
This is the Accepted Manuscript version of an article published by Elsevier in the journal Landscape and
Urban Planning in 2022, which is available at:
https://doi.org/10.1016/j.landurbplan.2022.104569

Cite as: Luo J, Zhao T, Cao L, Biljecki F (2022): Semantic Riverscapes: Perception and evaluation of
linear landscapes from oblique imagery using computer vision. Landscape and Urban Planning, 228:
104569.

© 2022, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.

org/licenses/by-nc-nd/4.0/)

Semantic Riverscapes: Perception and evaluation of linear
landscapes from oblique imagery using computer vision

Junjie Luoa,b, Tianhong Zhaob,c, Lei Caoa, Filip Biljeckib,d,∗

aDepartment of Landscape Architecture, Tianjin University, Tianjin, China
bDepartment of Architecture, National University of Singapore, Singapore
cSchool of Architecture and Urban Planning, Shenzhen University, China
dDepartment of Real Estate, National University of Singapore, Singapore

Abstract

Traditional approaches for visual perception and evaluation of river landscapes adopt
on-site surveys or assessments through photographs. The former is expensive, hinder-
ing large-scale analyses, and it is conducted only on street-level or top-down imagery.
The latter only reflects the subjective perception and also entails a laborious process.
Addressing these challenges, this study proposes an alternative: a novel workflow for
visual analysis of urban river landscapes by combining unmanned aerial vehicle (UAV)
oblique photography with computer vision (CV) and virtual reality (VR). The approach
is demonstrated with an experiment on a section of the Grand Canal in China where
UAV oblique panoramic imagery has been processed using semantic segmentation for
visual evaluation with an index system we designed. Concurrent surveys, immersive
and non-immersive VR, are used to evaluate these photos, with a total of 111 partici-
pants expressing their perceptions across multiple dimensions. Then, the relationship
between the people’s subjective visual perception and the river landscape environment
as seen by computers has been established. The results suggest that using this approach,
rivers and surrounding landscapes can be analyzed automatically and efficiently, and the
mean pixel accuracy (MPA) of the developed model is 90%, which advances state of the
art. The results of this study can benefit urban planners in formulating riverside devel-
opment policies, analyzing the perception of plans for a future scenario before an area
is redeveloped, and the method can also aid relevant parties in having a macro under-
standing of the overall situation of the river as a basis for follow-up research. Due to
simplicity, accuracy and effectiveness, this workflow is transferable and cost-effective
for large-scale investigations of riverscapes and linear heritage. We openly release Se-
mantic Riverscapes — the dataset we collected and processed, bridging another gap in
the field.
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1. Introduction

Human development is closely related to river landscapes worldwide, and therefore it
is necessary to consider how people perceive, value, and interact with river landscapes in
various ways (Garau et al., 2021; Verbrugge and van den Born, 2018; Portela et al., 2021;
Gottwald and Stedman, 2020; Guo et al., 2021). As one of the most important means for
the public to perceive the landscape, vision accounts for 76% on environment satisfac-
tion (Krause, 2001; Jeon and Jo, 2020). Visual perception and evaluation have become
the mainstay for researchers, practitioners, and governments to understand the landscape
quality of urban streets, parks, scenic spots, and rivers (Qi et al., 2020; Jin and Wang,
2021). River visual perception and evaluation refers to the analysis of the characteristics
and functions of the research area based on specific purposes, combined with qualitative
and quantitative approaches. Traditional visual analysis methods of river landscapes in-
volve on-site visits and field photography, which are labour-intensive, time-consuming,
and often restricted by factors such as obstacles, topography and climate (Mouratidis
and Hassan, 2020). Some visual studies use 2D images for virtual perception (Sun et al.,
2021a; Li et al., 2021b), but such an approach has limitations in terms of interactivity,
virtual immersion and field of view, and it is often a tedious process. Therefore, ob-
jective visual evaluation and efficient perception of large-scale linear river landscapes
remain underexplored and challenging, especially in locations where field experiments
are impossible or dangerous.

With the rapid development of unmanned aerial vehicle (UAV) technology, UAV
has been widely used in large-scale landscape analysis including the field of river-
scapes (Woodget et al., 2017; Rusnák et al., 2018; Torgersen et al., 2021; Rivas Casado
et al., 2016; Miřijovskỳ and Langhammer, 2015). In comparison with the small sens-
ing range of the traditional ground view and the limitation that the satellite perspective
is on the nadir, UAV offers middle ground with an optimal perspective — it can take
oblique panoramic images at different heights in addition to taking ordinary photos in
three modes of the oblique, top view and horizontal (Brumana et al., 2013), and it over-
comes the limitation of ground view and satellite nadir, as cameras capture images from
different angles and can obtain both the top information and facade textures of the re-
search area in the same shot (Lyu et al., 2020). According to recent papers, UAV oblique
panoramic images are now entrenched as novel geospatial data characterized by the su-
periority of full perspective, virtual reality (VR), and high realism (Li et al., 2022; Zhang
et al., 2020b). The direction of large-scale landscape visual perception is moving towards
the use of UAVs combined with a variety of cutting-edge technologies (Harknett et al.,
2022; Meng et al., 2022). For example, the combination of UAV panorama images and
VR technologies allows visualizing the surroundings of the landscape, which is more
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beneficial to the public’s omnidirectional perception of a location (Lan et al., 2016; San-
tos et al., 2018). The VR technologies are particularly useful in areas where fieldwork
is impossible, dangerous, or expensive. VR can further improve the interactive experi-
ence in the process of visual evaluation and bridge the gaps of limited shooting angle
and poor interactivity of traditional photos (Feng, 2021; Birenboim et al., 2019). Mean-
while, virtual landscape perception through UAV and VR is proliferating on the internet
with multiple social media (Facebook, Twitter, DJI Forum, etc.) and video platforms
(e.g. YouTube, TikTok, BiliBili) 1. This virtual aerial tour and visual perception type
have developed into a crucial tool for displaying a location’s overall landscape qualities
and as a vital basis for determining if a location is worthwhile for travel. Thus, such an
approach allows the extensive visual perspective of the landscape, with favourable aerial
positions that cannot be obtained by satellite or ground observers (Papadopoulou et al.,
2021). Therefore, the combination of UAV and VR has clear advantages in the research
of visual perception of large-scale landscapes.

In parallel, coupling the UAV oblique photography and computer vision (CV) has
become an important method for quantifying vast urban landscapes (Lyu et al., 2020).
Thanks to the fast development of CV, such as semantic segmentation and object detec-
tion, studies on visual quality evaluation based on such trending techniques are prolifer-
ating (Wu et al., 2021; Garg et al., 2021; Wilkins et al., 2022; Wu and Biljecki, 2021; Ito
and Biljecki, 2021). CV can process the profusion of images automatically, objectively
and efficiently, and it is not entirely new to riverscapes either (Sharma et al., 2021). For
example, the study by Li et al. (2021b) has used semantic segmentation to evaluate vi-
sual qualities of urban rivers from an on-water perspective. Wawrzyniak and Stateczny
(2018) and Ming et al. (2017) have used object detection to identify vessels on rivers.
However, there is no existing study on visual perception or evaluation of riverscapes that
combines CV and UAV, which is a gap we seek to bridge in this paper.

Apart from that, studies employing CV on various types of urban imagery at the
ground level (e.g. street view imagery and photos taken by tourists and residents) have
relied on general datasets such as MS-COCO (Lin et al., 2014), Cityscapes (Cordts et al.,
2016), and Pascal VOC (Everingham et al., 2010; Shetty, 2016) to train deep learning
models to visually evaluate the environment (Biljecki and Ito, 2021; Hosseini et al.,
2022; Seiferling et al., 2017; Verma et al., 2019; Ibrahim et al., 2020). However, for our
studies, these datasets may fall short, and there is no openly available processed UAV
oblique dataset for the river landscapes by the time of writing this paper, which indicates
the importance of our study to fill in such a gap.

Considering the developments in computer vision and virtual reality and the con-
venience of UAV oblique photography, we believe that research marrying the three is
needed and timely. In this study, we aim to build a visual analysis workflow for large-
scale river landscapes based on UAV oblique panoramas. By using CV and VR, we seek

1Example link: https://www.youtube.com/watch?v=L_tqK4eqelA
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to assess people’s subjective visual perceptions and the proportion of physical environ-
ment elements effectively. Taking the Tianjin section of the Grand Canal in China as
a case study, this study proposes an objective visual evaluation approach to river land-
scapes based on the combination of UAV oblique photography and CV so as to achieve
flexible and efficient visual analysis of rivers and surrounding areas. In the subjective vi-
sual perception study of this research, the UAV panoramic photos are displayed through
two VR experiments. One is the immersive virtual reality (IVR) approach using head-
mounted displays, while the other one relies on non-immersive virtual reality (nIVR),
which uses tablets, smartphones and so on. In both, study participants can have a remote
virtual experience of the river landscapes and will provide how they feel about the tran-
quillity, pleasure, beauty and other dimensions of the study area. We validate the virtual
experience outcomes by cross-validation of the two experimental results. The research
questions are as follows:

• How to construct a workflow for a visual analysis of large-scale river landscapes
based on UAV oblique panoramas?

• Taking the south canal and the north canal in China as examples, how are their
objective visual characteristics different, and what are the differences in people’s
subjective perception of various riverscapes?

• What is the relationship between objective visual analysis results and subjective
visual perception results?

2. Background and related work

2.1. The way of oblique: UAV photos compared with satellite images and SVI

UAV, aerial/satellite, and street view imagery (SVI) are essential for understanding
landscapes (Meinen and Robinson, 2020; Rouse et al., 2021; Hritz, 2014; del Rı́o-Mena
et al., 2020; Kim et al., 2021; Biljecki and Ito, 2021; Li et al., 2018a; Luo et al., 2022).
These three types have their own characteristics, and each plays an instrumental role
in spatial information sciences, producing significant volumes of data contributing to a
wide range of domains and use cases (Figure 1). The increasing production of imagery
can be partly explained by the democratization of UAVs and SVI due to the decreasing
cost of exploitation (Sun and Scanlon, 2019), the increase in the number of deployed
satellites (Ghamisi et al., 2019), and the growing coverage of commercial services such
as Google Street View, Baidu Maps, and volunteered geographic information (Yan et al.,
2020; Ito and Biljecki, 2021).

Satellite images have high temporal and global coverage; however, they are not with-
out limitations (Pettorelli et al., 2018; Sheffield et al., 2018). One shortcoming of satel-
lites is that their viewing angle is fixed, as they can only acquire nadir imagery with-
out clear facade information of the study areas; thus, it may not be suitable for visual
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Figure 1: Comparison of the three key types in sensing landscapes. The objects seen by the three types
are outlined in different colours (e.g. two buildings – A and B, and a bridge over the river – C). Satellite
imagery can only provide an understanding from nadir, while the street view perspective may not be able to
fully perceive the riverscape. Source of the satellite image (top right) and SVI image (bottom right): Baidu
Maps.

perception of scenery (Emilien et al., 2021; Ding et al., 2021; Tian et al., 2021). In
contrast, a camera mounted on an UAV can record flexibly, obtaining oblique, nadir,
and even panoramic imagery (Brumana et al., 2012; Che et al., 2020), including video
footage (Sun et al., 2021c). UAV oblique and panoramic imagery can include the side
textures of the viewing area, with a wider field of vision and richer content, facilitating
field perception and evaluation (Santos et al., 2018). Other shortages of satellites are
control and the lack of general flexibility — one cannot launch their own satellite, and
the spatial data cannot be acquired easily on specific dates or at a specific time, as the
data acquisition depends upon the satellite’s revisit or temporal resolution (Bhardwaj
et al., 2016). In comparison with satellite remote sensing, UAV allows a flexible flight
schedule, its entry barriers are low (it is low-cost and easy to use), and the interval of
repeated access may be shorter (Shao et al., 2021), which makes it possible to quickly
analyze the landscapes of specific locations during particular time (Ashilah et al., 2021;
Hervouet et al., 2011). Image resolution is another limitation of the satellites (Khaliq
et al., 2019; Iizuka et al., 2018). The flight altitude of UAVs is low and flexible (barring
local flight regulations), meaning that it is generally below clouds (Watkins et al., 2020),
and allows a very high ground resolution of imagery and video (Guerra-Hernández et al.,
2021; Miraki et al., 2021; Qu et al., 2021). Therefore, we believe that it is not only more
suited with respect to the perspective, but also it is visually clearer, and thus, more ap-
propriate for accurate and reliable analysis in this particular context.

In the same environment, UAV also has many advantages over the other end of the
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spectrum — SVI, which has been increasingly seen as a useful resource that enables
researchers to measure urban landscapes precisely and thus examine the effects of the
environment on residents’ well-being more effectively (Biljecki and Ito, 2021; Li et al.,
2018b; Seiferling et al., 2017; Zhou et al., 2019). However, despite the growing cov-
erage of data, many off-road places, such as riversides, parks, villages, and other areas
with rugged ground conditions, remain out of reach in street view surveys (Verma et al.,
2019) and many of those urban objects that are captured remain obscured (cf. Figure 1)
(Pang and Biljecki, 2022). Further drawbacks include seasonal and time variability, and
infrequent updates (Kim et al., 2021). In contrast, drones can collect data almost any-
where, and the shooting time is virtually unlimited (Nex et al., 2022), enabling a focused
study and ensuring proper attention to capturing the required data. The operating height
is another advantage as UAV can fly at different altitudes to provide a more suitable per-
spective and appropriate sight coverage. Flying higher, UAV can observe a wider range
of scenes, which is conducive to large-scale scene perception (Lytkin and Syromyat-
nikov, 2021; Schenone et al., 2021); while operating closer to the ground, more details
can be observed, an unparalleled benefit. Therefore, UAV has become an important re-
search tool in the fields of environmental detection (Youme et al., 2021), building facade
inspection (Chen et al., 2021), agricultural monitoring (Kerkech et al., 2020), disaster
rescue (Erdelj and Natalizio, 2016) and it also has been applied to city traffic, cultural
heritage, and other disciplines (Ahmed et al., 2021; Beg et al., 2021; Cai et al., 2021;
Castrignanò et al., 2021; Baranwal et al., 2021; Karthik et al., 2021; Munawar et al.,
2021). Small, low-cost, and portable UAV will likely remain the key instrument of many
data acquisition campaigns in the future, and this paper explores their usability for eval-
uating riverscapes.

2.2. Role of CV and the landscape of UAV data

With the continuous development of deep learning, especially the improvement of
CV, techniques such as semantic segmentation have been gradually introduced into the
research of landscape visual evaluation (Ma et al., 2021b; Fong et al., 2009; Song et al.,
2022). CV has improved the ability to automatically and efficiently process a large vol-
ume of imagery for quantitatively analysis (Hu et al., 2020; He et al., 2017). At present,
there are some open segmentation datasets that can be used for a variety of studies in
analysing the urban environment (Cordts et al., 2016; Lin et al., 2014). However, such
datasets have not been developed specifically for UAV oblique scenes and there are only
few semantic segmentation datasets of UAV aerial imagery (Lyu et al., 2020), a chal-
lenge that hampers a variety of studies relying on UAV as training CV models (Nex
et al., 2022). Training datasets obtained with UAV would be beneficial, as in compari-
son with nadir photography, oblique counterparts have a broader perspective, contain a
variety of objects, and may have more complex semantic information.

In this section, to understand related work that may support our study, we provide
an overview of UAV open semantic segmentation datasets available so far to the extent
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Table 1: Overview of existing open UAV datasets and our newly introduced contribution.

Datasets Classes Images Shooting height Shooting angle

Aeroscapes 11 3269 5-50 m nadir, oblique
UAVid 8 300 unknown oblique
FloodNet 9 2343 60 m nadir
ICG Drone Dataset 20 400 5-30 m nadir
UDD 5 160 60-100 m nadir

Semantic Riverscapes 14 400 30-60 m oblique
(our contribution)

of our knowledge (Table 1). These mainly include nadir data: ICG Drone Dataset (Sun
et al., 2021b), FloodNet (Rahnemoonfar et al., 2021), and the Urban Drone Dataset
(UDD) (Chen et al., 2018). The ICG Drone Dataset focuses on semantic understanding
of urban scenes for increasing the safety of autonomous drone flight and landing proce-
dures (Sun et al., 2021b). The imagery depicts more than 20 houses from nadir views
acquired at an altitude of 5 to 30 meters above the ground. FloodNet dataset focuses on
the post-disaster damage assessments, and it poses several challenges, including detec-
tion of flooded roads and buildings and distinguishing between natural water and flooded
water (Chowdhury and Rahnemoonfar, 2021). UDD is collected by DJI-Phantom 4 UAV
at altitudes between 60 and 100 m and contains most part of nadir imagery and a few
oblique imagery (Chen et al., 2018). It has 160 images and contains 4 semantic classes:
vegetation, building, car and free space for urban scene understanding (Wei et al., 2020;
Xiang et al., 2018).

Apart form that, UAV oblique datasets mainly include Aeroscapes (Nigam et al.,
2018) and UAVid (Lyu et al., 2020). The Aeroscapes semantic segmentation dataset in-
cludes imagery captured from an altitude range of 5 to 50 m using a commercial UAV.
This dataset provides 3269 720p imagery and labels for 11 classes: person, bike, car,
drone, boat, animal, obstacle, construction, vegetation, road and sky. The UAVid dataset
has 300 oblique imagery. It is an urban street scene semantic segmentation dataset, and
it has 8 object categories considered: building, road, static car, tree, low vegetation,
human, moving car and background clutter. There are also some UAV aerial datasets,
including video datasets that can support the analysis of the urban environment (Sun
et al., 2021c), understand the transportation problems (Mandal et al., 2020), detect ve-
hicles (Zhang et al., 2020a) and so on, but most of them are not available openly and
cannot be used for river scene segmentation.

2.3. UAV and virtual reality

Virtual reality technology is frequently employed in built environment studies, al-
lowing users to gain a comprehensive awareness of environmental aspects (Van Leeuwen
et al., 2018). Immersive virtual reality and non-immersive virtual reality perception
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modalities can be distinguished (Okeil, 2010; Isaacs et al., 2011). The IVR simu-
lated environments typically completely surround the participant through the use of VR
glasses (head-mounted display), while nIVR environments can be viewed directly on
smart phones, iPads or computer screens (Paes et al., 2021; Xu et al., 2020). Both ap-
proaches have their own set of benefits and drawbacks. Using VR glasses to create
an IVR experience will make participants feel more real than nIVR perception; how-
ever some participants experience after long exposures to IVR glasses may have some
negative side effects (or “VR sickness”), such as nausea, headache, and disorientation
(Birenboim et al., 2019). In contrast, additional equipment, such as head-mounted dis-
plays, is not required for a nIVR experience. The realism of nIVR will be less than
immersive perception, but the negative side effects will be minimal.

People can have a large-scale immersive landscape environment perception experi-
ence with the combination of UAV panoramas and virtual reality technology, especially
in locations with terrible ground conditions. In addition, UAV oblique photography
modelling can be used to render 3D real-world scenes, which can then be coupled with
virtual reality (Schmohl et al., 2020). These have been widely employed in news and
sports event broadcasting, environmental monitoring, urban space management and so
on (Keil et al., 2021; Bakirman et al., 2020; Pavlik, 2020; Esposito et al., 2017). The
first benefit of combining the two is that it is easy for individuals to view the landscapes
and monitor buildings (Kikuchi et al., 2022; Bacco et al., 2020). With the help of VR
and drones, people can get a comprehensive view of the study area. The broad view-
point allows urban planners, governments, journalists, and residents to gain a macro
understanding of places (Pavlik, 2020). When compared to earlier means of observing
large-scale landscape elements from many angles from high-rise buildings, observation
platforms on high mountains, or employing helicopters, UAV marrying VR is unques-
tionably more convenient. The second distinguishing aspect is the high level of interac-
tivity (Elghaish et al., 2020). Viewers can enjoy these UAV panoramic photographs or
videos based on their preferences and even enlarge some areas of interest to learn more
about the research region in more detail. High-precision geo-tagged data is the third
characteristic. The UAV’s panoramic image includes high-precision longitude, latitude,
and altitude information, and it enables people to create map-based immersive imagery.
People can clearly know their specific location and height details when they remotely
perceive these panoramic pictures with geographical labels, which has become an im-
portant data source for them to watch and understand the research location information,
which is conducive to people understanding and analyzing the spatial characteristics of
a specific place. The fourth feature is the ability to achieve augmented reality (AR) visu-
alization (Kikuchi et al., 2022; Lindner et al., 2021). The advancement of 3D modelling
technology based on UAV oblique photography has greatly improved people’s ability
to virtual perceive landscapes, and it is now widely used in the fields of cultural her-
itage protection, landscape perception, building inspection and so on (Liu et al., 2021;
Smaczyński and Horbiński, 2021; Al-Bahri et al., 2021).
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3. Methods and Materials

3.1. Study area

China’s Grand Canal is one of the most famous man-made rivers in the world. Its
length is 1794 km, it flows through 21 major cities (including Tianjin, Beijing, and
Hangzhou), and connects five major rivers (Qiantang, Huai, Yangtze, Yellow, and Hai)
(Wen et al., 2017; Li et al., 2020b). The study area is located in the Tianjin section
of the Grand Canal, which is composed of the north canal and the south canal, with a
total length of about 24 km (Figure 2). The main reasons for choosing this particular
section of this nationally important river as the research area are as follows. First, it
has played a monumental role in the local economic and cultural development, and the
Chinese government is preparing to build the Grand Canal National Cultural Park, which
has attracted much attention worldwide (Li et al., 2021c; Zhao et al., 2021), and which
encompasses the study area. The landscape visual evaluation and perception of this river
section can provide information support for the construction of the National Cultural
Park. Second, this river connects the southern and northern suburbs and the downtown
of Tianjin, intersecting the daily life of residents, including providing open spaces for
citizens for leisure activities and others. However, the visual characteristics of different
areas are not clear at present, which is worth investigating. Third, there are no light-drone
flight restrictions in this area, which enables us some flexibility and experiment with
different scenarios of data acquisition. In addition, there is no complex electromagnetic
interference in this urban area, which ensures the flight safety of UAVs, so we can use
small drones easily for aerial oblique photography.

3.2. Data collection

In this study, a DJI Mavic Air 2 UAV (Lan and Lee, 2021) was used to obtain geo-
tagged aerial oblique imagery for objective visual analysis and subjective visual percep-
tion (Figure 3). This drone is equipped with an image sensor with 1 / 2-inch CMOS, an
angle of view of 84°, an equivalent focal length of 24 mm, and an effective resolution
of 48 million pixels. We checked the clarity of this configuration and found that we can
distinguish people, vehicles, shrubs, and other minor objects on the ground at a height of
60 m. As a result, we believe that this drone meets the requirements of this research. The
aerial photography data collection took place over four days from 10 am to 6 pm during
the period from July to September 2021 under stable light conditions. We set photo ac-
quisition points every 300-500 m in the 24 km long linear research area, take panoramic
oblique pictures, and number them successively from south to north (Figure 2).

With the change of UAV flight altitude, the shape and size of objects will change
roughly in proportion (Xiang et al., 2018). The increase of the observation height brings
a broader vision, but vehicles, people, vegetation and other objects in aerial images
will become smaller, which brings challenges to the recognition of semantic informa-
tion (Lyu et al., 2020). In addition, low flying altitude also means a smaller field of
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Figure 2: Study area and data collection points. Field panoramic oblique photographs of the four selected
mapping points show the surveyed river landscapes. Source of the base map: Amap.

vision. In some complex scenes, there may be potential safety hazards, such as electric
towers, wires and branches, which may affect the flight (Watkins et al., 2020). There-
fore, after comparing the data of four heights of 30 m, 60 m, 90 m and 120 m, we chose
60 m height as a compromise among safety, large field of vision and ground clarity.

3.3. Semantic Riverscapes dataset

To address the first research question, we start by describing the steps carried out to
construct the Semantic Riverscapes dataset. After our literature review, we found that
there is no openly available UAV oblique imagery semantic segmentation dataset that
focuses on the river environment. Therefore, we acquire a large dataset containing UAV
oblique images and segment them, which is tailored for the semantic segmentation of
river scenes and can support applications such as the comprehensive visual analysis in
river landscapes. In addition to collecting oblique panoramic imagery required for vi-
sual perception and evaluation, we also took a series of oblique photos along the river to
construct a dataset for imagery semantic segmentation. After data acquisition and pro-
cessing, we derived the dataset with 400 high-resolution images spanning the river and
surrounding areas, each with a size of 1800 x 1480 pixels. When creating this dataset,
we took careful consideration of the shooting conditions and referred to the characteris-
tics of other datasets in order to make it more universal (Nigam et al., 2018; Sun et al.,
2021b). In terms of height, the shooting height of these images has changed from 30 m
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to 60 m, which is similar to the height coverage of several other UAV semantic segmen-
tation datasets (Nigam et al., 2018; Sun et al., 2021b), in order to meet more research
needs in the later stage, and it also contains the data of 60 m height that we use for visual
perception and evaluation. We also consider the lighting conditions, and the pictures in
the dataset include cloudy days and sunny days. Each image was manually labelled. We
labelled the imagery into 14 categories, namely: building, cottage, under construction
place, tree, grass, water grass, soil, hard ground, water, sky, human, car, boat, and void,
a relatively comprehensive segmentation (cf. Table 1), which will be applicable to the
river landscapes in most parts of the world. According to the characteristics of river
landscapes, we have decided to break down greenery into trees, grass, and water grass,
to distinguish the water plants and the vegetation around the river. Similarly, we regard
multiple groups of buildings: regular buildings, cottages, and construction sites. Our
aerial images have been labelled at pixel level with EISeg software (Xian et al., 2016;
Hao et al., 2021), which was developed based on PaddlePaddle (Ma et al., 2019), which
covers the majority of high-quality segmentation models in different directions, namely
general scenarios, portrait, remote sensing, medical treatment, etc., providing conve-
nience to the rapid annotation of semantic and instance labels with reduced cost (Hao
et al., 2021).

3.4. Objective visual analysis

3.4.1. Automated image segmentation
The manually annotated dataset is used to develop a CV model for image segmenta-

tion. Many ready-to-use models, such as FCN, SegNet, U-net, PSP-net, and SegFormer,
can detect objects and perform segmentation of an image (Badrinarayanan et al., 2017;
Zhao et al., 2017; Xia et al., 2021). Considering the characteristics of UAV data and oper-
ability in river landscapes, we select SegFormer, a cutting-edge Transformer framework
for semantic segmentation that jointly considers efficiency, accuracy, and robustness for
image semantic segmentation (Xie et al., 2021). To ensure the robustness of the reported
model, we have adopted the common practice of randomly splitting the dataset into two
portions: training (90%) and validation (10%). Two metrics were used to evaluate the
training and validation process: mean pixel accuracy (MPA) and mean Intersection over
Union (mIoU). The former is the ratio of correctly predicted pixels to the total pixels,
the latter is a common and effective evaluation metric used for image semantic segmen-
tation tasks, and it is the ratio of the intersection area of the predicted pixels and ground
truth pixels to their union area. It is also commonly used in urban analytics and spatial
information sciences (Wu and Biljecki, 2022). After using the UAV riverscapes dataset
to train the SegFormer model, we classify the 14 types of elements in the panoramic
oblique imagery at the pixel level and can objectively analyze the proportion of these
types of landscape elements in different imagery.
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3.4.2. Index system — characterising the view
Both the natural elements (e.g. greenery, water, and sky) and the artificial elements

(e.g. building and hard ground) have a considerable impact on the visual quality and
aesthetic cognition of landscapes (Jahani and Saffariha, 2020). In work engaging image
segmentation to extract indicators of the built environment, researchers often computed
one or more indexes to quantify the view from the semantic point of view (Ki and Lee,
2021; Li et al., 2015; Li, 2021). Based on the previous research experience of visual
landscapes and combined with the characteristics of river environment (Li et al., 2021b),
we extend existing indexing approaches for river landscape visual evaluation, adopting
the green visibility index (GVI), water visibility index (WVI), and sky visibility index
(SKVI), and introducing two new measures: the hard ground visibility index (HVI) and
building visibility index (BVI) (Table 2). Among them, vegetation is one of the most
important landscape elements in the river landscapes (Xin et al., 2021), and the GVI
includes trees, grass and water plants, which affect the ecology and natural degree of
the river space. Water is the main element in riverscape; thus, WVI plays a substantial
important role in vision. SKVI can measure the openness of river space, and also has
a great impact on people’s vision. HVI and BVI are significant indicators reflecting the
intensity of artificial construction in a river channel and surrounding areas. These two in-
dicators, which are different from those in previous studies (Li et al., 2021b; Gong et al.,
2018), are the contents viewed from UAV oblique perspectives, and contain a wider
range of semantic information. Among them, the HVI includes not only hard pavement,
driveway and sidewalk, but also bridges and community squares, and it can reflect the
hard condition of the ground in an area. Buildings (apartments, office buildings, resi-
dential buildings, etc.), tiny cottages, and rural dwellings, as well as under-construction
places, etc., are all included in the BVI, which is useful for portraying the percentage of
buildings in an area in three-dimensional panoramas.

Atotal i is the total number of pixels in image i, Atr i is the number of tree pixels in
image i, Agr i is the number of grass pixels in image i, Awg i is the number of water grass
pixels in image i, Awa i is the number of water pixels in image i, Ask i is the number of
sky pixels in image i, Ahg i is the number of hard ground pixels in image i, Abu i is the
number of building pixels in image i, Aco i is the number of cottage pixels in image i,
Auc i is the number of under construction place pixels in image i.

3.5. Subjective visual perception

Although UAV aerial photography has been widely used recently, most of the rele-
vant research focuses on ordinary photos taken from a single perspective, which cannot
fully display all the characteristics of the shooting area in combination with advanced
virtual interactive equipment such as VR glasses. The panoramic image shows the sur-
rounding environment centred on the position of the UAV itself and can provide par-
ticipants with an immersive virtual feeling by using VR glasses (Newman et al., 2022).
It can also provide non-immersive virtual perception through iPads, smartphones with
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Table 2: Description of the objective indexes.

Dimension Parameter Parameter description Parameter equation

Natural
Green Visibility Index
(GVI)

The proportion of vegetation pixels (tree,
grass, water grass) in the image

GVI = (Atr i + Agr i + Awg i)/ Atotal i

Water Visibility Index
(WVI)

The proportion of water pixels in the image WVI = Awa i / Atotal i

Sky Visibility Index
(SKVI)

The proportion of sky pixels in the image SKVI = Ask i / Atotal i

Artificial Hard ground Visibil-
ity Index (HVI)

The proportion of hard ground pixels (in-
cludes not only carriageways and sidewalks,
but also bridges, community squares, etc.) in
the image

HVI = Ahg i / Atotal i

Building Visibility In-
dex (BVI)

The proportion of building pixels (high-rise
residential buildings, cottage, commercial
office buildings, buildings under construc-
tion, etc.) in the image

BVI = (Abu i + Aco i + Auc i) / Atotal i

Figure 3: Overview of the workflow. Step 1: generating the original sample data. Step 2: visual evaluation
and perception methods. Step 3: visualization of evaluation and perception results and their correlation
analysis.
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gyroscopes and accelerometers and other devices so as to achieve remote virtual display
and reproduce the real environment. So the UAV panoramic images effectively bridge
this defect. Compared with the traditional image-based evaluation methods, the use of
both IVR and nIVR technologies for landscape visual perception can bring more intu-
itive experience (Birenboim et al., 2019).

A previous UAV-related landscape perception study used pleasure, tranquillity, colour,
complexity, etc. as indicators (Yang et al., 2020). Relevant urban environmental studies
have analyzed the types of human perception, such as safety, beauty, colour, liveliness,
boredom and depression (Ma et al., 2021a; Dubey et al., 2016; Yao et al., 2019, 2021;
Zhang et al., 2021). Adopting the previous experience in the state of the art of visual
perception and the characteristics of river landscapes, this study takes beauty, pleasure,
tranquillity, colour, complexity and liveliness as perception indexes, and uses these six
indexes to analyze the subjective visual perception of river landscapes. Beauty estima-
tion is a common way for landscape visual quality assessment and can describe public
aesthetic preferences (Sun et al., 2018; Li et al., 2020a). Pleasure, tranquillity, and live-
liness are also used as the landscape perceptual analysis contents (Yang et al., 2020;
Ma et al., 2021a). The colour richness and visual complexity, as perceptual quality in-
dexes, are related to the affective appraisal of the landscape (Berlyne, 1970; Cavalcante
et al., 2014; Yang et al., 2020). Assessing these perception types can help understand
participants’ feelings about the river environments.

The ethical aspects of this study have been reviewed, and the experiment was ap-
proved by the Institutional Review Board of the National University of Singapore. The
survey was divided into two groups: immersive virtual perception group and non-immersive
perception group, and the data obtained from the two groups of experiments can be cross-
verified. It took place in January and April 2022. The immersive virtual environment was
presented via the lenses of a Pico Neo 3 head-mounted display, and the non-immersive
virtual environment was presented via iPads, smartphones, and PCs. The participants
were students and staff from the National University of Singapore and Tianjin Univer-
sity, adding diversity to the demographics and including also participants who are not
residents of Tianjin. The immersive VR perception group of participants who took part
in the experiment comprised 21 individuals with a mean age of 27.1, 16 (76.2%) were
females, and 15 (71.4%) were students, and the non-immersive VR perception group of
participants who took part in the experiment comprised 90 individuals with a mean age
of 25.6, 53 (58.9%) were females, and 78 (86.7%) were students. Participants who took
part in the nIVR experiment were involved in this visual perception process through a
web questionnaire. The 720 yun platform was used for virtual display of panoramic
photos, so the participants could conduct nIVR experience online.

For participants to fully understand the content of each panoramic image, each par-
ticipant needed to look around each scene and browse for no less than 40 seconds. To
avoid the negative side effects (or “VR sickness”), such as dizziness and nausea, caused
by the long exposures to head-mounted displays and the influence of fatigue on the score,
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we divided the panoramic images of 48 mapping locations into 3 groups using an equal
difference sequence, and each group experienced 16 locations. Both the two perception
groups of participants only watched 16 panoramic pictures, and their experience time
was no more than 20 minutes (Park and Lee, 2020; Birenboim et al., 2019). Therefore,
each mapping point (cf. Figure 2) has IVR scores of 7 participants and nIVR scores of
30 participants. After experiencing each panoramic image, participants rated it through
multiple dimensions: beauty, pleasure, tranquillity, colour, complexity, and liveliness
using the 7-point Likert scale (Likert, 1932) (e.g. with 1 referring to ‘It is not tranquil
at all’ to 7 indicating that it appears to be very much tranquil). The final score of each
scene is the average of the participants’ scores of the two groups.

4. Results

4.1. Objective visual evaluation results

4.1.1. Proportion of visual elements
With an MPA of 90% and a mIoU of 47%, our trained SegFormer model under the

Transformer framework performs well in the imagery semantic segmentation task, meet-
ing the experimental conditions. Figure 4 shows the results of successfully segmenting
14 elements of river landscapes.

The findings of pixel-level semantic segmentation of panoramic oblique images of
48 mapping points we obtained using this model are helpful in analyzing river sceneries
from various perspectives. After counting the 14 semantic segmentation contents in all
panoramic images, we discover that, in general, the proportion of sky, water and tree
is 75%, which forms the leading skeleton of the river landscape. Among them, the sky
accounts for 38%, the water accounts for 23%, and the tree accounts for 14%. This
part of the Grand Canal’s vision is dominated by these features, which form the primary
visual style. Hard ground, buildings, and grassland make up a smaller percentage of the
total, with 9% of hard ground, 7% of buildings, and 6% of grassland. The proportions of
soil, cottage, automobile, boat, and other components, on the other hand, are tiny, with
the proportion of soil being 3% and the proportion of other elements being less than 1%.

4.1.2. Evaluation results
To answer the second research question, we compared the objective and subjective

visual characteristics of 48 locations of the two rivers by classifying and counting pixel
ratios of landscape elements in the panoramic images (Figure 5). The geographical dis-
tribution of water, trees, and grass is noticeably unequal. The distribution of buildings,
hard ground, and other objects, on the other hand, is rather uniform, whereas the varia-
tion in sky is smaller. Specifically, the visible area of the water shows the characteristics
of more in the middle, less on both sides, and less in the south part of the studied portion
of the canal than in the northern one. The visible area of the water at the canal inter-
section is substantially larger than the south canal and the north canal. The observable
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Figure 4: UAV panoramic oblique images and their semantic segmentation results.
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surface of water between mapping locations 19-26 is very large, whereas the average wa-
ter area between mapping points 26-50 is higher than that of mapping sites 1-18, based
on the placement of mapping points. In some locations, the distribution of trees reveals
the characteristics of considerable changes. The visible area of the tree is higher between
mapping locations 11-18 than it is in other regions, whereas the visible area of mapping
points 32-38 and 6-10 is slightly lower than that of mapping points 1-5 and 40-48. The
overall spatial alteration of the building elements is minor. As a total, the proportion of
buildings indicates a slight declining tendency from south to north. Among them, the
proportion of buildings between mapping points 14 and 19 of the south canal is relatively
high, while the proportion of buildings between 1 and 10 is fairly low. The proportion
of buildings in the north canal, on the other hand, is lower overall.

By adding the proportions of different landscape elements, we obtained the spatial
distribution of five indexes. GVI is composed of trees, grass and aquatic plants, and
it presents the characteristics of less in the middle and more on both sides in space.
Specifically, the GVI of mapping sites 19-24 is particularly low, whereas the GVI of
locations 1-18 and 32-48 is relatively high. The spatial green visibility of this part of the
Grand Canal is directly proportional to the distance from the mapping locations to the
central urban area, indicating that the higher the green visibility, the further away from
the urban centre. BVI is composed of building, cottage and under construction place, and
it changes little in space. Locations 12-21 have a slightly higher BVI, while locations 22-
40 have a comparatively low BVI. SKVI, WVI and HVI are separately composed of sky,
water and hardground, so they are consistent with the spatial distribution characteristics
of these three elements.

4.2. Subjective visual perception results

We cross-verified the results of the immersive VR and non-immersive VR perception
experiments, and analyzed the correlation between them. The scores from the immersive
VR experiment were highly correlated with non-immersive VR experiment scores in
six perceptual indicators: beauty (Pearson correlation coefficient r = 0.841, p < 0.01),
pleasure (r = 0.822, p < 0.01), tranquillity (r = 0.890, p < 0.01), colour (r = 0.731, p <
0.01), complexity (r = 0.757, p < 0.01), and liveliness (r = 0.675, p < 0.01).

Six types of visual perception indexes of UAV panoramic photographs were quan-
titatively studied in 48 sites in this study (Figure 6), the values of the six indexes were
the average of the immersive VR and non-immersive VR experiments. On the whole,
the average value of beauty of river landscape in the research region is relatively high,
which is 3.949, the maximum value is 5.920, which appears at point 14, and the min-
imum value is 2.170 at point 32. We observe that points in the range 1-14 and 37-41
have greater ratings, whereas points 26-35 have lower values. The mean value of notion
of pleasure is the lowest, standing at 3.648, while the maximum value is 5.910, which
occurs in location 5. The minimum value is 1.925, which appears at point 32. The av-
erage value of tranquillity is 3.657, the maximum value is 5.980 (location 2), and the
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Figure 5: Visual evaluation of the results: the top images portray the segmentation results of panoramas at
two locations in the sequence. The middle image indicates the sequential distribution of visual elements
throughout the observed points (the most common 6 classes are included). The bottom image illustrates the
results characterised by the index system (derived from the classes visible in the middle plot). The indexes,
which are mutually exclusive, do not add up to 100% because not all classes are part of them.
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Figure 6: Visual perception results throughout the linear study area, visualized as a streamgraph.

minimum value is 1.425 (location 18). Overall, the tranquillity score of the south canal
is slightly higher than that of the north canal, while the score of the middle position (16-
24) is lower. The average value of colour is 3.893, the maximum value is 5.725, which
occurs in point 2, and the minimum value is 2.175 at location 32. The average value of
complexity is the highest, 4.350, the maximum value is 5.970, which appears in point
19, and the minimum value is 2.620, in position 44. The average value of liveliness is
3.826, the maximum value is 6.125, which occurs at position 2, and the minimum value
is 2.130, which occurs at position 35.

4.3. Correlation analysis

To answer the third research question, we quantitatively explored the relationship
between five visual evaluation indexes and six visual perception indexes based on the
selected river landscape assessment and visual perception results.

The relationships, visualised in Figure 7a, indicate that the GVI and beauty, pleasure,
tranquillity, colour and liveliness are all significant, and the correlation coefficient values
are 0.55, 0.52, 0.64, 0.38 and 0.4, respectively, all of which are positive and in the moder-
ate range, indicating that there is an association between the green vegetation and these
five perception indexes. Simultaneously, the correlation coefficient between GVI and
complexity is close to 0, showing that GVI and complexity do not exhibit a relationship.
The correlation coefficient between SKVI and tranquillity is 0.32, which means there is
a positive correlation between sky and tranquillity. In contrast, the correlation coefficient
between SKVI and beauty, pleasure, colour, complexity and liveliness is around 0, indi-
cating no relationship between sky and these indexes. There is a significant correlation
between BVI and complexity, and the correlation coefficient is 0.47, which means that
there is a positive correlation between buildings and complexity. However, the corre-
lation coefficient between BVI and beauty, pleasure, tranquillity, colour and liveliness
is close to 0, indicating that there is no clear correlation. The correlation coefficient
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(a) (b)

Figure 7: Correlation coefficients among (a) the visual perception results and evaluation results; and (b) the
indexes.

between HVI and tranquillity and complexity is significant. Specifically, the correla-
tion coefficient between HVI and tranquillity is -0.49, indicating a significant negative
correlation between hard ground and tranquillity. Between HVI and complexity, the
correlation coefficient is 0.41 and shows the significance of a 0.05 level, which shows
a significant positive correlation between the two indexes. In addition, the correlation
between HVI and beauty, pleasure, colour and liveliness is not significant (p > 0.05),
which means no correlation between hard ground and these four indexes. The WVI and
beauty, pleasure, tranquillity, colour and liveliness all show a significant correlation, and
the correlation coefficient values are -0.46, -0.46, -0.44, -0.39 and -0.45, respectively,
all of which are less than 0, which means a moderate negative correlation between the
water and beauty, pleasure, tranquillity, colour and liveliness. At the same time, there is
no significant relationship between WVI and complexity, and the correlation coefficient
is close to 0, suggesting no correlation between water and complexity. It can be seen
that the water conditions in the study area are not pleasant, which will produce negative
emotions for people. Finally, Figure 7b indicates the correlations among the indexes.
HVI and BVI, the two new indexes introduced in this paper, are not strongly correlated
with any other index, affirming their uniqueness and contribution, and thus, we propound
that they complement existing indexes.

5. Discussion

5.1. UAV perspective and the Semantic Riverscapes dataset

River-related landscape design and construction continue to account for a significant
portion of the overall environmental development. Therefore, it is crucial to investigate
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the current characteristics of river landscapes, and understanding this issue visually re-
mains central to both the government and research institutions. However, most existing
approaches heavily rely on field survey workflow, including the investigation of river-
sides on the ground, which is time-consuming, labour intensive and costly; therefore,
these means could benefit from introducing new technologies (Yamashita, 2002; Sun
et al., 2021a). During our literature study, we discovered that neither satellite imagery
nor SVI is optimal for visual perception and evaluation of large-scale riverscapes. The
UAV, on the other hand, offers significant benefits for these operations, but we discovered
that no research had been done on river subjective visual perception using drone oblique
imagery and VR and objective visual evaluation utilizing CV. In this study, we proposed
to use UAV oblique photography to assess river landscapes, which can obtain a larger
perspective and more content than a human viewpoint, and has become an important
auxiliary tool and method for overall understanding of large-scale landscapes (Meng
et al., 2021). We used an immersive sensing device (head-mounted display) and non-
immersive sensing equipment (iPad, PC, etc.) to achieve the remote perception of river
landscapes from a UAV perspective. The immersive VR perception brings people a high-
quality sense of presence, while non-immersive VR perception can enable more individ-
uals to participate in this visual perception experiment remotely. We cross-verified the
perception results of IVR and nIVR experiments and found a high correlation between
them, and we believe these remote visual evaluation approaches can provide a reference
for the follow-up study of UAV-based VR perception.

The Semantic Riverscapes dataset is created in this study as a novel semantically an-
notated dataset of UAV oblique photography to aid in the comprehension of large-scale
river landscapes and enrich the landscape of open UAV datasets which are scarce, and
none of these hitherto includes rivers and the surrounding context. The 14 categories
that have been regarded in the semantic segmentation (e.g. building, cottage, tree, grass)
can be detected by training the deep learning model, with MPA reaching 90 percent,
compensating for the current research flaws in this domain. We can accurately batch
process river landscape photos of both urban and rural locations with this dataset and
semantic segmentation model, and it is applicable. On this basis, the workflow we pro-
posed can quickly obtain evaluation results for the general condition of river landscapes,
as well as analyze and compare GVI, BVI, HVI, and other river indexes, allowing en-
vironmental management institutions and relevant public bodies to better understand
the environmental characteristics of rivers and provide data support for improving the
spatial quality of river scenery. We have released this dataset openly for public use, to-
gether with documentation. The dataset has been released under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0)
on Github2, filling the aforementioned void in the field and complementing existing
datasets (cf. Table 1). With this open dataset, practitioners and researchers can use it to

2The dataset is available at https://github.com/ualsg/semantic-riverscapes-dataset.
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conduct a large number of river scene-related studies, which we hope will promote the
development of this field. Further contributions of this open dataset are: (i) it is a linear
dataset and one that is focused on heritage, potentially benefiting research on other linear
landscapes and types of heritage; (ii) it represents a study area in Asia and it contains
oblique imagery, while existing open UAV datasets (Section 2.2) are mostly focused on
other locations and other perspectives; and (iii) it contains a relatively large number of
classes benefiting other types of research.

5.2. Riverscape characteristics

The environment features in most river landscapes remain ambiguous, and there is
a rising conflict between the needs of riverside environment understanding and river
visual perception and evaluation. This is the first study to associate subjective VR per-
ceptions of large-scale urban riverscapes from UAV oblique imagery in conjunction with
a computer vision technique. Through the classified statistics of the pixel proportion of
different landscape elements in the oblique photography panoramic pictures of dozens
of locations in the research area, we accurately analyze the proportion of different land-
scape elements in different areas and obtain the visual evaluation results. The physical
setting of a place will affect people’s subjective visual perceptions of the site (Tabrizian
et al., 2020). Using the common perception indexes of beauty, pleasure, tranquillity,
colour, complexity, and liveliness, the subjective VR perceptions of river scenery are
quantitatively examined to produce the visual perception findings, which is in line with
related work examining other dimensions of urban landscapes. After analyzing the cor-
relation between objective visual evaluation results and subjective visual perception re-
sults, we found that GVI exhibited an obvious positive correlation with beauty, pleasure,
tranquillity, colour and liveliness, which is similar to the results of street-level GVI anal-
ysis (Zhang et al., 2018; Ma et al., 2021a). Therefore, it can be proved that the influence
of GVI on people’s perception is not only applicable to urban street landscapes but also
applicable to riverscapes from the oblique viewpoint, like the perspective of UAV. The
HVI had a negative correlation with tranquillity, and HVI, BVI and complexity showed
a positive correlation, similar to related research conclusions (Li et al., 2021b; Kerebel
et al., 2019). In other words, plants are conducive to improving the visual quality of
river landscapes, while artificial objects such as buildings and roads will affect and re-
duce people’s perception of beauty and pleasure. However, this study found that there is
a negative correlation between water and beauty, pleasure, tranquillity, colour and liveli-
ness, which is different from the previous research results (Li et al., 2021b), as the cited
research highlights that the water quality in different regions and other influencing fac-
tors will affect the overall visual quality of river landscapes. To understand why the water
body is negatively correlated with the perception indicators (beauty, pleasure, etc.), we
examined the water body in these panoramic photographs and discovered that the colour
of the water is not a pleasant blue, but rather a dark grey, making it unappealing. We fur-
ther consulted the water quality information of these rivers and found that there is a lack
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of water resources in Tianjin, accompanied by severe water pollution (Cao et al., 2021).
Therefore, poor water quality can have a negative impact on people’s visual experience,
which is also confirmed by previous research conclusions (Li et al., 2021a). The over-
head viewpoint of high-rise residential buildings is comparable to that of UAVs. Li et al.
(2021a) has found a link between the visual characteristics (water visibility rate, green
visibility rate, etc.) of urban rivers and housing values. The high green viewing rate of
urban high-rise residential buildings and the river view with good water quality can raise
house prices, whereas a low-quality river environment will lower house prices and affect
people’s environmental perception, which is similar to our correlation conclusion.

5.3. Limitations, challenges and future directions

Although we demonstrate that we can engage UAV oblique photography data and
deep learning to analyze the characteristics of river landscapes instead of manual analy-
sis, there are still some issues to be solved and this work leaves opportunities for further
investigations.

• Firstly, image semantic segmentation can be more accurate with further efforts. At
present, our dataset can identify green plants, but in higher latitudes, most of the
vegetation in winter lacks green leaves and mostly exists in the form of branches,
so it can not be identified as vegetation. In follow-up research, we plan to mark
more images in different seasons, and then use it to train the existing model to
obtain improved image segmentation.

• Secondly, while we had experimented with a few heights (Section 3.2), we chose
60 m as the altitude of UAV to obtain data, which maintains the consistency of
data, but we have not studied the data at other altitudes extensively. Therefore,
more data at different heights will be considered in the future to deepen the under-
standing of spatial features.

• Thirdly, we used manual flight to obtain data; thus, the number of UAV aerial sur-
vey locations is still relatively limited. The survey areas can be further expanded
to lay a foundation for larger quantitative analysis studies of visual perception and
evaluation. In the later stage, we will consider using a full-automatic program
(e.g. GeoAI-empowered approaches (Liu and Biljecki, 2022)) to control the UAV
to obtain spatial data so as to further expand the research area and reduce the
workload and shorten the time interval for obtaining data.

• Finally, in the age of ‘Metaverse’ and digital twin, perceptions using UAV and
virtual reality are widely adopted. The best way for humans to view these bird-
eye-level scenes is via virtual and distant methods because it is practical in this
study and future landscape evaluation and perception works (Pavlik, 2020). How-
ever, it is worth noting that the evaluation based on the means of virtual reality may
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not reflect the ratings in the real world. Compared with the real-world visual per-
ception, the remote virtual rating may face bias. Therefore, our proposed method
of remote visual perception can only provide a reference for future studies which
adopt the same approaches as ours. Additionally, we adopted six common per-
ceptual indexes (beauty, pleasure, tranquillity, etc.) according to our study aims.
Future works can explore more specific indicator systems for visual perception
analysis.

With the further development of UAV autopilot technologies, the efficiency of ac-
quiring research data will be improved in the coming years. The accumulation of drone
oblique photographic images and the assistance of automatic analysis technologies such
as CV, UAV-related data will become a useful tool for large-scale spatial analysis and
monitoring. Furthermore, without the need for surveyors to study the river environment,
extensive data can be gathered. As a result, it has a great potentiality in regions with poor
field conditions. Through the standardized UAV data processing process, the results of
this study can not only facilitate promotion in different regions, but also meet the needs
of iterative data updates in the same area, and it will also help to analyze the dynamic
change characteristics of landscapes on a time scale, so as to improve the refinement and
efficiency of spatial management, which will be used by urban planners, environmental
managers and other researchers.

This study can be used to investigate large-scale river landscapes, provide a reference
for the authorities to formulate riverside development policies, and can also be used to
guide river planning projects. At the same time, the results of this study can benefit the
construction of the National Cultural Park of the Grand Canal, and the methods can also
help the government (and others leading similar projects elsewhere) to have a macro un-
derstanding of the overall situation of the river as a basis for follow-up works. For future
work, we also plan to investigate whether we can render simulated scenarios of future
redevelopments and predict the perception of each of these proposed scenarios to assist
in decision-making. In addition, we intend to investigate the application of segmented
3D city models to enrich our approach, e.g. using other openly released datasets, com-
plementing ours (Gao et al., 2021), and to infuse soundscape into the models to better
understand the built environment (Edler et al., 2019; Hruby, 2019). For future instances
of the dataset, we also plan to include an additional urban area.

6. Conclusion

We developed a visual analysis workflow based on UAV oblique panoramas for un-
derstanding macro river landscapes by combining subjective visual perceptions and ob-
jective visual evaluation through automated CV approaches, a novelty in this domain.
Our method relies on concurrent experiments involving immersive and non-immersive
experiences, a rarity. Satellite imagery has dominated related analyses in the built envi-
ronment, and the rise of street view imagery has been pivoting and revolutionary. Still,
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these two types are often out of reach — in terms of coverage, clarity, access to the data,
and acquisition flexibility. We show that UAVs are the middle ground with unique advan-
tages, and they provide a new perspective that cannot be rivalled by the aforementioned
types. By introducing UAV oblique photography, a standardized workflow of UAV map-
ping, oblique image semantic segmentation, immersive VR and non-immersive VR ex-
periences are constructed to achieve the automatic landscape evaluation and people’s
perception effectively and remotely. Besides a novel application of UAV oblique im-
agery in this research line, there are several key contributions of this study. First, we
generated Semantic Riverscapes, an open semantic segmentation dataset of UAV oblique
photography images based on river landscapes. Using this dataset and CV algorithms,
rivers and surrounding landscapes can be analyzed automatically and efficiently, which
overcomes the shortcomings of the state of the art. Second, we obtained 48 oblique
panoramic images and quantitatively analyzed the proportion of 14 landscape elements
such as buildings, trees and water in different locations of the river by using computer
vision. The index system of river visual evaluation was extended with two novel in-
stances, presenting a versatile set of several indexes. According to five of them, the
river landscape was visually evaluated, and the evaluation results of the research area
were obtained. Third, we used VR to visualize panoramic images, and had more than
a hundred of participants in a non-immersive VR remote virtual experience and in an
immersive VR perception of the river landscapes, and obtained their subjective visual
perception of six dimensions (beauty, pleasure, tranquillity, colour, complexity and live-
liness) through a systematic questionnaire. Also, we compared the two approaches,
discovering their relationships. Fourth, we analyzed the correlation between the visual
evaluation data of image semantic segmentation and human perception data and found
the relationship between people’s visual perception and landscape environment; further,
we explored the possible reasons for the correlation findings, which indicate that the
variables ‘vegetation’ exhibited a positive correlation with beauty, pleasure, tranquillity,
colour and liveliness, consists with the results of the street-level analysis. Our results
also indicate that the variable ‘water’ had a negative correlation with these perceptual
indicators, which is different from the previous research results, and we explored the
possible reasons. Therefore, our findings and proposed workflow can help planners to
gather a macro understanding of the overall situation of the river and prompt authori-
ties to formulate riverside development policies, which are beneficial to the river-related
environment.
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Miřijovskỳ, J., Langhammer, J., 2015. Multitemporal monitoring of the morphodynamics of a mid-

mountain stream using uas photogrammetry. Remote sensing 7, 8586–8609.
Mouratidis, K., Hassan, R., 2020. Contemporary versus traditional styles in architecture and public space:

A virtual reality study with 360-degree videos. Cities 97, 102499.
Munawar, H.S., Ullah, F., Qayyum, S., Heravi, A., 2021. Application of deep learning on uav-based aerial

images for flood detection. Smart Cities 4, 1220–1242.
Newman, M., Gatersleben, B., Wyles, K., Ratcliffe, E., 2022. The use of virtual reality in environment

experiences and the importance of realism. Journal of Environmental Psychology 79, 101733.
Nex, F., Armenakis, C., Cramer, M., Cucci, D., Gerke, M., Honkavaara, E., Kukko, A., Persello,

C., Skaloud, J., 2022. Uav in the advent of the twenties: Where we stand and what is
next. ISPRS Journal of Photogrammetry and Remote Sensing 184, 215–242. URL: https://

www.sciencedirect.com/science/article/pii/S0924271621003282, doi:https://doi.org/
10.1016/j.isprsjprs.2021.12.006.

Nigam, I., Huang, C., Ramanan, D., 2018. Ensemble knowledge transfer for semantic segmentation, in:
2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE. pp. 1499–1508.

Okeil, A., 2010. Hybrid design environments: immersive and non-immersive architectural design. Journal
of Information Technology in Construction (ITcon) 15, 202–216.

Paes, D., Irizarry, J., Pujoni, D., 2021. An evidence of cognitive benefits from immersive design review:
Comparing three-dimensional perception and presence between immersive and non-immersive virtual
environments. Automation in Construction 130, 103849.

Pang, H.E., Biljecki, F., 2022. 3d building reconstruction from single street view images using deep learn-
ing. International Journal of Applied Earth Observation and Geoinformation 112, 102859.

Papadopoulou, E.E., Papakonstantinou, A., Zouros, N., Soulakellis, N., 2021. Scale-variant flight planning
for the creation of 3d geovisualization and augmented reality maps of geosites: The case of voulgaris
gorge, lesvos, greece. Applied Sciences 11, 10733.

Park, S., Lee, G., 2020. Full-immersion virtual reality: Adverse effects related to static balance. Neuro-
science letters 733, 134974.

Pavlik, J.V., 2020. Drones, augmented reality and virtual reality journalism: Mapping their role in immer-
sive news content. Media and Communication 8, 137–146.

Pettorelli, N., Schulte to Bühne, H., Tulloch, A., Dubois, G., Macinnis-Ng, C., Queirós, A.M., Keith, D.A.,
Wegmann, M., Schrodt, F., Stellmes, M., et al., 2018. Satellite remote sensing of ecosystem functions:
opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation 4, 71–93.
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