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Abstract

A healthy acoustic environment is an essential component of sustainable cities.
Various noise monitoring and simulation techniques have been developed to mea-
sure and evaluate urban sounds. However, sensing large areas at a fine resolu-
tion remains a great challenge. Based on machine learning, we introduce a new
application of street view imagery — estimating large-area high-resolution urban
soundscapes, investigating the premise that we can predict and characterize sound-
scapes without laborious and expensive noise measurements. First, visual features
are extracted from street-level imagery using computer vision. Second, fifteen
soundscape indicators are identified and a survey was conducted to gauge them
solely from images. Finally, a prediction model is constructed to infer the urban
soundscape by modeling the non-linear relationship between them. The results
are verified with extensive field surveys. Experiments conducted in Singapore and
Shenzhen using half a million images affirm that street view imagery enables us
to sense large-scale urban soundscapes with low cost but high accuracy and de-
tail, and provides an alternative means to generate soundscape maps. R2 reaches
0.48 by evaluating the predicted results with field data collection. Further novelties
in this domain are revealing the contributing visual elements and spatial laws of
soundscapes, underscoring the usability of crowdsourced data, and exposing inter-
national patterns in perception.

Keywords: urban planning, GeoAI, perception, spatial analysis, deep learning,
built environment

Preprint submitted to Computers, Environment and Urban Systems November 21, 2022

https://doi.org/10.1016/j.compenvurbsys.2022.101915
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Perception of urban environment is an essential task in urban informatics
(Zhang et al., 2018, 2021a; Kruse et al., 2021), as it relates to urban design and
planning (De Silva et al., 2017), public health (Harvey et al., 2015), and living
quality (Van Renterghem et al., 2020; Kang et al., 2021). The acoustic environ-
ment is a critical component of the urban environment due to the direct impact on
physical and mental health, e.g. a bad acoustic environment increases the risk of
hypertension and heart attack (Stansfeld et al., 2005; Hoffmann et al., 2006) while
pleasant sounds promote public health (Andringa and Lanser, 2013). Traditional
assessments of the acoustic environment rely on the use of sound level meters,
which describe sound in decibels (dB). Such an assessment focuses only on the
negative aspects of sound but ignores the fact that some sounds (e.g., nature and
bird sounds, etc.) have a positive impact on people’s health (Nilsson and Berglund,
2006). The soundscape is proposed to involve how the acoustic environment af-
fects the human perception of cities. According to the widely accepted definition
given in the International Standard ISO, the soundscape is ‘acoustic environment
as perceived or experienced and/or understood by a person or people, in context’
(ISO/DIS 12913-1, 2014). This concept represents a paradigm shift in the field
of acoustic environment evaluation, as it focuses on human perception rather than
physical measurements. (Brooks et al., 2014; Hasegawa and Lau, 2022). Sensing
soundscape helps to improve the perceived quality of the acoustic environment and
— as a result — plays an essential role in health betterment.

A variety of research for sensing and evaluating soundscapes has been pro-
posed, thereby improving the quality of soundscapes, e.g. placing noise sensors
in locations such as airports and construction sites. However, these solutions are
costly and cover a rather small area, inhibiting such implementation at the city-
scale. Recently, researchers have begun to develop methods and multi-source data
for assessing soundscapes that are both cheap and large-scale (Hsieh et al., 2015;
Verma et al., 2019; Gasco et al., 2020). For example, Becker et al. (2013) proposed
that patients participate in crowdsourcing via a smartphone app that collects and
measures the noise samples and subjective (opinions, feelings) data. Aiello et al.
(2016) combined social media data with geo-referenced images and text, analyzed
sound-related words using text mining techniques, and evaluated the soundscape
distribution of London and Barcelona. While these methods address the issues of
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costly and small-scale to some extent, the difficulties in controlling the quality of
these data suggest that new data sources for soundscape assessment be investigated.

Our hypothesis, investigated in this paper, is that Street View Imagery (SVI) is
a valuable data source to evaluate soundscapes, as the human visual and auditory
perception is inextricably linked, which was proven by psychological experiments
(Salem et al., 2018; Verma et al., 2020; Einhäuser et al., 2020). Liu et al. (2014)
suggested that the percentage of buildings, vegetation, and sky in an image is an ef-
fective landscape element affecting the perception of the soundscape. Verma et al.
(2020) explored the relationship between visual features and perceptual attributes
through Pearson correlation coefficients. Their results demonstrated the feasibility
of predicting perception by visual features. This visual-based soundscape percep-
tion relies on people’s knowledge and life experience. For example, a crowded
street scene would evoke the sound of horns and people talking and a park may
associate natural sounds such as animal chirps and water flowing. That is, hu-
mans might envision the acoustic environment through a visual scene and their
experience without being there and hearing the sounds. Conveniently, as mapping
services and volunteered geographic information have grown in popularity (Yan
et al., 2020), a vast number of geotagged photographs spanning every corner of nu-
merous cities around the world have been collected and made available (Anguelov
et al., 2010; Zhang et al., 2018; Biljecki and Ito, 2021). Additionally, computer
vision algorithms based on deep learning have made significant progress, garner-
ing widespread attention and success in a variety of fields due to their outstanding
automatic learning and representation capabilities for image features (Hinton et al.,
2012; Cao et al., 2020; Chen et al., 2021; Liu and Biljecki, 2022).

We propose a new method for low-cost, large-scale and high-resolution pre-
diction and evaluation of urban soundscapes — by using SVI data, essentially in-
troducing a new use case of this growing urban data source. First, we extract four
types of SVI features based on computer vision and deep learning models: low-
level features, semantic segmentation, object detection, and scene classification.
Second, fifteen soundscape indicators are constructed from four aspects: sound in-
tensity, soundscape quality, sound source, and perceptual emotion. The soundscape
indicators of a large number of SVIs were scored via a comprehensive international
crowdsourcing effort with multiple responses per image to converge towards a con-
sensus. Third, a machine learning model is used to predict the soundscape indica-
tors of approximately half a million SVIs, and the high-resolution distribution of
the city-level soundscape is obtained. Within this method, we seek to answer the
following research questions: (1) How to sense soundscapes with different indica-
tors at a city-level while achieving a high spatial resolution? (2) Is it suitable to
employ crowdsourced labeled SVI as a new data source for assessing the sound-
scapes? (3) What is the relationship between the visual elements of the SVI and the
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soundscape indicators? Our work contributes to understanding the distribution of
soundscapes, revealing the relationship between the urban visual environment and
soundscape, which is beneficial to the improvement of the urban acoustic environ-
ment. Unlike most other perception studies in the urban environment, we collect
perception data from multiple sources with the information on where the study par-
ticipant lives, allowing us to compare the differences in perception depending on
whether the respondent resides in the city in focus or not, another contribution in
the field.

2. Related work

2.1. Soundscape sensing
Soundscape sensing is a part of urban sensing, which can be viewed as a col-

lective of technologies that perceive and acquire information about physical spaces
and human activities in urban areas (Shi, 2021), such as safety (Song et al., 2020),
vibrancy (Tu et al., 2020), and sustainability (Wu and Biljecki, 2021). The sound-
scape was introduced as an acoustic standard to interpret perceptions of sound
by people in certain environments (ISO/DIS 12913-1, 2014; Korpilo et al., 2023).
Rather than traditional acoustic research, which is focusing on the physical quan-
tity of sound (e.g. intensity, frequency, and amplitude), soundscape studies tend to
investigate both positive and negative effects of sound components from a human
perspective (Schafer, 1993). Thus, various perceptual descriptors such as pleas-
antness and eventfulness (Axelsson et al., 2010; Jo and Jeon, 2020), calmness and
relaxation (Davies et al., 2014; Sudarsono et al., 2017; Zhao et al., 2022), and
other characteristics, have been widely used to describe perceived affective qual-
ity. Specifically, Axelsson et al. (2010) proposed a principal components model
to define soundscape properties, extracting eight typical descriptors: pleasant, un-
pleasant, eventful, uneventful, exciting, monotonous, chaotic, and calm based on
116 attributes.

The sound components are the main independent variables that significantly
contribute to different perception indicators. By interpreting properties in 25 videos
into two components: urban environments and social environments, Axelsson
(2015) found that the sound components are essential factors in terms of predict-
ing perceptual descriptors and soundscape quality. Moreover, Jo and Jeon (2020)
investigate the differences in soundscape quality assessment between visual envi-
ronment and audio-visual environment among thirty participants. According to the
comparison, not only certain kinds of sound sources such as human sounds and
natural sounds, are significantly related to positive perceptual indicators as well
as high quality of soundscape, but visual elements can also determine the initial
perception of urban soundscape quality, which are also revealed by other studies
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that non-auditory factors such as openness, density and visual properties of urban
spaces have considerable importance in soundscape assessment (Yong Jeon et al.,
2011; Hong and Jeon, 2015).

Recently, with the emergence of urban multi-source urban big data, more and
more soundscape assessment studies apply multi-source data to evaluate the spa-
tiotemporal patterns of soundscapes in both acoustic and non-acoustic aspects,
providing comprehensive assessment and mapping at scale (Radicchi et al., 2016;
Gasco et al., 2019; Zhang et al., 2019). As one of the examinations, by extracting
the emotional layer of soundscape from social media data and combining them with
the perceptual layer generate by a survey of sound walk in certain acoustic environ-
ments, Aiello et al. (2016) explored soundscape distribution in wider geographical
coverage. In addition, Salem et al. (2018) proposed a location-dependent model to
predict audio mapping from block-level to country-level according to joint feature
representation generated by audio, ground-level, and overhead image appearance.
This line of work indicates that multi-source information fusion provides potential
scalable accessibility to understand the spatial structure and perceptual constructs
of urban soundscape, as well as the opportunity to investigate the interrelationships
among different urban attributes, such as acoustic indicators, visual features, and
human activity information.

2.2. Street View Imagery in urban studies
SVI has created an opportunity to power urban studies across multiple scales

because of its wide coverage and fine spatial sampling (Biljecki and Ito, 2021).
Various studies have used it to explore urban information among multiple cities:
quantifying urban greenery (Long and Liu, 2017; Wu et al., 2020; Hawes et al.,
2022), assessing travel quality (Ito and Biljecki, 2021; Ning et al., 2022), extract-
ing building features (Zhang et al., 2021b) and especially the measurement of the
perceptual indicator (Naik et al., 2014; Dubey et al., 2016; Guan et al., 2022), sup-
ported by computer vision techniques. As one of the key deep learning models
in computer vision, semantic segmentation is widely used for urban feature ex-
traction, converting two-dimensional images into indexes based on convolutional
networks, such as YOLO, SegNet, VGGNet, DeepLab, and so on. Such super-
vised models should be trained by certain datasets like Cityscapes (Cordts et al.,
2016), which divides urban elements into 19 categories (e.g., road, car, vegetation,
and sky) and therefore can automatically analyze the feature and appearance of
images with high scalability. Moreover, other CV models such as Object Detec-
tion and Image Classification can also extract High-level features from the images
efficiently (Verma et al., 2020). These three techniques are employed by Ito and
Biljecki (2021) to conduct research on bikeability, in which 12014 images are col-
lected from Singapore and Tokyo, extracting HLF as dependent variables to predict
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the perception indicators.
Besides, SVI has also enabled examining visual features from approximating

the pedestrian perspective. Urban perception studies often involve SVI surveys to
investigate the subjective feelings of participants (Nagata et al., 2020) or the pro-
fessional assessment from experts (Hanibuchi et al., 2019; Tang and Long, 2019).
The result of surveys can generalize the images by means of perceptual labels and
quantify them into urban attributes, such as the scores of safety, lively, beautiful,
wealthy, and negative attitudes (Ordonez and Berg, 2014; Min et al., 2019; Yao
et al., 2019). Through detecting the relationship between urban appearance and
urban attributes by deep learning, visual features in SVI have multiplied oppor-
tunities for predicting non-visual indicators at a city scale, such as housing price
(Arietta et al., 2014), street quality (Tang and Long, 2019), cases of infectious dis-
eases (Nguyen et al., 2020) and community vitality (Wang and Vermeulen, 2021).

Similarly, informational attributes from different areas have been shown to have
a direct and substantial effect on the perception of a soundscape. Studies focusing
on the association between sound types and human perception by Axelsson et al.
(2010) and Aiello et al. (2016) indicate that a location with more human activities
(e.g. sounds from people talking or playing) wound tend to be more pleasant than
a place dominated by technological sounds (e.g. sounds from vehicles, machines
or construction). Also, Verma et al. (2020) used SVI to extract the visual features
of streets in one part of Mumbai, and relate their audio aspects. Among the results,
the study suggests that certain acoustic and visual characteristics are related to in-
dividual attitudes, indicating that there is a strong correlation between soundscape
and human perception. However, a major research gap exists — there is a chal-
lenge to integrate the subjective indicator of soundscape with the strengths of SVI
and apply it to large-scale urban information prediction through automated algo-
rithms. Further gaps include understanding the multifaceted relationships between
predictors of soundscapes and perceptual differences among different demographic
groups.

3. Methodology

We present a large-scale and high-resolution urban soundscape sensing method
using SVI. The presented method contains three steps (Figure 1): (1) constructing
soundscape indicators, where fifteen instances are constructed from four aspects:
sound intensity, soundscape quality, sound source, and perceptual emotion, and
each indicator was labeled with a large-scale survey by an online survey; (2) ex-
tracting visual features of SVI at four levels: pixel-level feature, object-level fea-
ture, semantic-level feature, and scene-level feature, in SVI based on computer
vision; (3) building a soundscape prediction model, where the SVI features and
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Figure 1: Overview of our workflow to sense soundscapes comprehensively from street view images.
First, four levels of visual features are extracted using computer vision algorithms and deep learning
models. Second, we constructed 15 soundscape indicators from four aspects and obtained the values
of each indicator by scoring from volunteers. Third, a GBRT model is trained to predict the human
soundscape perception of SVI in new urban areas.

soundscape labels are used as input to train the Gradient Boosted Regression Trees
(GBRT) model, and by feeding city-scale SVI features into the trained model, the
soundscape of a city can be mapped. In our work, we focus on two cities: Singa-
pore and Shenzhen (elaborated in Section 4). These steps are detailed below.

3.1. Soundscape indicators
The soundscape is a conceptual framework for an acoustic or sound-related

matter that involves both auditory components and human reactions (ISO/DIS
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12913-1, 2014; Hasegawa and Lau, 2022). As illustrated in Figure 2, we construct
a comprehensive soundscape indicator system from the acoustic environment to
human reactions to evaluate urban soundscape, including fifteen indicators from
sound intensity, sound scores, perceptual emotion, and sound quality aspects. It
is worth noting that these indicators measure people’s subjective perceptions, not
the physical acoustic environment. Sound intensity is one of the most important
indicators in the acoustic environment due to it being related to urban noise and it
is the most intuitive one to people. Different built environments lead to different
sound sources. According to the text describing the sound, Schafer (1993) com-
prehensively classifies the sound type, including seven major categories and the
corresponding subcategories. Inspired by this research, we classify sound sources
according to five subcategories: traffic noise, human sounds, natural sounds, me-
chanical noise, and music noise. We summarize human reflection into two aspects,
one is people’s overall evaluation of the sound, ‘soundscape quality’, and the sec-
ond one is the perceptual emotion of different sounds. The perceptual emotion is
summarised with eight subcategories: pleasant, chaotic, vibrant, uneventful, calm,
annoying, eventful, and monotonous, which is obtained by principal component
analysis of different sound perceptions (Axelsson et al., 2010). Finally, we estab-
lished a soundscape index system of four categories and fifteen subcategories.

Figure 2: Urban soundscape indicator system from acoustics environment to human reaction.

A perceptual survey of the SVI is designed to collect the above-devised sound-
scape indicators. We classified participants into two types of groups: local and
nonlocal for each city, which aims to investigate the impact of urban familiarity
on the perceived results. We involved a total of 300 people to participate in the
non-local group survey via Amazon Mechanical Turk, and 18 and 20 local resi-
dents from Singapore and Shenzhen, respectively, to participate in the local group
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survey. The ethical aspects of this study have been reviewed and the survey was ap-
proved by the Institutional Review Board of the National University of Singapore
(NUS-IRB-2021-906).

We selected 583 and 751 SVIs from Singapore and Shenzhen for the survey.
The selection of the images was based on two principles: it should include as
diverse scenes as possible and cover as many urban areas as possible based on
the spatial location of the images. As highlighted in Figure 3, we combine the
comparison and scoring method to obtain the value of each soundscape indicator.
The range for each soundscape indicator value is from 1 to 5. The advantage of
this method is that it can avoid data bias caused by subjectivity and randomness.
The content of the soundscape perception survey is shown in Table 1.

The 15 soundscape indicator values for each SVI will be calculated based on
independent and comparative fractions. The independent fractions for each scene
and each indicator are derived from their average scores, which have been filtered
to remove outliers. The comparative fractions are based on the ‘win’ and ‘loss’
scores of each image after being compared with other images. We define that
when the indicator scores of the image are higher, equal, and lower than that of the
image being compared, it would be scored 1, 0.5, and 0, respectively. Therefore,
the definition of independent scores (I) and a comparative fraction (C) according
to each perception indicator (a) and its score (Q) would be:

Ia =
1
5

∑T
t=1 Qt

a

T

 (1)

Ca =
1 ∗ ha + 0.5 ∗ ea + 0 ∗ la

T
(2)

where T is the total number of times the image was been compared, h is the number
of times the score of an image was higher than its paired image, while l is the
number of times that an image was lower than its paired image, and e is the number
of times when an image’s score is equal to its paired image. Overall, the sum of h,
l and e equals to T . Finally, we normalized the final perceptual indicator score (P)
to between 0 and 1 of each image as:

Pa =
1
2

(Ia + Ca) (3)

which will further be used as training indicators of each image for the soundscape
perception model.
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Figure 3: Snapshot of the first question in the survey (for one pair of scenes), emphasizing the
comparison and scoring method.

3.2. Visual feature from street view imagery
Visual features of SVI are the important elements of the urban built environ-

ment, which include color, vegetation, architectural forms, urban scenes, and so
on. The pixel-level, object-level, semantic-level, and scene-level visual features
are constructed by using computer vision technologies. Specifically, the pixel-level
features characterize the overall impression of SVI (e.g. brightness and saturation),
which affects people’s emotional perception. The object-level feature is to obtain
the number of objects in a SVI, such as cars and people. The semantic-level feature
is to obtain the proportion of pixels of different semantic items in a SVI, such as
the proportion of vegetation, the number of vehicles, etc. The scene-level feature
means the probability of scene semantics, such as parks or highways.

As shown in Table 2, the extraction of visual features is conducted through
three types of pretrained deep learning models. The pixel-level feature was re-
trieved by the algorithms from the OpenCV library, including hue, saturation, light-
ness, and values edge detection features. For the task of the object-level feature ex-
traction, Faster R-CNN (Ren et al., 2015), a model trained on COCO dataset (Lin
et al., 2014), is used to identify and calculate the number of elements within 91 ob-
ject types (e.g. person, bus, traffic light). The semantic-level feature extraction task
relies on the DeepLabV3+ model (Chen et al., 2018) trained on Cityscape dataset
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Table 1: The content of soundscape perception survey. For each question, participants are asked to
express their preference on two five-point Likert scales for each soundscape indicator.

Question indicator Scale (from 1 to 5)

1. Overall, what is the general sound
intensity (noisy or quiet) and sound
quality (feeling good or bad) you feel
from the two scenes above?

Sound intensity, sound quality

[very noisy, . . . ,
very quiet], [feel-
ing very bad, . . . ,
feeling good]

2. For the following sounds types, to
what extent do you presently feel them
in the above two scenes

Traffic noise (cars, buses, trains, air-
planes, etc.), human sounds (conversa-
tions, laughter, children playing, foot-
steps, etc.), natural sounds (birds, wa-
ter, wind, etc.), mechanical noise (con-
struction, industrial, machinery, etc.),
music noise (bars, amplifiers, etc.)

[do not feel at all,
. . . , dominates
completely]

3. For the following perceptions of the
sound environment, to what extent do
you agree or disagree these feelings are
consistent with the two scenes above?

Pleasant, chaotic, vibrant, uneventful,
calm, annoying, eventful, monotonous

[strongly disagree,
. . . , strongly agree]

Table 2: Summary of feature extraction models and algorithms
Feature Model/Lib Dataset Features

Pixel-level features OpenCV – Hue, Saturation, Lightness, Values Edge
Object-level features Faster R-CNN COCO 91 object types (person, bus, truck, etc.)
Semantic-level features DeepLabV3 Cityscape 19 categories (road, vegetation, sky, etc.)
Scene-level features ResNet Places365 365 scene categories (highways, parks, downtown, etc.)

(Cordts et al., 2016), which includes more than 19 classes of labels (e.g., sky, vege-
tation, building, etc.) marked from ground level images. Lastly, in order to predict
the probability of scene properties in a SVI, Places365 dataset (Zhou et al., 2017)
is used to train the ResNet model (He et al., 2016) with 365 scene classes, such as
highways, parks, downtown, etc. Based on SVI, explore the relationship between
visual features and people’s perceptions which is aimed at identifying key features
in the visual feature which trigger particular perception (Herzog et al., 1976; Verma
et al., 2020).

3.3. Soundscape prediction model

Predicting each soundscape indicator is regarded as a supervised regression
task. Gradient Boosted Regression Trees (GBRT) is a machine learning approach
that is based on a tree model, which has a solid performance in regression prob-
lems. Different from general tree models (e.g. decision trees), Gradient boosting
combines weak ‘learners’ into a single strong learner in an iterative fashion (Fried-
man, 2002). This method provides an effective way of handling high-dimensional
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features and can produce a reasonable prediction without hyper-parameter tuning.
The core of GBRT is that each calculation is to reduce the residual error of the

previous one, to reduce these residuals, a new model can be built in the reduced gra-
dient direction. In GBRT, each new model is built to reduce the previous residuals
toward the gradient. The dataset is define by D = {(x1, y1) , (x2, y2) , · · · , (xN , yN)},
L(y, f (x)) is the loss function. The number of leaves nodes in each regression tree
is J, dividing its input space into J disjoint regions R1m,R2m, · · · ,R jm, b jm was
estimated for each region. The regression tree gm(x) is expressed by the following:

gm(x) =

J∑
j=1

(
b jmI

)
, x ∈ R jm, I

(
x ∈ R jm

)
=

1, x ∈ R jm

0, else
(4)

The prediction accuracy of the GBRT model is mainly affected by the number
of regression trees(M) and the learning rate. In general, as the M increases, the
model’s prediction accuracy would improve, however, too many trees may result
in additional computation and overfitting. When the number of regression trees
is fixed, increasing the learning rate may improve the prediction accuracy faster,
but a lower learning rate can achieve better prediction accuracy. The training data
consists of SVI visual features as input variables and corresponding soundscape
indicators as target values. We used a total of 482 SVI visual features as input to
predict 15 distinct soundscape indicators.

4. Study area and dataset

4.1. Study area

Singapore and Shenzhen (Figure 4) were selected as research areas. Singa-
pore covers 724 km2, 540 of which are built-up areas. It includes 5 administrative
districts: East region, North-east region, North region, Central region, and West
region. Each region in Singapore has a high level of development intensity, and
traffic noise is the main source of the noise. It should be noted that Singapore
Changi Airport is located in the East region and may be subject to airplane noise.
The facilities of the Port of Singapore, the world’s second-busiest port, are mostly
in the Central region and West region. The industrial center is mainly in the West
region. There are many construction sites here as a result of urban development,
which could generate a lot of noise.

Shenzhen covers 1995 km2, 800 of which are built-up areas It includes 10 ad-
ministrative districts: Luohu, Futian, Nanshan, Yantian, Baoan, Longgang, Guang-
ming, Longhua, Pingshan, and Dapeng. Futian and Luohu are recognized as the
city center, and they contain high buildings and are characterized by dense employ-
ment, the main source of noise here is traffic. Nanshan is a high technology district
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with many innovative companies and factories. Shenzhen International Airport is
located in Baoan, where the noise is driven by the airport. Shenzhen port is located
in Nanshan and Yantian. There are many trucks near the port, which is a significant
source of traffic noise.

Figure 4: Study area: two major cities with diverse soundscapes. The figure also includes the loca-
tions of the sound measurements. Map data: (c) OpenStreetMap contributors.

4.2. Street View Imagery

This study assesses urban soundscapes using SVI data from Baidu and Google,
the two major sources of such data. Among these, Singapore data comes from
Google Street View1, while Shenzhen data comes from the street view service of
Baidu Maps2. We generate sample points every 50 meters within the study area and
search for the nearest panoramic SVI. Finally, we obtained 270,055 and 329,802
panoramic SVIs in Singapore and Shenzhen, respectively. These images are used
for both the survey and computer vision portion of the method.

4.3. Field audio data

Audio data were collected from 43 randomly selected investigation points in
Singapore (Figure 4). Three-minute video clips, 4-10 SVIs, and a three-minute
recording of variations in sound intensity for each investigation point are collected.
The devices used in the collection include a Sound Level Meter (UT353BT ) for
sound intensity recording and a smartphone for the shooting of videos and SVI.
We have released the collected data openly. The collected data can be obtained at
https://github.com/ualsg/Visual-soundscapes.

1https://www.google.com/maps/
2https://map.baidu.com/
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Table 3: Sound intensity prediction accuracy in different models.

Modle
Singapore Shenzhen

MAPE (%) ↓ R2 ↑ MAPE (%) ↓ R2 ↑

DTR 30.1187 0.3049 29.8720 0.4321
KNR 30.8807 0.4838 24.3095 0.6237
SVR 26.8931 0.5650 23.8692 0.6596
BR 24.7251 0.5924 23.2427 0.6731
RR 28.0802 0.5973 23.6873 0.6804
RF 24.0810 0.6437 22.4218 0.6889
GBRT 21.5036 0.6808 21.8282 0.6936

5. Results and analysis

5.1. Soundscape prediction result

5.1.1. Model comparison
To demonstrate the superiority of the GBRT model, we developed the model

by comparing different machine learning models of Decision Tree Regression
(DTR), K-Neighbors Regression (KNR), Ridge Regression (RR), Support Vector
Regression (SVR), Bagging Regression (BR), Random Forest Regression (RF) and
GBRT. The dataset was constructed by the SVI used in the surveys covering both
cities, with 80% of the SVIs serving as the training dataset and 20% serving as the
test dataset. The models are validated using K-fold cross-validation, which breaks
the data into K folds, and each fold is used as a test set. K=10 is used in this study.
The mean absolute percentage error (MAPE) and coefficient of determination (R2)
were used to assess the model.

Taking sound intensity prediction as an example, we calculated the average
value of 10 experiments for each metric. The findings are summarized in Table
3. Overall, MAPE in Singapore and Shenzhen are between 21.50 and 30.12, R2

is between 0.30 and 0.69, and R2 in Shenzhen is higher than in Singapore. The
DTR model performed the worst in both datasets. The MAPE and R2 of the GBRT
model have the best performance in the Singapore and Shenzhen dataset. As a
result, GBRT is chosen as the prediction model.

5.1.2. Prediction result evaluation
The MAPE and R2 are used to evaluate the prediction results of the 15 sound-

scape indicators predicted by the GBRT model. The MAPE is shown in Figure
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Figure 5: The MAPE of soundscape indicators prediction model for the two cities.

5. Overall, the various MAPE of soundscape indicators is quite different. Taking
Singapore as an example, the median MAPE of sound intensity is 22.22, while
the median MAPE of chaotic reaches 31.52. There could be two reasons for this
difference. First, it is related to the distribution of the values of the soundscape
indicators. For example, the musical noise indicator value is typically tiny in most
situations, and the same absolute inaccuracy may result in a higher MAPE. Second,
the predictability of various indicators of soundscapes is different. In addition, the
MAPE of soundscape indicators in different cities are different. In Shenzhen, the
median of MAPE of chaotic is 25.99, whereas in Singapore, the value is 31.52,
probably due to the different distribution of features in the different datasets. For
example, Shenzhen has a high proportion of chaotic scenes, and the features are
more obvious, implying that this indicator has high predictive accuracy.

The R2 of the prediction model is shown in Figure 6. Similar to MAPE, the
R2 varies according to the soundscape indicators. Taking Shenzhen as an example,
the R2 of traffic noise and sound intensity are higher with the median R2 0.74 and
0.69, respectively, while music noise and monotonous have lower R2 with medians
of 0.20 and 0.18 respectively. This result demonstrates that humans have a greater
sensitivity to the perception of sound intensity, traffic noise, chaotic, while the
perception of certain attributes such as music noise, uneventful, and monotonous, is
diminished, which is consistent with our expectations and previous study(Axelsson
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Figure 6: The R2 of soundscape indicators prediction model for the two cities.

et al., 2010). Moreover, there is another possibility that the lower R2 value is due to
the fact that individuals with varying knowledge of the soundscape indicators have
conflicting opinions, resulting in the R2 value for the same soundscape indicator
varies between cities. For example, the R2 of nature sounds is 0.61 and 0.35 in
Shenzhen and Singapore, respectively, which is probably because the Shenzhen
dataset contains more components that significantly reflect natural sounds.

5.1.3. Prediction result validation
The predicted soundscape indicators are the acoustic environment that people

perceive from the SVI. To verify the sensibility of using SVI to predict the sound-
scape, we calculated the correlation between the predicted perceived sound inten-
sity and the field measurements. As mentioned in Section 3.2, the visual features
of pixel-level, object-level, semantic-level, and scene-level are extracted from the
field collected SVI. Pixel-level, object-level, and semantic-level features are ex-
tracted from panoramic SVIs, while scene-level features are extracted from several
SVIs taken from various angles, and their average values are used as the final re-
sults. These visual features are fed into the trained model to obtain the predicted
sound intensity. The ground-true sound intensity is the average of the 3-minute
sound intensity recordings collected in the field after removing outliers. The pre-
dicted and measured sound intensity correlations are shown in Figure 7, with 0.48
as the R2 of the Singapore dataset, indicating the reliability of using SVI to assess
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Figure 7: Relationship between predicted and measured sound intensity.

soundscapes. Besides, there are some field measurements of sound intensity that
differ significantly from predicted values for two reasons. The SVI data collected
in the field and the data provided by Google/Baidu have different shooting angles,
resulting in different components of visual features. In addition, the intensity of
sound in one place may vary over time and the intensity of sound measured in
three minutes is not necessarily representative.

5.2. Soundscape mapping and spatial analysis

All SVI features of the two cities are ingested into the trained model to ob-
tain the soundscape mapping, which can facilitate the investigation of soundscape
spatial distribution. The spatial unit is a hexagonal grid divided by a geospatial
indexing system H33, and the resolution is level 9, with an average hexagon area
of 0.105 km2. Each indicator value for a hexagon is the average value for all SVIs
within a certain hexagonal grid.

5.2.1. Sound intensity mapping
Sound intensity is the most concerned and sensitive soundscape indicator by

residents. Therefore, this indicator is chosen for further analysis. The sound inten-
sity distribution in Singapore is shown in Figure 8. The red units refer to areas with
higher sound intensity, mostly concentrated in the suburbs, used for infrastructure
construction (e.g. Tuas, 1O). Specifically, some units around a highway, such as

3https://h3geo.org/
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Figure 8: Sound intensity distribution in Singapore. Map and image data: (c) OpenStreetMap con-
tributors, Google Street View.

the West Coast Highway next to the port ( 4O), serving for heavy logistics traffic,
have a significant impact on noise intensity. In addition to this, the bustling core
business district ( 5O), indicates a sound intensity at a high level. Low-intensity
areas are identified in parks with more vegetation, as well as tourist destinations
such as the Singapore Botanic Gardens ( 2O), East Coast Park, etc. Typical residen-
tial neighborhood areas such as Bedok ( 3O) have median sound intensity levels. In
general, industrial areas and central business districts have a high noise level, but
tourist attractions and residential areas have a low noise level. The distribution of
sound intensity is highly correlated with urban function, in line with Chew and Wu
(2016), who exposed the levels of noise differ from various land use.

Figure 9 depicts the spatial distribution of sound intensity in Shenzhen. In gen-
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eral, the distribution of sound intensity is higher in the north and lower in the south.
Most of the high-intensity areas are concentrated along highways, whereas the low-
intensity zones are mostly concentrated along parks and the coastline, which is
consistent with our expectations. Specifically, the areas with high levels of sound
intensity include construction sites and highways, such as Qianhai (marked 1O) in
Nanshan District, a new development zone, and the Baoan expressway (marked
2O). Typical low-sound-intensity areas, such as the Wutong Mountain Park and
Dapeng (marked 5O), are heavily vegetated tourist destinations. Longhua has a
large number of residential neighborhoods (marked 3O) with median sound inten-
sity. To our surprise, the most prosperous districts, Nanshan, Futian, and Luohu,
have lower sound intensity than expected. This could be because these areas are
also well vegetated, as shown in the corresponding SVI (marked 4O), which could
have softened people’s perception of sound intensity. This is consistent with the
findings of Van Renterghem (2019), who proposed that vegetation can strongly
improve environmental noise perception.

5.2.2. Typical soundscape indicators mapping
The soundscape quality, natural sounds, traffic noise, pleasant, and annoying

were chosen as typical soundscape indicators, and the results are displayed in Fig-
ure 10 as soundscape maps, a key result of this work. For Singapore, the areas with
better soundscape quality (green) are mainly distributed near parks, such as Sen-
tosa, Reservoir Park, and East Coast Park. Areas with poor soundscape quality are
mainly found in central business districts, industrial areas, and suburbs with more
construction sites. Natural sound values are generally greater in areas adjacent to
parks with more vegetation. Interestingly, although the soundscape quality of the
industrial area is lower, it is also higher for natural sound indicators due to the
low building density, such as in the Tuas area. The distribution of traffic noise and
annoying was similar, with higher values concentrated near highways, industrial
areas, and central business districts. The spatial distribution of pleasant is similar
to natural sounds, but the difference is this indicator is also higher in residential
environments.

For Shenzhen, spatial heterogeneity in the distribution of soundscape quality
is significant, and areas with good soundscape quality are primarily concentrated
around parks with vegetation cover, such as Dapeng and Wutong Mountain Park
in Luohu District. However, the poor soundscape quality is concentrated in the
vicinity of the highways. To our surprise, pleasant is higher in the three developed
urban areas of Nanshan, Futian, and Luohu, although it is prosperous with more
traffic noise. This result is because the developed urban area in Shenzhen have
more greenery and are more orderly, providing a more pleasant environment for
residents.
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Figure 9: Sound intensity distribution in Shenzhen. Map and image data: (c) OpenStreetMap con-
tributors, Baidu Maps.
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Figure 10: Spatial distribution of typical soundscape indicators. Map data: (c) OpenStreetMap
contributors.
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5.3. Relationship between visual features and soundscape

A multiple regression model is used to investigate the contribution of visual
features to soundscape indicators. To improve the model’s interpretability, we in-
tegrated and filtered the 482 visual features into 28 predictor variables (Table 4).
Variable selection is critical for identifying the optimal subset of predictors and
minimizing redundancy and noise. For each of these models, the Backward Elimi-
nation approach is used for variable selection (Derksen and Keselman, 1992). The
Backward Elimination procedure includes: (a) selection of the significance level
(in this study, a 95% confidence interval or 0.05 is considered); (b) fit the model
with all the features selected; (c) remove the variable with the largest p-value; (d)
fit the model with the remaining variables; and (e) repeat steps c and d until all the
variables are less than the selected significance level or the number of variables is
less than 10.

Table 4: Regression analysis variables
Features Variable Definitions

Pixel-level

canny edges The ratio of pixels detected as edges to the total number of pixels in the SVI
hue mean The mean value of the hue dimension in the SVI
hue std The standard deviation of hue dimension in the SVI
saturation mean The mean value of the saturation dimension in the SVI
saturation std The standard deviation of saturation dimension in the SVI
lightness mean The mean value of the lightness dimension in the SVI
lightness std The standard deviation of lightness dimension in the SVI

Objest-level

car object Total number of cars in the SVI
bus object Total number of buses in the SVI
person object Total number of person in the SVI
truck object Total number of trucks in the SVI
motorcycle object Total number of motorcycles in the SVI
other object Total number of other remaining objects in the COCO dataset in the SVI

Scene-level

neighborhood scene Probability of the image being classified as neighborhood
highway scene Probability of the image being classified as highway
parking scene Probability of the image being classified as parking
downtown scene Probability of the image being classified as downtown
construction site scene Probability of the image being classified as construction site
industrial area scene Probability of the image being classified as industrial area
park scene Probability of the image being classified as park
street scene Probability of the image being classified as street
field wild scene Probability of the image being classified as field/wild and forest road

other scene
Probability of the image being classified as other remaining classes in the
Place365 dataset

Semantic-level

sky semantic Percentage of pixels classified as sky
nature semantic Percentage of pixels classified as vegetation
human semantic Percentage of pixels classified as person and rider
vehicle semantic Percentage of pixels classified as car, truck, bus, train, motorcycle, and bicycle
building semantic Percentage of pixels classified as building, wall, and fence

other semantic
Percentage of pixels classified as other remaining classes in the Cityscapes
dataset

The results of the multivariate regression analysis between visual features
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and soundscape indicators are shown in Figure 11. We selected the top 6
SVI features including positive contribution (red bar) or negative (green bar)
to rank and list. The length of the bar indicates the value of the betas co-
efficients and the ‘*’ implies the significance level. In general, SVI features
contribute variably to different soundscape indicators. For the sound intensity,
Building semantic and sky semantic play the most significant positive correla-
tions, however, nature semantic and f ield wild scene are the strongest nega-
tively correlated visual features. The result demonstrates nature semantic is pos-
itively correlated with the sound quality score, while construction site scene and
truck ob ject are negatively correlated with soundscape quality, which is consistent
with our common sense and expectations. In addition, two pixel-level features,
lightness mean, and canny edges, occur in the sound quality list, demonstrating
that these intuitive impressions of SVI, such as lightness, can have a significant
impact on how individuals perceive sound quality.

In terms of sound sources, traffic noise and mechanical noise are positively in-
fluenced by similar visual features, such as building semantic and sky semantic.
The mechanical noise is related to human-related visual features(person ob ject,
neighborhood scene), due to mechanical noise being generally made by humans.
The visual elements with the strongest positive and negative correlations to natural
sounds are nature semantic and downtown scene, respectively, which is consis-
tent with our expectations. Human sounds and musical noise have strong positive
correlations with person ob ject, nature semantic, and building semantic, while
negatively correlated with f ield wild scene and highway scene, due to both of
these sound sources are related to the distribution of the crowd. It is worth noting
that the assessment of sound sources is mainly based on human experience rather
than directly seen objects, which might lead to some perception bias (Zhang et al.,
2021a). For instance, even if there are no vehicles on the highway, people’s expe-
rience will lead to the perception that such a situation entails a significant level of
traffic noise.

Regarding perceptual emotion, we observed that pleasant is significantly posi-
tively correlated with nature semantic and building semantic, and negatively cor-
related with highways scene. This result validates the finding by Hong and Jeon
(2017) that a pleasant perception of natural sounds has a positive effect and is
negatively associated with vehicle sounds. Chaotic and eventful are positively af-
fected by the same visual features, e.g. person ob ject and neighborhood scene.
Vibrant and clam have a positive relationship with nature semantic, interestingly,
the car ob ject feature, is positive for Vibrant but negative for clam. The unevent-
ful and annoying scene shows significant associations with mostly similar visual
features, for example, the nature semantic and building semantic have a positive
influence, while the downtown scene have a negative influence on these sound-
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Figure 11: The results of the multivariate regression analysis between the visual features and sound-
scape indicators. (***p <0.001, **p <0.01, *p <0.05).

scape indicators.
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5.4. Correlation of soundscape indicators

To explore the relationship between different soundscape indicators from the
SVI survey, we calculated the cross-correlation matrix, as illustrated in Figure 12.
The four types of soundscape indicators have been marked: I (sound intensity), Q
(sound quality), S (sound source), and P (perceptual emotion). Overall, there is a
strong positive correlation among sound intensity, traffic noise, chaotic, mechani-
cal noise, eventful, and annoying. These soundscape indicators are all noise-related
aspects that will elicit negative emotional reactions from participants. There is
also a strong positive correlation among human sounds, music noise, vibrant, and
pleasant, which represent people-related soundscape indicators. Moreover, a posi-
tive connection among natural sounds, sound quality, and calm, these soundscape
indicators are high quality sound-related. On the contrary, there is a strong nega-
tive correlation between noise-related indicators (i.e. sound intensity, traffic noise,
chaotic, mechanical noise) and high quality sound-related (i.e. natural sounds,
sound quality, and calm). Specifically, the result indicates a significant positive
association between sound intensity and traffic noise (r=0.73), chaotic (r=0.71),
mechanical noise (r=0.68), and eventful (r=0.57), while a negative correlation is
shown between sound intensity and natural sound (r=-0.44) and clam (r=-0.55). On
the other hand, sound quality shows a contrary relationship with other attributions.
There is a significant positive correlation between sound quality and natural sounds
(r=0.51), clam (r=0.53), while a negative relationship between noise quality and
traffic noise (r=-0.41), mechanical (r=-0.43), and chaotic (r=-0.47), respectively.
For the relationship between sound source and perceptual emotion. Just as we ex-
pected, natural sounds have a positive correlation with calm (r=0.57), while chaotic
(r=-0.49), which is similar to the result obtained by Verma et al. (2020). For the
correlations between the perceptual emotion, chaotic and eventful were positively
and significantly associated with each other, while they are negatively correlated
with pleasant, vibrant, and calm. This finding is consistent with Aiello et al. (2016),
which evaluated soundscapes using social media data.

6. Discussion

6.1. Application of soundscape sensing

We propose large-scale high-resolution soundscape perception relying on SVI
data, which makes it possible to observe city-scale soundscapes from a macro-
scopic perspective. There are many potential applications based on the results and
our method. For residents, the soundscape map can provide home buyers with a
reference to find areas away from the noise and with high-quality soundscapes. For
urban planners, the soundscape distribution allows urban planners to optimize the
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Figure 12: Cross-correlation between the soundscape indicators.

acoustic environment for various areas. Furthermore, in Section 5.3, the analysis
result of the relationship between visual features and soundscape indicators, such
as the contribution of vegetation, and building to specific soundscape indicators,
would support urban design theory and practice. For theoretical implications, the
soundscape is an important part of the physical properties of cities, and soundscape
enriches place semantics, which will help researchers understand underlying urban
heterogeneity patterns and reveal the impact of urban functions. In terms of tech-
nology, the potential application is that our results can inspire the generation of
urban soundscapes directly (and solely) using SVI, such as generative adversarial
network(GAN) (Wu and Biljecki, 2022). It can generate soundscapes according to
the designed urban scenes, evaluate urban design schemes in visual and acoustic
aspects, and improve the efficiency of urban design.

6.2. Soundscape perception bias
The term ‘perception bias’ refers to the disparity between the indicators pre-

dicted by a model and our real measurement or common sense. Some previous
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research using SVI for urban study have mentioned perception bias, such as urban
crime (Zhang et al., 2021a), playability (Kruse et al., 2021), and built environment
(Wang et al., 2019). The majority of studies consider perception bias to be a study
limitation, as it may induce model errors. However, we consider that exploring and
understanding the bias may shed some insight on urban planning. As mentioned
in Section 5.2, the actual sound intensity in Shenzhen’s downtown region is quite
high, due to dense crowds and heavy traffic flow. However, due to the high roadside
vegetation coverage and good landscape quality in these areas, people’s perception
of sound intensity is reduced, and the pleasant and sound quality scores are also
high. In other words, vegetation and better landscape quality reduce people’s per-
ception of noise. Understanding these perception biases is helpful for people to
understand the relationship between soundscape and visual elements, which can
guide urban landscape design and improve the quality of urban soundscape.

Although the differences in age of training participants mentioned by Wang
et al. (2019) may not lead to bias, to examine perception bias in people with differ-
ent living cities, we compared the local group to the non-local group, which was
described in Section 3.1. Taking Shenzhen as an example, we select scenes from
the Shenzhen dataset with reflect high levels of noise, such as highways and down-
town. Both local and non-local groups have been invited to score these SVIs inde-
pendently. Each image is evaluated in the same manner, and the result is shown in
Figure 13. While there is little difference in soundscape perception between locals
and non-locals on average, locals’ scores are more consistent due to their shared
perceptions of the city. For example, while both locals and non-locals have medi-
ans of ‘4’, their first and third quartile are ‘4’ and ‘5’, respectively, but non-locals
have two quartile of ‘3’ and ‘4’, with lower adjacent values of ‘2’. Additionally, lo-
cals score more precisely, and more specific soundscape indicators are more likely
to be classified as maximum ‘5’ or minimum ‘1’, whereas non-locals may have
more moderate values ‘3’, as the indicator chaotic demonstrates. In addition, the
soundscape is the perception of people based on their experiences, which allows
for different insights. Overall, the perception bias due to differences in participants’
backgrounds is acceptable. We hope that this detail will contribute to the body of
knowledge of studying perception in urban informatics, as demographics are rarely
accounted for.

6.3. Advantages of Street View Imagery

To enable large-scale and low-cost soundscape evaluation, several new data
sources have lately been developed for soundscape evaluation, including social me-
dia data, complaint data, and 3D city models (Aiello et al., 2016; Tong and Kang,
2021; Stoter et al., 2020). As a wide-coverage, highly accessible data source, SVI
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Figure 13: Perception differences between locals and non-locals.

data offers significant advantages for evaluating soundscapes. Its advantages in-
clude the following: (1) Precise geographic coordinate information. Commercial
map service providers, such as Google and Baidu, collected data with very precise
coordinate information, which can be accurate to the decimeter level (Anguelov
et al., 2010). However, for the social media data with geotagged images or text, the
coordinate information may be offset or even wrong, depending on the location of
the information publisher (Fan et al., 2020). This shortcoming may introduce sig-
nificant mistakes in the investigation of the spatial distribution of noise. (2) Wide-
coverage and frequent-updates. Along with the commercial map service providers
providing high-quality SVI data, crowdsourced SVI platforms (e.g. Mapillary, Kar-
taView) have recently become popular. For places where commercial map service
providers may not have data coverage, such as indoors, or in remote parks, crowd-
sourced platforms can supplement the data. While the data quality of crowdsourced
SVI data is difficult to control (Mahabir et al., 2020), in comparison to other types
of data, the data’s availability, coverage, and update rate provide significant ben-
efits. (3) Visual and auditory perception are inextricably linked. Several recent
studies have exploited the relationship between sound and visual appearance for
tasks such as sound generation (Salem et al., 2018; Aytar et al., 2016). These stud-
ies highlight the advantages of evaluating soundscapes in combination with visual
elements. Therefore, evaluating the soundscape with visual data (e.g. SVI) can
lead to higher interpretability.

6.4. Limitations and future work
We notice a few limitations of this work, which may be tackled in future ef-

forts. First, although the urban soundscape of a particular area is generally consis-
tent, such as the central business district being noisier than a typical park, the urban
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soundscape is also dynamic, since the soundscape of a place varies greatly during
the day (and night). However, the urban soundscape perceived by SVI data only
describes a specific moment in time when the data was collected. In addition, with
the development and renewal of the city, the soundscape environment is constantly
changing, therefore, the evaluation results have a certain lag. Second, our work is
a preliminary study of soundscape perception directly with non-acoustic data, we
only use visual features to perceive soundscape. In fact, the soundscape of a place
cannot be generalized from visual features alone. As Zhang et al. (2019) men-
tioned, a single big data for urban perception have certain biased. Future research
can use multi-source big data, such as points of interest, and human mobility data,
to evaluate the urban soundscape. Third, our SVI data come from different sources
(e.g. Baidu, Google). Although some researchers assert that the results of analysis
using local mapping services (e.g. Baidu Maps in China) can be replicated using
GSV (Cheng et al., 2017), the predicted urban soundscape perception results may
have some biases, mainly caused by two aspects. On the one hand, the different
devices used to capture the SVI result in different aspect ratios, saturation, and
brightness, etc., which can lead to perceptual bias. On the other hand, the different
data distribution leads to the bias of urban soundscape maps. For example, Baidu
Map’s SVI is mainly distributed on main roads, with less coverage on some park
paths, while GSV has more comprehensive coverage, which will lead to stronger
traffic noise on Baidu Map than GSV. Therefore, it is not reasonable to compare
and rank the soundscape quality of the two cities through SVI data.

7. Conclusions

We presented a new approach to understanding multi-dimensional soundscapes
from street view imagery, a growing form of urban big data that has permeated
through urban informatics but one that has not been used for such a purpose yet.
Taking Singapore and Shenzhen as diverse examples, visual features were ex-
tracted from about half a million SVIs using a computer vision model based on
deep learning. We have established fifteen soundscape indicators to comprehen-
sively evaluate soundscapes, 1334 SVIs were evaluated using crowdsourcing, gen-
erating fifteen soundscape indicator labels. A machine learning model, GBRT, was
developed to predict urban soundscapes and analyze spatial distribution. Addition-
ally, we measured the actual sound intensity at dozens of locations to validate the
model’s reliability. We release this dataset openly to spur further efforts and future
studies. To investigate the relationship between visual features and soundscape
indicators, we developed regression models.

The result has shown that it is possible to predict and interpret the soundscape
from SVI with machine learning at a reasonable accuracy. Additionally, we find
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different visual elements have varying effects on predicting certain indicators, for
example, vegetation tends to reduce the perception of sound intensity and invokes
a pleasant feeling. There are combinations of high associations between various
sound sources and perception elements of sound, such as traffic and machinery
sounds increase chaotic and annoying impressions. This study brings the following
contributions:

1. Our work elaborates how SVI data, a newly available data source, could be
used directly for soundscape prediction and evaluation on a wide-scale, and
yet at high-resolution and low-cost. Thus, the paper essentially introduces a
new use case of SVI.

2. We demonstrate that crowdsourced labeled SVI can be used for soundscape
prediction, and compare the contrast in perception among people with var-
ious backgrounds, a rarity in perception studies in urban informatics and
related domains.

3. The relationship between urban sound sources and emotional perception,
which are both visual, is examined.

4. We created high-coverage and high-resolution soundscape maps of Singa-
pore and Shenzhen using solely SVI data, potentially paving the way for
generating noise maps in a straightforward manner or supplementing exist-
ing noise maps by adding the qualitative aspect.

The benefits of this approach are multi-fold: the approach bypasses tedious ground
measurements, the method can be deployed at a large-scale and fine spatial resolu-
tion, and it enables comparative analyses among multiple cities.
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Schmermund, A., Memmesheimer, M., Mann, K., Erbel, R., et al., 2006. Res-
idence close to high traffic and prevalence of coronary heart disease. European
heart journal 27, 2696–2702.

Hong, J.Y., Jeon, J.Y., 2015. Influence of urban contexts on soundscape percep-
tions: A structural equation modeling approach. Landscape and Urban Planning
141, 78–87.

Hong, J.Y., Jeon, J.Y., 2017. Relationship between spatiotemporal variability of
soundscape and urban morphology in a multifunctional urban area: A case study
in seoul, korea. Building and Environment 126, 382–395.

Hsieh, H.P., Yen, T.C., Li, C.T., 2015. What makes new york so noisy? reasoning
noise pollution by mining multimodal geo-social big data, in: Proceedings of
the 23rd ACM international conference on Multimedia, pp. 181–184.

ISO/DIS 12913-1, 2014. Acoustics. soundscape–part 1: definition and conceptual
framework.

Ito, K., Biljecki, F., 2021. Assessing bikeability with street view imagery and
computer vision. Transportation Research Part C: Emerging Technologies 132,
103371. doi:10.1016/j.trc.2021.103371.

Jo, H.I., Jeon, J.Y., 2020. Effect of the appropriateness of sound environment on
urban soundscape assessment. Building and environment 179, 106975.

Kang, Y., Zhang, F., Gao, S., Peng, W., Ratti, C., 2021. Human settlement value
assessment from a place perspective: Considering human dynamics and percep-
tions in house price modeling. Cities 118, 103333. doi:10.1016/j.cities.
2021.103333.

Korpilo, S., Nyberg, E., Vierikko, K., Nieminen, H., Arciniegas, G., Raymond,
C.M., 2023. Developing a multi-sensory public participation gis (msppgis)
method for integrating landscape values and soundscapes of urban green infras-
tructure. Landscape and Urban Planning 230, 104617.

Kruse, J., Kang, Y., Liu, Y.N., Zhang, F., Gao, S., 2021. Places for play: Un-
derstanding human perception of playability in cities using street view images
and deep learning. Computers, Environment and Urban Systems 90, 101693.
doi:10.1016/j.compenvurbsys.2021.101693.

34

http://dx.doi.org/10.1016/j.trc.2021.103371
http://dx.doi.org/10.1016/j.cities.2021.103333
http://dx.doi.org/10.1016/j.cities.2021.103333
http://dx.doi.org/10.1016/j.compenvurbsys.2021.101693


Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L., 2014. Microsoft coco: Common objects in context, in: European
conference on computer vision, Springer. pp. 740–755.

Liu, J., Kang, J., Behm, H., Luo, T., 2014. Effects of landscape on soundscape
perception: Soundwalks in city parks. Landscape and urban planning 123, 30–
40.

Liu, P., Biljecki, F., 2022. A review of spatially-explicit geoai applications in urban
geography. International Journal of Applied Earth Observation and Geoinforma-
tion 112, 102936.

Long, Y., Liu, L., 2017. How green are the streets? an analysis for central areas of
chinese cities using tencent street view. PloS one 12, e0171110.

Mahabir, R., Schuchard, R., Crooks, A., Croitoru, A., Stefanidis, A., 2020. Crowd-
sourcing street view imagery: a comparison of mapillary and openstreetcam.
ISPRS International Journal of Geo-Information 9, 341.

Min, W., Mei, S., Liu, L., Wang, Y., Jiang, S., 2019. Multi-task deep relative
attribute learning for visual urban perception. IEEE Transactions on Image Pro-
cessing 29, 657–669.

Nagata, S., Nakaya, T., Hanibuchi, T., Amagasa, S., Kikuchi, H., Inoue, S., 2020.
Objective scoring of streetscape walkability related to leisure walking: Statis-
tical modeling approach with semantic segmentation of google street view im-
ages. Health & Place 66, 102428.

Naik, N., Philipoom, J., Raskar, R., Hidalgo, C., 2014. Streetscore-predicting
the perceived safety of one million streetscapes, in: Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pp. 779–785.

Nguyen, Q.C., Huang, Y., Kumar, A., Duan, H., Keralis, J.M., Dwivedi, P., Meng,
H.W., Brunisholz, K.D., Jay, J., Javanmardi, M., et al., 2020. Using 164 million
google street view images to derive built environment predictors of covid-19
cases. International journal of environmental research and public health 17,
6359.

Nilsson, M.E., Berglund, B., 2006. Soundscape quality in suburban green areas
and city parks. Acta Acustica united with Acustica 92, 903–911.

Ning, H., Li, Z., Wang, C., Hodgson, M.E., Huang, X., Li, X., 2022. Converting
street view images to land cover maps for metric mapping: a case study on

35



sidewalk network extraction for the wheelchair users. Computers, Environment
and Urban Systems 95, 101808.

Ordonez, V., Berg, T.L., 2014. Learning high-level judgments of urban perception,
in: European conference on computer vision, Springer. pp. 494–510.

Radicchi, A., Henckel, D., Memmel, M., 2016. Citizens as smart, active sensors
for a quiet and just city. the case of the “open source soundscapes” approach
to identify, assess and plan “everyday quiet areas” in cities. Noise mapping 5,
1–20.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural information
processing systems 28, 91–99.

Salem, T., Zhai, M., Workman, S., Jacobs, N., 2018. A multimodal approach to
mapping soundscapes, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 2524–2527.

Schafer, R.M., 1993. The soundscape: Our sonic environment and the tuning of
the world. Simon and Schuster.

Shi, W., 2021. Introduction to urban sensing, in: Urban Informatics. Springer, pp.
311–314.

Song, G., Liu, L., He, S., Cai, L., Xu, C., 2020. Safety perceptions among african
migrants in guangzhou and foshan, china. Cities 99, 102624.

Stansfeld, S.A., Berglund, B., Clark, C., Lopez-Barrio, I., Fischer, P., Öhrström,
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