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Abstract

Public Open Space (POS) is essential to urban areas. Assessing them usually re-
quires tedious approaches such as fieldwork and manual processes. Street View
Imagery (SVI) and Computer Vision (CV) have been adopted in some urban en-
vironment research, bringing fine granularity and human perspective. However,
limited aspects have been subject in these studies, and SVI and CV have not been
used for holistic POS assessment. This research introduces a novel approach of
employing them in conjunction with traditionally used geospatial and remote sens-
ing data for automating POS assessment and doing so extensively. Indicators from
both subjective and objective perspectives are developed, and CV algorithms are
adopted for retrieving visual features. In a case study spanning 800 POS in Hong
Kong and Singapore, a method is designed to predict both subjective and objective
scores. The results demonstrate the perceptual models achieved acceptable to high
accuracy scores, and suggest that SVI reflects different aspects of POS compared
to previous approaches. The paper concludes that SVI can be adopted in POS as-
sessment as a new instrument, extending their research scope to rarely considered
off-road areas, and contributing with a new approach for the design and allocation
of POS in urban planning.
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1. Introduction

Public Open Spaces (POS), such as parks, sports fields, playgrounds (Fig-
ure 1), are a crucial component of the urban built environment that provides spaces
for recreational and social activities (Koohsari et al., 2015; Volenec et al., 2021;
Giles-Corti et al., 2005; Lamb et al., 2019; Hoffimann et al., 2018; McCormack
et al., 2010; Kaźmierczak, 2013). It is beneficial to human health in both men-
tal and physical aspects (Taylor et al., 2011; Koohsari et al., 2015; Francis et al.,
2012; Lamb et al., 2019; McCormack et al., 2010) and provides ecological benefits
(Maruani and Amit-Cohen, 2007; Tang, 2017). Evidence suggested that the qual-
ity of POS is more crucial than the quantity in providing positive impacts on the
human psychology (Francis et al., 2012). Well planned and designed open spaces
will potentially contribute to human well-being and provide socio-ecological bene-
fits to the city (Davern et al., 2016; Wang and Foley, 2021; Villanueva et al., 2015;
Giles-Corti et al., 2005). Investigating the rationale behind the design, planning
and maintenance of POS is of great importance for contemporary urban develop-
ment (Davern et al., 2016).

Existing tools for auditing POS usually employ onsite fieldwork, census data
analysis, survey, focus group and document analysis, and so on, which are time-
consuming and labour-intensive (Zhu et al., 2021; Hidayat and Ridwan, 2018;
Wang and Foley, 2021; Campos-Sánchez et al., 2019; Edwards et al., 2013).

Increasing the efficiency of the assessment, some studies adopted geospatial
tools with 2D digital maps, aerial and remote sensing imagery, automating the pro-
cess of data collection (Villanueva et al., 2015; Mavoa et al., 2015). Nevertheless,
this approach also suffers from some disadvantages. For example, open remote
sensing imagery has limited resolution and only provides a bird’s eye view, in con-
trast with the ground-level perspective of POS users.

In recent years, Street View Imagery (SVI) and Computer Vision (CV) have
been gaining a foothold in research related to urban built environment (Biljecki
and Ito, 2021), potentially providing new opportunities of investigating the POS in
fine granularity, and from the perspective of humans.

However, existing urban built environment studies that employed SVI have
been almost entirely confined to the streetscape, as widely available imagery from
commonly used large-scale services such as Google Street View and Baidu Maps
is predominantly collected on driveable roads. Therefore, SVI has not gained pop-
ularity in assessing POS, which are often not plied by cars. In general, the use of
SVI for applications that focus on areas farther from roads has been sparse. There
have been rare and limited instances of POS assessment research involving SVI,
such as the tool developed by Edwards et al. (2013). However, as their approach
requires manual observations by raters, the auditing process is still yet to be auto-
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Figure 1: This illustration indicates different types of POS and highlights the infrastructures that are
related closely to human activities and play a major role in the quality of POS. These features may
be well captured by street-level imagery, while usually not observable from GIS and remote sensing
data. And this study aims to take this advantage to assess the quality of POS.

mated (Taylor et al., 2011; Edwards et al., 2013). That is, no POS assessment has
adopted CV techniques, and the usability of using SVI and CV in automating the
POS auditing process has yet to be explored.

In addition, SVI provide human eye-level observation and are often used in
modelling the subjective perception of urban space. It presents an opportunity for
exploring the POS assessment from subjective perspective, bringing in new insight
to the POS assessment.

For the first time, this study aims to bridge the research gaps by answering can
Street View Imagery (SVI) and Computer Vision (CV) be used in constructing an
indicator system and automating the assessment of Public Open Space (POS)? If
yes, how is the performance that SVI are used in subjective indicator modelling in
POS assessment? And what is the relationship between the scores of objective and
subjective perspectives of POS assessment?

This topic is timely, as we have noticed the recent increase of ‘off-road’ im-
agery in services such as Google Street View (GSV), which are now including
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spaces beyond traditional venues, e.g. hiking trails (Middel et al., 2019) and urban
waterbodies (Luo et al., 2022), giving way for introducing novel applications of
this increasingly relevant urban data source. Further, the topic is spurred by the
growth of crowdsourced SVI platforms such as Mapillary and KartaView, which
allow anyone to collect photos on any platform, resulting in a diversity of alterna-
tive venues such as cycleways, parks, and pedestrian zones (Yap et al., 2022a; Hou
and Biljecki, 2022).

This study contributes to the body of knowledge in four main aspects: first,
it investigates the use SVI and CV for automating the assessment of POS, as an
extension of the traditional time- and resource-intensive approach of manual data
collection and visual interpretation. Second, on a broader scope, previous urban
built environment research that adopted SVI was mainly focused on roads, and this
research extends the scope of SVI applications to ‘off-road’ areas, a rarity in urban
studies. Third, past efforts usually adopt single-source data in auditing POS, but
multi-sourced data utilised in this research provides multiple perspectives, reduc-
ing the potential bias of a single data source. Fourth, this SVI-driven study com-
plements previous POS auditing tools that only assess POS from objective aspects.
As this research proposes subjective indicators to obtain human perception in POS,
also, a comparison between the objective and subjective indicators is conducted to
understand the relationship between both perspectives.

2. Background and Related work

2.1. Definition and categories of public open space

The definition of POS typically describes open spaces that can be accessed by
the public (Paul et al., 2020; UN-Habitat, 2020). The specific categories of POS
have been classified in various ways in previous literature (Davern et al., 2016).
The categories of POS proposed by Campos-Sánchez et al. (2019) mainly divide
POS into two categories, one for optional activities (e.g. recreation and sport),
such as parks, gardens, plazas, playgrounds and sports fields; and the other refers
to streets and pedestrian, for essential functions (e.g. transport and mobility).

Davern et al. (2016) suggested that the POS and green space are two over-
lapping but different constructs. POS includes vegetated and non-vegetated land-
scapes; green space consists of public-accessible and private spaces. The categories
of vegetated POS are overlapping with public-accessible green space, these usually
include parks, gardens, natural reserves, green walls and community gardens, and
so on (Davern et al., 2016). Besides, POS also include non-vegetated spaces such
as playgrounds, civic squares, plaza (Davern et al., 2016).
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This study mainly focuses on the categories of POS in urban areas, and those
used for optional activities (i.e. urban streets are not in the scope of this study):
parks, gardens, sporting fields, plazas, playgrounds and waterfront promenades.

2.2. Studies on auditing POS

Some auditing tools and indicators have been developed to assess the quality
of POS. Building on the experience of 70 cities, UN-Habitat has developed 20 in-
dicators in five dimensions to assess the quality of POS in the Global Public Space
Programme (UN-Habitat, 2020)1. The five dimensions are accessibility, green en-
vironment, comfort and safety, amenities, use and user.

Public Open Space Tool (POST)2 developed in 1996, has been a keystone for
many subsequence studies related to POS assessment. POST focuses on the at-
tributes that may affect human physical activity. This tool evaluates the POS in
four components: activity, environmental quality, amenities, and safety (Broomhall
et al., 2004). Many studies have adopted POST to audit the quality of POS. Zhu
et al. (2021) employed the POST to assess 160 POS and examine its association
with residents’ mental health. However, POST requires manual work such as field-
work and survey, which is time- and resource-intensive. To overcome this short-
coming, Taylor et al. (2011) extended the scope of POST by employing data such
as Google Maps and GSV to provide the possibility of remote auditing and au-
tomating the process of data collection. Based on this work, Edwards et al. (2013)
further developed this tool into a desktop application, Public Open Space Desk-
top Auditing Tool (POSDAT). Mygind et al. (2016) re-evaluated the usefulness of
POSDAT in the assessment of 171 POS in Australia, the result achieved high intra-
rater reliability of 87% agreement. Szczepańska and Pietrzyk (2020) also adopted
the remote sensing and street view data from Google Earth to conduct remote POS
evaluation. These research demonstrated the opportunity that SVI, GIS and remote
sensing data did reflect the quality of POS and can be adopted in POS auditing
studies. Nevertheless, despite that such data can be an alternative for fieldwork,
the process of data analyses and interpretation is still entirely manual (Taylor et al.,
2011; Edwards et al., 2013; Mygind et al., 2016; Szczepańska and Pietrzyk, 2020).

2.3. Studies on application of SVI in urban built environment research

The advent of applications of SVI in conjunction with CV in urban environ-
ment research is potential to overcome the shortcoming of traditional POS auditing
tools.

1https://unhabitat.org/programme/global-public-space-programme
2https://www.science.uwa.edu.au/centres/cbeh/projects/post
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SVI has several advantages in terms of data availability and data character-
istics. Firstly, compared with on-site visits which require substantial human and
financial input, SVI can be obtained remotely and at a low-cost from various plat-
forms (Biljecki and Ito, 2021; Kang et al., 2020; Anguelov et al., 2010). Secondly,
street-level imagery reflects human perspective with fine-grained observations in
the individual level, which provides details of ground-level information that GIS
and remote sensing data lack (Helbich et al., 2019; Ibrahim et al., 2020).

The applications of SVI and CV in urban space studies are ample, and studies
demonstrated that numerous visual features of built environments can be extracted
from SVI using CV techniques such as semantic segmentation, object detection
and scene classification algorithms. Several metrics have been developed to char-
acterise the urban space for a variety of domains. For example, to capture the
ground-level sense of greenery, Green View Index (GVI) is used, which is calcu-
lated by measuring the proportion of the identified greenery in SVI (Li et al., 2015).
Some researchers have developed methods to quantify and classify the morphol-
ogy of the street canyon (Hu et al., 2020; Gong et al., 2019; Li et al., 2018). A
well-used metric is the Sky View Factor (SVF), which describes the openness of
street canyons (Li et al., 2018). Such metrics are used widely in a variety of studies
from health to transportation (Dong et al., 2018; Lu, 2019; Ki and Lee, 2021; Basu
and Sevtsuk, 2022; Wang et al., 2022a; Zhang et al., 2022b).

In addition to such objective metrics extracted from SVI, there are also many
studies focused on modelling human perception using diverse information derived
from SVI (Cheng et al., 2017; Dubey et al., 2016; Kruse et al., 2021; Moreno-Vera
et al., 2021; Salesses et al., 2013; Tang and Long, 2019; Verma et al., 2020; Yao
et al., 2021; Zhang et al., 2018; Ito and Biljecki, 2021). For example, previous
studies have employed CV algorithms to obtain perceptions of urban environments
from a human perspective based on six perceptual indicators, namely, safe, lively,
beautiful, wealthy, depressing, and boring (Dubey et al., 2016; Zhang et al., 2018;
Wang et al., 2019). Surveys are usually conducted via online platforms to obtain
the scoring of human perception for SVI, combined with features extract from SVI,
deep learning models are constructed to predict the human perception of the urban
built environment.

Various topics related to urban social and economic issues have been investi-
gated using SVI in conjunction with CV and perception methods mentioned above.
These include social inequalities (Lin et al., 2021), the relationship between the
built environment and crime rates (Zhou et al., 2021; Hipp et al., 2021; He et al.,
2017), street vitality (Li et al., 2022b,a; Wang and Vermeulen, 2021; Liu et al.,
2021; Jiang et al., 2022), the association between the quality of street greenery and
economic status (Li et al., 2015). Among these, urban green space relevant issues
are frequently explored using SVI (Li et al., 2015; Helbich et al., 2019; Lu, 2019;
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Xia et al., 2021; Dong et al., 2018; Larkin and Hystad, 2019). Growing evidence
suggests that visual features from SVI reflect certain relationships between green-
ery and human psychological and physical health (Helbich et al., 2019; Larkin and
Hystad, 2019; Larkin et al., 2021; Wang et al., 2019). Green space may facilitate
physical activities (Lu, 2019; Ki and Lee, 2021; Koohsari et al., 2015).

Many studies have developed composite quantitative indicators using SVI for
holistic urban built environment auditing (Vanwolleghem et al., 2014; He et al.,
2017; Kelly et al., 2013; Griew et al., 2013; Rundle et al., 2011; Ito and Bil-
jecki, 2021; Cleland et al., 2021), covering topics such as liveability (Cleland et al.,
2021), bikeability (Ito and Biljecki, 2021; Vanwolleghem et al., 2014), neighbour-
hood environment (Rundle et al., 2011), built form (Pang and Biljecki, 2022; Yan
and Huang, 2022), street environment (Wang et al., 2022b; Griew et al., 2013; He
et al., 2017), as well as overall built environment (Kelly et al., 2013). It has been
demonstrated that the tools using SVI to audit the urban environment were able to
achieve moderate to high inter-raters agreement (Rundle et al., 2011; Kelly et al.,
2013; Griew et al., 2013), providing a reliable alternative to on-site audits. A vari-
ety of indicators such as sidewalk, bike lane, cleanness, aesthetics were selected in
these studies, to assess the quality of urban environment in diverse aspects, which
affirm that SVI is a trustworthy reflection of urban space and that a wide range of
indicators can be quantified using it. Although these tools have considerably re-
duced the time and cost required for fieldwork, In most of these research, raters still
need to direct observe and record all the data from SVI manually. Some adopting
CV to automate the data processing have demonstrated the usability of SVI in con-
junction with CV to conduct comprehensive assessments (Ito and Biljecki, 2021;
Wang et al., 2022b). Despite intense research activities, urban studies that adopted
SVI to evaluate urban space are largely limited to urban street areas. Even though
POS-related features, e.g. sidewalk and greenery, have been widely investigated
using SVI and CV, they are confined to roads and their vicinity, and to the best
of our knowledge, there has been no comprehensive POS assessment that adopted
such method, a gap we seek to bridge with this paper. Therefore, this study aims
at expanding the scope of previous research in developing audit tools to assess the
quality of POS using SVI in conjunction with CV, automating the comprehensive
POS audit process and further enhancing auditing efficiency. On a broader scope,
it brings attention of SVI taken in alternative venues, and it contributes to the sat-
urated SVI landscape of research by demonstrating a use case of SVI not taken in
the traditional venue of urban streets. This is important for a variety of reasons, e.g.
insights obtained only from streets will not give a full picture of a city, especially
when analysing other distinct and dissimilar areas such as public open spaces.
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3. Study area and data description

3.1. Study area

The planning of POS originated in the 18th and 19th centuries in Western coun-
tries with the aim of improving people’s crowded living environment (Maruani and
Amit-Cohen, 2007; Giles-Corti et al., 2005). Evidence suggested that POS plays
an important role in perceptions of the quality of high-density urban spaces (Mi-
trany, 2005). The density of Asian cities is generally higher than that of Western
cities (Motomura et al., 2022; Schneider et al., 2015), and as two such instances,
both Singapore and Hong Kong are facing the issue of incorporating user-friendly
and high-quality POS in high-density urban fabric during urbanisation (Xue et al.,
2017; Tang, 2017; Tang and Wong, 2008). As the population grows and urban
sprawls, POS is facing the threat of diminution (Tang and Wong, 2008; Hee and
Ooi, 2003). Growing demand and limited land supply have led planners to consider
the efficiency of land use. This also calls for developing audit tools of POS quality
to assist in decision-making.

Despite the similarities that Singapore and Hong Kong are facing, there are
significant differences in the planning and challenges of urban POS in these two
cities (Xue et al., 2017), ensuring diversity to validate the research. In Hong Kong,
with its hilly topography, the urban area takes up less than 30 percent of the land
area, thus apart from large areas of country parks, urban POS are small and com-
pactly integrated into the urban texture. Whereas Singapore is known for its City
in a Garden policy (Ng, 2019), which incorporates a much larger range of green
and POS into the urban built environment (Xue et al., 2017).

3.2. Data collection

The locations of POS for both cities have been a key dataset in this study.
The POS layer for Singapore is retrieved from the land use map of Master plan
20193 published by Urban Redevelopment Authority (URA, Singapore), where
the extracted categories include: Open Space, Parks, Sports and Recreation. The
layer of Hong Kong was retrieved from the Land Utilisation Map4 published by the
Planning Department of Hong Kong, and the extracted category was Institutional
or Open Space. The POS layers are instrumental to download SVI from Google
Street View (GSV) — locations are sampled within the spatial extent of each POS,
for which GSV was queried. At the locations where SVI are available, SVI is
downloaded in four heading directions (0°, 90°, 180°, 270°).

3https://www.ura.gov.sg/maps/
4https://www.pland.gov.hk/pland en/info serv/open data/landu/index.html
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In total, images of 9694 points in Singapore and 5870 points in Hong Kong
are obtained. The four direction images of every sampling point are stitched into a
panorama. Some noise is removed from the downloaded SVI dataset, for example,
images taken indoors, images taken at angles that did not reflect their surround-
ings, and overexposed or too dark images. Most importantly, to filter images taken
from road areas, the road layer in the land use plan is used to extract SVI that fall
within the road network polygons. The cleaned SVI dataset includes 7708 panora-
mas covering 275 POS in Singapore and 3368 panoramas covering 525 POS in
Hong Kong.

GIS data for indicator extraction are mainly downloaded form governmental
open data websites of Singapore5 and Hong Kong6. Data not available on the gov-
ernment websites are downloaded from OpenStreetMap, which are of high quality
in the study areas (Biljecki and Chow, 2022). The remote sensing data used in this
study is Landsat 8 imagery downloaded from the USGS EarthExplorer7, the spa-
tial resolution is 30 m. The remote sensing data is adopted in computing the green
coverage.

4. Methodology

This study adopts SVI in conjunction with GIS and remote sensing datasets,
computes two categories of indicators, namely subjective and objective ones. Per-
ception modelling using SVI is introduced to measure subjective indicators. CV
techniques are employed to extract the visual features from SVI, a survey is con-
ducted to obtain the perception scores from SVI, and supervised machine learning
(Random Forest) is adopted to train the predictive models for subjective indica-
tors. GIS data (e.g. POI, land use, location of facilities) and remote sensing data
(i.e. Landsat satellite imagery for computing vegetation metric) in conjunction with
SVI visual features are used to quantify the objective indicators.

Figure 2 illustrates the analytical framework. The research opts for Hong Kong
and Singapore as study areas, a selection elaborated in Section 3.

Given the comprehensive nature of this research, some methodological aspects
and findings are included in the appendix for further reading.

4.1. Indicator selection
Traditional POS assessments focused only on objective indicators. In this

study, subjective indicators are proposed together with objective indicators to form

5https://data.gov.sg/
6https://data.gov.hk/en/
7https://earthexplorer.usgs.gov/
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Figure 2: Analytical framework of this study.

a indicator system for POS assessment.
Taking the indicators selected by UN-Habitat (2020) as a reference, combin-

ing the auditing tools that have been frequently used in past literature (Wang and
Foley, 2021; Broomhall et al., 2004; Mei and Qi, 2020; Edwards et al., 2013),
six-dimension indicators are selected in this study, namely Accessibility, Amenities
and furniture, Design and aesthetics, Environment, Safety and comfort, Usage and
user.

The completed table of indicator filtering is showed in Table A.1 in Appendix
A. After screening the indicators, some are excluded by evaluating the data avail-
ability from SVI, GIS and remote sensing data sources. For example, water pu-
rification and water regulation in the evaluation research conducted by Wang and
Foley (2021) are difficult to be assessed using SVI and GIS tools, thus these indi-
cators are not included here. Table 1 lists the indicators selected after screening.
In total, 24 indicators are selected and categorised into the six dimensions. It is
notable that there are duplicate items in different dimensions, as the score of each
dimension will be evaluated separately. It is desirable that each dimension is ex-
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Table 1: Composition of indicators in this study.

Dimension Objective Indicators Subjective Indicators

Accessibility Parking area
Bike lanes
Public transport (bus stops)
Sidewalk
Fence

Accessibility

Amenities and furniture Dust bins
Signage and emergency items
Seating
Public access toilets
Lighting

Amenities and furniture

Design and aesthetics Aesthetics features
Diversity of landscape elements
Variety in colour

Design and aesthetics

Environment Life and animals
Water body
Green coverage

Environment

Safety and comfort Lighting
Surrounding building
Surrounding road
Sidewalk
Vandalism

Comfort and safety

Use and user Number of users
Type of activities
Surrounding economic activities
Land use diversity

Use and user

amined as comprehensively as possible.
To investigate the relationship between subjective and objective indicators, this

study proposes to introduce subjective indicators corresponding to the objective
in each dimension, allowing apples to apples comparison. The scores of subjec-
tive indicators are derived from human perception predicted by machine learning
models, hence there are no sub-categories (each category is characterised by one
subjective indicator).

4.2. Extraction of visual features from SVI
CV techniques are used to extract visual features from SVI. These tasks are

adopted to extract high-level features (HLF) and low-level features (LLF). LLF
refers to the basic elements in images, e.g. edges, corners, and colour. While HLF
is the semantical information in images including scenes, behaviour, etc.

High-level feature extraction tasks employed in this study are Semantic Seg-
mentation (SS), Object Detection (OD) and Scene Classification (SC). Semantic
segmentation is used to extract the ratio of features (e.g. sky, grass, tree, ground),
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the pre-train model adopted DeepLabv3 (Chen et al., 2017) and ResNest-269 (Zhang
et al., 2022a) network based on ADE20K dataset (Zhou et al., 2017b) is selected.
The task is implemented by the GluonCV toolkit (Guo et al., 2020). Object detec-
tion is conducted to calculate the presence of certain facilities (e.g. benches, dust
bins) and the number of users. SparseR-CNN model (Sun et al., 2020) trained
on MS COCO dataset (Lin et al., 2014) is adopted. The detection is conducted
with the MMDetection toolbox developed by Chen et al. (2019). Classification
task is implemented by adopting pre-trained ResNet-50 (He et al., 2016) models
on Places365-Standard dataset (Zhou et al., 2017a). Figure 3 shows the example
of the high-level feature extraction result.

Figure 3: Example of SVI high-level feature extraction. Source: Google Street View.

Low-level feature extraction tasks employed in this study include edge detec-
tion, blob detection, HSB (hue, saturation, brightness) statistics, and colourfulness
statistics. Evidence from previous research shows that low-level features are corre-
lated to the human perception of place (Rossetti et al., 2019). The low-level feature
extraction tasks are implemented by the Python package OpenCV8.

In addition to the high-level features and low-level features, there are additional
three metrics derived from landscape measures, namely Shannon’s diversity index
(SHDI), Shannon’s evenness index (SHEI) (Shannon, 1948), Simpson’s diversity
index (SIDI) (Simpson, 1949) and richness (Spellerberg and Fedor, 2003) are cal-
culated using the segmentation patches, the details related to these metrics can be
found in Appendix B.

8https://opencv.org/
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Table C.1 in Appendix C summarises the visual features extracted from SVI
using CV techniques and their definitions.

4.3. Subjective indicators: modelling human perception

In this sub-section, for the first time, this study proposes a set of analytical
workflow to bring the subjective indicators into POS assessment. It quantifies the
quality of POS from human perception.

To obtain the perception evaluation scores of POS from SVI, a survey is con-
ducted, combined with SVI features, the machine learning algorithm is employed
to construct models to predict the perception scores of spaces. The Institutional
Review Board of the National University of Singapore has reviewed and approved
the ethical aspects of this research.

4.3.1. Survey on human perception
A survey investigating human perceptions of the POS environment is designed

and distributed on Amazon Mechanical Turk.
There are mainly two types of survey formats were designed in such kind of

perception modelling in previous research, one is for participants to rate the space
quality of a single street view Ito and Biljecki (2021), and the other is to compare
different images and have participants select the one with better space quality (Sa-
lesses et al., 2013; Zhang et al., 2018). This study uses the latter, considering the
perception of high or low scores may vary greatly from person to person, while the
relative perception may be more stable.

The survey presents two random street view panoramas from the image library
and asks participants to choose the space that they felt is of better quality across
the six dimensions.

There are 400 images in the image library, where 230 images are from POS in
Singapore and 170 from Hong Kong. According to previous research, each image
requires 22–32 comparison to obtain a robust scoring (Salesses et al., 2013), hence
the survey is designed to have every participant rating for 10 pairs of images, totally
600 respondents contribute to 6000 comparisons for each dimension.

To maximise the quality of the survey, a timer provided in the survey platform
is used to filter out participants who took too little time to complete the survey.
After filtering those, there are 4590 comparisons, 9180 votes for 400 images in
total.

4.3.2. Perception score calculation
The perception scores are calculated following the formula employed in the

research conducted by Salesses et al. (2013) as below:
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Wi,d =
wi,d

wi,d + li,d + ei,d
, Li,d =

li,d
wi,d + li,d + ei,d

(1)

Where

• Wi,d is the win rate of image i in dth dimension.

• Li,d is the loss rate of image i in dth dimension.

• wi,d, li,d and ei,d represent image i has been selected as win, loss or equal in
dth dimension respectively.

S i,d =
10
3

Wi,d +
1

nw
i

nw
i∑

j1=1

W j1d −
1
nl

i

nl
i∑

j2=1

L j2d + 1

 (2)

where

• j1 and j2 are the images that image i has won over and lost to in dth dimen-
sion respectively.

• nw
i and nl

i are the total number of images that image i has won over and lost
to in dth dimension respectively.

• W j1d is the win rate of image j1 in dth dimension.

• L j2d is the lose rate of image j2 in dth dimension.

Equation 1 Calculates the win and loss rates for each image in the survey.
Equation 2 corrects the win rate of image i with the average win rate of images that
lost the comparison and the average loss rate of images that won the comparison
(Salesses et al., 2013). 10

3 is the factor that adjusts the range of the score S to 0 to
10 (Salesses et al., 2013).

4.3.3. Testing robustness of perception scores
The unstable of human perception has been a challenge for data cleaning of

perception modelling. However, the test of robustness of collected perceptual data
and computed scores has often been overlooked in past studies.

This study attempts to test the robustness of perception scores by measuring the
consistency of disjoint subsets of votes. An inter-rater reliability test is conducted
by testing the Cohen’s kappa coefficient (Cohen, 1960),

Considering the high uncertainty of human perception, the consistency is tested
in binary values rather than continues values. Zhang et al. (2018) suggested that
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the scores in the middle range are more unstable, this study employed Equation
3 to filter out different range of middle values as noise, then the Cohen’s kappa
coefficients are computed for different δ values to see the best performance.

Li,d =

{
1, S i,d < µd + δσd

−1, S i,d > µd − δσd
(3)

where

• µ and σd is the mean value and standard deviation of S score in dth dimen-
sion, respectively;

• δ is the factor that determine the threshold to classify S as positive or nega-
tive.

In the robustness test, the SVI that has been compared less than 10 times in
either subset are filtered as noise. After filtering, the number of SVI in the tested
dataset is 200.

4.3.4. Predictive model construction and subjective scores prediction
Before constructing the model, to better understand the relationship between

the visual feature and perception scores and conduct the feature selection process,
Backward Elimination method (Derksen and Keselman, 1992) base on regression
models is adopted to select a subset of variables for a better performance. Multiple
linear regression models are constructed over a range of δ value from 0.8 to 1.2
using Equation 3. Here the δ donates different thresholds to filter the unstable
perception scores in the middle range. For each δ value, a subset of variables is
selected as predictors.

Then, the Random Forest Classifier algorithm is employed to construct predic-
tive models with visual feature predictors. Based on the robustness test, the input
scores are classified as positive and negative values by Equation 3, the Random
Forest Classifiers are also constructed over a range of δ values from 0.5 to 1.5 to
understand the performance of models with different δ values. Since human per-
ception is highly uncertain, this step is important for identifying the best parameter
for filtering the noise in the dataset, and achieving better performance.

The Random Forest models are constructed using the 5-fold cross-validation
method by the Python package scikit-learn (Pedregosa et al., 2011). The number
of estimators is set as 1000, and the max depth of trees is set ranging from 6 to 8,
the adjustments are subject to each model to achieve better performance.

The results of predictive models simply classify the SVI into positive or nega-
tive values, indicating the good or bad quality of space, respectively. Zhang et al.
(2018) demonstrated the feasibility of using the probability of being classified as
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positive as the score for each image to form a continuous scoring scale rather than
simply scoring the image as positive or negative. This study follows this approach

4.4. Objective indicators calculation
Objective indicators are calculated and evaluated through SVI features in con-

junction with GIS and remote sensing data and methods. All sub-indicators under
the six dimensions are normalised by the min-max normalisation method and fi-
nally synthesised into six scores for each POS with equal weights.

The objective indicators are calculated at the POS level rather than at the sam-
pling points level, which is different from the subjective indicators.

Since the sampling points are at locations where SVI are available, which is
biased towards areas with roads and paths, the GIS and remote sensing data are
not suitable to sample with these points. Therefore, For GIS and remote sensing
data covering the entire POS, all data are sampled directly with POS polygons, and
indicators are calculated for each POS as a whole. For SVI data that cannot cover
the entire POS, to keep consistent with GIS and remote sensing data, the sampling
points should be aggregated into each POS. The basic concept is to take the average
value of all sampling points, adjustments are subject to different indicators, the
detailed calculation and aggregation methods are presented in this sub-section.

Table 2 summarises the description, data type, data source and scale of indica-
tors that have been investigated in this study.

4.4.1. GIS and remote sensing indicators calculation
The GIS-based indicators are mainly calculated by computing the presence or

number of facilities within or around POS. For the features that are difficult to be
counted as numbers (e.g. parking spaces, bike lanes), a dummy value of 1 or 0 is
recorded to indicate the presence or absence of the feature in the POS.

Regarding the countable features, the facilities are counted as numbers. In ad-
dition, since the scale of the POS may affect the number of features, for example,
the larger POS generally has more facilities compared with smaller ones. To elim-
inate the factor of the scale of POS, the numbers are normalised by the area of
POS.

When identifying whether a feature is to be counted into the facility of a cer-
tain POS, it is noted that some facilities serve the POS even though outside the
boundary of POS. for instance, the car parks are not necessarily inside the POS,
and bus stops are surrounding the POS. For these features, a radius of 400 m is se-
lected to aggregate the feature, this radius is determined by considering the general
5-minute walking distance based on previous research (UN-Habitat, 2020). For the
road network and bike lanes, the aggregate radius is set as 50 m, simply to identify
the linear features surrounding POS. Except for the two cases mentioned above,
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other features are only counted if inside the POS, for instance, toilets and activity
facilities will only be taken into consideration when they are within the boundaries
of POS.

In addition, there are two GIS-based indicators are calculated using specific
criteria or formulas. The scores of indicator Surrounding road in Safety and com-
fort dimension are measured by identifying the categories of the surrounding road
network, the higher the category of the road network, the higher the score, this is
to take into consideration that crimes are more likely to happen on minor roads.

The land use diversity index is calculated using the formula derived from SHDI
(see Equation B.1 in Appendix B). Previous research have adopted the SHEI for
measuring the evenness of land use (Ito and Biljecki, 2021; Frank et al., 2005), and
SHDI for measuring the diversity of land use (Hao et al., 2012). In this study, the
diversity of land use distribution is considered better aligned with the objective of
quantifying the diversity of visitors to POS. In this context, the pi represents the
proportion of ith land use category against the total land area, and n is the number
of the land use type. The radius for calculating the land use diversity index is also
set as 400 m.

4.4.2. SVI indicators calculation
The SVI indicators are metrics calculated from visual features extracted from

SVI using CV. Most of them are calculated from the result of semantic segmenta-
tion task. These metrics are calculated based on two main principles. For visual
features where the coverage may affect the spatial quality (e.g. green coverage and
water body), this study refers to the GVI developed by Li et al. (2015), using the
pixel ratio of visual features out of the pixel of the whole image for measurement,
and the score on the POS scale is determined by the average pixel ratio of visual
features among all SVI captured at this POS.

Another category of visual features is those not suitable to be calculated as pixel
ratio (e.g. dust bins, streetlights and seatings). These features are simply recorded
as dummy variables, where 1 represents presence and 0 represents absence on each
SVI. The score on the POS scale are calculated as the proportion of SVI where
the measured visual feature is present in each POS, it can be interpreted as the
probability of a visual feature present when randomly selecting an SVI from all
SVI captured in each POS.

In addition, the indicator diversity of landscape elements and variety in pattern
under the design and aesthetics dimension are simply calculated as the average
value of SHDI and colourfulness metric among all the SVI captured in each POS.

Table 2: Summary of objective indicators (SS: Semantic segmentation, OD: Object detection, LLF:
Low-level features extraction).
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Dimensions Indicators Description Data
Data Source

Scale
Singapore Hong Kong

Accessibility Parking
area

Presence of parking
space around POS
(400 m buffer)

GIS Nparks,
OSM

OSM 1 if present, 0
if absent

Bike lane Presence of bike lane
around POS(50 m
buffer)

GIS Nparks,
LTA

Data.gov.hk 1 if present, 0
if absent

Public
trans-
port(bus
station)

No. of public trans-
port bus station per
sqm around POS (400
m buffer)

GIS LTA Data.gov.hk 0-1 (min-
max normal-
isation)

Sidewalk Average pixel ratio of
sidewalk/pavement in
the POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Fence Average pixel ratio of
fence in the POS

SVI
(SS)

GSV GSV 0-1 (re-
verse scale
min-max
normalisa-
tion)

Amenities
and
fur-
ni-
ture

Dust bins Proportion of SVI
where dustbins was
present in the POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Signage
and
emer-
gency
items

Proportion of SVI
where signboard was
present in the POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Seating Proportion of SVI
where seating was
present in the POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Public
access
toilets

No. of public access
toilets per sqm within
POS

GIS OSM,
Data.gov.sg

OSM 0-1 (min-
max normal-
isation

Lighting Proportion of SVI
where streetlight was
present in the POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Design
and
aes-
thet-
ics

Public
space
identity

Proportion of SVI
where aesthetics
features (sculpture,
fountain, waterfall,
flower pot, vase) was
present in the POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Diversity
of land-
scape
elements

Mean value of Simp-
son diversity index of
SVI in POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Continued on next page
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Continued from previous page

Dimensions Indicators Description Data
Data Source

Scale
Singapore Hong Kong

fence Average pixel ratio of
fence in the POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Variety
in colour
(colour-
fulness)

Mean value of colour-
fulness value of SVI
in POS

SVI
(LLF)

GSV GSV 0-1 (min-
max normal-
isation)

Environment Life and
animals

Proportion of SVI
where life/ animal
was present in the
POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Water
body

Average pixel ratio of
water body of all SVI
in the POS

SVI
(SS)

GSV GSV 0-2 (min-
max normal-
isation)

Green
coverage

Average pixel ratio of
green coverage of all
SVI in the POS

SVI
(SS)

GSV GSV 0-1 (mean
value of
SVI-green
coverage and
normalised
NDVI)

NDVI (normalised to
0-1)

Remote
sens-
ing

Landsat 8 Landsat 8

Safety
and
com-
fort

Lighting Proportion of SVI
where streetlight was
present in the POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Surrounding
building

Average pixel ratio of
built features (build-
ing, fence, wall) in the
POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Surrounding
road

Categories of sur-
rounding roads (50 m
buffer)

GIS OSM OSM 1 if primary
road, 0.66
if secondary
road, 0.33 if
tertiary road

Sidewalk Average pixel ratio of
sidewalk/pavement in
the POS

SVI
(SS)

GSV GSV 0-1 (min-
max normal-
isation)

Vandalism Average pixel ratio of
dirt track of all SVI in
the POS

SVI
(SS)

GSV GSV 0-1 (re-
verse scale
min-max
normalisa-
tion)

Use
and
user

Number
of users

Average number of
person counted in all
SVI in the POS

SVI
(OD)

GSV GSV 0-1 (min-
max normal-
isation)

Type of
activities

No. of BBQ facility/

basketball court/ bad-
minton court/ tennis
court per sqm within
POS

GIS OSM,
Data.gov.sg

OSM,
Data.gov.hk

0-1 (min-
max normal-
isation)

Continued on next page
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Continued from previous page

Dimensions Indicators Description Data
Data Source

Scale
Singapore Hong Kong

Surrounding
economic
activities

No. of POI around
POS (400 m buffer)

GIS OSM OSM 0-1 (min-
max normal-
isation)

Land use
diversity

Land use diversity in-
dex

GIS URA Planning
Department
of Hong
Kong

0-1 (min-
max normal-
isation)

5. Results

5.1. Perception modelling

5.1.1. Survey results and robustness of perception scores

Table 3: Cohen kappa coefficient of perception scores calculated from disjoint subsets of raters.

Indicator Categories
Cohen Kappa Coefficient

δ=0.5 δ=0.6 δ=0.7 δ=0.8 δ=0.9 δ=1 Mean

Accessibility 0.42 0.47 0.48 0.66 0.67 0.60 0.55

Amenities and furniture 0.17 0.13 0.24 0.52 0.44 0.35 0.31

Design and aesthetics 0.15 0.10 0.16 0.24 0.22 0.47 0.22

Environment 0.25 0.25 0.33 0.24 0.37 0.35 0.30

Safety and comfort 0.20 0.32 0.37 0.46 0.61 0.60 0.43

Use and user 0.29 0.28 0.32 0.33 0.33 0.06 0.27

Figure 4 shows the SVI that obtained high and low perception scores from the
survey. The standard deviations are calculated from different subset of the survey
results.

The result of the Cohen’s kappa coefficient test in Table 3 shows moderate
consistency between scores of disjoint subsets across the six dimensions. Among
them, the Accessibility shows the highest mean value of the kappa coefficient, and
the Design and aesthetics obtains the lowest consistency across raters. In addition,
a trend that can be observed from the table 3 is that the kappa coefficient increases
with the growth of δ. Almost all of the six dimensions achieve moderate to high
consistency between raters when the δ is greater than 0.8, this may indicate that the
scores around the median of the scale can be relatively unsound and inaccurate.

It is worth mentioning that this study have also tested the consistency of per-
ception scores with continues values using R-squared of of the Pearson correlation
between disjoint subsets follow the study by Salesses et al. (2013). Even though
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Figure 4: Examples of SVI with perception scores of six dimensions. The examples are at the
minimum and maximum boundaries to indicate a wide range situations included in this research.
Source: Google Street View.

previous research achieve high R-squared values range from 56.0% to 87.76% (Sa-
lesses et al., 2013), this study did not achieve such high consistency. Nevertheless,
considering the highly uncertainty of human perception, the moderate to high con-
sistency tested with binary values using Cohen’s kappa coefficient is acceptable. In
addition, this result has also revealed that filtering the scores in middle range may
effectively increase the quality of perception dataset for predictive model construc-
tion, which is a contribution.

5.1.2. Identifying input predictors
Table 4 summarises the adjusted R-squared under different values of factor δ

using Equation 3 to filter the noise. It can be observed from the table that when
δ is smaller than 1, the R-squared and adjusted R-squared across six dimensions
show upward trends with the increase of δ value. However, downward trends can
be observed when δ further increases to 1.2.

Table D.1 shows the result of Back Elimination method base on regression
models when δ is set as 1.0. The table lists the identified sensitive variables that
significantly correlated to the perception scores. These variables are input as in-
dependent variables in the subsequent predictive model construction. Overall, the
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adjusted R-squared are ranging from 0.187 to 0.508, the visual features explain
50.8% of variance of Amenities and furniture perception. Further descriptive anal-
ysis and tables are summarised in Appendix D.

In addition, it’s notable that the result also highlights that the dimension Design
and Aesthetics and Use and user suffer from the highest probability of unstable
scoring in perception data. Also, these two dimensions obtain lowest adjusted R-
squared values 0.216 and 0.187, respectively. This indicates that the stability of
perception scores is important for the performance of models, which reaffirms the
necessity of cleaning the unstable perception score dataset.

Table 4: R-squared of regression models under different δ value.

Indicators
δ=0 δ=0.8

Observations R² Adj. R² Observations R² Adj. R²

Accessibility 400 0.177 0.162 166 0.327 0.302

Amenities and furniture 400 0.257 0.242 170 0.408 0.382

Design and aesthetics 400 0.144 0.131 181 0.225 0.198

Environment 400 0.180 0.173 166 0.375 0.356

Safety and comfort 400 0.163 0.148 161 0.226 0.206

Use and user 400 0.149 0.132 165 0.184 0.169

Indicators
δ=1.0 δ=1.2

Observations R² Adj. R² Observations R² Adj. R²

Accessibility 117 0.356 0.321 82 0.351 0.309

Amenities and furniture 120 0.537 0.508 90 0.514 0.479

Design and aesthetics 124 0.254 0.216 87 0.251 0.214

Environment 129 0.408 0.384 94 0.448 0.423

Safety and comfort 125 0.295 0.272 89 0.275 0.250

Use and user 120 0.208 0.187 90 0.203 0.184

5.1.3. Constructed predictive model for perception scores
Feature importance scores in Figure 5 shows the selected input predictors and

the importance in the models in six dimensions. Interesting patterns can be ob-
served is that the scene classification results occupied the first place of feature
importance ranking in all Random Forest models, except for the Safety and com-
fort dimension, and the Design and aesthetics was the most closely related to the
low-level features among all six dimensions.

Figure 6a demonstrates the average accuracy scores calculated using 5-fold
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(a) Accessibility. (b) Amenities and furniture.

(c) Design and aesthetics. (d) Environment.

(e) Safety and comfort. (f) Use and user.

Figure 5: Feature importance score in the Random Forest models across six dimensions.

cross-validation. It is clear that models achieve best performance when the value
of δ is around 1.0, this is consistent with the kappa test and the regression results
in Sections 5.1.1 and Section 5.1.2.

However, previous research noted that the accuracy scores of classifier models
keep increasing when the δ value grew up to 1.8 (Zhang et al., 2018). The reason
for this gap may be due to the limitation of the sample size in this study. Based
on the experimental results, the sample size for each dimension is approximately
115-125 images (i.e. more than half of the SVI have been filtered as noise) when
the δ value is equal to 1.0 in this study. Whereas the previous study has a much
larger sample size exceeding 2000 images (Zhang et al., 2018).

Therefore, it can be concluded that the performance of training models starts
to degrade when the sample size was less than 115-125 in this study. Hence the δ
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(a) 5-fold cross-validation Mean accuracy scores. (b) 5-fold cross-validation ROC curve.

Figure 6: Evaluation of Random Forest models.

value 1.0 was selected to determine the threshold to filter the noise of perception
dataset and construct the predictive models.

Figure 6b shows the Receiver Operating Characteristic (ROC) curve of models
under the 5-fold cross-validation across six dimensions under the δ value 1.0. Of
the six indicators, Amenities and furniture achieved the highest Area under the
Curve (AUC) at 0.944, followed by Safety and comfort at 0.842. The AUC for
all models are greater than 7.21, indicating models across six dimensions achieve
acceptable to outstanding performance. This result demonstrates the usability of
the SVI in predicting perceptual scores on POS.

5.2. Mapping and comparing the subjective and objective scores

5.2.1. subjective scores from perception modelling results
Figure 7 and Figure 8 illustrate the visualisation of perceptual scores across six

dimensions using hexagonal grid map. The map provides insights into the spatial
distribution of scores in different dimensions. For example, it can be observed
that more environmentally attractive locations are usually relatively less accessible,
have poorer amenities, are more likely to be unsafe, and attract less diversity of
users. This trend is more pronounced in Singapore compared with Hong Kong.
This pattern can be further evidenced by Figure 9, where the Environment shows
negative correlation with Amenities and furniture, Safety and comfort and Use and
user.

In addition, specific hot spots and cold spots for the scoring can be identified
from maps, for example, the high accessibility scores in the downtown area and east
coast, and good environmental quality in the central catchment area in Singapore.
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Figure 7: Maps of predicted perceptual scores in public open spaces in Singapore.

Figure 10 shows the statistical distribution of predicted perceptual scores across
the six dimensions. We can observe that Singapore has a better environment, which
aligns with the Cities in a Garden policy. While Hong Kong are evaluated safer,
has better facilities and more diversity of users.

5.2.2. Objective scores
Figure 11 and Figure 12 presents the spatial distribution of objective indicator

scores. Overall, the objective scores see similar trends with subjective indicators,
with some specific differences. For example, the environmental quality of POS
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Figure 8: Maps of predicted perceptual scores in public open spaces in Hong Kong.

shows opposite pattern with aesthetic dimension in terms of spatial distribution,
which is not observed in perceptual results. And this trend is also further proven in
the correlation matrix (Figure 13), where the Design and aesthetics shows negative
correlation with Environment.

For the statistical distribution of objective scores (Figure 14), corresponding
to subjective scores in the previous section, Singapore shows a better quality in
the environment, while Hong Kong has a higher score in use and user. While in
the other four dimensions, the two cities show comparable levels of quality, this is
different from subjective scores.
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Figure 9: Correlation matrix of subjective indi-
cators (∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001).

Figure 10: Distributions of subjective indica-
tors.

Under the objective categories, sub-indicators can be calculated to further iden-
tify the specific aspects that contribute to the high or low score in each dimension
of objective indicator (Appendix E).

5.2.3. Overall distribution and comparison of subjective and objective scores
To conclude the results of subjective and objective indicators, the visualisation

using hexagonal grid maps provides insight into the quality of POS across six di-
mensions in spatial scale. From observation, the subjective and objective scores
are mostly show similar trends. Generally speaking, less urbanised areas witness
higher scores in environmental aspects, and and vice versa for accessibility, ameni-
ties, safety and user aspects. Whereas aesthetics shows different spatial pattern in
subjective and objective aspects.

For the overall statistical distribution of scores, the scores across the six dimen-
sions in Hong Kong are flatter, and those of Singapore are more peaked, this may
indicate that the quality of POS in Hong Kong is more unevenly distributed. In
comparison, the quality of POS in Singapore is more clustered in the middle range.

An interesting finding is that based on both the subjective and objective indica-
tors, POS in Singapore showed an overall higher quality than Hong Kong in terms
of Environment, while Hong Kong scores higher in the Use and user aspect. This
finding provides further evidence to previous studies on the characteristics of POS
in the two cities — as a garden city, Singapore has a more extensive green land-
scape coverage, while Hong Kong’s POS is more compactly integrated into the
urban fabric and therefore gains more user diversity (Xue et al., 2017). The result
may also suggest a direction for the future POS planning to improve shortcomings
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Figure 11: Maps of objective scores in Singapore.

for both cities.
Overall, subjective indicators show positive correlations with objective scores

across all six dimensions, all correlation coefficients are significant. The subjective
scores of Environment shows strongest correlation with objective scores (r = 0.68,
p < 0.001).

The Design and Aesthetics shows a weakest but significant correlation (r =

0.17, p < 0.001). The aesthetic quality of space is intrinsically subjective and is
relatively difficult to be described in terms of objective facts (Dhar et al., 2011;
Zhang et al., 2018).
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Figure 12: Maps of objective scores in Hong Kong.

The subjective aspect of Accessibility also witnesses a weak correlation with
the objective indicators (r = 0.25, p < 0.001). This may be because the objective
scores for measuring accessibility are predominately derived from GIS data, which
is from the bird’s eye perspective and notably different from the human perspective
using SVI. From a bird’s eye view, GIS tools capture not only the facilities within
the POS, but also those surrounding the POS, including car parks, public transport
stops, etc. However, SVI captures accessibility in individual points, such as the
presence or quality of pavements, bike lanes, etc. That is to say, these two types
of metrics emphasise different aspects of accessibility, perceptual metrics are more
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Figure 13: Correlation matrix of objective indi-
cators (∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001).

Figure 14: Distributions of objective indicators.

Figure 15: Correlation matrix between subjective and objective indicators (∗p<0.05; ∗∗p<0.01;
∗∗∗p<0.001)

closely related to human perception, while objective metrics consider across the
board.

6. Discussion

The experimental results of perception modelling demonstrated the Random
Forest Classifier for subjective indicator modelling in POS assessment achieved
acceptable to outstanding performance of models, suggesting the feasibility of us-
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ing SVI to predict the quality of POS from the human perspective. This finding
answers the first sub-question of this study, extending the scope of previous re-
search aimed at modelling the perception of urban built environment using SVI to
the off-road area (Zhang et al., 2018; Verma et al., 2020; Yao et al., 2021; Rossetti
et al., 2019; Kruse et al., 2021; Salesses et al., 2013; Cheng et al., 2017), bringing
in the subjective perspective measurement to the POS assessment, a rarity. The Co-
hen Kappa coefficient result showed acceptable to moderate consistency between
disjoint subsets for perception scores. Even though the test did not achieve high
consistency as Salesses et al. (2013) reported, the result revealed that filtering the
unstable scores in the middle range can effectively improve the perception data
quality and achieve better model performance.

This study also compared the objective and subjective indicators in POS assess-
ment, demonstrating that objective and subjective are correlated with each other but
still reflect different aspects. The Design and Aesthetics and Accessibility showed
the weakest correlations between objective and subjective indicators, revealing that
the SVI data and GIS reflect the different perspectives of urban space, and the
human perception may differ from the objectively assessed scores, especially in
the aesthetics aspect which may be highly subjective in nature as previous studies
noted (Dhar et al., 2011; Zhang et al., 2018).

In summary, this study demonstrated that Street View Imagery (SVI) and Com-
puter Vision (CV) can be used in constructing an indicator system for POS assess-
ment. In terms of automating the POS assessments, the method proposed by this re-
search adopted SVI, GIS and remote sensing data, the data collection and process-
ing can be automated by software. The method greatly improves the efficiency of
traditional fieldwork and manual assessment in previous research (Edwards et al.,
2013; Broomhall et al., 2004).

It should be noted that this study still suffered from some limitations and should
be address in the future research. Firstly, a great challenge is to secure data quality.
Survey data inevitably contain noise, human perception are unstable. Taking the
approach of filtering noise in this study as a start, future research should investigate
more on improving the quality of survey results and filtering noise. In addition, SVI
data can be inconsistent due to the varying time and locations it was taken — for
example, some photos were taken during the day and others at night — and the
sheer volume makes the issue of cleaning the data a particular challenge. Besides,
the quality of data sourced from OpenStreetMap also needs to be further explored
as it may be heterogeneous.

Secondly, bias of data is a potential factor leading to inaccurate results. Survey
respondents are not live in the cities that have been assessed in this study, which
may cause the bias of perception, this bias was also reported by Ito and Biljecki
(2021). Furthermore, SVI are biased to street (Middel et al., 2019), the uneven
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distribution resulted in the sampling data reflecting only part of the POS, which
is a particular issue that should be considered in this study due to the relatively
low coverage of the SVI in the POS area. Nevertheless, with the development
of SVI platforms, the coverage is improving (Middel et al., 2019). Meanwhile,
future research may introduce crowdsourced street view data to overcome this bias.
In addition, it is worth mentioning that the objective indicator values calculated
by SVI can only represent the characteristics of a specific point rather then the
whole space. Errors in the location and angle of observation points, etc., may
cause significant fluctuations in SVI feature data values (Wang et al., 2021), and
such bias is often overlooked and deserves further exploration in future studies.

Thirdly, current computer vision models for high-level feature extraction are
not perfectly adequate for POS auditing, many facilities in POS (e.g. the children’s
play equipment and aesthetics features) are difficult to be detected by existing mod-
els. Therefore, a future direction is to customise state-of-the-art deep learning mod-
els for higher accuracy recognition. Given the rapid deployment of deep learning
in urban planning (Yap et al., 2022b), we expect an increased performance and
usability in the future.

7. Conclusion

This study revisited the topic of POS assessment with a contemporary set of
technologies to automate and improve this perennial challenge in urban planning.
The findings provided empirical evidence for the feasibility of automating the POS
assessment using a novel method we introduced. Street-level imagery, in conjunc-
tion with GIS and remote sensing data, were used to establish a more time- and
labour-efficient framework that could potentially be scaled up and replicated in
other cities.

For the first time, perception modelling was introduced to the POS assessment,
to understand the quality of POS closer to the human perspective.

In addition, from a standpoint of data application, using SVI as the primary
data, this study explored the urban built environment with SVI of off-road areas, a
rarity in urban studies.

The takeaways of this study are:

• SVI used in this research added unparalleled insights to traditionally used
GIS or remote sensing data in comprehensive POS assessment, because it
reflects more detailed information related to the quality of POS from human
scale.

• Visual features derived from SVI are associated with the human perception
of the quality of POS. It is possible to model the quality of POS from human
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perspective using computer vision techniques and machine learning algo-
rithms.

• The objective indicators are correlated but reflected different aspects from
perception indicatorsThe different perspectives of SVI (human perspective)
and GIS or remote data (bird’s eye perspective) to some extent has led to a
discrepancy between subjective and objective scores.

• The quality of the survey results is an important factor affecting the accuracy
of the perception models. In this study, it was evidenced that the calculated
scores were more unstable in the middle range. Filtering the data in the mid-
dle band appropriately can significantly improve the accuracy of the model
training.

Assessing the quality of POS and targeting policy-making with recommenda-
tions for improvement is timely and of great importance in urban studies. Quan-
tifying the quality of POS using SVI in conjunction with GIS and remote sensing
data may be developed into a universal tool in future exploration, and this study
would serve as a first step in exploring such a tool. At the same time, future re-
search should also aim to improve the accuracy and reliability of the assessment
using SVI. Possible directions include, firstly, exploring approaches to improve the
reliability of survey results. Secondly, adopting more diverse data sources of SVI
to mitigate the bias of spatial coverage. Thirdly, experimenting with various ma-
chine learning models to improve the accuracy of predictive models as much as
possible. Meanwhile, as the accuracy improves, future research should also aim at
developing a standalone method using only SVI.
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Table A.1: Summary of indicators from previous research.

Dimension UN-Habitat (2020) Broomhall et al. (2004) Wang and Foley (2021)

Categories
of POS

Streets, sidewalks and cy-
cling lanes, squares, wa-
terfront areas, gardens and
parks

All Parks

Accessibility Parking area.
Bike lanes.
Pedestrian crossing.
Ramps for wheelchairs.
Public transports.

Walking paths or cycleways.
Placement of paths.
Access to public transport.

External accessibility.
Internal connections and
way-finding.
Entrances.

Amenities
and furni-
ture

Lighting.
Amenities for recreational .
Seating.
Waste bins.
Bike racks.
Signage and emergency
items.
Water and toilets facilities.

Children’s play equipment.
Items of play equipment.
Playground surface.
Picnic tables.
Parking facilities.
Public access toilets.
Kiosk or café.
Seating.
Club rooms or meeting
rooms.
Dog litter bags.
Taps or other water sources.
Drinking fountains.

Design and
aesthetics

Public space identity. Aesthetic features. Diversity of landscape ele-
ments.
Variety in pattern, colour,
style and textures.
Variety of topography.
Coherence and continuity of
the built environment.

Environment Biodiversity (ratio of green
coverage).
Environmental and commu-
nity resilience.
Energy efficient elements.

Beach / river foreshore.
Water features.
Trees.
Grass.
Animals.

Water regulation.
Water purification.
Climate regulation.
Carbon sequestration and
storage.
Adaptation of extreme
events.
Fauna diversity.
Flora diversity.
Habitats diversity.
Coverage of permeable
surface.
Functional connection.

Continued on next page
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Continued from previous page

Dimension UN-Habitat (2020) Broomhall et al. (2004) Wang and Foley (2021)

Safety and
comfort

Perception of safety. & level
of security.
Quality of censorial experi-
ence.
Overall comfort (waste man-
agement system,vandalism).

Shade along paths.
Litter.
Lighting.
Visibility of surrounding
roads and buildings.
Number of houses overlook
the POS.
Zebra crossing.
Pedestrian crossing.
Roads surrounding the
POS are minor roads or
cul-de-sacs.

Internal inter-visibility.
External views and scenery.

Use and
user

Number and variety of users.
Number and variety of activ-
ities.
Amount of mixed use in
frontage building.
Presence of formal and in-
formal economic activities.
Restriction rules.

Type of usage / type of activ-
ities.

Tourism.

Appendix B. Description and formulas of SHDI, SHEI and SIDI

SHDI and SIDI describe the diversity of visual features in SVI, taking into ac-
count both the homogeneity and richness of features (Nagendra, 2002). SHEI is
normalised by the richness from the SHDI, it measures the equality of the distribu-
tion of different visual features (Nagendra, 2002).

Equation B.1, B.2, B.3 are the definitions of the indices, and the richness is
calculated as the number of visual feature types in an SVI.

S HDI = −

n∑
i

Pi ∗ lnPi (B.1)

S HEI = −

∑n
i Pi ∗ lnPi

ln(n)
(B.2)

S IDI =

n∑
i

Pi ∗ Pi (B.3)

where

• n is number of visual feature types computed in semantic segmentation task.

• Pi is the proportion of ith visual features against the total pixels.
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Appendix C. Visual features extracted from SVI

Table C.1: Visual features extracted from SVI.

Visual features Descriptions

ss waterbody Ratio of pixels classified as water / waterfall, falls / lake / sea / river in the se-
mantic segmentation task.

ss tree Ratio of pixels classified as tree in the semantic segmentation task.

ss streetlight dummy Presence of pixels classified as streetlight in the semantic segmentation task.

ss sky Ratio of pixels classified as sky in the semantic segmentation task.

ss signboard dummy Presence of pixels classified as signboard in the semantic segmentation task.

ss sidewalk pavement Ratio of pixels classified as sidewalk in the semantic segmentation task.

ss seating dummy Ratio of pixels classified as bench/seat in the semantic segmentation task.

ss sculpture Ratio of pixels classified as sculpture in the semantic segmentation task.

ss road route Ratio of pixels classified as road/route in the semantic segmentation task.

ss pole Ratio of pixels classified as pole in the semantic segmentation task.

ss green Ratio of pixels classified as tree/grass/plant, flora, plant life in the semantic seg-
mentation task.

ss grass Ratio of pixels classified as grass in the semantic segmentation task.

ss fence fencing Ratio of pixels classified as fence/fencing in the semantic segmentation task.

ss earth ground Ratio of pixels classified as earth/ground in the semantic segmentation task.

ss dustbin dummy Presence of pixels classified as dustbin in the semantic segmentation task.

ss building edifice Ratio of pixels classified as building/edifice in the semantic segmentation task.

simpson diversity The Simpson’s diversity index calculated from the semantic segmentation
patches.

shannon diversity The Shannon’s diversity index (Shannon, 1948) calculated from the semantic
segmentation patches.

shannon evenness The Shannon’s evenness index (Shannon, 1948) calculated from the semantic
segmentation patches.

richness The richness index (Spellerberg and Fedor, 2003) calculated from semantic seg-
mentation patches.

sc slum Probability of an SVI being classified as slum in the scene classification task.

sc playground Probability of an SVI being classified as playground in the scene classification
task.

sc park Probability of an SVI being classified as park/amusement park in the scene clas-
sification task.

sc mountain Probability of an SVI being classified as mountain / mountain / river / valley /

mountain snowy / creek / field, wild / marsh / lake / natural / canyon path in the
scene classification task.

Continued on next page

36



Continued from previous page

Visual features Descriptions

sc market Probability of an SVI being classified as drugstore / department store / shopping
mall, indoor / supermarket / market outdoor / pet shop in the scene classification
task.

sc garden Probability of an SVI being classified as roof garden/topiary garden/botanical
garden in the scene classification task.

sc forest Probability of an SVI being classified as rainforest/forest, broadleaf in the scene
classification task.

sc driveway Probability of an SVI being classified as driveway, broadleaf in the scene classi-
fication task.

sc badlands Probability of an SVI being classified as badlands, broadleaf in the scene classi-
fication task.

od truck Number of truck being detected in the objective detection task.

od person Number of person being detected in the objective detection task.

od car Number of car being detected in the objective detection task.

llf saturation std Standard deviation of saturation values for all pixels.

llf saturation mean Mean of saturation values for all pixels.

llf hue std Standard deviation of hue values for all pixels.

llf hue mean Mean of hue values for all pixels.

llf edge ratio Number of pixels classified as edge.

llf edge no pixel Ratio of pixels classified as edge.

llf colourfulness Colourfulness metric (Hasler and Suesstrunk, 2003) calculated from SVI.

llf brightness std Standard deviation of hue values for all pixels.

llf brightness mean Mean of hue values for all pixels.

llf blob no Number of blobs detected in SVI.

Appendix D. Relationship between visual features and human perceptual scores

Overall, visual feature ss sidewalk pavement is significant and positively cor-
related with all indicator dimensions except Environment, indicating that the pedes-
trian facilities contribute to the quality of POS except for the environmental as-
pect. In comparison, visual variable sc mountain shows a significant and negative
correlation with all indicators except Environment, indicating that POS classified
with higher probability as mountain are generally of worse quality except Envi-
ronment dimension. The visual feature ss streetlight dummy, ss seating dummy
and ss building edifice share the same trend, i.e. a significant positive correlation
with the four dimensions, namely Accessibility, Amenities and furniture, Safety and
comfort, Use and users, this is reasonable because these features are all relevant to
the physical facilities of POS.
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Figure D.1: Pearson correlation coefficients matrix between the survey scores and visual feature
statistics (∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001).
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Table D.1: Regression models under the δ value of 1.0.

Accessibility Amenities Aesthetics Environment Safety/

Comfort
Use/user

Intercept 4.593∗∗∗ 4.351∗∗∗ 2.791∗∗∗ 3.982∗∗∗ 4.327∗∗∗ 4.308∗∗∗

(0.178) (0.104) (0.483) (0.114) (0.079) (0.084)
llf edge ratio -2.289∗

(1.050)
llf hue mean 0.012∗

(0.005)
llf saturation std 0.015∗∗

(0.006)
od person 0.035∗∗∗

(0.010)
od truck -0.220∗ -0.207∗

(0.098) (0.082)
sc driveway 3.154∗

(1.255)
sc forest -5.420∗∗ -3.903∗∗

(1.771) (1.481)
sc garden 1.120∗ 1.843∗∗∗

(0.483) (0.410)
sc mountain -1.095∗ -1.461∗∗∗ -1.515∗ -1.050∗

(0.539) (0.411) (0.635) (0.482)
sc park 1.093∗

(0.467)
ss building edifice 1.454∗∗

(0.447)
ss dustbin dummy 0.301∗

(0.135)
ss earth ground -1.276∗∗

(0.479)
ss fence fencing -3.455∗

(1.704)
ss grass 1.596∗∗ 1.279∗∗

(0.483) (0.387)
ss pole 74.365∗∗∗

(21.167)
ss seating dummy 0.258∗

(0.123)
ss sidewalk pavement 1.478∗∗ 1.471∗∗ 0.992∗ 1.518∗∗

(0.504) (0.545) (0.480) (0.465)
ss tree 1.797∗∗∗

(0.348)
ss waterbody -2.114∗ 2.518∗

(0.935) (1.137)

Observations 117 120 124 129 125 120
R2 0.356 0.537 0.254 0.408 0.295 0.208
Adjusted R2 0.321 0.508 0.216 0.384 0.272 0.187
Residual Std. Error 0.626(df =

110)
0.558(df =

112)
0.656(df =

117)
0.567(df =

123)
0.590(df =

120)
0.635(df =

116)
F Statistic 10.140∗∗∗

(df = 6.0;
110.0)

18.521∗∗∗

(df = 7.0;
112.0)

6.637∗∗∗

(df = 6.0;
117.0)

16.952∗∗∗

(df = 5.0;
123.0)

12.559∗∗∗

(df = 4.0;
120.0)

10.125∗∗∗

(df = 3.0;
116.0)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
(The values in brackets show the variance of variables)
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Some visual features contribute in particular to a specific aspect of POS quality.
For example, there is a moderate and positive correlation between visual feature
ss green and indicator Environment (r = 0.33, p < 0.001), which is in line with
intuition. sc forest is negatively correlated to Accessibility (r = 0.29, p < 0.0001).
indicating those with higher probability as forest are perceived have bad accessi-
bility. The od person shows positive correlation with dimension Use and user (r =

0.27, p < 0.001).
Of the six indicator dimensions, Design and aesthetics is less correlated with

visual characteristics, however, it is also the indicator that is associated closest with
lower-level characteristics. It was significantly and positively correlated with the
mean and standard deviation of saturation, the mean of hue, the colourfulness and
the standard deviation of brightness.

Appendix E. Analysis of sub-categories of objective indicators

Table E.1 summarises the mean value and standard deviation of the sub-indicators.
From the table, we can identify the specific aspect that contribute to the high or low
score in each dimension of objective indicator. For example, it can be observed
that Singapore has more green coverage and higher NDVI value, contributing to a
higher average score of Environment dimension shown in Figure 14. For the sub-
indicators under Use and user dimension, Hong Kong got a higher mean value in
all categories, hence an overall higher score of the Use and user dimension can be
observed from Figure 14 compared with Singapore.
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Table E.1: Mean value and standard deviation of sub-indicators of objective indicators.

Sub-indicators
Hong Kong Singapore

Mean Std. Dev. Mean Std. Dev.

Parking area 0.89 0.313 0.936 0.246

Bike lanes 0.262 0.44 0.62 0.486

Public transport (bus stops) 0.055 0.094 0.012 0.012

Sidewalk 0.179 0.185 0.076 0.088

Fence 0.886 0.128 0.937 0.089

Dust bins 0.224 0.302 0.283 0.295

Signage and emergency items 0.674 0.351 0.679 0.29

Seating 0.267 0.325 0.196 0.238

Public access toilet 0.03 0.078 0.004 0.015

Lighting 0.902 0.297 0.976 0.155

Diversity of landscape elements 0.763 0.114 0.763 0.113

Aesthetic features 0.203 0.3 0.131 0.207

Variety in colour (colourfulness) 0.233 0.121 0.256 0.084

Green coverage (SVI) 0.317 0.177 0.495 0.171

Green coverage (NDVI) 0.367 0.204 0.548 0.165

Life and animals 0.002 0.037 0.002 0.017

Water body 0.03 0.079 0.018 0.055

Surrounding building 0.295 0.176 0.176 0.129

Surrounding road cate 0.502 0.382 0.574 0.437

Vandalism 0.999 0.023 0.994 0.057

Number of users 0.122 0.154 0.022 0.05

Type of activities 0.031 0.091 0.007 0.027

Surrounding economic activities 0.023 0.064 0.004 0.01

Land use diversity 0.766 0.126 0.627 0.142
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