,308 near-road points, it was found that
GSV was available at 45.1% of the points, while wide variations in
availability were observed in different cities and countries. Areas with
better socioeconomic conditions were found to have more and newer
images with greater age variances. This unequal spatial and temporal
availability could induce biases in SVI-based research.

It seems that spatial coverage is an aspect that has been consistently
examined in all of these studies, and most studies involving VSVI qual-
ity also investigate user contribution patterns. As present in Section 2.2,
there are more quality issues in practice that challenge the usability of
SVI, yet they are not included in the existing SVI quality research. With
the growing popularity of SVI in urban research and the rise of VSVI,
there is thus a strong call for a comprehensive framework to holistically
describe and assess the quality of SVI. In our research, we approach
the topic in a holistic manner and considerably expand the state of
the art outlined in this section. Taking into account related work, we
have identified further dozens of properties and issues, well beyond the
scope of the state of the art and the examples in Fig. 1, and present a
comprehensive SVI quality framework.

2.4. Related data quality standards

To conceptualise the data quality dimensions for SVI, and to as-
sess to what extent existing standards could be applied to SVI, we
reviewed related quality standards for spatial data, mainly ISO 19157,
ISO 19130, ISO 19115, QA4EO (Quality Assurance Framework for
Earth Observation), as well as seminal work on VGI quality.

ISO 19157 (Geographic information — Data Quality) (ISO
19157:2013) provides an overarching standard for geographic informa-
tion data quality, and includes six quality dimensions: completeness,
thematic accuracy, logical consistency, temporal quality, positional ac-
4

curacy and usability. Each dimension consists of several sub-elements,
e.g. commission and omission, conceptual and topological consistency,
etc. Datasets can be evaluated against the criteria set based on the
different dimensions, through either quantitative or qualitative mea-
sures. While the standard could serve as an umbrella guideline for SVI
quality and certainly provide foundational knowledge for this work, a
tailored and more detailed framework catering to SVI is needed, as
dimensions such as completeness could have different meanings for
different data types. For example, while it is fairly straightforward to
understand omission errors in SVI (places lacking coverage), it is rather
disputable what should be considered as commission errors in SVI,
because virtually anywhere on the Earth could be photographed; this
is different from, for example, road datasets in which a road can be
mapped where it does not exist in real life. Another element, thematic
accuracy, which typically refers to how accurately a classified land use
or land cover category matches with the ‘ground truth’, might not be
directly applicable to SVI data either.

ISO 19115 (Geographic information — Metadata) (ISO 19115:2014)
instructs that data providers should supply sufficient metadata to de-
scribe their products, so that users can understand the assumptions
and limitations of the data and assess its fitness for their intended
use. Metadata is thus an important consideration when we devise the
framework. Considering the photogrammetric applications of SVI (e.g.
3D reconstruction, geolocating features), we also reviewed ISO 19130
(Geographic information — Imagery sensor models for geoposition-
ing) (ISO 19130:2014). The standard specifies that geographic data
should come with sufficient information and documentation to support
geopositioning, which determines the ground coordinates of an object
from image coordinates. Aspects such as image overlap and interior
orientation parameters are also considered.

The QA4EO (CEOS, 2010) was established by the Committee on
Earth Observation Satellites (CEOS) as an international quality assur-
ance framework for satellite remote sensing data. Derived from best
practices, the framework provides key principles for how to achieve an
internationally harmonised and consistent quality assessment process,
through the use of documented and quantifiable Quality Indicators at
each stage of the data processing chain (i.e. collection, processing, and
delivery), so that all users could readily assess whether a RS product
is suitable for their specific application (i.e. ‘fit for purpose’). The
data quality dimensions discussed in the literature include accuracy,
completeness, resolution, redundancy, readability, accessibility, con-
sistency, and trust of sources (Batini et al., 2017; Barsi et al., 2019).
However, these dimensions are not entirely transferable to SVI. For
example, privacy could be a significant issue for SVI as it captures
details such as human faces and number plates much more clearly, and
thus should be prominently featured in the framework.

In VGI research, the data types commonly discussed include map-
based VGI (geometries and their associated attributes created by con-
tributors to represent geographic objects, e.g. OSM, Wikimapia), image-
based VGI (mainly referring to standalone geotagged photographs of
geographic objects uploaded to the internet by contributors, e.g. Flickr),
and text-based VGI (e.g. geotagged tweets) (Senaratne et al., 2017).
Various quality assurance methods have also been proposed (Goodchild
and Li, 2012; Ali and Schmid, 2014; Antoniou and Skopeliti, 2015;
Fonte et al., 2017; Senaratne et al., 2017; Biljecki, 2020). However,
they are not entirely applicable to SVI, because of the peculiarities of
SVI as a distinct data form, as explained later in Section 2.5.

While not related to spatial data, ISO 12232 (Photography — Digital
still cameras) (ISO 12232:2019) was also included in the research, in
an effort to understand the current standards for photographic image
quality. ISO 12232 specifies how ISO speed ratings, standard output
sensitivity values and recommended exposure index should be assigned
and reported for digital still cameras, providing a standard mecha-
nism for comparing the photographic sensitivity of different cameras.
Although camera quality can affect image quality, our work focuses
primarily on quality elements of the SVI data. Thus, this guideline is
not considered applicable to the framework proposed in Section 4.

While none of the standards is fully applicable to SVI, we learn from
the efforts presented in this section and adopt some concepts in our

framework, such as logical consistency.
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Table 1
Differences between SVI and other image-based data.

Aspects Street view imagery Remote sensing
imagery

Image-based VGI
(excluding VSVI)

Perspective Ground-level Aerial Unconstrained

Point-of-view Objective Objective Mostly subjective

Collection regime Commercial: centralised;
VSVI: decentralised

Centralised Decentralised

Contributors Commercial: various organisations;
VSVI: differently experienced
private individuals contributing to
various platforms

National and international
agencies

Differently experienced
private individuals

Temporal sampling Commercial: update as and
when needed, with constrained
frequency; VSVI: irregular,
with unconstrained frequency

Regular, with constrained
frequency

Irregular, with
unconstrained
frequency

Spatial sampling Connected and ordered sequences of
points, with
rather ad hoc coverage

Connected areas, with known and
consistent coverage,
but the concept of ordered
sequence is less important

Unconnected and
unordered points,
with irregular coverage

Quality control Commercial: guidelines vary
from company to company,
usually consistently followed;
VSVI: subject to the platform’s
own quality control mechanism,
which is usually rather basic and
relatively poorly documented

Strict, well-documented,
following internationally
established principles

Little to no quality
control

Image quality Commercial: mostly consistent;
VSVI: heterogeneous

Consistent and stable Heterogeneous
2.5. SVI as an emerging and distinct data form

Existing spatial data quality standards such as ISO 19157 (ISO
19157:2013) are versatile and provide yardsticks for spatial data qual-
ity. While they provide a valuable basis, we argue that SVI is a distinct
form of spatial data and these standards might not be fully transferable
to it and capture all relevant properties.

The differences between SVI and other types of image-based data
are detailed in Table 1. Compared to remote sensing data of which
the collection follows internationally established scientific and engi-
neering principles, SVI (especially VSVI) has a rather ad hoc or even
decentralised collection regime, making it prone to heterogeneous qual-
ity (Yin et al., 2021). In contrast with point-based geotagged images
and area-based remote sensing imagery, SVI is typically presented as
a connected, ordered sequence of points (images), providing contin-
uous observation along a trajectory traversed. Hence, characteristics
such as the sequence length, sampling interval, sequential order, and
spatial continuity (i.e. whether the sequence could provide connected,
uninterrupted observation along the trajectory) are unique to SVI and
crucially influence its quality, but are not important to other forms of
image-based data and not covered by existing quality norms in GIS.
SVI is also systematically prone to motion blur (Fig. 1), especially
among VSVI, considering that the data is usually collected while the
imaging device is moving, unlike other data types. Taking photos
behind a windshield, as it is common in SVI, could also cause out-of-
focus blurriness if the camera focuses on the windshield instead. For
timeliness, the collection of SVI is not constrained by a fixed frequency,
unlike the case for remote sensing, and can thus be potentially used to
update authoritative spatial data, akin to other VGI data (Zhang et al.,
2018), but the ad hoc and irregular collection could also lead to other
timeliness issues. Privacy concern is also greater for SVI than for remote
sensing imagery as SVI captures far more details on the ground, often
including people’s faces and vehicle licence plates.

While devising the framework for SVI quality, we are also aware
of the differences between commercial and volunteered SVI. Owing to
5

different collection regimes, sources of quality issues could differ for
the two types of SVI. For VSVI, it is useful to examine the contributors
(the data sources) so as to understand potential sources of errors and
biases, and consequently conceive better mechanisms for quality con-
trol. However, this aspect is not so applicable to commercial SVI such
as GSV, where data collection is standardised and managed. Ideally,
to facilitate comparative evaluation, the quality elements considered
for the framework should be universally applicable to various SVI
sources. We reckon that, while quality issues could have varying roots
for different SVI services and providers, the expectations for what is
considered a ‘usable’ dataset from the data user’s perspective should be
arguably consistent across various data sources, which could provide
a common basis for cross-platform comparison. With this reasoning
in consideration, our framework is conceptualised primarily based on
what a user would likely expect of the data itself, with regards to its
quality at the post-production stage and usability, instead of how the
data is collected.

Therefore, considering the uniqueness of SVI as a distinct form of
spatial data, with its own quality challenges differing from those of
others, and the current lack of a comprehensive quality framework for
SVI, a new and refined framework describing the quality elements of
SVI data is necessary.

3. Method

3.1. Overview

The study was conducted with a multi-pronged method, which
includes reviewing related literature and data quality standards, un-
derstanding current practices by the main SVI providers, and combing
through tens of thousands of images on our own. Setting the scene for
the development of the framework, we provide our definition of SVI
(Section 3.2) and discuss the various levels of spatial scales, another

particularity of SVI (Section 3.3).
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Fig. 2. Various examples of quality issues and unconventional SVI found in practice. In this work, we outline the potential quality issues and provide the means to their
formalisation.
Source: A, B, C, D, E, F, H — Mapillary; G — KartaView.
As far as the method goes, building on related work that partially
addresses this topic (Section 2.3), we looked into the existing qual-
ity assurance practices by the main SVI providers, by searching for
information to understand what has been in place so far. The details
are presented in Section 3.4. Afterwards, we employed a literature
review of papers mentioning SVI, potentially exposing quality aspects
researchers may have encountered (Section 2.2). We have also given
attention to papers that involve own data collection (Peng et al., 2018;
Verma et al., 2019; Ao et al., 2019; Bochkarev and Smirnov, 2019;
Gorgul et al., 2019; He et al., 2020; Wang et al., 2021; Ogawa et al.,
2021; Kim and Lee, 2022), as they may reveal further particularities
about SVI, e.g. expose quality issues and metadata. To understand what
existing standards are in place, how transferable they are to SVI data,
and how they can act as a guideline to derive SVI data quality elements,
we reviewed related data quality standards (Section 2.4). Next, we
have visually examined a multitude of images on different platforms
to supplement our findings from the literature review by revealing
quality issues we might not have previously encountered, as well as
to obtain a detailed, first-hand understanding of the heterogeneity in
quality especially for VSVI. Some examples of the images examined are
shown in Fig. 2.

Following the methodology, we conceptualised a framework entail-
ing 7 quality categories and encompassing 48 elements, to describe and
assess the quality of SVI datasets.

3.2. Definition

Before discussing the framework of SVI quality, it is pivotal to pro-
vide a definition for SVI, so that any quality elements would be derived
based on this common understanding of what is actually considered as
SVI, a surprising omission from the body of knowledge.

After reviewing literature and extensively combing through images,
we found out that while many have referred to SVI as a sequence
of geotagged images, the spatial continuity in SVI data (whether the
sequence provides spatially continuous observation) is also another
essential characteristic that makes SVI stand out as a unique form of
data, but this aspect has almost never been specifically mentioned. We
thus arrived at a definition that we consider includes all crucial aspects
of SVI:

Street view imagery (SVI) is typically a sequence of geotagged,
ground-level photographs taken along a trajectory, providing spa-
tially continuous observation of its vicinity.

Although mostly being in the form of a sequence of connected pho-
tographs, it is possible to find single street view photographs that do
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not belong to a sequence, and they could be considered as SVI as well, if
their content is relevant (i.e. portraying the overall streetscape). SVI has
been frequently taken from a moving car, bicycle, pedestrian, and so on,
and it is commonly taken at a consistent angle (or panoramically) along
the moving trajectory. Common imaging devices include panoramic
cameras, car-mounted dashcams, and smartphones, largely depending
on the service being commercial (e.g. Google Street View, Baidu Total
View) or crowdsourcing (e.g. Mapillary, KartaView).

3.3. Scale and hierarchy

Various spatial concepts are intertwined with SVI. For example, a
single street-level image is an independent piece of data (see Figs. 1
and 2), but it also belongs to a sequence, which may lead to other
considerations. In our work, we define the following scales: image,
sequence (containing multiple images), street segment (on which zero
or more sequences are collected), and aggregated units (grid cell and
administrative areas, e.g. a city). The quality metrics we develop can
be either directly assessed or aggregated at these levels, or both.
Understandably, not all SVI data is distributed along the streets, and
some may be found within areas such as squares, parks and so on. For
this type of data, it is possible to analyse its quality at the aggregated
units level instead. We elaborate further on this topic of scale and
hierarchy in the definition of the framework (Section 4).

3.4. Existing quality assurance practices by various SVI services

Though being a commercial platform, Google allows users to con-
tribute their own panoramic images for any location, whether as im-
partial individuals, or as ‘Street View trusted photographers’ who can
be hired by businesses to help them capture 360-degree photos for
marketing purposes. Thus, currently, the GSV images displayed on their
interface, or accessible through their static API, are a mix of both
Google-acquired and user-contributed content (though the volume of
the former dwarfs the latter). Google has a set of image quality policies
regarding user-contributed photos, from which the quality standard for
their own images could be implied, as presumably, the prime objective
is to ensure consistent quality standard across various sources. The
quality requirements include three aspects: image quality (i.e. image
size, aspect ratio, gaps in image, stitching errors, sharpness, and expo-
sure), connectivity (i.e. line-of-sight clarity between connected photos,
1-meter and 3-meter intervals for indoors and outdoors shooting respec-
tively), and appropriateness (i.e. consent from people or places being
photographed, authenticity, geographically accurate placement, legal
content). For privacy protection, Google employs face and licence plate

blurring algorithms on all of their own images, and any video content
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uploaded by users. However, the blurring is not applied on non-video
content contributed by users, which includes panoramas. Instead, users
can optionally apply blurring on their own, by using the blurring tool
in the application. The assumption is, for images uploaded without
blurring, the photographer has obtained consent from the people being
photographed, but the company does not ascertain whether that is the
case.

Mapillary adopted a different approach by introducing a neural
network-based quality scoring system (not openly released and with
limited information available publicly), based on a combination of
several image properties including blurriness, occlusion (e.g. by camera
mount and water drops), windshield reflections, exposure condition,
weather condition, time of capture, and capturing properties (i.e. pe-
nalising close-up or non-street level images). The images were automat-
ically rated discretely from 1 to 5 (with 5 representing the best overall
quality). The resulting quality scores were published on the platform,
and users could filter images based on the scores. However, this system
seems to have been removed, as the scores are no longer displayed.
While KartaView also seems to have an internal image quality scoring
system, as related metrics could be found in the metadata of certain
images, no documentation describing this approach has been found
either. Both Mapillary and KartaView allow users to report images with
quality issues or inappropriate content.

Despite the various quality assurance mechanisms by services, qual-
ity issues can be observed in SVI in practice (as detailed in Section 2.2).
A potential reason could be that the policies are not always strictly
enforced, or it may be challenging to detect certain quality issues
automatically, as they are extrinsic and may not be assessed on their
own, e.g. positional errors, inaccurate camera parameters.

4. Framework

We conceptualised a comprehensive framework that contains 48
quality elements grouped in 7 categories (image quality, metadata
availability and accuracy, spatial quality, temporal quality, logical
consistency, redundancy, privacy) to describe and assess the quality
of SVI data. Table 2 summarises the elements and maps it to the
levels (Section 3.3) at which they could be applied. Each element is
described in the continuation. In our framework, we take the approach
of ISO 19157 (ISO 19157:2013), which in its core defines spatial data
quality elements in a descriptive manner, but does not mandate specific
data quality measures on how to measure and express them. However,
we give examples of potential measures and indicators both in the
framework and in the implementation in the next section.

4.1. Image quality (A)

An image should convey an adequate amount of information and
detail to be considered of acceptable quality. In this category, we define
8 elements that pertain to the visual characteristics of the photo: image
size, blurriness, obstruction, illumination condition, noise, capture set-
tings, distortion, and stitching errors. All these elements are evaluated
at the level of the image.

Image size (A1) refers to the resolution of the photo. This element is
important because a small image size could limit the amount of detail
shown. Second, blurriness (A2), which could be motion blur, out-of-
focus blur, or even artificial blur (e.g. unnecessary masking), could
also cause an image to lose detail (Fig. 2A and example in Fig. 1).
Third, obstruction (A3) occurs when a significant portion of the image
has been blocked, such as by a passing vehicle or signboard (Fig. 2B).
Objects that are not intended to appear in the image could obstruct
the view of the street too, such as camera mount, water drops, falling
snowflakes or leaves, car window edge or the interior of vehicle in
general, etc. Sometimes, objects that are expected to be present in
a street view image could also cause obstruction if they are not the
focus of study, e.g. roadside trees obstructing buildings; in this case,
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the realisation of the framework could also be tailored accordingly and
reflect these objects as obstruction instead. Illumination condition (A4),
such as too much or too little light, or whether the camera is pointing
towards the light source, could cause over- or under-exposure, and
affect the contrast of the image, sometimes causing glare and reflections
as well. These conditions could cause the image to lose a significant
amount of detail. Sometimes, if a camera is placed behind a tinted
window glass, the accuracy of colours could be affected too. Next, the
level of noise (A5) reflects how grainy an image is. Further, bad capture
settings (A6) could also affect image quality, e.g. the image is taken
close-up instead of giving a full street view, is tilted or inverted, or
is taken (or edited) with filters or distracting effects. The distortion
(A7) could be present in wide angle or equirectangularly projected
images, or could also be caused by water drops on the glass window
(Fig. 2E). Finally, panoramas could be imperfectly stitched at times
(A8), resulting in loss of information.

4.2. Metadata availability and accuracy (B)

Metadata provides useful information about the properties and char-
acteristics of SVI data, serving various purposes including data access,
determining fitness of use, and so on (ISO 19115:2014). There are 20
elements we identify in this category.

A unique identifier (ID) may be assigned to an image or sequence
(B1), and its order index in the sequence may be provided. The same
goes for the contributor (B2) of the imagery and sequence. This element
is also relevant for commercial sources, as it may indicate the company
or user who collected the data.

Timestamps (B3) are important for understanding the age and rel-
evance of the data (e.g. when studying greenery, it may be useful
to exclude imagery taken during winter). It is important to note that
in practice, this information could be available at different levels of
precision. For example, GSV provides the month and year in which an
image was taken, while Mapillary and KartaView provide the exact date
and time of capture.

Exterior orientation parameters (B4) include latitude, longitude,
elevation, heading, pitch, tilt, and the height of camera relative to
the ground. On the other hand, interior orientation parameters (B5),
including focal length, position of principal point, and distortion pa-
rameters, could provide useful information for distortion correction and
photogrammetric applications.

The field of view (B6) refers to the vertical and horizontal angles
of the shooting, and suggests whether an image is panoramic. Camera
projection type (B7) indicates whether the projection used for imaging
is perspective, fisheye, spherical, or equirectangular. Device name (B8)
provides brand and model information of the imaging device, and it
sheds light on the acquisition approach.

The width and height of the image (B9) should also be provided
in the metadata. It should be noted that this element differs from A1
which is about whether the image size is appropriate for a specific use
case (e.g. by specifying a threshold). File URL (B10) from which the
image can be downloaded is often provided in practice. For a sequence,
it is also useful to provide the number of images (B11) it contains and
its total length (B12).

Apart from the usual metadata attributes commonly provided by
various SVI services, we also include in our framework other attributes
that could indicate the characteristics of an image, such as the weather
condition shown in the image (B13), the type of carrier (e.g. vehicle,
bicycle, or pedestrian) from which an image is taken (B14), and the
view direction of an image (B15; i.e. whether a non-panoramic image
is looking at the front, the back, or the side of the road), as they could
give useful information for selecting relevant images for a certain use
case. For instance, in bikeability studies, images taken from a bicycle
would better approximate the perspective of a cyclist compared to
those taken from a vehicle or pedestrian. In urban perception studies,

researchers may want to avoid using images taken under different
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Table 2
SVI quality elements of the developed framework and the matching level.

Quality aspects Level and hierarchy

Categories Elements Image Sequence Street Grid/Admin

A. Image quality A1 Image size ✓

A2 Blurriness ✓

A3 Obstruction ✓

A4 Illumination condition ✓

A5 Noise ✓

A6 Capture settings ✓

A7 Distortion ✓

A8 Stitching errors ✓

B. Metadata availability B1 Unique identifier ✓ ✓

and accuracy B2 Contributor ✓ ✓

B3 Timestamp ✓

B4 Exterior orientation parameters ✓

B5 Interior orientation parameters ✓

B6 Field of view ✓

B7 Camera projection type ✓ ✓

B8 Device name ✓ ✓

B9 Image dimensions ✓

B10 File URL ✓

B11 Number of images in sequence ✓

B12 Total length of sequence ✓

B13 Weather condition ✓

B14 Carrier type ✓ ✓

B15 View direction ✓

B16 Matched road ✓

B17 Attachments ✓

B18 Quality score or metrics ✓ ✓

B19 Proper documentation ✓ ✓

B20 Licence ✓ ✓

C. Spatial quality C1 Spatial coverage ✓ ✓

C2 Two-way coverage ✓

C3 Panorama coverage ✓ ✓

C4 Spatial continuity ✓ ✓

C5 Count ✓ ✓

C6 Positional accuracy ✓

C7 Rotational accuracy ✓

D. Temporal quality D1 Age of the most recent coverage ✓ ✓

D2 Age of the first available coverage ✓ ✓

D3 Number of years covered ✓ ✓

D4 Number of months covered ✓ ✓

D5 Time elapsed between coverage ✓ ✓

D6 Temporal accuracy ✓

E. Logical consistency E1 Order of images ✓

E2 Temporal validity ✓

E3 Positional validity ✓

F. Redundancy F1 Duplicates ✓ ✓

F2 Content relevancy ✓

G. Privacy G1 Masking of human faces ✓

G2 Masking of vehicle registration plates ✓
weather conditions which could influence human perception. Images
facing the front of the road may be more useful for estimating urban
form (e.g. estimating the street canyon) compared to images facing the
side of the road.

If an image is taken on a road (i.e. excluding off-road or indoor cov-
erage), the name or ID of the road that the image is matched to could
also be given (B16). For example, images on KartaView are matched
to OSM roads and the matched road ID is available in the metadata
of the image. Some SVI datasets might come with additional data
products as attachments (B17), such as point clouds associated with
the photograph, which are useful for photogrammetric applications.
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The point clouds could be obtained by a lidar scanner that scans the
depth information of the surroundings while the photograph is taken,
or be derived from photogrammetric techniques such as structure from
motion. Other possible attachments include features detected from the
image using computer vision (e.g. traffic signs, light poles, etc.), as well
as manually labelled annotations (e.g. for object detection, semantic
segmentation, etc.), which are useful for various applications including
geospatial analysis and developing computer vision algorithms. The
availability of these attachments could widen the applicability of SVI
data and make it more versatile. SVI platforms might adopt their own
schemes to measure or score the quality of images and sequences (B18).
In this case, there should be proper documentation (B19) that explains

clearly how the scores are derived and should be interpreted. Proper
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documentation of all other metadata attributes, explaining what they
represent, how they are obtained, and how precise and accurate they
are, should also be available. The licence under which the image is
released should be provided as well (B20).

Furthermore, it is important that these metadata attributes are not
only available, but also accurate. The availability and accuracy of all
these aspects can be directly assessed at either image or sequence level,
and the analysis could be aggregated to higher levels as well (e.g.
percentage of imagery in a district that has information on the B6 Field
of view).

4.3. Spatial quality (C)

Spatial quality can be examined from both completeness and posi-
tional accuracy aspects.

Spatial coverage (C1), referring to the availability of SVI across
space, can be calculated at both street and grid level, where the former
indicates for each street how much percentage of it is covered with SVI,
and the latter indicates how many grid cells in the study area have
SVI available. Ideally, roads should be covered in both directions (if
they are not panoramically covered), as useful objects such as building
facades can only be fully viewed if they are covered in both ways. Thus,
the element C2 suggests two-way coverage.

A panorama provides more complete observation at any point, it
is thus useful to define it as a separate quality element (C3), such as
by calculating how many images available are panoramas, how much
percentage of each street is covered with panoramas, or how many grid
cells contain panoramas. The count of photos per street or per grid cell
implies density of SVI (C5).

Spatial continuity (C4) is a unique and essential characteristic of
SVI. It can be assessed by calculating the spacing interval between
images, at both sequence and street levels, which could indicate how
close the images are to each other and reflect the sampling rate. Fig. 2G
shows an example of a discontinuous sequence. For non-panoramas, it
is also important to check if images in the same sequence are taken
at a relatively consistent angle to the path so that the view is likely
consistent and connected. This aspect could be checked by comparing
the rotational parameters of images to the bearing of the road. Image
overlap is another aspect of spatial continuity. When there are sufficient
images at the same place that are taken close enough to each other, it
is more likely to achieve sufficient image overlap to form stereoscopic
images, which are necessary for transferring 2D image coordinates to
3D space coordinates in photogrammetry. A consistent view is also an
assumption underlying many SVI-based urban environment studies. For
example, studies that involve quantifying the proportional presence of
objects in images (e.g. estimating green view index, sky view factor,
etc.) assume the street is being viewed at a consistent angle throughout
the images.

Positional accuracy (C6) could affect to what extent we can asso-
ciate the information derived from an image with its reported location
(i.e. latitude, longitude, elevation). The positional error is determined
as the difference between the recorded location and the ground truth.
Fig. 2F shows an example of positional error. Rotational accuracy (C7)
refers to the accuracy of heading, pitch, and tilt of an image, and
is determined by the difference between the reported values and the
ground truth.

4.4. Temporal quality (D)

Similar to spatial quality, temporal quality includes both complete-
ness and accuracy. The age of the most recent coverage (D1) indicates
recency or outdatedness, while the age of the first available coverage
(D2) indicates when a place was first imaged. These two combined
indicate the temporal span of the coverage at a place, an element that
may be relevant for longitudinal studies and change detection. The
numbers of years (D3) and months (D4) in which a place has been
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covered indicate whether the place has been imaged in multiple points
in time, across different years, seasons and months. By calculating the
average time elapsed between successive coverage trips (D5), we can
understand on average, how frequently a place has been imaged, while
calculating the variance of time elapsed between successive coverage
trips could give insight on how regularly the place has been imaged (i.e.
higher variance suggests higher irregularity). All these metrics could
be evaluated at both street and grid levels. Temporal accuracy (D6)
refers to how accurately the capture time of the image is reported,
and is determined by the difference between the reported capture time
and the ground truth. Similar to positional and rotational accuracy,
this element can only be directly evaluated at the image level, but the
analysis could be aggregated at higher levels.

4.5. Logical consistency (E)

Data should also be checked against any violations of logical con-
sistency. In the case of SVI, images in the same sequence have to be
correctly ordered (E1), which is especially important for applications
such as navigation and 3D reconstruction. Fig. 2D illustrates an ex-
ample where the images have been wrongly ordered. The temporal
(E2) and positional (E3) validity complete this category of elements.
For example, the capture time should not exceed the current date
and time, and an image visibly captured on land should not be found
in the middle of water on the map. While it may appear that these
elements are not necessary, we found imagery with clearly inconsistent
timestamps, e.g. from years such as 2073.

4.6. Redundancy (F)

Duplicate images or sequences may exist in a SVI dataset, possibly
due to upload error, creating redundant data. The content of some
images could be irrelevant and as a result these images should not
be even considered to be street view images. For example, Fig. 2H
shows a few sequences of aerial images. Although also providing useful
information about the earth surface, they are not street view images.
Using SVI for analysis without filtering out such redundant data could
lead to inaccurate results.

4.7. Privacy (G)

Human faces (F1) and vehicle registration plates (F2) are in prin-
ciple blurred in SVI to preserve privacy. Fig. 2C shows an example
where not all pedestrians’ faces have been entirely concealed due to
presumably an imperfect privacy assurance mechanism.

5. Implementation and examples

To demonstrate the application of the developed framework to
describe the quality of SVI in practice and to suggest their realisation
with specific data quality measures, we provide an implementation for
several elements: blurriness (A2), spatial coverage (C1), count (C5),
average time elapsed between coverage (D5), age of the most recent
and the first available coverage (D1 and D2), and number of years and
months covered (D3 and D4). These metrics are intrinsic, i.e. they do
not require a reference dataset, such as positional accuracy (C6) does.
They were evaluated at both the street and grid levels in the Kowloon
area of Hong Kong, to demonstrate different levels (Section 3.3). To
demonstrate applicability worldwide and use for comparative studies,
one of these metrics – spatial coverage (C1) – was estimated for 8
additional study areas around the world: Singapore, Nagoya, Chicago,
Panama, Santiago, Zagreb, Cairo, and Melbourne. We have released the
implementation as open-source code (Python), in the form of an in-
teractive notebook, at https://github.com/ualsg/SVI-Quality-Checker.
The results are given predominantly as maps.

https://github.com/ualsg/SVI-Quality-Checker
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Fig. 3. Seven elements (C1, C5, D1, D2, D3, D4, D5) calculated for Mapillary data in Kowloon, Hong Kong at the level of each street segment.
5.1. Data

We used data obtained from Mapillary for the implementation. For
each city, point locations of all images found in the study area, together
with their associated metadata, were downloaded from Mapillary via
their API; while for Kowloon, the actual images were also downloaded
for blurriness detection (A2). The street networks within the study area,
which were used for the street-level analysis, were obtained from OSM
using the Python package OSMnx (Boeing, 2017). To aid the interpre-
tation of the results and give more context in conjunction with other
data, for the grid-level analysis, we distinguish populated areas, which
we obtained from gridded population datasets from WorldPop (Tatem,
2017).

5.2. Spatial processing

For all street-level analyses, points were first snapped to their
nearest roads within 10 m (this buffer radius could be varied), as not all
images would be exactly located on the street network due to various
reasons (e.g. positional errors). As such, the points have been spatially
grouped by the different streets they are snapped to. For all grid-level
analyses, each image was associated to a particular cell.

5.3. Results of the implemented quality elements

Coverage. Coverage can be calculated by various methods as docu-
mented in Section 2.3. For this implementation, we have provided our
own method for calculating coverage at both the street and grid levels.

For street-level coverage, we calculate for each street the proportion
of its full length that is covered with SVI. After snapping points to
roads, each road is split at the snapped points. The lengths of all
resulting segments are calculated, and those longer than 50 m are
removed, as we consider only the street portions where the images
are not further than 50 m apart as SVI-covered. The lengths of all
remaining segments are summed to give the total SVI-covered distance
for the street; this number is then divided by the total street length
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to derive the coverage percentage for the street. Fig. 3A shows the
coverage percentage calculated for the streets in Kowloon. Fig. 6 shows
the coverage percentage calculated for the streets in all 9 cities.

For grid-level coverage, after overlaying the points with the grid, we
evaluate the presence and absence of SVI in each populated cell. The
cells without SVI coverage are further distinguished by whether they
contain roads so as to provide further information to aid interpretation.
Nonetheless, it does not mean that cells with no roads are not expected
to be SVI-covered, as off-road street view images do exist, and may
be covering paths that are not already mapped. Fig. 4A shows the
grid-based coverage calculated for Kowloon.

Count. At the street level, the SVI count for each street is the total
number of points associated with that street. At the grid level, the total
number of points in each cell is calculated as the count. Figs. 3B and 4B
show the count calculated respectively at the street and grid levels in
Kowloon. The figures double as an example of the different approaches
to spatial scales when assessing the quality.

Average time elapsed between coverage. The ages, in days, of all images
on each street (or in each cell) are first calculated. These images are
then grouped by their age (those taken on the same day are considered
same group or same coverage trip), and the difference between the
maximum and minimum ages is thus the total time elapsed between
the first and last coverage trips. This difference is then averaged by
the total number of periods elapsed between these groups to give the
average time elapsed between coverage trips. Figs. 3C and 4C show
the average time elapsed calculated respectively at the street and grid
levels in Kowloon.

Age of the most recent and age of the first available coverage. For each
street and each cell, the ages of all images are calculated, with the
minimum being the age of the most recent coverage for that street or
cell, and the maximum being the age of the first available coverage
for that street or cell. Figs. 3D and 3E show, respectively, the age of
the most recent photo and the age of the first available photo in each
street in Kowloon. Figs. 4D and 4E show the corresponding grid-level
analysis.
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Fig. 4. The same elements as in the previous figure, calculated at another level (grid) in the hierarchy.
Fig. 5. Example of the assessment of two elements (A2 and C4). Unlike examples so
far, the element on the left is assessed at the image level.

Numbers of years and months covered. For each street and cell, the years
and months that the images were captured in are obtained, and the
numbers of unique years and months covered are calculated. Figs. 3F
and 3G show respectively the numbers of years and months in which
the streets in Kowloon have been SVI-covered. Figs. 4F and 4G show
the corresponding grid-level analysis.

Blurriness. This metric is only evaluated at the image (point) level.
A method based on the variance of the Laplacian is used to auto-
matically detect the amount of blur in an image, using the package
OpenCV (Bradski, 2000). As the Laplacian operator is often used for
edge detection, a high variance indicates a heterogeneous presence
of both edge-like and non-edge like responses, typical of an in-focus
image, while a low variance indicates a low amount of edges, typical
of a blurry image. The variance is then compared to an empirically-
determined threshold to determine whether an image is considered
11
blurry. Fig. 5A shows the spatial distribution of blurry and non-blurry
images in Kowloon.

Average spacing interval. This metric is only evaluated at the street
level, and is calculated by dividing the total street length by the total
count of images on that street. The calculation result is shown in
Fig. 5B.

6. Discussion

The framework and the results have been discussed in detail in the
sections hitherto. Here we postulate further applications of the work
and expose limitations.

Besides general quality assessment studies applicable to both com-
mercial and crowdsourcing sources, such as the one in Section 5,
more specific applications of the framework and its implementation are
possible. For example, in the context of VSVI, the work may be used to
associate the quality metrics to each contributor (a quality contribution
score can be assigned to reflect trustworthiness and effort of different
contributors) and to detect vandalism, a topic that gained interest in
other instances of VGI (Neis et al., 2012; Li et al., 2021a). Further,
the derived quality elements may be adopted by services and help
users filter for imagery suitable for their analysis and help contributors
identify areas in need of data of better quality or updated coverage.

A potential limitation of the methodology is survivorship bias in the
portion in which we manually checked thousands of images to identify
issues. As SVI services have internal quality assurance mechanisms,
we have access to only imagery after such quality control have been
applied, i.e. data that survived such process.

An impediment of the framework is that certain metrics are difficult
to measure automatically. For example, it can be challenging to judge
whether the positional information of an image is accurate just from
looking at the image and its location on the map. It is also not possible
to assess positional accuracy by merely comparing how far a trajectory
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Fig. 6. Street-based coverage (C1) for nine cities. The results expose heterogeneous spatial quality around the world, affirming the importance of establishing a framework for
assessing the quality of street view imagery. This quality element has a few applications: understanding whether a study area has a sufficiently complete dataset for a spatial
analysis, detecting undermapped areas in VSVI, and comparative analyses on SVI data collection patterns and practices.
deviates from a road to which it may be matched, without under-
standing whether the trajectory was even recorded in that particular
street. For example, it is possible that a sequence was acquired in a
parallel street or a footpath next to a matched road, or even off-road.
This limitation is in line with other spatial data quality assessment
approaches, which regularly require a ground truth reference dataset.

Much of the SVI nowadays is collected by cars on roads, but there
are some unconventional and off-road SVI, such as imagery collected
on hiking trails and cycle paths. Our framework is able to accommodate
any SVI, but it should be acknowledged nevertheless that the research
was driven by the orthodox platform of SVI (i.e. imagery collected from
cars on roads), potentially leaving some particularities pertaining to
unconventional platforms overlooked.

7. Conclusions

As street view imagery is now an established dataset in the geospa-
tial community, it is also increasingly heterogeneous with the grow-
ing services, coverage, and the emergence of crowdsourced platforms.
Quality, an inescapable topic in the geospatial realm, has been largely
overlooked in the SVI research community, and there are neither
standards nor holistic quality assessment frameworks or procedures
developed for SVI.
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For the first time, we propose a thorough set of SVI quality elements
to characterise the multifaceted characteristics of SVI data that have
implications on their use and are compatible with existing spatial data
quality guidelines. Our framework is comprehensive, encompassing
dozens of quality aspects pertinent to SVI, and their different scales:
from individual images and sequences to streets and districts. We also
provide an open-source toolkit, which may be used to assess a subset of
the metrics that do not require external validation and it is applicable
for any location worldwide. Another contribution of our work to the
fundamentals of the field is the definition of SVI (Section 3.2) and its
position in the landscape of image-based geoinformation (Section 2.5).
Much of our work, while tailored for SVI, may be applied also in the
domain of image-based VGI other than SVI (e.g. Flickr) (Hu et al.,
2015), mobile mapping systems (Yang, 2019), and UAV (Luo et al.,
2022).

As this work may provide a basis for a formal standard, a viable
direction for future work is the development of a markup language
to store the metadata and quality results in a standardised way and
propose it to an organisation such as OGC or ISO for standardisation.
Further, as it establishes the foundation of the quality of SVI, there are
a few viable research lines we put forward. First, the investigation of
error propagation in SVI based on some of the identified metrics when
the imagery is used in downstream analyses (e.g. Fig. 1 gives a hint of
the idea). Second, the implementation can be scaled into a multivariate
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global analysis, considerably expanding related work beyond their
focus on completeness (Section 2). Third, further research is needed
for the automated detection of issues in SVI that are challenging to im-
plement. Such work would not only be useful for large-scale assessment
of SVI datasets, but also for other purposes. For example, determining
a suitable set of images to reconstruct 3D building models (Pang and
Biljecki, 2022) and to ensure the consistency of quality of imagery for
longitudinal studies in which the quality will inevitably vary (Li et al.,
2022).
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