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A B S T R A C T

The paper presents a review on major contributions in infrared thermography to study the built environment
at multiple scales. To elaborate the review, hundreds of studies conducted between the 1980s and 2020s
were first selected based on their relevance to the scope. Afterward, the most relevant contributions were
classified and chronologically sorted. From the classification, it is observed that most reviewed studies were
conducted to evaluate the thermal performance of buildings or detect their defects using images collected by
an infrared camera. At the same time, a considerable number of studies used thermal images obtained by a
satellite to observe the urban heat island effect. Despite the important number of contributions in infrared
thermography at multiple scales of the built environment, three main research gaps or opportunities can be
identified in the literature. First, it would be possible to perform a more detailed analysis of urban heat fluxes
using thermal images collected at multiple scales. Then, thermal images collected by a mounted or handheld
infrared camera could be used to create building energy models. Finally, better visualization tools would be
developed to monitor a city’s energy use and improve its sustainability if thermal images were integrated into
Internet-of-Things and digital twin platforms.
. Introduction

Since the Industrial Revolution in the 19th century, a significant
ortion of the world population has moved from rural to urban areas.
rban areas are expected to accommodate more than 65% of the
orld population in 2050, and more than 85% in the most developed

egions [1]. This rapid growth of the built environment has caused an
ugmentation of CO2 emissions due to the building energy consump-
ion. According to the International Energy Agency [2], 28% of the
orld’s CO2 emissions in 2019 are due to the energy consumed in
uildings. Given this observation, considerable efforts have been made
y the scientific community to better understand the built environment
sing different sensing technologies.

One of the most common methods to observe outdoor conditions
n the built environment is to use a network of automatic weather
tations [3]. Weather stations typically measure the temperature, rel-
tive humidity, pressure, wind speed and direction, solar irradiance,
nd rainfall, which is an important number of variables in comparison
ith other sensing technologies. However, one weather station only
rovides this set of information at a single point. As a consequence,
o matter how large a network of automatic weather stations is, it will
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C. Miller).

always give information of the built environment with a limited spatial
resolution.

Because of the cost and efforts that are required to observe the
built environment with a satisfactory spatial resolution using automatic
weather stations, or any other similar kind of sensor network, infrared
thermography has gained interest within the scientific community over
the years. The reason is that infrared thermography can provide images
representing the surface temperature of different elements in the built
environment.

Apart from giving information of the built environment with a
high spatial resolution, infrared thermography can be used for many
applications at multiple scales. Reviews published by Ngie et al. [4]
and Almeida et al. [5] summarize applications of infrared thermog-
raphy using satellites. Other reviews reported the many uses of ther-
mal images collected by mounted or handheld infrared cameras. For
instance, Balaras and Argiriou [6] described several applications of
infrared thermography based on thermal images collected during a
survey. This review not only focuses on the defects of the building
envelope but also the failures of electrical circuits and Heating, Ven-
tilation, and Air Conditioning (HVAC) systems that can be detected
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List of abbreviations

BIM Building Information Modelling
FLIR Forward-Looking InfraRed
GIS Geographic Information System
HVAC Heating, Ventilation, and Air-Conditioning
LST Land Surface Temperature
MODIS Moderate Resolution Imaging Spectrora-

diometer
NDVI Normalized Vegetation Difference Index
NOAA National Oceanic and Atmospheric Admin-

istration
PV PhotoVoltaic
RGB Red–Green–Blue
UAV Unmanned Aerial Vehicle
UBEM Urban Building Energy Modelling
UHI Urban Heat Island
UST Urban Surface Temperature

using infrared thermography. Infrared thermography can also be ap-
plied in different manner when thermal images are collected using an
Unmanned Aerial Vehicles (UAVs) as explained in the review of Rakha
and Gorodetsky [7].

Instead of describing possible applications of infrared thermography
at multiple scales of the built environment, most reviews explained
the various methods that were used to assess the energy efficiency
of a building from thermal images. These methods were classified
by Fox et al. [8] concerning their measurement method, which can
be qualitative or quantitative, their experimental environment, which
can be indoor or outdoor, and their analysis scheme, which can be
active or passive. While active infrared thermography is usually used to
detect internal defects of a material or building layer using an internal
or external source of excitation, passive methods aim at observing the
heat emitted by a surface. The review conducted by Kylili et al. [9]
elaborates more on active and passive analysis schemes in infrared
thermography. In addition to classification criteria of Fox et al. [8] and
Kirimtat and Krejcar [10] considered the analysis type, the envelope
components, the surface material, and the testing location in their
review. Other reviews focused on methods used for the energy audit
of buildings as Lucchi [11] or for the detection of heat losses as Nardi
et al. [12].

Regardless of whether reviews considered applications or methods
of infrared thermography in the built environment, their exploration of
the literature is limited to a specific scale. In particular, the majority of
reviews described applications or methods of infrared thermography at
the building-scale, the lowest possible scale of the built environment.
Few of them reported how thermal images were used to observe
the built-environment at higher scales, and none at multiple scales.
Consequently, a considerable knowledge gap remains on applications
of infrared thermography that were performed at one specific scale of
the built environment or at multiple ones. By bridging this gap, it can
be shown what kind of applications can be developed in the future to
better understand the built environment at multiple scales.

For this reason, a comprehensive review is introduced on infrared
thermography in the built environment at multiple scales. The objec-
tives of the review are to: (1) show applications of infrared thermogra-
phy at each scale of the built environment; (2) describe these that were
performed at multiple scales; and (3) indicate research opportunities.
From the review, the scientific community would gather what contri-
bution can be made using infrared thermography at a single scale or
multiple ones of the built environment. Practitioners would also learn
2

how thermal images were collected from different infrared systems, and p
how they might be integrated in the future to develop support tools in
urban planning.

The review is organized as follows. The early history and funda-
mentals of infrared thermography are described in Section 2. Section 3
describes the methodology. Results are shown and discussed in Sec-
tion 4. In Section 5, several opportunities are suggested for future
research on infrared thermography in the built environment. Finally,
conclusions and future work are explained in Section 6.

2. Origins and principles of infrared thermography

Research in infrared thermography has a long history of more than
two centuries. Fig. 1 illustrates the timeline of important contributions
between the 19th and 20th century. During the 19th century, early
discoveries were found by the five fathers of infrared thermography:
William Herschel and his son John, Leopoldo Nobili, Macedonio Mel-
loni, and Samuel P. Langley. Although the 19th century represents
the origin of infrared thermography, it was during the 20th century
that major technological advancements were made. These technologies
were developed for various sectors, including the military, medicine,
and building.

In the literature, it is commonly agreed that the birth of infrared
thermography was in 1800, after the publication of William Her-
schel [8–11]. During an experiment, he observed the visible portion
of the sunlight is not the only one that can increase the surface
temperature of a target object [13]. Therefore, he concluded that the
sunlight is certainly composed of radiation with a higher wavelength
than the visible red light, influencing the etymology of infrared. The
discovery of infrared radiation led to several inventions in the 19th
century. One of these inventions is the thermopile of Nobili and Mel-
loni presented in 1831 [14]. The thermopile was created initially by
Leopoldo Nobili to measure temperature. Using the first prototype
of the thermopile, his associate Macedonio Melloni found a way to
measure radiant heat. After the invention of the thermopile, in 1840,
John Herschel, son of William Herschel, produced one of the first
thermograms from the sunlight [15]. The thermogram was obtained
by a method called evapography, using a lens to focus the sunlight
on alcohol-containing carbon particles. Samuel P. Langley invented a
more advanced technique in 1880 to measure far-infrared radiation, a
component of infrared radiation [16].

Inventions in the 19th century were merely preliminary prototypes
leading to modern systems for the acquisition of infrared or thermal
images. The first system able to acquire thermal images from a camera
was invented by Kalman Tihanyi in 1929 [17]. The camera was used
for nocturnal vision by the aircraft defense. Many infrared technologies
were then developed in the military sector, particularly during World
War II [18]. In 1959, a system called the Pyroscan was first installed
to acquire thermal images for medical use at the Middlesex Hospital
in London and the Royal National Hospital for Rheumatic Diseases
in Bath (United Kingdom). Twenty-four years later, in 1983, the first
commercial systems were created and used for various applications in
infrared thermography [19].

Most acquisition systems of thermal images that have been devel-
oped since the 1980s work on the same fundamental principles [20,21].
As illustrated in Fig. 2, systems acquiring thermal images primarily
consists of a sensor. The sensor receives a heat flux 𝐿𝑡𝑜𝑡 (in W/m2),

hich is a combination of several radiative heat fluxes, that is:

𝑡𝑜𝑡 = 𝜏𝑎𝜀𝑠𝐿𝑠 + 𝜏𝑎(1 − 𝜀𝑠)𝐿𝑏 + (1 − 𝜏𝑎)𝐿𝑎 (1)

here 𝜏𝑎 is the transmissivity of the air between the target surface
nd the thermal sensor, 𝜀𝑠 the emissivity of the target surface, 𝐿𝑠 the
ongwave radiation from the target surface (in W/m2), 𝐿𝑏 the longwave
adiation from the background (in W/m2), and 𝐿𝑎 the longwave radia-
ion from the air (in W/m2). The longwave radiation 𝐿 (in W/m2) is a

ortion of the infrared radiation between 7 and 14 μm [10], which can
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Fig. 1. History of infrared thermography between the 19th and the 20th century.
Fig. 2. Radiative heat fluxes received by a sensor to acquire thermal images.
be expressed from the surface temperature of an object 𝑇 (in Kelvin)
as:

𝐿 = 𝜎𝑇 4 (2)

here 𝜎 is the Stefan–Boltzmann constant (= 5.67 ⋅10−8 W/m2-K4).
According to Eqs. (1) and (2), the surface temperature of the target

urface 𝑇𝑆 = 4
√

𝐿𝑆∕𝜎 (in Kelvin) depends on various variables. One
of them is the emissivity of objects [22]. Another is the longwave
radiation emitted by the background, corresponding to the skydome
in most outdoor situations. The background can become more complex
to define if thermal images are collected in an outdoor environment
with obstructions. In this case, the longwave radiation emitted by the
background can be measured from an aluminum foil placed on one of
the target objects [23].

Due to the number of variables that need to be known when using an
infrared camera, the accuracy of the surface temperature 𝑇𝑆 is often less
than this obtained with a contact surface sensor. However, the surface
temperature 𝑇𝑆 can be observed with a higher spatial resolution using
thermal images collected by an infrared camera, as shown in Fig. 3.
Therefore, thermal images enable us to evaluate how cool or hot certain
elements in the built environment are compared to others. The thermal
behavior of some features like trees or grass can be challenging to study
with contact surface sensors, but not with thermal images. Thermal
images can now be collected with a similar time resolution to contact
surface sensors. Because thermal images are two-dimensional data, they
require significantly more space to be stored in a computer.
3

3. Methodology

The objective of the review was to address one question in particu-
lar: What are applications and research opportunities in infrared thermogra-
phy at multiple scales of the built environment? To find a response to this
question, the review was conducted following the workflow described
in Fig. 4. The first step in the workflow was to enter a list of keywords
on the Google Scholar search engine. Among the papers resulting from
the keyword-based search, one was read to understand if its content
was about the built environment. The built environment refers to the
outdoor environment within a city ranging in scale from the microscale
to the mesoscale. Each paper, whose content corresponds to a study
about the built environment, was then classified for its analysis with
other contributions. The analysis was conducted after reading all the
papers in the list and after using all identified keywords. From the
results provided by the investigation, the objectives were to detect
research opportunities and state some conclusions.

Most papers in the literature define a list of keywords they consider
to be the most representative concepts discussed in their content.
While reading each article, some of their keywords were considered to
explore the literature further. The list of keywords used for analyzing
the literature is shown in Table 1. If a paper contained one of these
keywords in its list or its title, it was then considered to be potentially
relevant to the review. To be fully applicable to the study, the paper
also needed to address an issue of the built environment. The reason is
that an article can contain one of these keywords in its list or title and
discuss another topic not related to the built environment. For example,
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Fig. 3. Collection of thermal images using an infrared camera in the built environment.
Fig. 4. Workflow used to review papers on infrared thermography for the built environment.
one paper might include the term ‘Infrared Thermography’ in its list
of keywords but study one of its medical applications. In contrast,
some papers might not have a word in their list of keywords and still
indirectly refer to it in their content. One of the reasons is that the
terminology used in infrared thermography usually varies depending
on the scale it is applied. When using a satellite to collect thermal
images, the term ‘Infrared Thermography’ itself is rarely used, but ‘Land
surface temperature’ or ‘Remote sensing’ instead. It explains why not all
reviewed papers contain the term ‘Infrared Thermography’ in their list
of keywords or titles.

For each relevant contribution to the built environment, a set of
information was extracted from its content. One such example is the
country where the study was conducted. This piece of information
enabled us to determine where most studies in infrared thermography
were completed and which regions might need further exploration.
Another criterion was the scale at which infrared thermography was
applied in the study. In addition to the scale, it was essential to de-
termine the system used in the study to collect thermal images and the
application in which the thermal images were intended to be used. The
classification of selected contributions was reported in a spreadsheet to
conduct the data analysis based on all these criteria.

The scale at which a reviewed study was conducted needed more
efforts to be identified than other criteria. The reason is that there are
multiple ways to define the scale of a study in the built environment.
One of them is described by Oke [24] and has been primarily used in
urban climate studies. It includes three essential scales, which are the
4

mesoscale (10–200 km), the local-scale (0.1–50 km), and the microscale
(>1 km). Another way to classify studies in the built environment by
scales is explained by Hertwig et al. [25]. It has been used mainly by
urban planners to distinguish their studies either as city-scale (10–100
km), neighborhood-scale (0.1–10 km), and building-scale (10–100 m).

Apart from comparing the number of studies for each identified
class, the data analysis also consisted in understanding the evolution
of infrared thermography in the built environment between 1980 and
2021. For this purpose, the chronology of selected contributions was
established and analyzed to show how some limitations were overcome
in the past or could be solved in the future, which explains why critique
was an essential aspect of the review.

4. Results and discussion

During the literature review, it was observed that different infrared
systems were used to study the built environment at one or several
scales. The infrared systems are presented in Fig. 5. The system that en-
ables the collection of thermal images at the largest scale is a satellite.
Apart from the thermal images, which are usually used to measure the
Land Surface Temperature (LST), a satellite can contain other sensors
to collect data at the mesoscale or city-scale remotely. When thermal
images are needed between the city-scale and neighborhood scales,
an infrared camera is normally installed on an Aerial Vehicle (AV)
such as an aircraft or a helicopter. The infrared camera can also be
installed on different supports to collect thermal images at lower scales.
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Table 1
Keywords used in Google Scholar search engine and the number of papers, which are
relevant to the review, containing one of them in their own list of keywords or in their
title.

Keyword Number of papers

Infrared thermography 99
Heat island 46
Land surface temperature 35
Remote sensing 33
U-value 19
Unmanned aerial vehicle 12
Thermal transmittance 12
Energy efficiency 10
Buildings 10
Building envelope 9
Heat loss 9
Urban heat flux 9
Thermal bridges 8
Longwave radiation 8
Moisture 8
Thermal performance 8
3D reconstruction 8
Non-destructive testing 7
Infrared camera 6
Historic building 6
Sensible heat flux 6
Urban surface temperature 6
Urban biophysical 5
Heat mitigation 5
Thermal resistance 5
Building retrofit 5
Solar panel 4
Greenery 4
Building diagnostics 4
Cool materials 3
Laser scanning 3
Building information models 3
Net radiation 2
Building energy performance 2
Defect detection 2
Image fusion 1
Smart phone 1
Observatory 1

It is installed on a rooftop observatory for neighborhood-scale studies,
on a drone for studies between the neighborhood-scale and building-
scale, or with a tripod, handheld system, or smartphone for microscale
studies.

Fig. 6 illustrates the number of studies that have been conducted
since 1980 in the built environment using infrared thermography at
different and multiple scales. In general, a growing interest in the
use of infrared thermography is observed to explore the built environ-
ment, which is certainly due to major advancements of this technology
and reductions in its cost. More specifically, it is seen that the por-
tion of studies at different scales does not seem to significantly vary
whether the classification of Oke [24] or Hertwig et al. [25] is used.
In either case, microscale or building-scale studies appear to be the
most frequent, with a portion between 50% and 55% since 1980.
The number of studies conducted at the mesoscale or city scale also
looks relatively substantial. However, a few contributions were found in
infrared thermography to explore the built environment at the local and
neighborhood scales. Even less reviewed studies considered thermal
images simultaneously collected at multiple scales. The small number
of local, district, and multi-scale studies can be explained from the
time and cost required to collect thermal images with adequate infrared
systems. Indeed, it often requires more time and cost to collect thermal
images from an AV or observatory than a satellite or mounted camera.

The small portion of local-scale or neighborhood-scale studies could
be explained by the fact that they are more difficult and expensive to set
up than those conducted at other scales. Launching a satellite to collect
5

thermal images at the mesoscale or city scale might be costly, but
thermal images obtained from a satellite can then be shared with the
all scientific community at a relatively low price. The collection of the
thermal images at the microscale or building-scale can also be achieved
at a low cost whether drones, mounted cameras, handheld cameras, or
smartphones are used for this purpose. In contrast, installing an infrared
system to conduct a local-scale or neighborhood-scale study is always
relatively expensive. Safety and confidentiality measures to consider for
local-scale or neighborhood-scale studies are more important than for
other scales.

Fig. 7 shows applications that can be performed in the built envi-
ronment by different infrared systems and at different scales. According
to review papers, thermal images collected by a satellite can be used
to either observe the UHI effect, analyze urban heat fluxes, or study
urban descriptors. Observations of the UHI effect were also made at the
local-scale or neighborhood-scale using Aerial Vehicles (AVs), rooftop
observatories, or drones. In addition, to analyze urban heat fluxes,
drones were used to detect building defects, evaluate building ther-
mal performance, analyze UHI mitigation strategies, and detect faulty
Photovoltaic (PV) panels at the microscale or building scale. Similar
applications were performed simultaneously using mounted cameras,
handheld cameras, and smartphones.

4.1. Studies conducted at the mesoscale or city-scale

Most studies aiming at observing the built environment at the
mesoscale or city-scale have used remotely sensed data collected from
satellites. Between the 1950s and 1960s, satellites were essentially used
for military purposes [26]. During the 1970s, several satellites were
launched in orbit to collect information for the scientific community,
including thermal images. The thermal images were used in some
preliminary studies during the 1980s to observe the LST. For example,
the accuracy with which the LST can be measured from the Landsat
3 and National Oceanic and Atmospheric Administration (NOAA) 6
was evaluated by Price [27,28]. With thermal images obtained from
the NOAA 6, Price discovered that the surface temperature could be
measured with an accuracy of ±2–3 ◦C. Other studies, such as the
one by Vukovich [29], used thermal images obtained from the Heat
Capacity Mapping Mission (HCMM), another satellite, to observe the
difference in the LST between urban and rural areas in St. Louis (USA).
In the same city, Kidder and Wu [30] made similar observations but
considering the snow-covered. Later in the 2000s, two MODerate Reso-
lution Imaging Spectroradiometer (MODIS) satellites were launched to
provide a variety of remote sensed data [31]. The first satellite, MODIS
Terra, was launched in 1999. It provides the same remote sensed data
as the MODIS Aqua, launched in 2002.

Tables 2–4 shows reviewed studies that were conducted at the
mesoscale or city-scale using infrared thermography with Landsat,
NOAA, or MODIS. The majority of these studies were conducted in
China and North America, as illustrated in Fig. 8 and the review
of Almeida et al. [5]. A non-negligible portion of reviewed stud-
ies, approximately 12%, was conducted in Europe. These observations
imply that numerous contributions in understanding the built environ-
ment at mesoscale or city-scale can still be made in several countries,
particularly those located in Africa and South America.

Among all reviewed studies conducted at the mesoscale or city-
scale, the majority collected thermal images from Landsat according
to Fig. 9. The reason seems to be that Landsat is more suitable for
observing the UHI effect and inferring urban descriptors than its con-
current. Nevertheless, MODIS Terra and Aqua look to gain interest over
the years, in particular, to analyze urban heat fluxes. This fact could
be due to the significant amount of remotely sensed data provided by
MODIS Terra and Aqua in addition to the LST. While there was a visible
competition between MODIS and Landsat in the scientific community,
few reviewed studies used NOAA to understand the built environment

using infrared thermography.
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Fig. 5. Systems of infrared thermography at different scales.
Fig. 6. Number and portion of studies between 1980 and 2022 that used infrared thermography to observe the built environment at different scales.
Fig. 10 shows the number of reviewed studies that were dedicated
to observing the UHI effect, analyzing urban heat fluxes, and studying
urban descriptors using thermal images collected from a satellite. Ac-
cording to these results, most reviewed studies aimed at observing the
UHI effect using the LST measured with a satellite. A notable number
of reviewed studies also used other remote sensed data in addition to
the LST to analyze urban heat fluxes and study urban descriptors.

4.1.1. Observation of the UHI effect from the LST
During the 1990s and early 2000s, various studies proposed meth-

ods to observe the UHI effect from the LST measured using a satellite.
Among these studies, Roth et al. [32] analyzed the UHI effect during
the day and at night. The study conducted by Carnahan and Larson [33]
6

focused more on the possible sinks of the UHI effect. Even though ther-
mal images can be obtained for various locations using a satellite, Roth
et al. [32] and Carnahan and Larson [33] assessed the UHI effect of one
city only. As an improvement, Gallo et al. [34] showed how the UHI
effect could be evaluated in several cities in the United States using the
NOAA satellite. Data collected using this kind of satellite can be used
to develop empirical models of the UHI effect as expressed by Streutker
[36]. The models can predict the UHI effect at specific times when
no data is available. As illustrated by Lo and Quattrochi [37], thermal
images collected from a satellite are indeed limited over time. However,
the amount of information each time is relatively significant compared
with what can be provided by an empirical model.

Until the early 2000s, most observations of the UHI effect at the
mesoscale were reported in the United States. After the mid-2000s,
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Fig. 7. Applications of infrared thermography at different scales.
Fig. 8. Countries in which studies in infrared thermography were conducted at the mesoscale or city-scale of the built environment between 1980 and 2021.
most studies were conducted in China. For instance, Nichol [38] tried
to evaluate the influence of the urban morphology of Hong Kong on the
UHI effect. A more detailed study was conducted by Chen et al. [39]
on the relation between the land use of Guangzhou and the UHI effect.
In addition to the land use, Yang and Liu [42] retrieved biophysical
characteristics using thermal images of Lanzhou to understand the
formation of the UHI effect. Wang et al. [43] did not only consider
thermal images to analyze the UHI effect in Beijing. They assumed the
UHI effect could also be explained from the albedo, vegetation index,
and broadband surface emissivity remotely sensed from MODIS. Using
information measured from the Landsat Enhanced Thematic Mapper
Plus (ETM+) satellite, Li and Yu [44] studied characteristics of the UHI
effect in Wuhan. As a complement to the analysis based on measure-
ments, they performed Computation Fluid Dynamics (CFD) simulations
to understand how the UHI effect could be mitigated by providing
better outdoor air circulation. It is relatively unusual that simulations
of the UHI effect are performed in addition to a measurement-based
analysis. Studies like Li et al. [46] in Shanghai and Wang et al. [63] in
Shenzhen normally try to find spatial patterns and correlations using
remotely sensed data from satellites to analyze the UHI effect.
7

Apart from the United States and China, other mesoscale studies
of the UHI effect were conducted in other parts of the world during
and after the 2010s. Bechtel [48] tried to identify spatial patterns of
the surface temperature in Hamburg (Germany). In addition, measure-
ments of the surface temperature were used for the classification of
local climate zones following the definition established by Stewart and
Oke [109]. Lazzarini et al. [53] used another kind of classification
called impervious surface areas to analyze the relationship between the
roughness of an urban area and the magnitude of the UHI effect in Abu
Dhabi (United Arab Emirates). Despite the various classifications of an
urban area that have been studied in the literature, the land use/cover
seems to remain the most appropriate one to explain the UHI effect
using thermal images as shown by Tomlinson et al. [52] in Birmingham
(United Kingdom), Dihkan et al. [56] in Istanbul (Turkey), and Kikon
et al. [59] in Noida (India). Thermal images provide information about
the LST but not necessarily the ambient temperature. Because the
ambient temperature is often considered to evaluate the magnitude
of the UHI effect, Ho et al. [55] determined how it could be derived
from thermal images obtained in Vancouver (Canada) using machine
learning algorithms. A similar study was conducted by Coutts et al. [58]
in Port Philip (Australia) using very high resolution airborne thermal
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Fig. 9. Number and portion of studies between 1980 and 2022 that used either NOAA, Landsat, or MODIS to observe the built environment at the mesoscale or city-scale.
Fig. 10. Number and portion of studies between 1980 and 2022 that used a satellite to observe the UHI effect from the LST, analyze urban heat fluxes, or study urban descriptors
at the mesoscale or city-scale.
images. Instead of using the difference in the surface or ambient
temperature between an urban area and its rural surroundings, Shirani-
Bidabadi et al. [62] used another metric called the urban heat island
ratio index to calculate the magnitude of the UHI effect in Isfahan
(Iran).

4.1.2. Analysis of urban heat fluxes
The analysis of urban heat fluxes tries to understand the causes of

the UHI effect more than assessing its magnitude from thermal images.
From the early 2000s, various studies have attempted to evaluate the
heat emitted by buildings, vegetation, and anthropogenic sources from
thermal images obtained by satellites.

Among these studies, some contributed to the assessment of the net-
all wave radiation from remote sensing data obtained by a satellite. For
example, Chrysoulakis [66] was one of the studies proposing a method
to assess the net-all wave radiation, which consists of the downward
shortwave radiation, the upward shortwave radiation, the downward
longwave radiation, and the upward longwave radiation. A more so-
phisticated method was defined by Bisht et al. [68], in which the
upward longwave radiation is measured from the LST and emissivity.
The accuracy of the LST/emissivity method was checked by Wang et al.
[70]. Tang and Li [72] describes how the net-longwave radiation can
8

be estimated from the upward longwave radiation assessed using the
LST/emissivity method and the downward longwave radiation mea-
sured from the top of atmosphere radiance. All necessary information
to compute the net-all wave radiation was measured by Bisht and
Bras [74] using the MODIS Aqua satellite. Both the Aqua and Terra
MODIS satellites were used by Wu et al. [76], and [80] to test multiple
predictive models of the net-all wave radiation.

Apart from the net-all wave radiation, sensible and latent heat fluxes
can also provide useful information to understand the causes of the
UHI effect. However, these two urban heat fluxes cannot be estimated
from thermal images obtained by satellite only. In addition to thermal
images, data need to be collected from a network of automatic weather
stations, as originally formulated by Kustas and Norman [110]. Using
thermal images from satellites and data from a network of automatic
weather stations, Norman et al. [64] could show one of the first pictures
of latent heat fluxes at the mesoscale. Both the sensible and latent heat
flux were assessed by Ma et al. [65] and French et al. [67].

Although sensible and latent heat fluxes can be directly estimated,
they need to be balanced with other urban heat fluxes to ensure
their validity. In the study conducted by Ma et al. [65], sensible and
latent heat fluxes are balanced with the net-all wave radiation and
the ground heat flux, which might not be representative of all heat
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Table 2
Reviewed studies using thermal images to observe the UHI effect at the mesoscale or city-scale.

Author(s) Year Country Satellite Model(s)

Roth et al. [32] 1989 Canada NOAA 7, 8, and 9
Carnahan and Larson [33] 1990 United States Landsat 5
Gallo et al. [34] 1993 United States NOAA 11
Lo et al. [35] 1997 United States Landsat 5
Streutker [36] 2002 United States NOAA 14
Lo and Quattrochi [37] 2003 United States Landsat 1, 3, 4, and 5
Nichol [38] 2005 China Landsat 7
Chen et al. [39] 2006 China Landsat 7
Goldreich [40] 2006 South Africa Landsat 7

MODIS Terra
Le-Xiang et al. [41] 2006 China Landsat 5 and 7
Yang and Liu [42] 2006 China Landsat 7
Wang et al. [43] 2007 China MODIS Aqua and Terra
Li and Yu [44] 2008 China Landsat 7
Wan [45] 2008 China MODIS Aqua and Terra
Li et al. [46] 2009 China Landsat 5 and 7
Imhoff et al. [47] 2010 United States Landsat 7

MODIS Aqua
Bechtel [48] 2011 Germany Landsat 4 and 5
Liu and Zhang [49] 2011 China Landsat 6
Joshi and Bhatt [50] 2012 India Landsat 5
Rhinane et al. [51] 2012 Morocco Landsat 5
Tomlinson et al. [52] 2012 United Kingdom MODIS Aqua
Lazzarini et al. [53] 2013 United Arab Emirates MODIS Aqua and Terra
Sobrino et al. [54] 2013 Spain MODIS Not available
Ho et al. [55] 2014 Canada Landsat 5 and 7
Dihkan et al. [56] 2015 Turkey Landsat 5 and 7
Scarano and Sobrino [57] 2015 Italy Landsat 8
Coutts et al. [58] 2016 Australia MODIS Aqua
Kikon et al. [59] 2016 India MODIS Terra
Li et al. [60] 2016 China Landsat 5
Scarano and Mancini [61] 2017 Italy Landsat 8
Shirani-Bidabadi et al. [62] 2019 Iran Landsat 7
Wang et al. [63] 2019 China Landsat 8
Table 3
Reviewed studies using thermal images to analyze urban heat fluxes at the mesoscale or city-scale.

Author(s) Year Country Satellite Model(s)

Norman et al. [64] 2000 United States NOAA Not available
Ma et al. [65] 2002 China Landsat 5
Chrysoulakis [66] 2003 Greece MODIS Terra
French et al. [67] 2003 United States Landsat 5
Bisht et al. [68] 2005 United States MODIS Terra
Kato and Yamaguchi [69] 2005 Japan Landsat 5
Wang et al. [70] 2005 China MODIS Aqua and Terra
Kato and Yamaguchi [71] 2007 Japan MODIS Terra
Tang and Li [72] 2008 United States MODIS Aqua and Terra
Xu et al. [73] 2008 China MODIS Not available
Bisht and Bras [74] 2010 United States MODIS Aqua
Liu et al. [75] 2012 Japan Landsat Not available
Wu et al. [76] 2012 China MODIS Aqua and Terra
Weng et al. [77] 2013 United States MODIS Terra
Chen and Hu [78] 2017 China MODIS Terra
Chrysoulakis et al. [79] 2018 United Kingdom MODIS Terra
Qin et al. [80] 2020 China MODIS Aqua and Terra
Rios and Ramamurthy [81] 2022 United States MODIS Not available
Table 4
Reviewed studies using thermal images to study urban descriptors at the mesoscale or city-scale.

Author(s) Year Country Satellite Model(s)

Weng et al. [82] 2004 United States Landsat 7
Lu and Weng [83] 2006 United States Landsat 5 and 7
He et al. [84] 2007 China Landsat 5 and 7
Zhou et al. [85] 2011 United States Landsat 7
Xu et al. [86] 2013 China Landsat 5
Guo et al. [87] 2015 China Landsat 5 and 7
Scarano and Sobrino [57] 2015 Italy Landsat 8
Scarano and Mancini [61] 2017 Italy Landsat 8
Sannigrahi et al. [88] 2018 India Landsat 5 and 7
Firozjaei et al. [89] 2019 Iran Landsat 5, 7, and 8
Ghosh et al. [90] 2019 India Landsat 5
Hu et al. [91] 2020 China Landsat 8
Kim et al. [92] 2022 Korea Landsat 8
9
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Table 5
Reviewed studies using thermal images to observe the UHI effect or analyze urban heat fluxes at the local-scale or neighborhood-scale.

Author(s) Year Country Infrared camera Model Support

Observation of the UHI effect from the LST

Eliasson [93] 1992 Sweden AGEMA Thermovision 870 Aircraft
FLIR Not available Aircraft

Voogt and Oke [94] 1998 Canada AGEMA Thermovision 880 Helicopter
Saaroni et al. [95] 2000 Israel Not available Not available Helicopter
Lagouarde et al. [96] 2004 France FLIR SC500 Aircraft
Leuzinger et al. [97] 2010 Switzerland InfraTec VarioCam Helicopter
Lagouarde et al. [98] 2013 France FLIR SC3000 Helicopter
Lagüela et al. [99] 2015 Spain Xenics Gobi-384 Drone
Honjo et al. [100] 2017 Japan Not available Not available Helicopter
Antoniou et al. [101] 2019 Cyprus FLIR P640 Helicopter
Fabbri and Costanzo [102] 2020 Italy FLIR Vue Pro R Drone

Observation of the UHI effect from the UST

Lagouarde et al. [96] 2004 France FLIR SC500 Aircraft
Adderley et al. [103] 2015 Canada FLIR A40M Observatory
Morrison et al. [104] 2020 United Kingdom Optris PI-160 Observatory

Analysis of urban heat fluxes

Richters et al. [105] 2009 Germany InfraTec VarioCam Observatory
Sham et al. [106] 2012 China FLIR PM 695 Observatory
Dobler et al. [107] 2021 United States FLIR A310 Observatory
Morrison et al. [108] 2021 United Kingdom Optris PI-160 Observatory
fluxes occurring in a city. For this reason, Kato and Yamaguchi [69]
added the anthropogenic heat flux into the energy balance. Both the
anthropogenic and ground heat fluxes were considered by Kato and
Yamaguchi [71] to estimate the heat storage. The heat storage was
included in the energy balance by Xu et al. [73] to obtain unsteady
state predictions of urban heat fluxes.

Whether steady or unsteady state energy balance is used to assess
urban heat fluxes, they can be analyzed with other sources of informa-
tion. For instance, Liu et al. [75] and Weng et al. [77] studied urban
heat fluxes in relation with land use maps. Another example is the study
conducted by Chen and Hu [78] in which energy data were considered
to improve the estimate of anthropogenic heat fluxes. It contrasts
with Chrysoulakis et al. [79] who indirectly assessed anthropogenic
heat fluxes from the energy balance after evaluating all other urban
heat fluxes. Sensible heat fluxes were estimated by Rios and Rama-
murthy [81] from many different satellite-derived and ground-based
data.

4.1.3. Study of urban descriptors
In parallel to the assessment of the UHI effect and the analysis

of urban heat fluxes, various studies observed urban descriptors at
the mesoscale, which can either be biophysical or geometrical. Urban
descriptors were inferred from remotely sensed data, including thermal
images obtained by satellite, to study their impact on the LST or UHI
effect.

Biophysical descriptors correspond to the different types of surfaces
that can be observed over a region, including the fraction of vegetation,
pavement, and soil. In the 1990s, Carlson et al. [111] and Gillies and
Carlson [112] observed that biophysical descriptors could be inferred
from the LST and Normalized Vegetation Difference Index (NDVI).
As illustrated by these studies, the correlation between the LST and
biophysical descriptors was studied initially in rural areas.

Since the 2000s, biophysical descriptors have been inferred in urban
areas. Weng et al. [82] was among the first in inferring the LST and
the NDVI remote sensed data to understand the correlation between
the portion of vegetation in a city and its UHI effect. From the LST, Lu
and Weng [83] tried to define several types of land covers from forests
to highly dense urban areas.

Several studies have attempted to evaluate the impact of land cover
or biophysical descriptors on the LST or UHI effect using a different
method. He et al. [84] applied an interpolation between urban and
rural stations to assess the UHI effect while using land cover maps
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estimated from satellites as in Lu and Weng [83]. Zhou et al. [85] used
a multi-linear regression model to study the impact of land cover on
the LST, both obtained from a satellite. Instead of considering various
biophysical descriptors, Xu et al. [86] focused on the effect caused
by impervious surfaces. In contrast, Guo et al. [87] still considered
several biophysical descriptors. Using an object-oriented segmentation
approach, their impact was studied on clusters of the UHI effect. In
addition, to assess the impact on the UHI effect, Sannigrahi et al.
[88] tried to understand how some biophysical descriptors can help in
mitigating this climatic hazard. A model combining a principal compo-
nent analysis with an ordinary least squares regression was developed
by Firozjaei et al. [89] to study the impact of biophysical descriptors on
the LST. The relation between biophysical descriptors and the LST was
analyzed by Ghosh et al. [90] using Geographic Information System
(GIS) and statistical-based models.

Recent studies show that not only biophysical descriptors can be
inferred from remotely sensed data but also geometrical ones. Among
urban geometrical descriptors, sky view factors are essential in ex-
plaining the causes of the UHI effect. The lower the sky view factor
is, the higher the magnitude of the UHI effect at night. The relation
between the sky view factors and the LST was studied by Scarano and
Sobrino [57] and Scarano and Mancini [61]. In addition to sky view
factors, Hu et al. [91] analyzed how the LST is affected by many other
urban geometrical descriptors. In contrast, Kim et al. [92] focused on
extremely low sky view factors and their impact on the LST.

4.2. Studies conducted at the local-scale or neighborhood-scale

Compared to the mesoscale or city-scale, more infrared systems can
be used to observe the built environment at the local or neighbor-
hood scales. In Fig. 11, it is shown that the built environment was
observed mainly using an infrared camera installed on a helicopter
or observatory. The use of aircraft can utilize expensive platforms to
collect thermal images at the local or neighborhood scales. Drones are
a modern technology, which appears to be used in a few studies at
the local or neighborhood-scale for the moment, but might gain more
interest in the future due to its low cost in comparison to other systems.

As observed at the mesoscale or city-scale, and as illustrated in
Fig. 12, most studies at the local-scale or neighborhood scale aim at
observing the UHI effect and analyze urban heat fluxes using thermal
images. The only difference is that the UHI effect can either be observed
from the LST or UST at a local or neighborhood scale. This observation
is explained by the fact that infrared systems like helicopters and
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Fig. 11. Number and portion of studies between 1980 and 2022 that used either an aircraft, helicopter, observatory, or drone to observe the built environment at the local-scale
r neighborhood scale.
Fig. 12. Number and portion of studies between 1980 and 2022 that used thermal images to observe the UHI effect from the LST or UST and analyze urban heat fluxes at the
ocal-scale or neighborhood scale.
bservatories enable the collection of thermal images from different
erspectives, including an oblique or vertical view of an urban area.
t implies that thermal images collected at the local or neighborhood
cale can potentially provide more information about the magnitude or
auses of the UHI effect than at other scales. Because of this, it is sur-
rising that a few efforts have been made so far to investigate the UHI
ffect using infrared thermography at the local scale or neighborhood
cale (see Table 5).

.2.1. Observations of the UHI effect from the LST
In Section 4.1.1, it was discussed that many studies had collected

hermal images to observe the LST or UHI effect of a city. Thermal
mages collected from a satellite have a limited resolution, which can
istort observations of the LST at the local scale.

For this reason, various studies have collected thermal images either
rom an aircraft or helicopter. Eliasson [93] was among the first studies
n observing the LST measured from two infrared cameras that were
laced on an airplane. Instead of an aircraft, Voogt and Oke [94]
referred to use a helicopter to collect thermal images at the local scale.

These two studies were considered as references to many others
hat have been conducted since the 2000s. Saaroni et al. [95], for
xample, show how characteristics of the UHI effect at the local scale
an be obtained from an infrared camera installed on a helicopter and
network of automatic weather stations. The view of thermal images

ollected from an aircraft or a helicopter is not necessarily planned
ut can also be oblique as shown in Lagouarde et al. [96]. From a
lan view, Leuzinger et al. [97] observed the surface temperature of
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ifferent species of trees in an urban area.
Aircraft and helicopters are constantly in motion, which does not fa-
cilitate the collection of thermal images over space and time. Concern-
ing this problem, Lagouarde et al. [98] explains how time-series can
be extracted from thermal images obtained from a helicopter. Honjo
et al. [100] tried to reconstitute an LST map from a mosaic of thermal
images taken at different positions from a helicopter. A similar map
was used by Antoniou et al. [101] to validate the LST assessed from
computational fluid dynamics.

It might be relatively expensive to use an aircraft or helicopter
to collect thermal images at the local or neighborhood scales. For
this reason, other studies explored the possibility of using drones
for this purpose. To reconstitute thermal image at the local-scale or
neighborhood-scale, drones need to travel at several points over the
region of interest as explained by Lagüela et al. [99] and Fabbri and
Costanzo [102].

4.2.2. Observations of the UHI effect from the UST
As shown by Lagouarde et al. [96], the Urban Surface Temperature

(UST) can partially be obtained from thermal images obtained by an
aircraft or helicopter. By UST, it is here referred to the surface tem-
perature of façades, roofs, and streets in an urban area as formulated
by Krayenhoff and Voogt [113].

Instead of using an aircraft or helicopter, studies measured the UST
from an infrared camera installed at the rooftop of a building. This type
of installation is often referred to as an observatory. An observatory
with pan/tilt unit was installed by Adderley et al. [103], for instance,
to collect hemispheric thermal images over 360 degrees. Using a similar
infrared system, but without a pan/tilt unit, Morrison et al. [104]

observed the UHI effect from the UST of an entire neighborhood.
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Fig. 13. Countries in which studies in infrared thermography were conducted at the microscale or building-scale of the built environment between 1980 and 2021.
4.2.3. Analysis of urban heat fluxes
Thermal images collected from an observatory can also assess urban

heat fluxes at the local or neighborhood scales. Apart from the heat
emitted by roofs and roads, which is better assessed using thermal
images collected from an aircraft or helicopter, observatories enable to
improve estimates of heat fluxes coming from building façades or any
other vertical element in an urban area. Studies conducted by Richters
et al. [105] and Morrison et al. [108] prove that estimates of the
longwave radiation emitted by building façades can be improved using
an observatory. Another urban heat flux, the sensible heat emitted
by building façades, was observed by Sham et al. [106] using an
observatory and a network of automatic weather stations. According
to Dobler et al. [107], thermal images collected by an observatory also
allow locating the heat emitted by HVAC systems.

4.3. Studies conducted at the microscale or building-scale

As mentioned at the beginning of Section 4, the majority of observa-
tions in the built environment using infrared thermography were made
at the microscale or building-scale. Fig. 13 shows that a significant
portion of these observations was made in Europe, in particular Spain
and Italy. In Asia and North America, as well, several studies in the
built environment were performed at the microscale or building-scale.
As observed for studies conducted at the mesoscale or city-scale, South
America and Africa are the regions where more efforts should be made
in the future.

Most studies at the microscale or building-scale were performed
using an infrared camera mounted on a tripod, as illustrated in Fig. 14.
A non-negligible number of studies were conducted using handheld
cameras or drones. Smartphones, however, do not seem to have been
considered by many studies to collect thermal images of the built
environment. A possible explanation would be that infrared cameras
and software integrated into smartphones are not yet as performant as
those included in mounted, handheld, or drone systems.

Fig. 15 demonstrates that more than 85% of reviewed studies at
the microscale or building-scale were conducted to detect defects of
buildings or evaluate their thermal performance. The other 20% of
studies were dedicated to analyzing mitigation strategies of the UHI
effect, detecting defects on PV panels, observing techniques to renovate
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buildings, and analyzing urban heat fluxes. The latter application is
the only one that can also be found in studies conducted at higher
scales. It implies that studies performed at the microscale or building-
scale are more concerned by aspects that can affect the building energy
efficiency. At the same time, those conducted at higher scales give more
attention to phenomena impacting the outdoor environment.

The detection of defects appears to have been performed on res-
idential buildings mainly and on historical ones a little. Fig. 16 also
show that none of the reviewed studies considered defects that might
appear on the envelope of office or commercial buildings. This gap can
certainly be justified by the fact that most studies at the microscale or
building-scale were conducted in Europe, where a considerable portion
of the energy is consumed in residential buildings D’Agostino et al.
[114]. However, it was reported by Berardi [115] that the energy
demand in non-residential buildings increases in Europe, as well as in
other regions of the globe. The fact that few observations were made on
the energy performance of non-residential buildings can then become
a considerable limitation in the building sector (see Tables 6–8).

4.3.1. Detection of defects on residential or historical buildings
In infrared thermography, defects of a building primarily refer to all

imperfections on its envelope that can compromise its indoor thermal
comfort and energy efficiency. Grinzato et al. [116] were among the
first in listing all building defects that can be detected from an infrared
camera at the micro-scale or building-scale. It includes plaster detach-
ment on walls, insulation deficiencies, thermal bridges, and moisture.
These defects were detected by Grinzato et al. [116] as anomalies in
thermal images provided by the infrared camera.

Techniques to detect defects were originally studied on historical or
old buildings’ envelopes or structural elements. For example, Haralam-
bopoulos and Paparsenos [117] tried to detect insulation deficiencies
on the envelope of an old building located in Salonika (Greece). A
similar method was used by Grinzato et al. [119,130], Al-Kassir et al.
[122], Tavukçuoğlu et al. [124], and Kordatos et al. [131] to observe
damages caused moisture on the façade of ancient buildings. Instead of
considering the entire envelope of a building, Li et al. [118] studied de-
fects caused by air gaps or moisture on ceramic tiles. Studies like Rosina
et al. [120] and Edis et al. [138,141] also focused on damages caused
by moisture on structural elements. Lerma et al. [139] determined
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Fig. 14. Number and portion of studies between 1980 and 2022 that used mounted cameras, handheld cameras, smartphones, or drones to observe the built environment at the
microscale or building-scale.

Fig. 15. Number and portion of studies between 1980 and 2022 that used thermal images to detect building defects, evaluate building thermal performance, analyze UHI mitigation
strategies, detect faulty PV panels, observe renovated buildings, and analyze urban heat fluxes at the microscale or building-scale.

Fig. 16. Number and portion of studies between 1980 and 2022 that used thermal images to detect defects on residential or historical buildings at the microscale or building-scale.
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Table 6
Reviewed studies using thermal images to detect defects on residential or historical buildings at the microscale or building-scale.

Author(s) Year Country Infrared camera Model Support

Grinzato et al. [116] 1998 Finland Not available Not available Mounted
Haralambopoulos and Paparsenos [117] 1998 Greece Not available Not available Mounted
Li et al. [118] 2000 China Not available Not available Mounted
Grinzato et al. [119] 2002 Italy Not available Not available Mounted
Rosina et al. [120] 2003 United States Not available Not available Mounted
Ocaña et al. [121] 2004 Spain FLIR SC2000 Mounted
Al-Kassir et al. [122] 2005 Spain Not available Not available Mounted
Meola et al. [123] 2005 Italy FLIR SC3000 Mounted
Tavukçuoğlu et al. [124] 2005 Turkey AGEMA 550 Mounted
Martinez-De Dios and Ollero [125] 2006 Spain FLIR P20 Drone
Meola [126] 2007 Italy FLIR SC3000 Mounted
Ribarić et al. [127] 2009 Croatia FLIR PM695 Mounted
Vavilov [128] 2010 Russia Not available Not available Mounted
Zalewski et al. [129] 2010 France AGEMA PM 570 Mounted
Grinzato et al. [130] 2011 Italy Not available Not available Mounted
Kordatos et al. [131] 2013 Greece FLIR T360 Mounted
Cerdeira et al. [132] 2011 Spain FLIR Not available Mounted
Lerma et al. [133] 2011 Belgium FLIR B4 Handheld
Avdelidis and Moropoulou [134] 2004 Greece AVIO Not available Mounted
Hopper et al. [135] 2012 United Kingdom FLIR B365 Mounted
Paoletti et al. [136] 2013 Italy FLIR S65 Mounted
Bianchi et al. [137] 2014 Italy FLIR Not available Mounted
Edis et al. [138] 2014 Portugal FLIR B2 Handheld
Lerma et al. [139] 2014 Spain FLIR B335 Mounted
Taylor et al. [140] 2014 United Kingdom FLIR Not available Mounted
Edis et al. [141] 2015 Turkey FLUKE TiR27 Mounted
Fox et al. [142] 2015 United Kingdom FLIR T620bx Mounted
Lai et al. [143] 2015 China FLIR SC3000 Mounted
Barreira et al. [144] 2016 Portugal Not available Not available Mounted
Fox et al. [145] 2016 United Kingdom FLIR T620bx Mounted
Barreira et al. [146] 2017 Portugal Not available Not available Mounted
Marino et al. [147] 2017 Argentina FLUKE TiR32 Handheld
O’Grady et al. [148] 2017 Ireland FLIR T335 Mounted
Baldinelli et al. [149] 2018 Italy FLIR B360 Mounted
Bauer et al. [150] 2018 Germany FLIR T420 Mounted
Mauriello [151] 2018 United States FLIR FLIR One Smartphone
O’Grady et al. [152] 2018 Ireland FLIR T335 Mounted
Tejedor et al. [153] 2020 Spain NEC TH9100MR Mounted
Rakha et al. [154] 2021 United States FLIR Zenmuse X2 Drone
whether damages caused by moisture on structural elements can be
identically detected in a laboratory or on-site. Other types of defects on
structural elements were analyzed by Meola et al. [123], Meola [126],
and Cerdeira et al. [132], including cork diskettes and air-filled plastic
bags.

Since the early 2000s, numerous studies have aimed at detecting
locations on the envelope of a building where heat can escape from the
indoor to the outdoor, that is, heat losses. One of the main source of
heat losses are windows as demonstrated by Ocaña et al. [121], Vavilov
[128], Barreira et al. [146], and Marino et al. [147]. Some windows
can be difficult to observe from a mounted or handheld camera. For
this reason, Martinez-De Dios and Ollero [125] used a drone to detect
heat losses from the windows of a tall building. In addition to win-
dows, Ribarić et al. [127] captured heat losses from heat exhausts using
both thermal and Red–Green–Blue (RGB) images.

Some building defects are not necessarily detected at a specific
instant. They are sometimes the result of degradation over time, which
requires a multi-temporal analysis of thermal images for their detection.
A multi-temporal analysis was performed by Lerma et al. [133] to
better locate damages caused by moisture on the façade of a historical
building. The same kind of analysis was performed by Fox et al. [142]
and Bauer et al. [150] to detect cracks that might appear on residential
buildings over time. A large and long experimental campaign was
conducted by Barreira et al. [144] to assess all moisture-based defects
that can appear on structural elements of the built environment. Fox
et al. [145] reported various defects that can gradually appear out-
side or inside a building and detect by infrared thermography. Apart
from imperfections that gradually appear over time, some degradation
caused by a sudden event like debonds on an external wall can be seen
from a multi-temporal analysis as proven by Lai et al. [143].
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Although moisture appears to be the main cause of defects on the
envelope of a building, it can also be provoked by other phenomena.
For example, Paoletti et al. [136] studied damages resulting from an
earthquake.

Instead of detecting defects appearing on the envelope of buildings,
certain studies focused on damages caused by renovation or retrofitting.
Among these studies, Avdelidis and Moropoulou [134] described sev-
eral of these renovation methods applied on historical buildings, which
includes surface cleaning, consolidation of stones, restoration of mor-
tars, and examination of plaster mosaics. Another study is the one
conducted by Hopper et al. [135], in which thermal bridges that might
emerge after retrofitting are detected using infrared thermography.

Thermal bridges are among the most complex defects to detect from
a thermal image. The reason is that it requires an assessment of the heat
conduction through the envelope of a building as reported by Bianchi
et al. [137] and O’Grady et al. [148]. Zalewski et al. [129], Taylor
et al. [140], and O’Grady et al. [152] linked infrared thermography
with computer simulation to analyze thermal bridges on the envelope
of a building or specific structural elements. Thermal bridges can be
quantified using an incidence factor as expressed by Baldinelli et al.
[149]. Instead of using a single metric like the incidence factor, Tejedor
et al. [153] detected thermal bridges from a 2D map of U-values
assessed from an infrared camera. A 3D thermal model of a building
was created by Rakha et al. [154] from a drone to detect thermal
bridges on the envelope.

4.3.2. Evaluation of building thermal performance
The thermal performance of a building corresponds to its capability

to maintain indoor conditions at a satisfactory level of thermal comfort
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Table 7
Reviewed studies using thermal images to evaluate building thermal performance at the microscale or building-scale.

Author(s) Year Country Infrared camera Model Support

Albatici and Tonelli [155] 2010 Italy Not available Not available Mounted
Fokaides and Kalogirou [20] 2011 Cyprus FLIR T360 Handheld
Lagüela et al. [156] 2011 Spain NEC TH9260 Mounted
Lagüela et al. [157] 2013 Spain NEC TH9260 Mounted
Dall’O et al. [158] 2013 Italy FLIR T640bx Mounted
González-Aguilera et al. [159] 2013 Spain NEC TH9260 Mounted
Ham and Golparvar-Fard [160] 2013 United States FLIR E60 Handheld
Lagüela et al. [161] 2013 Spain NEC TH9260 Mounted
Lehmann et al. [162] 2013 Switzerland NEC TH3102 Mounted
Wang et al. [163] 2013 United States Not available Not available Mounted
Baldinelli and Bianchi [164] 2014 Italy FLIR Not available Mounted
Lagüela et al. [165] 2014 Spain Xenics Gobi384 Drone
Lagüela et al. [166] 2014 Spain NEC TH9260 Mounted
Wakili et al. [167] 2014 Switzerland NEC TH770 Mounted
Albatici et al. [168] 2015 FLIR Not available Not available Mounted
Ham and Golparvar-Fard [169] 2015 United States FLIR E60 Mounted
Nardi et al. [170] 2015 Italy FLIR S65 Mounted
Gaspar et al. [171] 2016 Spain FLIR E60bx Handheld
Kim et al. [172] 2016 South Korea FLIR T620 Mounted
Choi and Ko [173] 2017 South Korea FLIR T620 Mounted
Marino et al. [147] 2017 Argentina FLUKE TiR32 Handheld
Maroy et al. [174] 2017 Belgium Not available Not available Mounted
Tejedor et al. [175] 2017 Spain FLIR E60bx Mounted
Baffa [176] 2018 Canada Testo T870 Handheld
Bienvenido-Huertas et al. [177] 2018 Spain FLIR E60bx Handheld
Gaspar et al. [178] 2018 Spain FLIR E60bx Handheld
Marshall et al. [179] 2018 United Kingdom FLIR B425 Mounted
Mauriello [151] 2018 United States FLIR FLIR One Smartphone
Tejedor et al. [180] 2018 Spain FLIR E60bx Handheld
Yang et al. [181] 2018 Taiwan FLIR FLIR One Smartphone
Bienvenido-Huertas et al. [182] 2019 Spain FLIR E60bx Handheld
Choi and Ko [183] 2019 South Korea FLIR T620 Mounted
Gaši et al. [184] 2019 Croatia FLIR Not available Mounted
Lu and Memari [185] 2019 United States Testo 875-1i Mounted
Sen and Al-Habaibeh [186] 2019 United Kingdom IRISYS 1002 Mounted
Tejedor et al. [187] 2019 Spain FLIR E60bx Handheld
Sadhukhan et al. [188] 2020 United States FLIR Not available Drone
Tejedor et al. [189] 2020 Spain FLIR E60bx Handheld
Tejedor et al. [153] 2020 Spain NEC TH9100MR Mounted
Bayomi et al. [190] 2021 United States FLIR Zenmuse X2 Drone
Mahmoodzadeh et al. [191] 2021 Canada FLIR A65 Mounted
Papadakos et al. [192] 2021 Greece FLIR B40 Handheld
Park et al. [193] 2021 South Korea Not available Not available Mounted
Tejedor et al. [194] 2021 Spain FLIR Not available Mounted
Rakha et al. [154] 2021 United States FLIR Zenmuse X2 Drone
with the presence or absence of defects on its envelope. The most
common metric to quantify the thermal performance of a building is
its thermal transmissivity or U-value. Since the 2010s, various studies
have used infrared thermography at the microscale or building-scale
to assess the U-value of buildings. Albatici and Tonelli [155] and
Albatici et al. [168] were among the first in estimating the U-value
of residential buildings from thermal images. More complex methods
were then developed as in Bienvenido-Huertas et al. [177], Gaspar et al.
[178], Choi and Ko [183], Lu and Memari [185], Tejedor et al. [189],
and Mahmoodzadeh et al. [191]. Using infrared thermography, the U-
value can also be studied in two dimensions as demonstrated by Tejedor
et al. [194].

Any method to calculate the U-value from thermal images is usually
validated estimates with measurements of the surface temperature
obtained by contact sensors. It was shown that the accuracy of the
U-value could be improved using aluminum foil as in Fokaides and
Kalogirou [20], Dall’O et al. [158], Tejedor et al. [180], and Pa-
padakos et al. [192]. The aluminum foil is placed on the building
envelope to measure the background temperature, which is a crucial
variable to measure the surface temperature from an infrared camera
accurately. Besides the background temperature, the U-value assessed
from thermal images is also sensitive to outdoor conditions as proven
by Lehmann et al. [162], Wakili et al. [167], and Kim et al. [172]. Nardi
et al. [170], Gaspar et al. [171], Choi and Ko [173], Tejedor et al.
[175], Baffa [176], Bienvenido-Huertas et al. [182], and Gaši et al.
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[184] compared different methods to estimate the U-value using a
mounted or handheld camera. In contrast, Bayomi et al. [190] used
a drone to assess the U-value of the building enveloped from thermal
images.

Indeed, the U-value is typically obtained from thermal images of an
opaque surface. It is relatively difficult to assess the U-value of transpar-
ent surfaces like the glass on windows. Despite this difficulty, Baldinelli
and Bianchi [164], Maroy et al. [174], and Park et al. [193] attempted
to infer the U-value of various types of glazing using an infrared cam-
era and compared estimates with measurements collected by contact
sensors.

Instead of using the U-value, other studies analyzed the ther-
mal performance of buildings from 3D thermal models. As illustrated
by Lagüela et al. [156], a 3D thermal model aims at capturing the
thermal behavior of a building from all possible angles. In the literature,
several techniques were explored to generate 3D thermal models. One
of them consists of fusing and matching thermal images collected from
different angles as defined by Lagüela et al. [157], González-Aguilera
et al. [159], and Yang et al. [181]. Instead of fusing and matching a
sequence of thermal images, Ham and Golparvar-Fard [160] and Wang
et al. [163] generated a cloud of geolocalized points, whose surface
temperature was captured by an infrared camera at different positions.
Whether the 3D thermal model is obtained by fusion/matching or a
cloud of points, Lagüela et al. [161] shows that it can be integrated
into Building Information Modelling (BIM) to analyze the thermal
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Table 8
Reviewed studies using thermal images for other applications at the microscale or building-scale.

Author(s) Year Country Infrared camera Model Support

Analysis of strategies to mitigate the UHI effect

Mastrapostoli et al. [195] 2016 Greece AGEMA Not available Mounted
Monteiro et al. [196] 2017 Portugal NEC TH7800 Handheld
Chui et al. [197] 2018 United States FLIR T650sc Handheld
Kolokotsa et al. [198] 2018 Greece FLIR B2 Handheld
Garcia-Nevado et al. [199] 2020 Spain FLIR T460 Mounted
Cho et al. [200] 2021 South Korea FLIR Vue Pro R Drone

Detection of faulty PV panels

Lee et al. [201] 2018 South Korea Not available Not available Drone
Ismail et al. [202] 2019 United Arab Emirates FLIR Zenmuse XT Drone
Et-taleby et al. [203] 2020 Morocco Not available Not available Drone
Henry et al. [204] 2020 South Korea FLIR Vue Pro R Drone

Analysis of urban heat fluxes

Hoyano et al. [205] 1999 Japan Not available Not available Mounted
Feng et al. [206] 2019 China FLIR Vue Pro 640R Drone
Arjunan et al. [207] 2021 Singapore FLIR A300 Mounted
performance of a building. After integrating the 3D thermal model into
BIM, Lagüela et al. [166] assessed the U-value for each surface of the
building. Ham and Golparvar-Fard [169] created an entire 3D map of
U-values and integrated it into BIM. Instead of using BIM, Marshall
et al. [179] used another building visualization model to fix the 3D
map of U-values.

Recently, some efforts have been made to evaluate the thermal
performance of a building using thermal images and artificial intelli-
gence. Sen and Al-Habaibeh [186] could categorized different types of
walls using an artificial neural network and the U-value calculated from
thermal images. The U-value of different walls was also studied by Teje-
dor et al. [187] through time series analysis. An instance segmentation
technique was used by Sadhukhan et al. [188] to estimate the U-value
of various elements on a building, including doors, walls, and windows.

4.3.3. Analysis of strategies to mitigate the UHI effect
While the UHI effect is generally observed at the mesoscale or city-

scale, strategies to mitigate its aggravation are usually studied at the
microscale or building scale. The main reason is that it would be time-
consuming and expensive to set up an experiment on UHI mitigation
strategies at the mesoscale or city scale.

Despite the emergency in finding solutions to mitigate the UHI
effect, it was observed that a few reviewed studies were dedicated
to their analysis using infrared thermography. Among the studies that
used infrared thermography to analyze mitigation strategies of the UHI
effect, Mastrapostoli et al. [195] and Cho et al. [200] could capture
the effect and deterioration of cool roofs over time. An alternative to
cool roofs is rooftop gardens, whose influence was studied by Monteiro
et al. [196] using a sequence of thermal images collected at different
positions. The UHI effect is not necessarily mitigated using strategies on
the roof of buildings. Chui et al. [197] and Kolokotsa et al. [198], for
instance, observed how certain materials enable to reduce the surface
temperature of street pavements using infrared thermography. The
surface temperature of the street pavement can also be reduced using
shading devices as shown by Garcia-Nevado et al. [199].

4.3.4. Detection of faulty PV panels
Recently, various studies have tried to detect faulty PV panels

using infrared cameras installed on drones. As for defects on the en-
velope buildings, Lee et al. [201], Ismail et al. [202], and Henry et al.
[204] detect faulty PV panels from anomalies on thermal images. A
more sophisticated method relying on machine learning was developed
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by Et-taleby et al. [203] to automatically detect faulty PV panels.
4.3.5. Analysis of urban heat fluxes
Among all applications of infrared thermography in the built envi-

ronment, the analysis of urban heat fluxes is the only one that could
be found at multiple scales. However, more studies can be found at
higher scales than at the microscale or building scale. Among the few
studies conducted at the microscale or building-scale, Hoyano et al.
[205] analyzed the sensible heat emitted by a building over a typical
day. Sensible heat fluxes were also studied by Feng et al. [206] from
thermal images collected by a drone. Arjunan et al. [207] observed
the operation of HVAC systems using infrared thermography; and, thus,
indirectly assessed the anthropogenic heat that might be emitted from
the use of air conditioning.

4.4. Multi-scale studies

Although many contributions have been made in infrared thermog-
raphy at different scales of the built environment, a small number
considered multiple scales in the same study. One of them is the study
conducted by Gluch et al. [208] in the early 2000s. The objective
was to compare thermal images obtained at the mesoscale with others
collected at the microscale. A similar comparison was made by Golden
and Kaloush [209] and Hartz et al. [210], but at the city-scale using a
satellite and at the building-scale using a handheld infrared camera.

It might be abrupt to directly compare thermal images obtained
at a very large scale with these collected at a smaller scale. For this
reason, Yamazaki et al. [211] decided to study the UHI effect between
the local-scale and microscale. Other studies like Kuo et al. [212]
and Parlow et al. [213] preferred to consider thermal images obtained
at the mesoscale and local scale. Bonafoni et al. [214] and Bonafoni and
Tosi [215] developed a downscaling method to collect thermal images
of the built environment from the city-scale to the building scale.

5. Research opportunities

During the review, several research opportunities were identified
at different scales of the built environment. The next phase of research
should explore the convergence of infrared radiation data with Internet-
of-Things (IoT), geospatial data, and other data sources found in the
built environment. This foundation enables the use of infrared thermog-
raphy for applications at the urban scale, such as energy modeling and
the UHI effect. Although the UHI effect was observed using infrared
thermography in numerous studies, in particular at the mesoscale, some
improvements can still be made in the future.
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5.1. Temporal data integration with Internet-of-Things (IoT) and other
imaging systems

Infrared thermography images taken over a period of time results in
the collection of surface temperature data with a temporal dimension.
These data enable the extraction of behavior related to the dynamics of
building envelopes, mechanical systems, and human behavior in build-
ings. Collection of the temporal dynamics from these systems empowers
the convergence of data from other types of energy, indoor and outdoor
environmental quality, and wearable measurements. Additionally, data
from infrared data collection could be linked with other remote sensing
systems such as visible light, broadband, and hyperspectral imaging to
achieve high-level insights about numerous buildings simultaneously.
An example of such a deployment is the Urban Observatory that was
deployed in New York City, which was able to capture the energy
consumption, lighting use, grid stability, and environmental conditions
of hundreds of buildings on the Manhattan skyline at once [107]. This
data fusion also enabled the evaluation of urban vegetative health,
the ecological impacts of light pollution, and the technology adoptions
habits of building occupants.

5.2. Geospatial data integration and digital twins

As large-scale data sourced from infrared thermography is essen-
tially a form of geospatial data, the literature review exposed a notable
gap of the lack of recognition of such data in the geospatial realm,
its integration in GIS, and coupling it with other kinds of geoinforma-
tion, potentially uncovering new applications in the built environment.
With digital twins increasingly supporting dynamic data and allowing
accommodating diverse sources [216,217], a viable research direction
would be to investigate the direct integration of latent thermal data in
them, potentially facilitating new use cases, e.g., understanding urban
vibrancy and thermal comfort [218,219]. For example, the standard
CityJSON [220] enables extending urban digital twins with new types
of information. A direction for future work would be researching an
automated way to supplement the standard with static or dynamic
information from thermal cameras and associate them with urban
features that are already available in these datasets.

Another notable development at the urban scale and in the geospa-
tial domain is the proliferation of street view imagery [221–223]. Since
thermal cameras may be mobilized, a question that arises is whether we
can develop a new research line that focuses on developing street-level
thermal imagery, supplementing optical imagery, which has been the
main focus of research so far [224].

As advances in computer vision provide means to process a large
number of images and as these techniques are gaining momentum
in urban studies [225–228], it might be worthwhile to use them to
develop new mechanisms to process thermal imagery and reveal new
applications.

5.3. Detailed and comparative analysis of urban heat fluxes at multiple
scales

As discussed in Section 4, the analysis of urban heat fluxes is an ap-
plication of infrared thermography that can certainly be used to explore
the built environment at multiple scales. Nonetheless, it was observed
that the level of detail with which urban heat fluxes were analyzed
varies concerning the scale they were studied. At the mesoscale or
city-scale, highly detailed observations of urban heat fluxes were made
using thermal images and other remote data collected from satellites. At
lower scales, only a few urban heat fluxes were considered by reviewed
studies at the same time. Most of these studies essentially inferred the
sensible and anthropogenic heat emitted by buildings from thermal
images.

While urban heat fluxes were considered at different scales sep-
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arately, none of the reviewed studies compared their estimates at
multiple scales simultaneously. To perform this kind of comparison
would also require the deployment of automatic weather stations at
various scales. It would also be recommended to use and synchro-
nize several infrared systems. Such a network of infrared systems and
automatic weather stations have not been deployed over a city.

Therefore, there are two main research opportunities related to the
analysis of urban heat fluxes at multiple scales. One possibility would
be to perform a more detailed analysis of urban heat fluxes at lower
scales than the mesoscale or city-scale by considering the latent heat
emitted by vegetation or the anthropogenic heat released by traffic, for
instance. Another opportunity would be to compare urban heat fluxes
estimated from thermal images at multiple scales and evaluate their
divergence.

5.4. Urban-scale building energy modeling

In recent years, there has been increasing interest in urban-scale
building energy modeling (UBEM) because of its ability to simulate
city-scale building energy performance to support sustainable develop-
ment decision-making and urban planning. However, the credibility of
UBEMs is often questionable due to a large number of assumptions in
the modeling process [229]. Specifically, envelop thermal properties
for UBEMs are often assumed using default or reference values. To
this end, as found from this review, infrared thermography has been
used to reduce the uncertainties in characterizing a building’s envelope
thermal properties. However, its application remained at the microscale
involving determining a single building’s thermal properties [169,179].
Therefore, investigations into using infrared technology at an urban
scale to inform building thermal performance and reduce UBEM un-
certainties would be a promising research direction. More specifically,
it will be interesting to investigate the applicability of techniques and
technologies from the local scales that can be used to scale up 3D
thermal analysis that has been to date limited to the microscale.

6. Conclusion

In this review, several applications of infrared thermography in
the built environment were presented at multiple scales. The review
summarizes 197 contributions that were selected for their relevance
and classified in accordance with several criteria, including the studied
area, infrared system, scale, and application. Data analysis was con-
ducted based on the classification and the chronology of contributions
to detect the research gaps that could be addressed in the future. Apart
from the research gaps or opportunities, the data analysis shows three
main tendencies on applications of infrared thermography to explore
the built environment at multiple scales.

Firstly, it is observed that the majority of reviewed studies used
infrared thermography to evaluate the thermal performance of build-
ings, or detect their defects. These applications are often performed at
the microscale or building-scale, which explains why a considerable
portion of reviewed studies was conducted at this scale. However, a
non-negligible part of reviewed studies was interested in other appli-
cations at the microscale or building-scale, including the analysis of
UHI mitigation strategies, the detection of faulty PV panels, and the
observation of urban heat fluxes. In the future, more applications of
infrared thermography can certainly be found at the microscale or
building-scale to understand the energy efficiency of buildings better.
One of them could be creating building energy models from thermal
images at the microscale or building scales. UBEMs could be generated
using infrared thermography at multiple scales by extension of this
application.

Secondly, the observation of the UHI effect is the most frequent ap-
plication of infrared thermography at higher scales than the microscale
or building-scale. This result is certainly justified by the extreme emer-
gency to identify the consequences of intense urbanization, particularly
during global warming and climate change. However, the magnitude
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of the UHI effect alone does not inform the scientific community on
the causes of its aggravation nor on strategies to mitigate it. More
detailed studies should be conducted on urban heat fluxes, especially
at lower scales than the mesoscale, to better understand contributors
and mitigators of the UHI effect.

Thirdly, it was pointed out that thermal images have been linked
with a few other data sources to explore the built environment at
multiple scales. So far, thermal images have essentially been linked
with weather data to estimate urban heat fluxes at lower scales than the
mesoscale or city-scale. The small interaction between thermal images
and other data sources certainly limits the number of applications. In
the future, this limitation could be overcome by integrating thermal im-
ages into an IoT and a digital twin platform. A linkage of data collected
by an IoT and thermal images should better assess the building energy
efficiency. If IoT data and thermal images were together included in
a digital twin platform with geospatial data, the scientific community
and practitioners would have better visualization tools to analyze the
operation of a city and strategies to improve its sustainability.
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