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A B S T R A C T

Geospatial data of the building stock is essential in many domains pertaining to the built environment.
These datasets are often provided by governments, but crowdsourcing them has surged in the last decade.
Nowadays, OpenStreetMap (OSM) – the most popular Volunteered Geographic Information (VGI) platform –
contains geospatial and descriptive data on more than 500 million buildings worldwide collected by millions
of contributors, and it is increasingly used in studies ranging from energy and microclimate to urban planning
and life cycle assessment. However, large-scale understanding on their quality remains limited, which may
hinder their use and management. In this paper, we seek to understand the state of building information
in OSM and whether it is a reliable source of such data. We provide a comprehensive study to assess the
quality of attribute (descriptive) data of the building stock mapped globally, e.g. building function, which
are key ingredients in many analyses and simulations in the built environment. We examine three aspects:
completeness, consistency, and accuracy. In this assessment, the first at such scale and the most comprehensive
available hitherto, we find that quality continues to be highly heterogeneous — from poor quality in some, to
very high completeness in other areas, potentially benefiting a range of application domains, e.g. we estimate
that 3D building models of 443 administrative units (mostly cities and municipalities) around the world can be
generated from OSM, underpinning the generation of digital twins. The number of floors and building type are
the most frequent properties that contributors record, and in most cases are highly accurate, while mapping
the interior of buildings did not gain momentum.
1. Introduction

Data on buildings play an important role in a wide range of do-
mains, from energy and climate to cadastre and urban studies, and at
different scales, from the architectural and precinct to national and
continental scales [1–4]. Great strides have been made in methods
to acquire information on buildings in the past decade [5–9], and
data on the building stock is increasing both in volume and content.
For example, data at the urban scale is gradually more geometrically
detailed and it now routinely includes descriptive information such as
type and number of storeys of buildings [10–12].

Another key development is the multiplication of stakeholders and
their types — nowadays, many governments, companies, academia, and
volunteers collect, maintain, and release building data openly [13–18].
Among these, crowdsourcing has gained particular attention in the past
decade, especially OpenStreetMap1 (OSM), the free editable map of the
world and the leading instance of Volunteered Geographic Information
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1 https://www.openstreetmap.org/

(VGI) [19], which spans a variety of other types of data such as
social media (e.g. Twitter, Flickr, Weibo) and street view imagery (e.g.
Mapillary, KartaView).

OSM allows mapping and describing any real-world feature, from
administrative areas and topographic features to amenities and street
furniture, and buildings have emerged as a prominent one, reflecting
their importance in the built environment [20]. Building data from this
source, which can be mapped at different scales and detail and may
contain a rich set of attributes describing the individual building stock,
has been welcomed by the built environment research community
thanks to the increasing coverage, quality, open licence, and unique-
ness, as OSM remains the only such building data source worldwide.
For example, building data available in OSM has been used for numer-
ous studies in the built environment, e.g. on vulnerability and damage
assessment [21–24], energy modelling and thermal simulations [25–
30], microclimate studies [31–34], water and waste management [35,
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36], rooftop utilisation analyses [37], socio-economic studies [38],
landscape perception [39], carbon emissions [40], mapping urban func-
tion [41], urban farming [42], urban morphology [43,44], and evacu-
ation management [45]. In particular, building attributes such as the
type and height, feed many such studies [46–48].

While OSM has proven its worth in numerous studies in the commu-
nity, the heterogeneous provenance of the data has called attention to
understanding their quality and it has increased scrutiny on the content
of the data [49]. Therefore, many studies have been conducted on
assessing the quality of a particular subset of OSM data, such as streets,
amenities, and buildings, and they cover a variety of data quality
aspects such as whether all amenities in an area have been mapped and
how closely the mapped geometry of a building resembles the one in
reality. The majority of state of the art relies on authoritative geospatial
data (maintained and made available by government bodies), which is
used as reference that is compared to the OSM data, from which the
quality of OSM is gauged. These datasets are often released openly by
authorities, and thus the studies are limited to jurisdictions where they
are available and tend to focus on a finite geographical coverage — at
the city level or at the national level.

Quality assessment studies have used a variety of approaches and
focus on particular spatial data quality elements, from assessing the
completeness of data (e.g. the percentage of amenities in a city that
are mapped) to the correctness of descriptive data (e.g. whether the
recorded type of an amenity is correct or not). Buildings have gained
much attention in quality assessment studies, however, the descriptive
content of building information has not been much in focus, and
especially notably missing is large-scale research and an overarching
study on this topic. That is, it remains undocumented what is the global
content of the data and whether the buildings that are mapped (more
than half billion of them at the time of the writing of this paper) are
associated with accurate information that can be relied upon for such
studies.

In this paper, following the growing coverage and use of OSM, we
bridge the evident gap in state of the art and present a comprehensive
global study on understanding the content and the quality of attributes
of buildings in OSM. In our research, we focus on three aspects that are
key to understanding the fit for purpose and quality, and are instrumen-
tal in a variety of studies — completeness, consistency, and accuracy
of attributes. These represent measures of quantity and correctness of
the data content. Conducting this research, we introduce insights that
may be valuable also for studies that deal at smaller scales, such as at
the country level. Further, besides outlining a series of statistics, we
seek to explain their patterns and interpret the results, and provide
meaning to them, e.g. implications for use cases. In analysing each
of these quality aspects, we cut across multiple dimensions, such as
geographical area, to understand spatial, socio-economic, and other
patterns of building data quality worldwide. It is important to note that
data quality, especially in the geospatial context, is often mixed up with
resolution, which is not in the focus of our paper.

This study is designed to be of interest to a broad variety of disci-
plines pertaining to the built environment, with different applications
of building-related geographic and descriptive information at the urban
scale. Also, the discourse on building data quality has been overlooked
and has not followed the proliferation of the use of such data in various
domains in the built environment, thus, our paper brings attention
to the topic and gives concrete insights and recommendations to the
research community. Further, we believe that it is also relevant in
the context of the growing interest in crowdsourced geospatial data
in the sustainable development and smart city communities and for
governance [50–54]. Our paper also expounds the basics of OSM
building information to give an understanding of the platform and
the data, potentially further raising awareness of this growing data
2

source that is increasingly used in different application domains, and
accompany its further adoption. Besides focusing on a general, broad,
and agnostic analysis applicable to many use cases, we give particular
attention to one — availability of the information on the building
height, which is of key importance to several use cases and generating
3D building models that can be used for construction digital twins
and conducting simulations [55], and for which OSM has been used in
scores of papers [32,56–61]. Finally, we share observations and lessons
learned that may serve as input to researchers and volunteers, and may
lead to the improvement of both mapping in OSM and the use of data.

2. Background and related work

2.1. OpenStreetMap

As a prominent open and collaborative project [19], OpenStreetMap
(OSM) is a volunteer-contributed worldwide geospatial database that
offers the capability to model any urban feature spatially and descrip-
tively. It was established in 2004 to counter the predominance of
proprietary map data [62], and since then millions of contributors have
mapped billions of features based on field surveys, aerial and satellite
imagery, and using local knowledge of the area. Mappers, who are
driven by a variety of motivations and interests, are from all over the
world, from a variety of backgrounds and demographics, and can be
local residents, visitors, or remote contributors, e.g. tourists visiting
an area and even those who have never been in the location they
map (using satellite imagery to help mapping a remote area) [63–
65]. Besides manual mapping by contributors, a portion of the data
has been adopted from authoritative sources where the data licence
allows so, where it does not conflict with existing content in OSM, and
where the quality is ensured [66]. As a result, its data quality is quite
heterogeneous in multiple aspects [67].

As its name suggests, the project initially focused on roads, but it
also emerged as an important data source of features such as points
of interest (e.g. restaurants, pharmacies, schools, parking lots, reli-
gious objects), walkways, public transportation routes, administrative
zones, public open spaces (e.g. parks, sport fields), natural topographic
features such as waterbodies and mountain peaks, and — buildings.

In general, OpenStreetMap is both a geospatial database (the data
can be downloaded and used in a variety of software packages) and
a web-based map (the data is rendered and available to everyone for
viewing, and editing is allowed), and its advantages are numerous,
even when authoritative or other data is already available in the same
area [12,68]. Most importantly, it is free and released under a liberal
licence, globally present and harmonised, based on local knowledge,
supported by corporations, enables historical versioning, and may be
updated more often than (potentially outdated) government data, and
may reveal additional attributes not available elsewhere [12,69,70].
Moreover, in some regions, OSM is often the only open data source
available, especially across the Global South, and in areas where au-
thorities and companies collect the data but are not keen on releasing
them openly or provide them to researchers. Finally, another advantage
of OSM is that it may contain informal settlements and slums, which
may not be included in authoritative data [71,72].

A disadvantage is its varying level of quality, as – in contrast to
authoritative sources – mapping efforts are scattered and voluntary
(e.g. all amenities in a neighbourhood may be mapped by a diligent
and enthusiastic contributor living there, but not in another one in
the same city). Nevertheless, the data has in general been embraced
by practitioners, governments, and the research community, and nu-
merous studies across many fields have benefited from the semantic
and physical representation of real-world features [19]. Buildings are
among them, and they will be given a detailed introduction in Section 3
with an exploratory data analysis to give a better background for this

study.
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2.2. Geospatial data quality and assessment of OSM

Spatial data quality assessment has been of importance for decades
and a prominent research pillar in the geospatial domain, with devel-
opments traversing many stakeholders, types of data, and sources [73–
77], and having a direct influence on the usability. It has been for-
malised in the standard ISO 19157, which gives guidelines on a number
of spatial data quality elements such as logical consistency, lineage,
completeness, positional accuracy, and attribute accuracy [78,79].

As part of such developments, and spurred by the diverse means to
acquire data, assessing the quality of OSM data has been a prominent
topic in conferences and journals [80–86]. The quality of a large
variety of categories of features around the world has been analysed,
from shops and museums to toponyms and land use [87–90], and
buildings have often been in focus of such studies [68,91–94]. Studies
cover most spatial data quality elements [80], including the quality of
attributes, such as whether the speed limits of roads are available and
accurate [78,95].

Much of OSM quality studies are straightforward, and mostly rely
on (often more trustworthy) authoritative (government) data that they
employ for comparison [96,97] or manual work [98], so they are not
scalable [99–101]. Alternatively, some studies use other sources such
as satellite imagery. Thanks to the increasing availability and quality of
such data and computational resources, there have been recent studies
that have slightly expanded the typical study size and cover a few
countries [102,103]. Besides such extrinsic studies that are usually used
to gauge aspects such as completeness and accuracy, there are intrinsic
counterparts [104–107]. These do not rely on an external source of
data to gauge the quality, but focus on aspects for which reference
data is not required, e.g. spatio-temporal analysis of contributions and
understanding data consistency (e.g. verify the content of data against
the mapping guidelines such as adherence to a set of determined values
such as building types).

Most quality assessment studies pertaining to buildings focus on
estimating their completeness (i.e. understanding the percentage of
buildings that have been mapped in an area), and there has been little
interest in the quality of building attributes [108,109]. In fact, no study
has been conducted at the global scale, and one that is focusing on
several attributes. While quality of the attributes is just one of several
spatial data quality elements, and while buildings are just one type of
features that are mapped, considering the importance of buildings and
a large number of studies that rely on building information sourced
from OSM, we deem that this is an omission that requires attention
and comprehensive research.

The topic of building data quality is important not only because
the data is seeing an increase in use (much of which is without an
understanding of the quality), but also because at the global scale
the practices may differ drastically. Further, while users have to map
the location of a building, they are not obliged to provide also their
attributes, e.g. a contributor may map the footprint (2D shape) of a
building but skip entering any building characteristics such as address
and year of construction.

Existing studies on OSM building attribute analyses tend to be
similar as most OSM data quality assessment studies, e.g. they have a
bounded and small geographical focus, often following administrative
lines. For example, the paper of Goetz and Zipf [110] analyses the
completeness of building attributes in Germany, e.g. percentage of
buildings that have height information recorded. The work presented
in [55] is similar, but focusing on eleven countries in Southeast Asia. In
this paper, we follow similar approaches to assess spatial data quality
and act in accordance with established definitions for the spatial data
quality elements we focus on (elaborated further in Section 4), but we
scale them, and we combine multiple aspects in the same study rather
than focusing on one or few, and provide a comprehensive discussion
focusing on the interpretation of the results, implications, and outlining
3

recommendations.
3. Buildings in OpenStreetMap

This section overviews the basic concepts, explains the data struc-
ture, and it gives an exploratory analysis of the content of a recent
snapshot of the database.

3.1. Overview

Mapping features in OpenStreetMap is based on a topological struc-
ture with four core elements: nodes, ways, closed ways and relations.
Nodes are points that have their geographical position mapped with
latitude and longitude. They are the basic elements that are used to
map features best described as points (e.g. location of a bench in a
park) and at the same time make up the other elements described in
the continuation. Ways are connected lines of nodes which are often
used to represent linear features such as roads, rivers, paths and so
on. Closed ways are similar to ways — they are connected nodes but
form a closed loop, yielding a polygon. They are the most common
representation of buildings, and are used to map other areal features in
the built environment such as a waterbodies and administrative areas.
Relations are the most complex among the elements and consists of
ordered lists of nodes, ways and/or relations as members. Relations
are used to represent more complex shapes and structures, such as
interstate highway that stretches over multiple sections, bus routes,
multi-structure buildings, and areas with other nested allotments.

OSM elements can be attributed with one or more tags, which
are key–value pairs that are used to store descriptive information
(attributes) about the feature, e.g. postcode of a building, speed limit
and width of a road, accessibility and working hours of an amenity,
name and cuisine of a restaurant, circumference of the trunk and
species of a tree, and type and operator of a vending machine. Some
further self-explanatory examples pertaining to buildings are: build-
ing=commercial, building:material=cement, and build-
ing:levels=4. An example of an urban setting mapped in OSM
is given in Fig. 1, with more details about a building modelled as a
polygon together with several attributes associated to it.

The tag keys and values are flexible allowing users to input virtually
any textual information, and to any extent (from no particular informa-
tion to a long set). However, the OSM community maintains detailed
documentation2 with recommended tag keys and values for common
map features. For many of these, there is comprehensive documentation
that attempts to standardise mapping guidelines around the world, e.g.
there are dozens of types of buildings listed as possible values, but using
further values is allowed.

Some relevant tag keys are also encouraged to be used together
to provide a richer description of the element. For example, a build-
ing tagged with amenity=place_of_worship and religion=
hristian indicates that the building not only has a religious func-

ion but it is a church, and a shop tagged with shop=craft and
level=3 describes a craft shop located on the third level of the
building. It is also important to note that some tags are applicable
for multiple feature type. For example, the tag operator is used to
denote an entity that is in charge of an object such as building but also
of a bus route and toll road. Such flexibility certainly has advantages,
but it entails challenges when analysing it and requires a degree of
data engineering. On the other hand, to avoid ambiguity, some of them
specific to certain features are prefixed, e.g. building:levels,
which is used to indicate the number of storeys of a building.

While most tag keys describe features that are universal globally,
there may be some variations in interpreting them, and there are
certain instances that only exist and/or are characteristic to certain
geographic regions. For example, there are many buildings tagged with
static_caravan in Arizona, USA, reflecting the local interest in

2 https://wiki.openstreetmap.org/wiki/Main_Page
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Fig. 1. An excerpt from OpenStreetMap illustrating a building with its tags such as the
number of floors and material. The buildings are integrated with other urban features
such as roads, bus stops, land cover, and restaurants. (c) OpenStreetMap contributors.

vagabond lifestyle and/or the particular interest of local contributors
to map them.

The availability and selection of these building properties are quite
varied and flexible, but in practice, they tend to be largely derived
visually — e.g. a contributor may count the number of floors of a
building from its exterior when passing next to it or from a street-
level or aerial image. Therefore, information that is not always evident
or easily obtainable, such as the year of a construction of a building,
while supported by OSM, is scarce and often limited to buildings
that have such records available publicly (e.g. from a wall plate or
encyclopedia entry of a landmark or buildings in areas where the
government releases cadastral information openly).

At the time of writing this paper, there are 507 million buildings
mapped in OSM, which are described with more than 22 thousand
unique tag keys. The large number of tag keys is caused by occasional
spelling errors, auxiliary data (e.g. link to a local cadastral database),
and some local variations and specifics (e.g. the intermittent use of
a non-English language, and a very specific tag key that was used
by a single contributor for just a few buildings in the entire global
database) [46], which results in unique but isolated keys, and which
are irrelevant in the context of this paper. Only a small number of the
keys account for the vast majority of the attributes, which are in the
focus of our research.

Because the underlying data in OSM is available freely according to
an open licence and there are several means to obtain it, this wealth
of information has been not only used by myriads of practitioners
and researchers for spatial analyses, but also many accompanying web
services and tools have been developed [19,111]. For example, Fig. 2
illustrates an instance of a web service that uses OSM data of buildings
and generates 3D building models where their height information is
available.

Finally, OSM allows mapping the indoor of features (e.g. floor
plans), an aspect we also investigate in the paper owing also to the
increased attention of indoor mapping in research [112], and impor-
tance for use cases in the built environment, e.g. assessing indoor air
quality [113].
4

Table 1
Most frequent relevant building tag keys by categories.

Category Tag keys

semantic name
life cycle start_date, building:use
location addr:street, addr:city, addr:postcode,

addr:country, addr:state, addr:suburb, addr:place,
addr:district, addr:housenumber

structural building:levels, height, roof:shape, roof:levels,
building:material, roof:material, roof:colour,
building:colour

interior building:flats, capacity, level, indoor, min_level,
max_level, entrance, room, window, stairs, door,
conveying, non_existent_levels, access

3.2. Exploratory analysis

3.2.1. Contributors
The rapid growth of OpenStreetMap is much credited to the large

community of dedicated volunteers. At the moment, there are more
than 8 million registered users on OpenStreetMap. Among these users,
1.2M (14%) contributed at least once; and about 700k (approx. 7%)
contributed to adding or editing buildings.

The contributions of these users also vastly varied. About 47% of
the users contributed to less than 10 buildings, while 32% contributed
between 10 and 99 buildings, 17% contributed between 100 and 999
buildings, and 3.5% contributed between 1000 to 9999 buildings.
Less than 1% of the users contributed to mapping more than 10000
buildings. These high volume contributions are often a result of the
bulk import of OSM data where contributors import government data
or data from non-profit external sources after obtaining local buy-in and
license to import [66,114,115]. Larger volume contributions could also
be submitted by various organised initiatives such as the Humanitarian
OpenStreetMap Team to help disaster response or development of less
developed regions [116–118]. Further, there is an increasing trend of
corporate contributors [70,119].

3.2.2. Tagging
Attributes are the main focus of this paper, thus, this section gives

an overview of the prominent tag key pertaining to buildings. Among
all the tag keys, our study focuses on 20 tags that are most frequently
used to describe the properties of buildings in OSM. While that may
seem as a very small subset, due to the flexibility and entangled tagging
system, most of the tag keys are entirely scattered, and have no se-
mantic meaning and no relevance in the building and geospatial sense.
For example, they may refer to the source from which the information
was provided, phone number, and smoking restrictions in the building.
Further, as our results will show, virtually all but the selected tag keys
are very seldom and localised, out of relevance of this study.

These selected building-related tag keys could be grouped into
four categories: semantic, life cycle, location, and structural. Table 1
outlines them with their keys that are self-explanatory. In addition, we
include several of them pertaining to indoor of buildings. Each of these
pieces of building information has value for certain use cases. For exam-
ple, the structural and interior tag keys are the attributes most pertinent
to energy modelling, climate studies, vulnerability studies, and 3D
building modelling as they describe the buildings’ physical attributes,
external and interior. Life cycle tag keys such year of construction
provide value to various studies, e.g. refurbishment and material stock
estimations [120].

4. Methodology

4.1. Overview

Our study focuses on the following three quality elements for build-

ing attributes, which comprehensively capture their quality and enable
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Fig. 2. Example of a rendered 3D building model provided by the web service OSM Buildings, generated using the same building information shown in Fig. 1. Map and geo data
(c) OpenStreetMap contributors & 3D OSM Building.
understanding the fit for purpose: (1) completeness, (2) consistency,
and (3) accuracy. These elements follow the frameworks and definitions
established in the GIScience literature [121–123] (and see Section 2.2
for further references) — completeness evaluates the presence of at-
tributes in an area (e.g. the percentage of buildings for which their
type is mapped); consistency refers to adhering to logical rules of
data structure and attribute rules (e.g. whether attribute values that
are supposed to be numerical, such as number of storeys, are indeed
expressed using numbers only); and accuracy evaluates whether the
value of an attribute is correct. The approaches for the first two are
intrinsic and their analyses cover the entire dataset, while the third one
uses an external data source and it focuses on a subset of buildings since
it cannot be scaled.

4.2. General principles

For this study, we obtained a complete copy of the OpenStreetMap
database from the Planet OSM service,3 and loaded into a local
database. To organise the data and understand the spatial distribution
of the quality and association with socio-economic aspects, we have
used two additional datasets: GADM (the Database of Global Adminis-
trative Areas, a high-resolution database of multi-level administrative
areas) and WorldPop (a global gridded dataset with population esti-
mates) [124]. While all quality elements can be examined at the global
level, such analysis gives only a general sense of the OSM quality,
and an analysis at country and higher administrative division levels
could potentially offer more detailed and stratified perspectives into
the OSM quality of different states, provinces and/or counties/cities,
and comparison among them. Thus, in addition to the overall global
overview, thanks to the rich administrative data in GADM, the analysis
was performed at the country level, and at the scale of three levels
of administrative division to provide results that are easier and more
meaningful to interpret. Further, coupling the OSM data with admin-
istrative information aids balancing the analysis so it covers the world
evenly. The hierarchical administrative division levels adopted from
GADM that we used in the study are 1, 2, and 3, which nearly all
countries have. For example, Switzerland is divided into 26 cantons
(level 1), 137 districts (level 2), and 2197 communes/municipalities
(level 3), and each building has been assigned each of the matching
subdivisions.

The results will show that analysing them by jurisdiction helps inter-
preting them better, e.g. understanding the completeness of attributes
in a particular administrative unit such as city, which also helped us
to identify best and worst instances of data at the urban scale in terms

3 https://planet.openstreetmap.org/
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of quality. However, as administrative units are of irregular shape and
size, and may not always be directly compared across countries (e.g.
in the USA, level 1 corresponds to a state, which are often larger
than many entire units at the higher level i.e. countries), the data
has also been grouped according to a regular grid — we use a 1 × 1
km global grid adopted from WorldPop. This scale corresponds to a
district or precinct scale, thus, it is suitable to consider in the context
of use cases that operate at such scales, and it facilitates a global
comparative analysis. This approach is also in line with studies that
aggregate building information at the level of a cell, such as urban
morphology and energy studies [43,125,126].

Because it may not be meaningful to analyse areas with a very small
number of buildings, and because those may indicate poor building
completeness, we analyse only areas with a certain number of build-
ings. The minimum building count thresholds were set to be 4000,
3000, 2000 and 1000 for the country, administrative divisions 1, 2
and 3, respectively. Due to the variations in the urban form around
the world and different definitions of built-up areas [127], setting such
a global threshold may be subjective, but it is an acceptable trade-off
to filter out areas that may not be considered as built-up.

Among the attributes we analyse, we give particular focus to the
building height, as our results will demonstrate that it is one of the most
frequent ones, and it is an attribute found across many domains and use
cases related to the built environment [128,129]. Because the number
of floors is often used as a proxy for the height [130–132], we include it
in the analysis as well. Further, this information is important for many
use cases, e.g. estimating the floor space for building energy simulations
and population estimations and estimating the volume [133–137]. By
focusing on this aspect, our study also gives an understanding of the
potential of OSM to be used for 3D building model generation around
the world. Coupled with administrative data thanks to GADM, we are
also able to analyse such potential for particular cities and derive what
are the cities or districts with most potential.

4.3. Methodology for quality element 1: Completeness of attributes

In the first part of the study, we examine the completeness of
building attribute tag keys per building. This part of the analysis is
focused on understanding what is the frequency and spatial pattern of
attributes that are most commonly associated to buildings. This is a
relatively straightforward part of the study as it includes querying the
database and analysing the results by the spatial subdivisions.

4.4. Methodology for quality element 2: Consistency of attributes

Consistency and validity of attribute information is instrumental to
their interoperability and usability. For example, values of the types

https://planet.openstreetmap.org/
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of buildings may differ and not follow a consistent practice (e.g. using
different values for the same information, such as ‘residence’ and
‘residential’). As OSM only gives guidelines, and it does not
strictly enforce rules and constrain such tags and values, this is an
important consideration when understanding its quality. Technically,
any combination is not incorrect, thus, we had to develop an own
approach to determine whether a tag or value is valid.

For the study of consistency and validity of the building tag keys
and tag values, we focus on building tag keys and values that turned out
to have the highest number of discouraged keys and values that were
in invalid format. The validity of the OSM tag keys was determined by
referring to the OSM documentation for tag keys with approved or de
facto tag status. These indicate the tag keys are generally accepted
and supported by the community (but others are not barred). A tag key
with an in use tag status is considered valid as long as it is not among
the strongly discouraged list of tag keys.

The consistency and validity of the tag values were determined
by comparing the commonly used values (for textual values) and
the acceptable format(s) (for numeric data) documented in the OSM
guidelines. A textual tag value is considered consistent if the lower-
cased value is among the lower-cased common values used; whereas
a numeric tag value is considered valid if it matches the acceptable
format verified with regular expressions.

4.5. Methodology for quality element 3: accuracy of attributes

The aforedescribed completeness and consistency analyses will give
a solid overview of how prevalent attribute information of buildings are
and what is their integrity. However, those analyses do not touch upon
the veracity of the information, which is the final quality element we
analysed and describe in this section, and an element of considerable
importance to understanding the usability and reliability of OSM data.
For example, a residential building may be wrongly tagged as an office
building, or its number of storeys may be inaccurate.

To verify the accuracy and correctness of the data, we used street-
level imagery. This was used as the ground truth for the following
reasons: (i) is a data source readily and freely available in scores of
countries worldwide; (ii) enables us to inspect a large range of relevant
building information due to its visual representation; and (iii) has been
used frequently for many tasks in the geospatial domain [8]. However,
its disadvantage is that it requires manual work when used for this
purpose, its coverage is not fully global, and not all buildings are
covered (imagery is usually taken from cars on driveable roads, not
providing insights in buildings and parts of buildings not visible from
them) [138]. Street-level imagery has been used previously to extract
such building information [139]. There have been several recent efforts
to do so automatically [30,140–146], but such research is still embry-
onic and experimental — it does not result in easy-to-use libraries.
Next, the efforts are fragmented and narrow as papers tend to focus
on deriving a single building property. Further, the prediction models
are localised as they are usually trained in a single city, so they may
not be transferable elsewhere. Thus, we resorted to a manual approach
— locating a building on Google Street View (GSV), inspecting its
image(s), and noting down its properties, which was relatively trivial
in most cases (e.g. the number of storeys was evident in most cases
thanks to counting rows of windows in residential buildings). This
approach limits the number of buildings that we can inspect, but it
(i) ensures a high level of accuracy (which is essential when assessing
data quality); (ii) gives us insights into almost any building aspect that
can be inferred visually from a pedestrian point of view, which is in
line with the set of attributes usually recorded by contributors in OSM
(revealed later in the results; see Section 5.1); (iii) as a building may
be available in multiple street-level images with variable quality [147],
it allows us to pick the best image in GSV; and (iv) enables us to
understand challenges in obtaining and harmonising information on
6

buildings [148]. s
4.6. System set up

Finally, we describe technical details. For the database, we used
PostgreSQL, which was set up on a Dell T480 server with 8 processors
and 128 GB RAM. Subsequently, PostGIS 3.2, PostGIS raster, hstore
and fuzzystrmatch extensions were installed on the database, to support
spatial data and operations. Loading the 68 GB OSM file to the database
took up 1.3TB storage and it lasted 12 days. After loading the GADM
and WorldPop data, and recasting the OSM data according to them, the
database took up 1.5TB of disk space. For the analysis, we developed a
series of SQL scripts that analyse the quality aspects, and after running
them, the final database took up 3TB of storage.

5. Results

5.1. Results for quality element 1: Completeness of attributes

Overall, after analysing all the buildings in the database, among the
tag keys relevant to physical and structural attributes, 19.5% buildings
where tagged with the type of the building. Next, 4.6% of buildings
were tagged with building:levels (number of storeys), and only
2.9% had the height (height of a building) tag. There are 7% of them
where at least either of the two are available. The completeness of
location tag keys were slightly higher than other tags, e.g. for 11.8%
buildings the street name is available. The year of construction of a
building was tagged in 2.9% instances. All other attributes are available
for less than 1% of buildings, and are thus, not considered further. The
use of indoor tag keys were the least prevalent, most with below 0.01%,
suggesting that OSM was not yet imbued with activities on indoor
mapping, which are also conceptually supported. In general, buildings
tend to be poorly described semantically, with only 1.2% of buildings
having five tags or more.

It is clear that more often than not, buildings lack attribute informa-
tion, and as such, the data may not appear to be suitable for analyses
that require such information on buildings. However, as the continu-
ation of the section will demonstrate, when the results are analysed
spatially, our study affirms the findings of related work (Section 2.2)
that the completeness around the world is highly heterogeneous, with a
large range of degrees of data availability, from fully incomplete areas
to those where some attributes are available for all buildings (Fig. 3).

With the vertical extent of a building being the most important
attribute of buildings in many domains, we further look into build-
ing:levels and height — we dived deeper into the completeness
f these ‘vertical’ tags at country, administrative division levels 1
hrough 3, and at the cell level, to understand their prevalence. In
eneral, moving from the global scale and its low completeness overall,
uilding:levels and height completeness at country level re-
ain low. However, we found that there are concentrated areas from all

ver the world with very high completeness. Table 2 outlines countries
nd administrative divisions 1, 2, 3 with the most, while Table 3
ists the ones with the least completeness of building:levels tag
eys. Tables 4 and 5 offer the same insights for the height tag. It
s important to note that these results should be viewed in relative
alues, e.g. some areas may have more buildings tagged than other
ore complete areas because of the larger number of buildings, but
ltimately, completeness is measured in relative (percentage) terms.
irst, the results underline that there is a large variation in recording
uilding characteristics, with some countries having only a fraction
f data, while others more than a third populated. Second, while we
ind that no country has a large degree of completeness, there are
any lower level divisions such as counties that offer full or near-

ull completeness of these vital attributes. For example, we find that
here are 443 administrative units at the third level (e.g. cities, munic-
palities) that have completeness of the number of storeys higher than
0%. At the district scale, there are 22,710 of them around the world,

uggesting the high potential of the use of OSM, despite the lacking
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Fig. 3. Completeness of the number of storeys by different scale of analysis. The availability of such building information remains very low overall, but there are thousands of
districts around the world that are complete with one or more attributes such as building height or type.
Table 2
Administrative units with the highest building:levels completeness.

Administrative unit Building count Tagged % tagged

To
p

le
ve

l Mexico 2,542,184 1,352,881 53.22%
Czechia 4,945,588 2,266,515 45.83%
Bolivia 281,946 115,113 40.83%
Hong Kong 75,315 24,898 33.06%
Azerbaijan 97,992 31,668 32.32%

Le
ve

l
1

Mexico, Baja California 1,244,939 1,233,037 99.04%
Mayotte, Bandraboua 4,126 3,976 96.36%
Turkey, Bayburt 5,203 4,882 93.83%
Argentina, San Juan 98,468 89,223 90.61%
Botswana, Chobe 26,579 23,740 89.32%

Le
ve

l
2 Brazil, Rio Grande do Sul, Santo Antônio das Missões 4,574 4,573 99.98%

Colombia, Valle del Cauca, Caicedonia 6,140 6,134 99.90%
Colombia, Meta, Granada 10,911 10,882 99.73%
Algeria, Bouira, Mezdour 3,940 3,928 99.70%

Le
ve

l
3 Brazil, Rio Grande do Sul, Santo Antônio das Missões 4,573 4,573 100.00%

Brazil, Rio Grande do Sul, Bossoroca, Bossoroca 3,247 3,244 99.91%
Tanzania, Dar es Salaam, Kinondoni, Hananasifu 2,984 2,979 99.83%
Table 3
Administrative units with the lowest building:levels completeness.

Administrative unit Building count Tagged % tagged

To
p

le
ve

l American Samoa 18,212 0 0.00%
Benin 818,347 95 0.0116%
Gambia 284,342 58 0.0204%
Togo 1,001,556 212 0.0212%
Mauritania 336,584 75 0.0223%

Le
ve

l
1

Nigeria, Bauchi 815,211 38 0.00466%
Nigeria, Sokoto 641,839 44 0.00686%
Madagascar, Fianarantsoa 1,802,900 127 0.00704%
Democratic Republic of the Congo, Sud-Kivu 1,079,786 77 0.00713%
Democratic Republic of the Congo, Tanganyika 96,996 7 0.00722%

Le
ve

l
2

India, West Bengal, South 24 Parganas 365,753 257 0.0703%
Brazil, São Paulo, São Paulo 2,182,944 1872 0.0858%
Nepal, Central, Janakpur 818,814 756 0.0923%
Nepal, West, Lumbini 508,825 480 0.0943%
Indonesia, Jawa Barat, Bogor 434,056 518 0.119%

Le
ve

l
3

India, Karnataka, Bangalore, Bangalore 341,775 1666 0.487%
India, NCT of Delhi, West, Delhi 232,961 1391 0.597%
France, Nouvelle-Aquitaine, Gironde, Bordeaux 572,923 3732 0.651%
United Kingdom, England, Northumberland, Northumberland 126,035 872 0.692%
France, Bretagne, Morbihan, Vannes 321,480 2238 0.696%
completeness at the global scale. While many of the highly complete
areas are likely a result of data imports, there are massive discrepancies
in the interest in contributing with such information. Therefore, it may
be more meaningful to consider such aspect at the district scale, which
mirrors the scale of many built environment studies.
7

The number of floors is more frequent than the building height.
The key reason is that it is visually discernible, while the height is
often sourced from measurements to which contributors have no access
or limited public information (e.g. the heights of landmark buildings
are often publicised). It is relevant to note that, according to the OSM
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Table 4
Administrative units with the highest height completeness.

Administrative unit Building count Tagged % tagged

To
p

le
ve

l Mexico 2,542,184 1,296,144 50.99%
Brazil 7,118,436 2,616,895 36.76%
Mayotte 70,554 19,803 28.07%
Eritrea 29,569 4,901 16.57%
United States 53,276,415 7,958,494 14.94%

Le
ve

l
1

Mexico, Baja California 1,244,939 1,232,305 98.99%
Mayotte, Bandraboua 4,126 3,976 96.36%
Italy, Friuli-Venezia Giulia 622,969 596,833 95.80%
Turkey, Bayburt 5,203 4,881 93.81%
Puerto Rico, San Juan 102,656 95,253 92.79%

Le
ve

l
2

Mexico, México, Cuautitlán 19,327 19,224 99.47%
United States, New York, Kings 342,980 340,952 99.41%
Mexico, Baja California, Tijuana 1,239,298 1,231,684 99.39%
United States, New York, Queens 464,807 459,831 98.93%
Romania, Suceava, Ipotesti 2,434 2,406 98.85%

Le
ve

l
3

Brazil, São Paulo, São Paulo, Artur Alvim 25,183 25,139 99.83%
Brazil, São Paulo, São Paulo, Ponte Rasa 37,408 37,325 99.78%
Brazil, Ceará, Fortaleza, Antonio Bezerra 74,187 74,017 99.77%
Italy, Lombardia, Lodi, Graffignana 1,812 1,807 99.72%
Brazil, São Paulo, São Paulo, Cidade Lider 42,319 42,196 99.71%
Table 5
Administrative units with the lowest height completeness.

Administrative unit Building count Tagged % tagged

To
p

le
ve

l Barbados 161,994 0 0%
Brunei 46,347 0 0%
Grenada 45,436 0 0%
Saint Lucia 44,070 0 0%
Antigua and Barbuda 43,406 0 0%

Le
ve

l
1

Madagascar, Fianarantsoa 1,802,900 3 0.0002%
Madagascar, Antsiranana 953,106 2 0.0002%
Tanzania, Singida 462,333 1 0.0002%
Tanzania, Tabora 901,757 2 0.0002%
Democratic Republic of the Congo, Nord-Kivu 1,322,186 3 0.0002%

Le
ve

l
2

Ukraine, Kharkiv, Kupians’kyi 13,974 1 0.0072%
India, Telangana, Ranga Reddy 521,173 75 0.0144%
Indonesia, Jawa Barat, Bogor 434,056 70 0.0161%
Bangladesh, Dhaka, Dhaka 926,498 171 0.0185%
United States, Arizona, Maricopa 1,184,801 222 0.0187%

Le
ve

l
3

Côte d’Ivoire, Abidjan, Abidjan, Abidjan 354,116 30 0.0085%
India, Telangana, Ranga Reddy, n.a. (1728) 381,169 60 0.0157%
India, Maharashtra, Pune, n.a. (1612) 226,173 47 0.0208%
France, Pays de la Loire, Maine-et-Loire, Angers 300,121 72 0.0240%
France, Grand Est, Meurthe-et-Moselle, Nancy 223,704 57 0.0255%
guidelines, the number of levels refers to the number of floors above
ground including the ground floor, while underground levels are not
included.

Drilling down the results, we find that there are different patterns
in completeness. For only 1.4% of buildings for which the type is not
known, the number of storeys is available, in a stark contrast with
17.4% of those where the type is available. This finding suggests that
in many cases either no building characteristics tend to be acquired
or when contributors acquire building properties they consider a few
key of them together, which benefits use cases. There is also a large
difference by type of building. For example, a break down by building
function reveals that the number of storeys is available for 40% build-
ings that are tagged residential and 13.6% schools. These disparate
results may also reveal challenges in collecting such data for various
building typologies.

The spatial variation of the completeness among different entities at
the same level has also been analysed visually. In Fig. 4, we illustrate
the completeness of this attribute at the administrative level 2, for a
balanced set of countries. Completeness is highly heterogeneous, with
some regions in the same country reaching nearly 100% completeness,
and being suitable for a set of use cases that require such information.
Czechia is an example of relatively homogeneous (but not full) nation-
8

wide completeness, suggesting coordinated efforts or data imports from
authoritative sources where it is allowed to do so, as the country
has a nation-wide open government database with a set of building
information but partial completeness [149]. Fig. 5 provides a similar
overview, but at the different level of analysis — grids within cities.
The insights maintain heterogeneity, indicating that cities that do not
have complete data, may have districts and their larger parts fully
complete in terms of some attributes. Such data give the means to many
applications that do not require city-scale analysis, such as generating
3D city models of districts and neighbourhoods useful for microclimate
and energy studies.

5.2. Results for quality element 2: Consistency of attributes

5.2.1. Tag keys
Table 6 lists discouraged tag keys, their frequencies and percentage

of usage. This aspect is of high quality — the frequency of discouraged
tags appears to be low despite the lack of enforcement around the usage
of tag keys. Further analysis on the top three discouraged tag keys:
building:units, building:roof and building:age, indicate
where these undesirable tag keys were used at various administrative
levels. For building:units, used to record the number of residen-

tial units (flats, apartments) in a building, they were most widely used
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Fig. 4. The spatial distribution of the completeness of building:levels of a selected set of countries at the second level of administrative division (sorted by alphabet). The
results affirm the heterogeneous discourse in OSM data quality analyses.
Table 6
discouraged_tag frequencies and percentage.
discouraged_tags % corresponding correct tag count tagged % tagged

building:units building:flats 2,835,628 0.5390
building:roof roof:material 444,748 0.0845
building:age start_date 251,994 0.0479
building:cladding building:material 37,089 0.0071
building:roof:shape roof:shape 33,602 0.0064
levels level 26,071 0.0050
building:level building:levels 17,503 0.0033
in the USA, likely because the term units, instead of flats, is more
commonly used to refer to them in American English. This example
suggests the local cultural and language influence in the choice of
tag keys, and it may impair interoperability in comparative studies
involving multiple cities. However, OSM is relatively consistent in
the use of English for tag keys around the world (an exception are
local names for features such as streets and neighbourhoods), and the
occasional incorrect uses of tag keys rarely affects building information.

Further, the building:roof tag, which is supposed to be
roof:material, are mostly observed in Chobe, Botswana, in 86.3%
of its buildings, indicating that such issues are mostly isolated. Similar
examples may be found for other tag keys. Observing these handful
areas with high count and concentration of inconsistent tag keys, we
suspect that these could be the result of organised mapping events
by the local communities before the recommended tag keys were
introduced. Caution needs to be exercised when using such data and
account for possible variations of the nomenclature of attributes.
9

5.2.2. Tag values
Tag values are even less constrained than the tag keys. We referred

to the OSM documentation for a list of commonly used tag values
for describing buildings — building:material, roof:shape,
roof:material and others. As for the seemingly numeric fields such
as height and building:levels, there are some formats that the
community deems acceptable. For example, the value of a building that
is seven metres tall could be tagged with height=7 or height=7.0,
without a measurement unit (metre is considered default); or a unit
can be added: height=7 m, and the value and unit are separated
by a space. Heights in feet and inches are also possible and they are
accepted in the format of height=8’10’’, without space between
the feet and inches symbols. As for building levels, any integer or nu-
meric with decimals are acceptable. Subsequently, we verified the tag
values of height and building:levels against these guidelines
by matching the values using a series of regular expression (RegEx) we
have developed for acceptable patterns.



Building and Environment 237 (2023) 110295F. Biljecki et al.
Fig. 5. The spatial distribution of the completeness of building:levels of a selected set of cities at the grid scale (1 × 1 km) (sorted by alphabet). The inset in the centre
shows a zoomed part of London that has a high but not full level of completeness (the red polygons represent buildings that have the information on the number of storeys
available, with the values stated in white). Such regions are still of use, as the data gaps may be filled automatically or manually, and the existing data may be sufficiently
representative of the built form of the area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Date fields such as start_date follow a set of much more compli-
cated acceptance rules, inhibiting their validation. When verifying the
consistency and validity of these fields, RegEx was developed to match
patterns that were approved according to the lengthy and extensive
documentation on the OSM wiki page.

An observation from the analysis is that – despite the high degree
of freedom – all the tags whose values are numeric and measurable,
particularly number of floors and height have a high share of validity
with nearly all values being consistent (99% and above). The tags
whose values are texts, e.g. roof shape and building material, have
relatively lower validity but some of them have a very high level of
validity (from 85% to 100%).

Some examples follow. For values where numerical information
is expected (with optionally associated units), we have observed a
variety of inconsistent and evidently wrong instances. For example,
for building:levels there are values such as: ‘G, 1,2,3,4’,
‘Ground Level’, ‘‘1’, ‘-1’, ‘yes’, and ‘1s’. Examples for
height include values: ‘110m’, ‘Unit 3’, ‘5;41.99’, ‘Brick’,
10
‘∼ 𝟷𝟶’. These indicate that contributors may make typos, misunderstand
the guidelines or not be aware of them, or misinterpret the purpose of a
tag. However, there is no mechanism to strictly enforce a set of values.
For descriptive text, consequently, it is no surprise that the validity is
lower, as more flexibility is allowed and text can be more ambiguous
than numerical values and subject to interpretation and judgement of
the contributors. For example, a contributor may not only make typos
(e.g. tag a building as ‘residental’ instead of ‘residential’),
but the same value can mean different things in different countries,
e.g. in most countries, a dormitory refers to a shared building intended
for college students, but in others such as in the UK it may refer to
a shared room for multiple occupants, and another term (e.g. hall) is
used instead. Next, free-standing small residential buildings tend to be
labelled as ‘house’ in most of the world. However, due to different
semantics around the world, in certain countries, the same classes of
buildings are tagged as ‘detached’ reflecting the local practice of
calling such buildings detached houses.

Thus, the tagging freedom that OSM accords is both a boon and
a bane, and therefore, conducting consistency analyses is marred by
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such flexibility. A value is technically not incorrect (as OSM allows any;
guidelines are standardised recommendations rather than being con-
strained), but it certainly causes issues in interoperability and usability,
and users may need to invest effort into cleaning and harmonising such
values before using them.

5.3. Results for quality element 3: Accuracy of attributes

Designing a balanced sample around the world (covering a share
of buildings in each country), we selected 6578 buildings in OSM
to inspect their street-level imagery in GSV. Since the majority of
buildings has no attributes (Section 5.1), in this set we selected only
those that have existing attributes. We first started with understanding
whether GSV is available for the location. If so, we further examine
if the building is visible from GSV or not (e.g. it may be obstructed
by other structures or vegetation). If the building is visible, we then
proceed to inspect a handful of visually verifiable attributes.

We found that 55% (3625) of the sampled buildings are located in
areas that has coverage in GSV. Where the building in OSM had its
type available, and where it was possible to infer the same from the
street-level image, we find that 84.4% of them are correct, which is
relatively accurate given the crowdsourced provenance. However, we
must keep in mind that the evaluation of these values may be subjective
and there is a blurry boundary in some values as they are very difficult
to standardise all over the world. During the validation, we followed
the OSM guidelines as strictly as possible, For example, we found cases
where the value was ‘commercial’, but where ‘retail’ (used
for a commercial building that houses primarily shops) could be more
appropriate, a difference that for some use cases may not play a major
role. Given such nuances, and considering that there are dozens of
recommended values that contributors may have difficulties discerning
between many ambiguous cases in practice (which ultimately may not
significantly affect downstream analyses), the achieved accuracy may
be interpreted as rather high.

Moving on to number of floors, we find that 72.2% buildings has
a correct value. However, when tolerating uncertainty of one level
(which may be within an acceptable margin of error), we find that there
are 93.3% such values.

As for other descriptive attributes — the shape of the roof is correct
in 82.8% of cases. A positive finding is that flat roofs are rarely labelled
wrongly. Akin to the previously described building type errors, the
wrong labels in this case are the similar roof shapes (e.g. gabled vs
hipped). We will revisit this topic in the discussion. Next, the material
is rarely recorded, and when available is wrong in more than half of
cases. Such insight indicates that there is a lack of awareness of what
the proper values used in OSM are, and that recording certain attributes
remains a difficult challenge due to ambiguities in giving a single value
per building (e.g. a building may have a mix of materials).

For none of the attributes we have encountered substantial regional
variation in their accuracy. For example, the number of floors is correct
for 73% buildings in Europe, 71% buildings in Asia, and also 71% in
the Americas.

Overall, these results suggest variable accuracy of data, which may
affect use cases (especially those in the energy and life cycle assessment
domains that require materials [150]), and we describe them further in
the next section.

6. Discussion

6.1. Overall findings

The fragmented local studies on OSM data quality agree on the
highly heterogeneous quality. Our study affirms such findings at the
global scale, with a comprehensive and integrated overview across
multiple scales and aspects that reveal a huge degree of inequality
globally.
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Overall, most buildings in OSM have no attributes at all, and only
their geometry (2D footprint) is available. Such quality of the data
reflects the driving mechanisms in mapping them — mostly the location
seems to be important in these, but not the attributes. For example,
there are many use cases that rely solely on the 2D (footprint) building
geometry, without any attributes [151], and there may be a lack
of awareness among contributors about the use and importance of
such information. Even though OSM may be the most comprehensive
database on building information, it is still largely incomplete.

That said, a key result of our work is that OSM building data in
many places is of sufficient quality for a variety of use cases (this matter
will be discussed further in Section 6.3). There are sizeable spatial
extents around the world for which information such as building use
and number of storeys is available for nearly all buildings (cf. Fig. 5).
Unsurprisingly, the most frequent tags are the ones that can be collected
‘visually’, such as function of a building.

Even though in the vast majority of areas the completeness of the
attributes is insufficient for most analyses, that does not mean that OSM
does not have some use even in such areas. First, government datasets
may be outdated, and OSM could be used to supplement them with
newer information or to detect changes [12]. Second, data from the
authorities may also be incomplete. For example, a recent study has
found that there are European countries where governments also have
only partial completeness of attributes [152]. Thus, OSM could be used
in a symbiosis with them to mitigate each others’ gaps.

Because of the scale of our analysis, it is not possible to obtain
a government dataset as reference, typically used in related work
(Section 2.2). However, that is an advantage, because in studies that
use government data as ground truth, a question may arise whether
some of such data has been adopted from such datasets, a possibility
unbeknown if not documented. Thus, areas where government data
is available may not be representative of other areas. Our study does
not suffer from such bias. However, we acknowledge the inability to
verify the recorded accuracy of all buildings worldwide as a potential
limitation that is inevitable with such scale of research.

6.2. High variation of quality

The highly heterogeneous OSM building quality across the world
prompts the question what affects the quality of the OSM data at the
different aggregated levels. Take building:levels as an example
— one of the most tagged building attribute we studied, most countries
exhibited very low completeness overall, with less than 10% of their
building tagged with building:levels (Fig. 4 and Table 2). Large
swaths of land in the vast majority of countries have zero or close to
zero percentage of building:levels completeness, with selected
pockets with relatively higher completeness percentage.

The heterogeneous quality is not just observed at the country level,
it is also very much observed at the more granular administrative
division levels. We studied the building:levels completeness of a
handful of administrative division 2 areas which are some moderately
to highly populated cities, illustrated in Fig. 5. In these administrative
division 2 areas, the cells around the city area generally showed higher
building:levels completeness percentage whereas the surround-
ing areas show slightly lower completeness percentage. Zooming into
a cell in London we could observe the sporadic pattern in which the
building:levels being tagged.

The descriptive tag keys with text tag values have even higher
variance, resulting in lower consistency in their tag values. We suspect
there could be multiple reasons for this pattern. One could be because
the spectrum of word choices could be more broader than what could
be completely documented on the OSM wiki. Besides, the same material
could be referred differently, subject to local cultural and language
differences. In addition, based on the distribution of the number of
buildings mapped per mapper, we could conclude that most mappers
tend to map less than 10 buildings. These mappers may lack the
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Fig. 6. Correlations of external factors and the percentages of buildings populated with particular tags. This table refers to values at the country level.
Source: The World Bank (2021).
knowledge about aspects such as building materials; and may have
not checked the guidelines in detail or received ample training and
guidance that are provided during organised mapping events. It is also
not uncommon for any building to be constructed with multiple types of
materials and have multiple roof shapes and/or materials. Thus, when
tagging these properties, the choice of tag values is highly subjected to
personal opinion of the mapper.

6.3. Implications for use cases

Understanding whether these results are favourable for certain use
cases depends on their data requirements. For some, certain areas will
provide sufficient information, but not for others. Error propagation
studies have to be conducted (e.g. see [153–156]) for specific use cases
and specific attributes, to understand the sensitivity of an analysis for
input data errors, and provide further interpretation of the results.

The availability of some tags is poor everywhere, and will inhibit
use cases that mandate them. For example, building material is useful
for understanding outdoor thermal comfort [157], but our study ex-
poses the very low completeness of this building property, with very
few areas that have a level of completeness worth mentioning. On the
other hand, the information on the height of a building is available for
a large number of cities (i.e. administrative divisions at the level 3),
likely satisfying a range of use cases.

While fully complete areas are scarce, OSM can still be a valuable
data source for many use cases. First, data gaps can be filled auto-
matically based on surrounding buildings [9,46,158,159] (see Fig. 5
— buildings closer to each other tend to have similar values); and
manually, e.g. in a solar potential estimation study relying on 3D
building models from OSM [42], the height values of a few buildings
missing such attribute have been collected manually, not requiring
particular effort (see the same map of London — if one was conducting
a district-scale analysis requiring the heights of buildings, they might
simply manually fill such information for the few buildings missing it
from other sources). We also find that some gaps could be filled easily.
For example, buildings of type garage are one of the most commonly
tagged, but for only 7.5% of them, the building storeys are available.
Still, because garages (especially those of small footprint and next to
houses) tend to have only one storey, such gap could be bridged easily
with basic heuristics. Further, recent work developing unconventional
means to acquire building information, such as predicting the number
of floors from other attributes using machine learning [160], and
inferring the type of buildings based on surrounding carparks and other
features [161,162] and from real estate portals [163,164], may be
worth considering to fill such data gaps. Existing information in OSM
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may be sufficient to serve as training and validation data. Second, many
use cases can be conducted at the district scale and do not require city-
wide data [3,153], and for such, OSM can provide data of sufficient
quality for many areas around the world. Third, there are use cases
that do not require data of very high quality. For example, many
studies in the built environment domain [165–167] infer the general
built form in neighbourhoods, an application that does not require
data on the height of all buildings in an area, as the ones that are
available may be sufficiently representative of the rough form of the
entire neighbourhood.

6.4. Association of quality with other factors

Having affirmed the diversity of OSM building data quality, we
investigated if there are any associations between the quality elements
and other factors. There is almost no correlation observed in nearly
all the variables, thus, explaining patterns remains difficult and it
seems arbitrary, which is not surprising given the large number of
diverse contributors. Also, we find that there is no correlation among
the quality elements, e.g. between the completeness and validity of
building:levels and height tag values. Because of the large
number of combinations and scales of analysis, we describe a subset
of them.

Examining external factors that may potentially explain the com-
pleteness and validity of the attributes in an area, we considered
predictors such as the area, population, street network morphology
(e.g. total road length, sinuosity) and the national normalised GDP. At
the country level, we show a correlation table (Fig. 6) that analyses
the association of the completeness of a set of tags with a series of
external factors. None of the pairs exhibits even a moderate amount
of correlation. The results at other scales and other quality aspects are
similar. There may be multiple reasons for the lack of such associations,
e.g. with wealth and living standard. First, much of mapping efforts are
humanitarian focusing on less developed regions that are experiencing
disasters and are often contributed from overseas [116], and may
receive a disproportionate amount of attention from mappers. Second,
the mapping inequalities may be caused also by political oppression,
legislation or conflicts, e.g. in some relatively developed regions such
as China, there are restrictions on mapping (i.e. crowdsourced mapping
efforts are illegal), rendering their quality much lower than other
countries at a similar level of development [63,168,169].

6.5. Street-level image inspection for accuracy

To facilitate future studies, we provide more insight into the third
quality element. Although the process of inspecting buildings and
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Fig. 7. Ambiguity in understanding the function of a building from street-level imagery.
Source of the imagery: Google Street View.
inferring their characteristics such as the number of floors may sound
straightforward in theory, it is not so in practice. The images from
GSV do not always seamlessly reveal building information and may be
warped in some instances, and they are not always clear enough to
facilitate the process and come up with a conclusive decision.

Despite GSV being an established service with a global focus, there
are still many parts around the world that are not covered by GSV yet.
Also, some of the sampled buildings are not visible in the images, as
they were blocked by other buildings, fences, trees or are too far down
at the end of the streets that it could not be fully visible. Further, not
all attributes can be inferred from imagery (e.g. the age of a building),
and would require authoritative data sources, which are not available
at such scale. Therefore, while GSV is in many cases an excellent data
source with many advantages such as offering multiple viewpoints
of the same building and making it easy to discern many building
features, it cannot be considered a complete and global solution to
quality assurance (as it is the case for any other potential reference
data source). Lastly, as with any manual data collection, in the same
way as data acquisition in OSM, the labelling for building, building
material, roof:shape, and roof:material tags are subject to
the person’s knowledge of possible values of each of those shapes,
and his/her personal judgement. For the buildings that are visible
on GSV, the high subjectivity in building, building:material,
roof:shape values makes it challenging to verify accuracy. These
challenges permeate various lineages and stakeholders in charge of
building data, including governments and companies, where despite
detailed standards and trained staff, there are always ambiguous situa-
tions and a degree of subjectivity. In OSM, this issue is compounded
further due to flexible rules and contributors that have a range of
understanding of the guidelines and conscientiousness, thus, the results
of our study are not surprising and mirror related efforts of collecting
data on the function of the building stock [146].

Fig. 7 includes example images to illustrate the ambiguity of build-
ing functions and indecision one could face when choosing a building
type value when mapping. Therefore, it might make sense that many
buildings are not associated with its type. Fig. 8 shows some examples
for building:material. On the left image, two different mappers
gave two different building materials for the same building, demon-
strating the subjectivity of personal opinion; and on the right image,
masonry and stone could mean the very same thing, but these different
choice of words showed how non-exhaustive the spectrum of texts
could be to refer the same object as well as overlaps in possible values.
These challenges make it hard and impossible to have a standardised
way to quantify the accuracy and correctness of these values. Finally,
Fig. 9 demonstrates more examples for the ambiguity and challenge
when it comes to recording the type of the roof.

6.6. Recommendations for OpenStreetMap

The OSM community has made impressive advancements in the
past several years, including mapping buildings, which are now used
widely in studies. We outline a few potential points of improvement
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that may lead to increasing the quality of building information further,
and consequently, the usability in research.

First, it might be worthwhile to attempt to motivate mappers to
input attributes of buildings, i.e. when mapping them or to add them
to existing buildings. Buildings seem to be a popular feature type to be
mapped after roads, but it appears that the benefit of recording building
properties is not equally favoured as they are still largely deficient in
completeness. Second, unlike mapping roads, corporate contributors do
not seem to have a particular interest in mapping buildings. Future
efforts could focus on understanding business uses of such data to
incentivise companies to include buildings in their mapping campaigns.
Third, although OSM is built based on the premise of being receptive
and open, and has a well documented set of guidelines, with its growing
contributors from various backgrounds and applications in various
domains, it could benefit from being more stringent with tag keys and
values. Fourth, we deem that a point of improvement is enhancing
guidelines on the privacy and safety aspects when mapping buildings,
and their enforcement. OSM provides guidelines on limitations on
mapping private information4 and it appears that violations of the
privacy of people are minimised, but most of the guidelines are general
not focusing specifically on buildings, they are not binding, and they
do not always have a strong consensus. For example, there is an
agreement in matters such as that the individual ownership of features
such as buildings should not be recorded, that it is not allowed to
add the names of inhabitants in dwellings, and that mapping certain
information such as the location of safe houses for victims of domestic
violence should not be allowed. Such agreements apply globally. On
the other hand, it remains less conclusive in aspects that may vary
globally due to cultural and legal differences, such as mapping private
backyards and features associated to buildings (e.g. private swimming
pools, sheds), and it defers to local laws about particular aspects, such
as mapping military buildings, which may be challenging to enforce
and track.

6.7. Limitations and future work

We believe that our study provides a solid and overarching under-
standing the quality of OSM building information at the global scale.
While a study such as ours has the benefit of a holistic overview, that
comes at the expense of not being able to elaborate on all the attributes
and geographical areas.

Our study focuses on attributes, so it does not account for global
building completeness. That is, our work may suggest that in a city
the building attribute completeness is very high with almost all build-
ings having certain tags, but in reality it can happen that not all
the buildings are actually mapped. Unfortunately, OSM building com-
pleteness studies tend to be limited in scale. However, very recent
efforts [170,171] may change that, e.g. the latter preprint suggests that

4 https://wiki.openstreetmap.org/wiki/Limitations_on_mapping_private_
information

https://wiki.openstreetmap.org/wiki/Limitations_on_mapping_private_information
https://wiki.openstreetmap.org/wiki/Limitations_on_mapping_private_information


Building and Environment 237 (2023) 110295F. Biljecki et al.
Fig. 8. Ambiguity in building material information.
Source of the imagery: Google Street View.
Fig. 9. Ambiguity in type of the roof.
Source of the imagery: Google Street
View.
globally, 21% buildings are mapped, and for more than a thousand
cities worldwide, building completeness exceeds 80%. We hope that in
the future our results can be connected with such studies and examined
together.

7. Conclusion

Geospatial building information sourced from OpenStreetMap, both
geometric and descriptive attributes, have gained a foothold in multiple
domains across the built environment thanks to its liberal licence,
growth in completeness of the building stock mapped, and raising
awareness of this crowdsourced platform of geospatial data. However,
quality remains a concern, and no studies understanding the attribute
content have been conducted at the global scale. As the volume of
buildings mapped in OSM has increased dramatically all over the world,
and the studies making use of such information are multiplying, we
presented a timely global study on the quality of semantic building
information in OpenStreetMap examining multiple dimensions of rel-
evance to studying the building stock and the built environment. It is
the first such study to the extent of our knowledge, and we believe that
it will be found of interest to researchers and practitioners in the built
environment community, from those using building data for developing
decarbonisation strategies and understanding life cycle assessment to
those conducting urban energy and urban climate studies at the district
and urban scale, which are increasingly relying on OpenStreetMap.
Other contributions are that it has a variety of use cases in focus and
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that analyses attributes, which have been somewhat overlooked in OSM
data quality assessments, and that it brings attention to the critical topic
of spatial data quality in this community. This topic is important across
multiple domains, not only from the user point of view, but also as
crowdsourcing has been gaining interest in domains such as building
energy and environmental research [172,173] and as the topic of open
data is becoming increasingly important [174].

The key result is in line with localised studies — the quality of
OpenStreetMap greatly varies across countries and administrative di-
visions, thus, the answer whether the building data is good enough
depends on the geographical extent, which specific spatial data quality
element, which set of information (i.e. specific building attributes),
and the purpose (for what use case the data would be used). Building
information remains scarce and fragmented, but in many of them, espe-
cially smaller units, the quality is sufficiently good for a number of use
cases, such as microclimate, urban morphology, and energy modelling,
which require basic information on buildings such as height, and may
be conducted at the precinct or district scale. For example, we found
that more than 20 thousand built-up 1 × 1 km cells have information
on the heights of at least 80% buildings (cf. Fig. 5). In addition, some
aspects exhibit consistently high accuracy — the numeric tag values are
of high validity.

Another valuable lesson from this study is that it is impractical and
unscaleable to comprehensively measure the accuracy and correctness
of the OSM tag values by comparing them to street view imagery
showing the buildings in reality. Nevertheless, we believe that the large
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and well balanced sample of buildings gives a good indication about the
general accuracy of the data and variations across different regions. The
accuracy of the text-based tag values is also hard to quantify because it
is highly subjective to personal knowledge and opinion. In conclusion,
scaling spatial data quality assessments and conducting them across
many countries with different architectures and morphologies remains
a challenge, but we hope that this study brings this research line a step
forward and set the scene for subsequent work.

While new buildings continue to be mapped and existing ones en-
hanced with information on a daily basis, we believe that the findings of
our study will remain valid for several years as many of the elaborated
advantages, trends, and challenges will persist.
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