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Abstract

Mapping population distribution at a fine spatial scale is essential for urban studies and plan-

ning. Numerous studies, mainly supported by geospatial and statistical methods, have

focused primarily on predicting population counts. However, estimating their socio-eco-

nomic characteristics beyond population counts, such as average age, income, and gender

ratio, remains unattended. We enhance traditional population estimation by predicting not

only the number of residents in an area, but also their demographic characteristics: average

age and the proportion of seniors. By implementing and comparing different machine learn-

ing techniques (Random Forest, Support Vector Machines, and Linear Regression) in

administrative areas in Singapore, we investigate the use of point of interest (POI) and real

estate data for this purpose. The developed regression model predicts the average age of

residents in a neighbourhood with a mean error of about 1.5 years (the range of average res-

ident age across Singaporean districts spans approx. 14 years). The results reveal that age

patterns of residents can be predicted using real estate information rather than with ameni-

ties, which is in contrast to estimating population counts. Another contribution of our work in

population estimation is the use of previously unexploited POI and real estate datasets for it,

such as property transactions, year of construction, and flat types (number of rooms).

Advancing the domain of population estimation, this study reveals the prospects of a small

set of detailed and strong predictors that might have the potential of estimating other demo-

graphic characteristics such as income.

Introduction

With more than half of the world’s population living in urban areas, and with this trend con-

tinuing positive trajectory, urban management, planning and analysis are increasingly impor-

tant to better understand, manipulate and improve urban systems [1–3]. For effective

planning and appropriate measures, data on demographic distributions plays an important

role [2, 4]. These spatial patterns are essential to gain knowledge about socio-economic and

environmental phenomena, which supports both public and private sectors in planning and

decision making [5, 6]. Demographic counts are usually provided by population censuses,
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which enable identifying patterns of human distribution at administrative units [7]. However,

these censuses can be expensive, they are usually conducted at low temporal resolution, and

they are fixed at zones at a certain spatial scale, which can lead to biases as part of the modifi-

able area unit problem [8–10]. Hence, it is crucial to develop different approaches and meth-

ods with the help of GIS and statistics to overcome some of these issues, primarily with the

goal of providing reliable demographic data at a fine spatial scale. Such datasets may be found

useful for a variety of applications, e.g. energy demand estimations [11], health studies [12],

planning amenities [13], and waste management [14].

There is a long history of population estimation in GIS. Areal interpolation is a well-tried

way to disaggregate population numbers from larger to smaller areas or administrative levels,

for example, by simple area weighting or dasymetric mapping [6, 8, 15–18]. In contrast,

another approach is to establish statistical relationships between population and certain spatial

information in a number of zones, and use regression to estimate the population in other areas

at the same administrative or spatial scale level [19, 20].

Both approaches have been applied in studies for the estimation of population in small

areas, being driven by one or more multiple predictors that hint at the size of the population

[5, 21]. These predictors come in different forms and shapes and from different sources [22].

For example, land use classes and night time lights, derived from remote sensing techniques,

are a common set of information that are used in population estimations [1, 4, 23–25]. Fur-

ther examples are many: household counts [4, 6], telecommunication data [10, 26, 27], tax

parcel information [28], and social media [29, 30]. The large number of disparate informa-

tion and wide range of data sources used in the analyses are united in predicting the number

of people living in an area, but they do not do much beyond that despite the diversity of

input data.

As previous work focuses almost entirely on predicting population numbers only, there is a

gap in research in accompanying population count estimation by also inferring demographic

or socio-economic patterns of people behind those counts, such as age, gender, and income.

This is important because, as our study will affirm, subdivisions of large areas often have het-

erogeneous population characteristics, besides having diverging population counts. The same

set of applications that use spatial population data, could appreciate the availability of an

expanded set of information such as demographic characteristics [7, 31]. For example, demo-

graphic characteristics and not just population counts are important in epidemiology [32, 33]

and in estimating energy consumption behaviour [34, 35].

In this paper, we investigate how can population estimation techniques be expanded to

include inferring demographic attributes as well. In our study, we have focused on predicting

the age of residents, an especially important demographic characteristics nowadays. For

example, the age of residents in an area may be relevant for a number of use cases such as

urban planning and business intelligence. Further, rapidly ageing societies pose many future

challenges, which are eminent for well-developed geographies such as our study area—Sin-

gapore [36–38]. Hence, appropriate measures regarding eldercare, retirement, and transport

(among many others) need to be addressed, which are unexceptionally bound to geographi-

cal patterns [39–41], and can be supported by spatial data detailing demographic

distributions.

To the extent of our knowledge, the work of [42] is the only study which has aimed to pre-

dict demographic structures so far, by estimating the numbers of children under 5 years across

Nigeria with the help of land cover, night time lights, vegetation index and travel time to major

settlements, for the purpose of developing vaccination strategies. Our work differs from theirs

by estimating the average age of residents, by focusing on senior population, and by using a
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different set of data—we are focusing on real estate and point of interest (POI) data, rather

than data derived from remote sensing, presenting a contribution in this domain.

During our research, we have encountered further research opportunities in the traditional

population estimation, which we attempt to bridge in this paper. These research gaps and aims

are elaborated in the continuation of the paper, with the two most important as follows.

First, we notice that some POI (i.e. amenities; in our paper we use the two terms inter-

changeably) and real estate data we have at our disposal not only have not been used to predict

age patterns, but they have also not been used in population count estimation. For that reason,

we include also traditional population count estimation, as an intermediate step towards our

enhanced demographic-aware population estimation. The selection of these datasets follows

our hypothesis that amenities and real estate in neighbourhoods have been shaped by the

demographics of its residents, a reasoning that has been inspired by recent work using such

data for population estimation [18, 43, 44]. Hence our work also contributes to the body of

knowledge by uncovering the value of different amenity and real estate data in population

count, besides inferring demographic characteristics.

Second, as our work largely relies on machine learning (ML), we pay special attention in

understanding how do different ML techniques differ in their accuracy of predicting demo-

graphic patterns. In our work, instead of merely identifying the most effective technique in the

exploratory phase, we conduct the analysis using multiple approaches, which is a contribution

considering that comparative analyses are seldom in this domain and given that we provide

potentially valuable insights to other researchers in population counts in suggesting reliable

techniques for population estimation.

Finally, while we focus on one demographic attribute, we believe that our work could be

expanded to cover other key ones such as income, gender ratio, and ethnicity, as well.

Background and related work

Point features, and amenities/POI and real estate data

Point-based features (i.e. when the location of a real-world feature is represented by a point)

have been frequently included in disaggregation research, due to its simple data structure and

wide availability [45]. In our research, we focus on two instances of point-based features:

points of interest and real estate data. The latter domain of data is of wide variety coming in

different geometric forms (e.g. building footprints as polygons), but as it will explained later,

in our research, we focus solely on point-based real estate data.

POIs such as schools, banks, bus/metro stations, clinics, parking lots, restaurants and muse-

ums have proven to have a considerable relevance with population patterns and often correlate

with density, and hence have been used in population studies [24, 46, 47]. Another advantage

of these features is that they can often be easily obtained from datasets openly released by

national mapping agencies or from Volunteered Geographic Information (VGI), i.e. Open-

StreetMap [1, 6, 46, 48]. Our work extends related instances with the hypothesis that the den-

sity of particular amenities that caters to a specific demographic group may be useful as a

predictor of age, i.e. amenities in a neighbourhood will reflect its residents’ demographics. For

example, we expect that neighbourhoods with a higher number of schools, will have a popula-

tion younger than the national average. Furthermore, we investigate the inclusion of other

amenities that, to the extent of our knowledge, have not been used in related work.

Geospatial real estate and housing stock data has been included in the analysis, since it has

repeatedly proven to be significant in previous population estimation approaches [6, 15], and

has been extensively linked to demography in other studies [49–51]. Examples of housing pre-

dictors that have been used are the number of buildings, their footprint area, floor area, and
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volume [20, 47, 52, 53]. Nowadays, real estate datasets are available from commercial websites

or the government, and may support population estimation methods significantly [15, 28, 54].

However, there are other types of data related to real estate that have not been used in such

studies, such as property transactions and age of buildings (i.e. year of construction). Thus, we

believe that it is important to investigate their role in population estimation, which we focus

on in our study.

Machine learning in population estimation

The rise of ML algorithms has also made its mark into GIS applications. While linear regres-

sion has been applied in geographical analysis for decades, more sophisticated methods have

become popular in recent years. In particular, Random Forest (RF), a supervised ML algorithm

based on decision trees, has evolved into the researchers’ favourite method in estimating popu-

lation counts [1, 24, 48]. Alternatively, Support Vector Machines (SVM), which aim to find an

ideal hyperplane in an multi-dimensional space, have been widely employed especially in

remote sensing, and furthermore in hyper-complex applications such as facial recognition

[55–57]. With the exception of the work of [4], SVM however still leads a shadow existence in

population predictions, despite its efficient implementation in other studies.

Data and methods

Overview of the approach

In this paper, we focus on estimating the age aspect as one of the most important demographic

characteristic. More specifically, we predict the average age of residents in a district and the

percentage of seniors (65 years and above). As expected, these two attributes are highly corre-

lated (in our case, based on the data and study area that will be introduced in a bit, the correla-

tion coefficient is 0.97), but we have decided to include both since each might be found useful

and so that we provide more than one age/demographic characteristic.

The selection of the ancillary data is influenced by both the availability of the data in our

study area and based on the literature review, giving priority to latent data that has not been

used before.

In the estimations, our method mirrors a typical regression development: we use data of a

limited set of administrative areas as training dataset, and test the performance of the devel-

oped regression model on a set of different areas at the same administrative level. We put

much focus on providing a comparative overview of multiple machine learning approaches.

Thus, we implement three methods: random forest, support vector machines, and linear

regression.

Because the secondary contribution of our work is to investigate the effects of latent data on

amenities and real estate for traditional population estimation, we also infer population counts,

before predicting the average age and proportion of seniors in an administrative area. The

combination of population counts and socio-economic numbers may be useful to combine,

e.g. to calculate the total number of seniors.

The overview of the work is illustrated in Fig 1.

Study area

The study area enfolds the so-called HDB (Housing & Development Board—Singapore’s pub-

lic housing authority) towns and estates in Singapore, a city-state in Southeast Asia. Approxi-

mately 80% of residents in Singapore live in flats developed and managed by HDB, of which
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about 90% own their property [58]. There is a range of real estate data available for these prop-

erties and towns, facilitating our research.

These highly urban regions are characterised by lowland covered by superstructures and

high-rise buildings, but also by many green areas such as parks, natural reserves and water

catchment areas [58, 59], for which various data is available as well.

Administratively, Singapore is divided into 55 planning areas, and each is further subdi-

vided in multiple subzones, which is the smallest administrative entity in the city-state and it is

in intended for statistical purposes. In total, there are 323 subzones, and in our research, we

zero in on this administrative level. Because we focus on planning areas that are largely inhab-

ited by residents living in public housing buildings (also known as HDB blocks), in total 215

subzones are part of this work (Fig 2), and we split them for training and testing (75 and 140,

respectively). The split has been carried out randomly.

Data acquisition and preparation, and tools

In our research, we use several datasets on real estate and amenities, which we use as predictors

after processing and associating them with subzones (Table 1). The datasets are sourced from

open data released by the Singapore Government through the portal data.gov.sg. Some of the

data was not available in a geospatial format (e.g. the dataset on the housing stock contains the

location each building as address, but not as its spatial coordinates). These have been geocoded

using the Google Maps Platform.

While the POI data is self-explanatory, real estate data might require some elaboration. For

each building, the government provides data on the number of apartments by flat type (e.g.

4-room apartment) and the year of its construction (from which we calculated its age). These

information were aggregated to the subzone level to provide their averages (e.g. mean age of

buildings per subzone, and proportion of each flat type). Furthermore, resale transactions for

Fig 1. Detailed flowchart of the method and the employed datasets.

https://doi.org/10.1371/journal.pone.0266484.g001
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Table 1. An overview of the predictors. For each subzone, the density of each amenity has been computed.

Predictor Source

POI

Food establishments National Environment Agency

Student care services Ministry of Social and Family Development

Bus stops Land Transport Authority

Supermarkets National Environment Agency

Residents committees People’s Association

E-waste recycling locations National Environment Agency

Eldercare services Ministry of Social and Family Development

Clinics Ministry of Health

Schools Ministry of Education

Childcare facilities Early Childhood Development Agency

Real estate / housing

Number of buildings Housing and Development Board

No. of property transactions in the last 3 years Housing and Development Board

Age of buildings (mean, median, mode) Housing and Development Board

Proportion of 1-room flats Housing and Development Board

Proportion of 2-room flats Housing and Development Board

Proportion of 3-room flats Housing and Development Board

Proportion of 4-room flats Housing and Development Board

Proportion of executive flats Housing and Development Board

https://doi.org/10.1371/journal.pone.0266484.t001

Fig 2. Planning areas (thick lines) including their subzones (thin lines) in Singapore. The yellow areas are part of

the training group, while the turquoise zones are the test areas for estimations. The grey parts of the country are out of

scope of our work because they are not residential or not dominated by HDB. Source of the administrative dataset:

Urban Redevelopment Authority / data.gov.sg (2014).

https://doi.org/10.1371/journal.pone.0266484.g002
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HDB blocks are available as open data. In this study, for each area, the number of transactions

in the past 3 years has been calculated.

The census data has been obtained from an authoritative open dataset [60], from which

population counts and age indicators as the dependent variables have been computed. Origi-

nally, the dataset contains a fine distribution of population per area by age group (each 5 years

of age), as illustrated in Fig 3.

This raw dataset has been transformed into three age groups (see Fig 4) for the purpose of

this study as proposed by [61], one of which is elderly (65 years and older), which we select as

our focus owing to the increasingly relevant topic of ageing population. The average age has

been computed from age groups using the interpolation method of [62]. Both Figs 3 and 4 also

suggest the disparate age patterns between areas, affirming the importance of estimating

demographic characteristics beyond population counts.

Alternatively, we could have used VGI as the sole source of POI data or to supplement the

datasets listed above with additional amenities or their attributes. However, while the com-

pleteness of OpenStreetMap data is high in our study area, the semantic content still lacks [63],

and we believe that we have a sufficient number of POI categories, so we opted to use only gov-

ernment data. However, in geographies lacking authoritative open data, VGI could be an

appropriate source of the same or similar set of datasets.

We implement the work using R. Considering that the tools used are free and open-source,

and that datasets we used are available as open data also in many other jurisdictions, this

method should be reproducible in other geographical areas.

Fig 3. Visualisation of some of the datasets that we have used in our work. Proportion of age groups by

administrative area (from which we calculate the proportion of seniors and the average age—plotted as well) together

with the average age of buildings. The plot hints at disparate demographics of neighbourhoods and at an association

between the age of buildings and age of residents, which we attempt to take advantage of in our estimations. Source of

the datasets: Singapore Department of Statistics and Housing and Development Board (data.gov.sg).

https://doi.org/10.1371/journal.pone.0266484.g003
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Regression models

The regression models have been developed using caret (Classification and Regression

Training) in R, which offers a complete framework for data preparation, pre-processing, tun-

ing parameters, training methods and performance analysis [9, 64]. Furthermore, it allows the

implementation of different ML algorithms for the same dataset with the same pre-processing

parameters, which facilitates model building and comparison [64]. In our work, we use the

three previously mentioned techniques, which we briefly explain in the continuation.

Random Forest (RF) is an ensemble supervised machine learning algorithm that makes use

of random decision trees [65]. It can be applied to classification and regression problems, in

which the latter was relevant for this work. RF for regression is based on growing trees: each

node in a random forest is split using the best among a subset of predictors randomly chosen

at that particular node [66]. Due to the relatively small dataset in our study, the number of

trees has been held constant at 1000.

Support Vector Machines (SVM) are a set of optimisation algorithms that construct an

ideal hyperplane within an N-dimensional space, in which N is the number of input variables

[67]. The support vectors are the closest points of each variable to the hyperplane, and influ-

ence its position in space [68]. Similar to RF, the model is suitable to address classification and

regression predictions. The key SVM hyperparameters are kernel type and cost (complexity

control) [64]. While the cost parameter has not been manipulated because of the low number

of variables, a linear kernel has been chosen due to the nature and low complexity of the data

[57, 68].

Linear regression is a classic and widely-known method, and compared to RF and SVM, it

is relatively simple, resulting in linear models (LM). Instead of working with trees (RF) or

hyperplanes and support vectors (SVM), it simply assumes linearity between the independent

and dependent variables [69]. The predicted variable is estimated by a weighted linear combi-

nation of the covariates (predictors) [70].

The performance of these three approaches in our study will be discussed in the next

session.

During the model development stage, feature engineering has been performed to test their

effects on model and estimation accuracy [71]. Synthetic samples have been tested for

Fig 4. Extracts from the datasets that we have used in our work. (a) aggregated age group distribution for subzones in one of the planning areas in

our focus (in our work, we estimate the proportion of the senior group depicted in blue); (b) population counts of subzones are disparate, presenting a

suitably diverse dataset for estimations. Source of the datasets: Singapore Department of Statistics and Housing and Development Board (data.gov.sg).

https://doi.org/10.1371/journal.pone.0266484.g004
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population counts, due to the high variation of residents in subzones (see the right plot in Fig

4). Once the best model tuning parameters have been identified, 100 repetitions have been per-

formed (RF and SVM, not required for LM) for the final estimations of population counts,

average age, and the elderly (65 years and above), using the two best models for each predic-

tion. Also, the most highly correlating pairs of variables have been combined into additional

new predictors (feature combination; FC) [71].

Training the regression model and interpreting the performance in the pre-testing stage in dif-

ferent scenarios of predictors revealed the overall importance of POIs and real estate data. In the

case of all techniques, when it comes to estimating population counts, the R-squared was 0.98.

Using POIs only and real estate data only, the values were 0.85 and 0.98, respectively, suggesting

the marginal contribution of POIs when combined with real estate data (case of RF; for SVM and

LM the results are comparable so they are not all given here, nor in the next paragraph).

In the case of the average age, the R-squared when using real estate data alone was 0.80,

while POIs only resulted in 0.45. Combining both sets of predictors did not improve this met-

ric. It is evident that our hypothesis on POIs has been disproved as amenities turn out not to

be a relevant predictor of age (at least in our case). Hence, we have decided to exclude POIs

from the age estimations. Further, the data on eldercare services has been excluded from the

population count estimations because their number was too low to provide insights.

Results

The performance of the trained models has been evaluated on the test subzones (denoted in tur-

quoise in Fig 2) and it is given in Table 2 for overview. The models were assessed by R-squared

(the explained proportion of the target variable by the predictors), the Mean Absolute Error

(MAE), and the Mean Absolute Percentage Error (MAPE) [72, 73]. The estimations have also

been interpreted with predicted vs. observed scatterplots (Fig 5) [64, 74, 75]. In general, the

results indicate that it is possible to estimate population characteristics in a similar fashion as

population estimation. The best performing model is able to predict the average age of residents

in a subzone at an MAE of 1.5 years. To put that number in context, the range of average age in

the subzones is from 31 to 45, hence it may be considered as an accurate outcome.

SVM and LM produce nearly equal measures for population numbers, while LM yields the

best estimations for average age, a position challenged by RF when it comes to inferring the

proportion of senior residents. While the two demographic indicators are closely related and

highly correlated, it is interesting to observe differing performance in predicting them.

Assessment

Population count. Throughout the testing phase, LM and SVM have outperformed RF in

predicting population counts. In terms of model performance, feature engineering did not

Table 2. Overview of the performance of the different combinations of the developed regression models to estimate population counts and age.

RF SVM LM

R2 MAE MAPE R2 MAE MAPE R2 MAE MAPE

Population counts No model tuning With FC 0.910 3415 0.390 0.973 2441 0.167 0.980 2297 0.173

0.907 3087 0.332 0.974 2443 0.164 0.974 2469 0.179

Average age No model tuning With FC 0.745 1.681 0.041 0.767 1.637 0.036 0.768 1.513 0.038

0.745 1.682 0.044 0.767 1.570 0.040 0.497 1.811 0.042

Senior proportion No model tuning With FC 0.724 0.029 0.211 0.684 0.063 0.837 0.713 0.026 0.167

0.728 0.028 0.206 0.695 0.063 0.837 0.446 0.032 0.160

https://doi.org/10.1371/journal.pone.0266484.t002
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have a significant effect. For estimation performance (on the test dataset), feature engineering

improved the RF and SVM models. Overall, LM has performed best, and did so without any

model tuning (R-squared of 97% for estimation performance).

Average age and the share of the elderly. POIs were excluded from age predictions due

to their low importance (a key result of the research). Furthermore, these models would have

relied on the population estimations from the previous models to calculate the amenity pro-

portion, which would have biased the estimations as a source of error. Hence, only real estate

data has been employed to predict age indicators.

For average age, all three models are comparable, having an error smaller than two years,

but LM and SVM again produce slightly better results than RF. On the other hand, SVM per-

forms significantly poor in estimating the proportion of the elderly. Feature engineering has

proven to enhance the performance and predictions for SVM (average age). Opposite of that,

the results have dropped for the LM estimations.

Overview of the performance. LM and SVM models differ from RF by assuming linearity

within the dataset [57, 69]. Throughout the study, LM has been amongst the best performing

models, while SVM and RF tend to be more sensitive to the input datasets. Feature engineering

is a common method in boosting ML algorithms, in particular bivariate combinations to

enhance linear models. It has proven to improve some of the models. However, the estimation

results with feature combinations are consistently worse within the LM model. We conclude

that balancing the training data by creating a synthetic input increases the model bias, thus,

implies false assumptions for the estimations [76].

Variable importance is a crucial measure in assessing ML algorithms, since it provides

information about the significance of the predictors and has been widely applied in previous

ML-based population studies [1, 23, 64]. Our results suggest that in general across the

Fig 5. Observed vs predicted and predicted vs predicted (models) scatterplots for population count, average age,

and elderly proportion. LM and SVM tend to produce very similar predictions (population counts and average age),

while RF and LM reveal differences in particular for lower and higher values (elderly proportion).

https://doi.org/10.1371/journal.pone.0266484.g005
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techniques, the number of buildings and transaction counts have the biggest effect on models

in estimating population counts, while in the case of SVM, certain POIs (bus stops, committee

centres and childcare facilities) tend to exhibit their importance (Table 3). LM takes all POI

except clinics into account as an integral part for the estimations, whereas building counts

remain the most important predictors.

Throughout the models estimating the age patterns, building age (in particular the mean

age of buildings in the subzone) and the proportion of 3- as well as 4-room flats are the most

important covariates. While SVM (average age) and RF (elderly) take all building age measures

into account with a high importance, the LM models tend to put more emphasis on flat types.

The scatter plots (Fig 5) reveal a nearly perfect line for population estimation and no

remarkable outliers. Despite the fact that the majority of subzones contain up to 30 000 resi-

dents, also more populated areas have been predicted accurately. The dispersion of the pre-

dicted and observed age values is perceptibly bigger. For instance, one subzone (Tiong Bahru)

has been overestimated by LM and SVM due to the eminently old average age of the buildings,

whereas the opposite is the case for a few other subzones (e.g. Boon Keng and Depot Road).

RF seems to be more robust to outliers, which can be seen in predicting the elderly proportion.

But compared to LM, the estimations appear to be clustered (Fig 5). In other words, RF overes-

timates the lowest values, and underestimates the highest ones, which are not existing in the

estimations. While SVM and LM again perform almost identically for average age predictions,

there are perceptible differences between LM and RF in estimating the elderly proportion.

Although the performance measures (Table 2) are similar, the distributions and individual

predictions differ remarkably, particularly in terms of the lowest and highest values (Fig 5),

reaffirming the importance of experimenting with multiple ML techniques.

Compared to previous studies in estimating population counts by ML methods [4, 10, 29,

46, 48], the results show high performance, especially in light of the simplicity, low computa-

tional cost, and reproducibility of our approach. The R-squared values in our method are high,

meaning that a vast majority of the total variance of population numbers can be explained by

real estate information (block and transaction counts) and the number of amenities. There is

still a discordance in efficient measures of error (Mean Absolute Error), and therefore a wide

variety of implemented measures among the different studies [72].

Table 3. An overview of the predictors and their variable importance from none (o) to high (���).

Counts estimation Age estimation

Predictors VarImp Predictors VarImp (mean age) VarImp (senior share)

SVM LM SVM LM RF LM

No. of buildings ��� ��� Bldg. age (mean) ��� ��� ��� ��

No. of transactions ��� �� Bldg. age (median) ��� � ��� ��

Food establishments � � Bldg. age (mode) ��� o ��� o

Supermarkets � � 1-Room proportion o � o �

E-waste recycling locations o � 2-Room proportion o �� � ��

Residents committees �� � 3-Room proportion ��� ��� �� ���

Student care services � � 4-Room proportion ��� �� �� ���

Childcare facilities �� � Executive proportion �� o � o

Schools � � Mean x Median ��� – ��� –

Clinics � o Mode x 3-Room prop. ��� – �� –

Bus stops ��� �

Buildings x Transactions ��� –

Childcare x Bus stops ��� –

https://doi.org/10.1371/journal.pone.0266484.t003
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Given the average age of the buildings and the proportion of flat types, we were able to

retrieve convincing results on predicting age structure within an administrative area. The R-

squared values are still relatively high (73% for senior proportion and 75% for average age;

case of RF).

Recent trends in population disaggregation diverged from linear analysis and have tackled

more complex relationships between population distribution and the environment with the

help of ML algorithms, especially when applying remote sensing data [1, 24, 77]. It seems evi-

dent that RF and SVM outperform simple linear models when employing numerous input

datasets with various different natures and scales [4, 48]. However, it remains undecided

whether it is wiser to increase the amount of highly varying predictors, rather than focusing on

strong, correlated covariates, which are usually available in urban areas. In this research, across

different scenarios (e.g. without and with different model tuning), LM was the best and also

most constantly performing model, whereas RF and SVM have revealed a higher variance in

accurately handle the training datasets. Similar trends have been found in [23], when a subset

of population is included in the model.

Limitations

There are a few limitations in our work. Most importantly, we have focused on a single city,

and one with government intervention in housing, meaning that the method may not neces-

sarily work everywhere. In our work, following the availability of data, we focus on areas that

are dominated by buildings managed by the Singapore’s Housing and Development Board.

Such focus is representative, as Singapore’s residential landscape is largely controlled by HDB,

housing the vast majority of the nation, but it nevertheless may not give the entire picture. Per-

haps including data on the remaining types of housing, which are minor but potentially demo-

graphically dissimilar, would end up with somewhat different results. Nevertheless, we believe

that our pioneering work presents a contribution in investigating enhanced population

estimation.

This study was also limited to the available predictors and the spatial resolution of the cen-

sus data for validation. For example, eldercare facilities, which might have been important,

could not be included in the research due to their low number in the study area. Although our

method can be applied on individually adjustable areas, POI with smaller numbers (such as

schools or committee centres) will become less important for higher resolutions, while we

expect age distributions based on real estate data to remain meaningful for smaller areas. One

of the likely causes why amenities have not been useful in predicting age is that they are used

by residents from nearby districts as well, and they do not exclusively cater to the subset of the

population living in public housing.

Conclusion

Our study highlights the ability of different ML techniques to estimate population counts,

average age, and elderly proportion by spatially detailed knowledge on POI and real estate

data. Our three main takeaways and contributions are:

• Traditional population estimation techniques may be enhanced to reveal demographic prop-

erties of neighbourhoods beyond just the number of residents, which has been the main

focus of related work. Our work demonstrates that age distribution can be predicted with

high accuracy.

• Real estate data beyond the conventionally used housing stock, such as the amount of prop-

erty transactions and flat types, adds value to the estimations. We encourage researchers in
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related work to make use of such data when available, as some of the impactful predictors

featured in this paper have not been used previously in the realm of population estimation.

• Variables extracted from amenities, as the traditionally used predictors for population esti-

mation (the importance of which we affirm in our population count predictions), appear not

to be useful for estimating age, at least in our proof of concept developed at the fine spatial

scale in the case of Singapore. The successful estimations of age have rather been achieved

thanks to real estate data, e.g. flat type distribution and age of buildings.

The methods of this work could be applied on similar urban areas to support city planners

and decision makers facing future challenges. Real estate data has proven to be a strong indica-

tor for demographic patterns, and it would be interesting to analyse if similar correlations

could be found in other cities. Due to the simplicity and implementation of the techniques that

have been used, the predictors could be altered, extended or combined with little effort. The

results allow to take efficient action in questions, which are directly linked to population den-

sity and age patterns, such as transportation, infrastructure, and education.

For future work, it would be beneficial to research whether other demographic characteris-

tics such as income, education level, gender ratio, and ethnicity could be predicted as well.

Even though in our work amenities have not been useful in predicting age, perhaps they might

be reliable predictors of other demographic characteristics and they would be more useful in

other locations. Further, we plan to add the temporal dimension in our experiments, e.g. inves-

tigate whether the developed approach can estimate the age change over time.

It would also be interesting to investigate whether other forms of real estate and urban data

could contribute to such estimations, and whether demographics could be sensed already

from property ads (rent and sale), before actual property transactions occur, as a predictor of

population dynamics and changes in the foreseeable future. Further examples of urban data

that may be investigated pertain to vibrancy, which are increasingly used in other domains of

urban analytics [78, 79].
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