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Abstract

Building Energy Modeling tools help forecast the energy performance of buildings. Urban en-
ergy models (UBEMs) emerged as important instruments to analyze the energy performance of
buildings aggregated at different spatial resolutions, from the building level to the district level.
They heavily rely on available data on geometries and measurements to create accurately cali-
brated energy models. However, limited research has been conducted to understand the impact
of spatial and temporal resolution on the simulation results because of the difficulty of compar-
ing results and not having a standardized procedure to report simulation errors. We review the
literature on UBEM validation compared to measured energy data and show the discrepancies in
the reporting accuracy. We articulate the need for consistent reporting on model accuracy and in-
troduce a multi-dimensional Level of Detail (LoD) specification for UBEM, including geometry,
thermal zoning, and spatio-temporal resolution of the measured data used to calibrate the mod-
els. Using a university campus with 70 buildings as an extensive case study, we demonstrate the
performance of Bayesian calibration from the building level to the aggregated level. Our results
suggest that the accuracy of urban energy prediction with annual temporal resolution can be sig-
nificantly increased if calibration is performed by using building-level data. However, whenever
privacy is a concern, then the data should be provided by aggregating them based on primary use
type. Additionally, using monthly data to calibrate uncertain input parameters is not improving
the accuracy of the models because the obtained posterior distributions for the selected param-
eters are not informative for monthly data. To improve this shortcoming, we suggest seasonal
calibration, which is computationally costly.

Keywords: Urban Energy Modeling, Bayesian Calibration, Temporal and Spatial Resolution,
Level of Detail, Energy modeling, Sustainable urban planning

1. Introduction

There are over 7 billion people globally, and about 60% of them live in urban areas. Accord-
ing to United Nations [1], the share of people living in urban areas is expected to increase to over
70% by 2050, and the global population is projected to reach 10 billion. Therefore, urbanization
perpetually remains an important issue, mainly because cities are responsible for 70% of global
Preprint submitted to Elsevier May 26, 2023



energy consumption, which will only increase in the future. Building operation and construction
consume 36% of global energy use and produce 39% of energy-related CO2 emissions [2]. Var-
ious studies have been conducted to understand the individual energy contributions of different
types of buildings([3, 4, 5, 6, 7, 8]). However, it is essential to understand the relationship of
each building with its surroundings, which has spurred the development of urban energy models.

Furthermore, city planners need to analyze the building energy demand for building stock
and assess their future energy policies. Researchers perform building energy simulations at an
urban scale as a helpful tool. With various urban building energy modeling (UBEM) software
packages available, energy simulation tools are easy to employ and help researchers estimate the
potential to improve building energy performance at a large scale for retrofitting. They are also
helpful in discussing reconstruction options, system performance optimization, exploring options
for energy supply systems, and policy assessment [9, 10, 11, 12]. Yet, due to the complexity of
urban energy systems and required resources, bettering urban energy performance seems quite
challenging [13, 14, 15].

Typical urban energy simulation studies use simplified models, such as archetypes for build-
ings, and show the impact on refurbishment only concerning typical weather data while reducing
computational time at the cost of accuracy. A short computational time is especially important
if the model is to be used in an optimization study or forecasting scenarios over a long period in
the future, such as several years [16]. However, the existing UBEM should represent the actual
behavior. This outlook can only be discussed by using measured data and calibration, which is a
necessary step to reduce the uncertainties on the input parameters of UBEM. Uncertain param-
eters are generally chosen using statistical information and simulation results for developing a
reliable and accurate UBEM [17, 18].

Calibration of uncertain parameters of UBEM can be performed at multiple temporal and
spatial resolutions such as annual, monthly, or hourly on the building, neighborhood, or city. In
early review papers in UBEM, it is clearly observed that collecting all the necessary data for
validation or calibration processes because of privacy concerns, creating a sufficiently detailed
model, and performing required simulations because of computational cost remained challenges
faced regardless of the urban energy modeling approach [19, 20, 21]. Although most of these
studies have been performed to overcome the stated challenges, they have not provided detailed
information on the accuracy of their methodology. Some studies [22, 23, 24, 25, 26] have dis-
cussed how necessary it is to provide detailed input data, temporal resolution, or spatial resolution
to obtain consistent results. Their work indicates that we cannot draw a direct relationship be-
tween increasing the resolution and complexity of the model inputs [27] from the case studies in
the literature.

There is a clear need for consistent reporting in UBEM to make these existing and future
studies comparable and discuss how different levels of detail in modeling and resolution of the
used measured data affect our reported error on the urban scale. The objective of this paper is
threefold. First, we introduce a multi-dimensional level of detail description to describe possible
spatio-temporal resolutions for UBEM. Second, we review relevant work in UBEM and their
validation/calibration methodology. Third, we use introduced multi-dimensional LoDs to inves-
tigate the impact of the spatio-temporal resolution on Bayesian calibration in a case study of 70
buildings. The paper is structured as follows. Section 2 reviews the levels of detail and how they
are used in the literature for geometry, thermal zoning, and spatial and temporal resolution. We
then introduce a general, multi-dimensional definition for LoDs. In Section 3, we used the intro-
duced LoDs for UBEM to systematically analyze simulation errors in the literature. In Section
4, we discuss commonly used Bayesian Calibration methodology and how we implement it on
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different levels for the case study of the University Campus. Finally, in section 5, we provide our
results, and in Section 6, we discuss our results to answer the following questions:

1. What are the relevant and frequently used levels of detail in UBEM?

2. What is the level of detail for spatial and temporal resolution necessary to validate the
urban energy model with a deterministic approach? How the reported error differs for
each approach?

3. How does performing Bayesian calibration with aggregated data improve the predictions
of cooling demand? Which approach gives the closest results to the building level?

4. How should we report our results so everyone can benefit from the accuracy of the method-
ology discussed?

2. Introducing a multi-dimensional Level of Detail (LoD)

Urban energy models are used to identify smart energy solutions for sustainable cities and
policies and support energy and environmental goals. Therefore, these models provide insights to
inform city decision-making on sustainability, efficiency, and resilience. However, urban energy
modeling is often over-parameterized. It requires a tremendous amount of time and resources
to complete accurately as it involves the calibration of simulation outputs with measured energy
data for accurate urban modeling. Although the advances in sensing technologies and emerg-
ing smart city initiatives enabled the streaming of structured and unstructured data to describe
buildings and their surroundings, the availability of such data to create energy models is limited
at the building level because of privacy concerns. But the question is, how does this streaming
data change the accuracy of our urban energy models? how should we report our results so they
would be comparable to future studies with different methodologies? It is essential to understand
the level of detail of model inputs to create the Urban Building Energy Modeling (UBEM) and
spatial and temporal resolution of the streamed data on the model accuracy while balancing the
efforts spent on model development while maintaining the reliability of the results.

An improved specification of Level of Detail (LoD) in 3D city modeling is first introduced
by Biljecki et al. (2016) [28], which includes a framework that defines granularity in detail
provided by the geometric model. Mathur et al. (2021) [29] also use the same LoDs for the
urban energy modeling literature. Oraiopoulos and Howard (2022) [27] recent review of the
literature performed in UBEM shows that the error reported in the literature is not reported
consistently, and thus reporting the accuracy for simplifications is essential. Some studies have
performed Bayesian calibration for buildings with simpler geometry using building-level metered
data [24, 30, 31]. On the contrary, some researchers conducted it using only aggregated data
while simulation results were obtained using very detailed geometry [32, 33].

Some studies have reported that oversimplification of urban data and modeling approaches
might cause large discrepancies. Still, very detailed inputs and metered data are not always
necessary to obtain consistent results from a UBEM [25, 34, 26]. Yet, it is hard to conclude
this without comparing consistently reported errors from presented case studies. It is clear that
there is a need for this subset of LoDs for the area of energy modeling to provide comparable
methodologies.

3



Figure 1: Levels of Detail for thermal zone layer used in urban energy modeling literature(Detailed explanations for each
acronym can be found in Appendix A.).

In order to compare these case studies and discuss methodologies for different granularity
and data segmentation,we included the details for four layers of Geometry, Zoning, Spatial Res-
olution, and Temporal Resolution defined by Mathur et al. (2021) [29] to discuss the errors for
different approaches in the calibrated/validated UBEMs. Based on the provided literature review,
we present a subset of LoDs for the geometry (Figure 2), thermal zone (Figure 1), temporal, and
spatial resolution categories for urban energy modeling (Appendix A: Introduced LoDs). In the
review, we use this developed specification to determine the LoD used in each of the reviewed
studies.

3. Systematic Literature Review using Multi-dimensional LoDs

In this section, we summarize research work related to large-scale energy modeling ap-
proaches with case studies in the literature by using introduced multi-dimensional LoDs. The
primary databases for the literature searches were Scopus and Google Scholar. The searches
were completed based on the title, abstract, and keywords containing the following search for-
mulas:

1. (urban OR city) AND (large OR scale) AND (building OR housing) AND (energy OR
electricity)

2. (urban OR city) AND (heating OR cooling) AND (calibration OR validation)

3. (urban OR city) AND (modeling OR model) AND (calibration) AND (validation)

4. (urban OR city) AND (energy OR electricity) AND (calibration AND/OR validation)

Finally, we review 60 journal papers and include 23 articles with either validation or calibration
performed using measured data on the bottom-up physics-based tools created for urban applica-
tions. Bottom-up models provide energy insights from the building level to the city level. We
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focus on physics-based tools, known as engineering or simulation methods based on thermo-
dynamic simulations because they capture the entire dynamic of high-resolution building per-
formance [20]. The presented literature papers have either applied validation or calibration to
demonstrate their prediction accuracy. Thirty percent of the studies have used the validation pro-
cess for the predicted energy-related data, 58% of them have applied calibration, and 55% of the
calibrations are listed as Bayesian Calibration.

We organize the literature tables ( Table 1 and 2 as follows: modeling tool, use of measured
data, details of geometry, details of thermal zoning, details of temporal resolution, details of
spatial resolution, number of buildings, primary use type, error metrics, and accuracy. The per-
formed literature review in our study includes error and accuracy to compare the case studies
with calibration or validation. The complexity of LoD is defined from 0 to n, with zero being
the most straightforward and ‘n’ being the most complex level of detail. The following section
describes the details for the given LoDs. These subset LoDs can be increased based on future
studies by considering more attributes under each layer.

The accuracy of UBEM refers to the model output error when compared to measured data.
Although the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE)
Guideline 14-2002 has recommendations (NMBE and CVRMSE) on energy and demand saving
for error reporting, it has not been applied until recently [32, 43, 42, 36, 24]. Among these ob-
served error measures, non-normalized measures cannot be used to compare studies. From this
literature review, it is clearly seen that the current ranges for the model accuracy in the UBEM
studies are not reported similarly. Therefore, it is difficult to discuss them regarding the accu-
racy of applied methodologies. Furthermore, the assumptions made by the modeler in UBEMs
regarding all model characterizations, such as geometry and thermal zone, might have a consid-
erable impact on the results and require more detailed documentation, as discussed in the table 1
and 2.

3.1. Geometry

According to the review, G/LOD1 is the most common approach applied for geometry,
mainly for data availability. However, the impact of geometry input in urban energy model-
ing has hardly been discussed. To the extent of our knowledge, only Faure et al. (2022) [22]
addressed the impact of G/LOD on the model accuracy for urban energy modeling by using
G/LOD1 with height details (G/LOD1.2.1) and without them (G/LOD1.1.1) and concluded that
for district-scale analysis, G/LOD1.2.1 might not be required. They also stated that for energy
conversation measures at the building level, it would be more accurate to perform LOD1.2.1.
Because of the lack of data challenge, G/LOD2 and G/LOD3 are barely discussed for UBEM.
Nouvel et al. (2017) [44] compared the model accuracy and observed an increase of 15–20%
in the result accuracy for buildings with pitched roofs and attics while modeling a 3D geome-
try, G/LOD2.2.0, as compared to 2.5D extrusion G/LOD1.2.0 geometry. Risch et al .[24] also
calibrated three office buildings located in Germany with different geometries and levels of infor-
mation. They provide two other metrics to put their results in the context of ASHRAE Guideline
14 [48]). Detailing the geometry increase the Coefficient of Variation of the Root Mean Squared
Error (CV(RMSE)) for one building within three compared buildings.

3.2. Thermal Zone

The general approach for thermal zoning is TZ/LOD1, thermal zone per floor, followed by
TZ/LOD0 single zoning. Chen and Hong (2018) [25] created UBEM with 940 buildings and
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Figure 2: Levels of Detail for geometries used in urban energy modeling literature (Detailed explanations for each
acronym can be found in Appendix A.)
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Table 1: Details of UBEM studies- Input and Metered Data used for Validation and Calibration.
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Table 2: Details of UBEM studies- Input and Metered Data used for Validation and Calibration-Continue
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used annual measured data on the building level to validate their model. They also compared
the model accuracy on two different zoning approaches, TZ/LOD1 and TZ/LOD2.1. With the
zoning approach, their results demonstrated improved accuracy of predicted cooling and heating
loads by 7.5% and 16.9%, respectively. Faure et al. (2022) [22] also discussed the impact of
thermal zoning on the model accuracy by normalizing results per heated area to compare them
easily for urban energy modeling and found that a single zone option, (TZ/LOD0) for heated
and non-heated volumes should be avoided while having one zone per floor (TZ/LOD1) is still
acceptable. They presented the results as a change in thermal energy demand intensity (TEDI)
1 and discussed change in the level of geometry detailed led up to 20% TEDI on the building
level, but it remained below 1% for the district level. Thus, they recommend using more detailed
geometry when the impact of energy conversation measures is discussed on the building level.

3.3. Spatial and Temporal Resolution

Urban building energy modeling tools can be used to predict energy demand on different
spatial and temporal resolutions (SR: building level, block level, neighborhood level, city level,
and TR: hourly, daily, weekly, monthly, annual), and literature shows that buildings in urban
energy modeling are calibrated and validated against measured energy use data at different spatio-
temporal resolutions, as well. However, the definition of spatial resolution in the late literature
is inconsistent. While Oraiopoulos et al. (2022) [27] explain it as an error of the output, which
is calculated whether for a cluster of buildings (aggregated) or on a per building basis, Mathur
et al.(2021) [29] discuss the spatial resolution on three granularity as archetype level, aggregate
level, and building level. Many models employ coarser resolutions (archetype or aggregated)
than desired when appropriate spatial data is unavailable. Therefore, we presented different
spatial resolutions for measured data used in the validation and calibration processes, as seen in
the section Appendix A.1.3. This definition can be enlarged depending on the attributes added
to the aggregation approaches.

The most common temporal resolution used to report model accuracy is the TR/LOD0 report-
ing error for annual temporal resolution. Nutkiewicz et al. (2018) [42] performed validation by
using TR/LOD1, TR/LOD2, and TR/LOD3 and found that the model accuracy decreases when
validation is performed for TR/LOD3 with hourly data, yet daily and monthly data does not show
considerable differences in terms of model accuracy. Sokol et al. [32] propose a probabilistic
approach to define archetypes by defining the most uncertain parameters as prior probability
distributions and discussing the model accuracy on two different temporal resolutions. Their
findings show that the model’s accuracy is higher when monthly data is used instead of annual
data to perform Bayesian calibration.

Wate and Coors (2015) [49] have shown the spatial resolution as aggregated to disaggregated
data (Building Level, Urban Level, and Regional Level) in their early urban energy modeling
study. Aggregated demand data (SR/LOD2) is the most frequently used in the absence of gran-
ular data. Typically, sample buildings’ annual metered energy bills are aggregated based on
location, zip code, block level, or urban level and used for calibration and validation depending
on the spatial resolution of the model. Cerezo et al. (2016) used total metered energy consump-
tion for archetype use and age, aggregated data at zip code level from all buildings, and reported
average errors of 5–20% for SR/LOD1 archetype level and average 40% for SR/LOD2.0 aggre-
gate level. Archetype level is the second most common method used in the literature. This review
observes that as the spatial resolution changes from SR/LOD1 to SR/LOD3, the reported error
increases [22, 33, 43, 32].
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Nine out of 23 case studies discussed building-level temporal resolution(highest granularity),
and only four provided results for each building [43, 47, 24, 22]. However, these studies have a
limited number of buildings(less than five buildings), and only Faure et al. (2022) [22] discuss
33 buildings at once.

Our study discussed the Bayesian methodology applied in many UBEM studies while we
evaluated the performance of the methodology from the building level to aggregated level. Re-
ports with aggregated data tend to average the error when analyzing aggregate demands at any
annual scale. As seen in the provided literature Table 1 and 2, these reports are relatively low
errors in the 1% and 15% range. Provided platforms are generally validated with archetype or
aggregated level data; however, it is never discussed how much error in predicting demands these
simplifications introduce on the building level.

4. Bayesian Calibration

We first discuss the level of details for geometry, thermal zoning, and spatial and temporal
resolution in the literature and provide a sub-level of details for each layer. Then we discuss the
modeling errors to predict cooling demand before and after Bayesian calibration is performed
for the model by using a different spatial and temporal resolution of the metered data. The case
study is located in Austin, Texas, where cooling demand has a higher portion of total energy
consumption. Therefore, we only calibrate the model for the cooling demand. We investigate the
impact of the choices made at the UBEM calibration stage, namely around the LoD of spatial and
temporal resolution. We quantify the simulation error for aggregated and building-level spatial
resolutions by using multiple spatio-temporal measured data to calibrate the model inputs.

The data collection and modeling process is broken into the following steps in this study, as
seen in the schematic (Figure 3). First, we collected building and cooling demand data for each
building on the campus. Then we defined baseline parameters for the buildings in the energy
model. Next, using measured data with different temporal resolutions, we calibrate each build-
ing with Bayesian methodology with two different temporal resolutions. Finally, we compare
results with the calibration performed by aggregating the data and calibrating the buildings with
aggregated data instead of building-level data to understand how the CV(RMSE) differs from
higher resolution to lower resolution.

4.1. Data Preparation- Urban-Scale Building Energy Simulation-CitySim

The inputs provided for urban energy modeling tools primarily depend on the adapted simu-
lation engine and modeling purpose. Yet, they can be grouped into the following data categories:
weather, geometry, construction, energy system, operation, and energy consumption. The en-
gine we use in this study is a bottom-up physics-based urban-scale building energy simulation
platform, CitySim, a C++ based command-line integrated solver initially developed at the So-
lar Energy and Building Physics Laboratory (LESO-PB) of Ecole Polytechnique Fédérale de
Lausanne (EPFL). The CitySim solver has been released open-source since 2020 under BSD-
3 Clause license on GitHub1. In addition, we took a university campus located in downtown
Austin (UT’s Main Campus) as a case study to discuss the accuracy of the proposed Bayesian
Methodology with different spatial and temporal resolutions.

1http://www.github.com/kaemco/CitySim-Solver
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Figure 3: Schematic of the Bayesian Calibration and Modeling Process.
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Figure 4: Sample campus building represented with (a) Building Footprint and (b) 3D Model in Rhino, (c) CitySim
Energy Model (G/LOD1.2.2 and TZ/LOD0) in comparison to (d) a Google Earth view.

Figure 5: Example of creating UBEM (from left to right, the whole process of creating CitySim model, openings such as
window to wall ratio have been assigned in the xml file; thus they are not visible on the graphics).

4.1.1. Building Geometry
The complete data integration and 3D city model enrichment process involve several steps.

It is accomplished by combining multiple tools, such as OpenStreetMap (OSM), Geometry pro-
cessing in Rhinoceros 3D software with Grasshopper plugin, and Python script as seen in Figure
3. Accessible geographical information for University of Texas at Austin (UT)’s Main campus
buildings in the form of 2.5D data OSM is pre-processed through Rhino in order to define the
geographical coordinates of the floor plan vertices. Building heights for 123 buildings on cam-
pus have been collected from available UT’s Architectural drawings, e.g., elevations. When the
data was not available, the height of the buildings was calculated by assuming that the height of
each floor was 3 meters (10 feet) and multiplied by the number of floors available, a standard
approach in the field [50]. Based on the building floor plan extracted from the .osm file and the
building height, a single 3D thermal zone for each building is created, taking all floors.

2.5D data of buildings define building size, shape, absolute geographical location, and orien-
tation of each building. Figure 5 shows the 2D footprint of an example building and its neighbor-
ing buildings (shading objects colored black) and the resulting XML file generated by Rhino for
CitySim, a bottom-up physics-based UBEM tool (right). All buildings have been modeled as a
level of detail 1 (G/LOD1.1.1) block model, the coarsest volumetric representation defined in the
Open Geospatial Consortium CityGML standard [51] with height differences and opening details
as illustrated in the provided sample building (Figure 4). To reduce simulation complexity, each
building in this work is modeled as a single thermal zone to simplify geometric processing com-
plexity (TZ/LOD0). It is important to state that CitySim provides an option to create multiple
zones [52].

4.1.2. Building Characteristics
Non-geometric characteristics are also required as input to create an energy model of the

existing buildings, and the information on the building construction year, primary use type, and
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Table 3: Baseline U-values in different construction periods for residential and non-residential constructions. (* when a
minimum requirement changes for non-residential buildings).

Parameters Pre 1980 1980-2004 2004-2007 2007-2013 Post 2013
Wall U-Value

[W/m2K] 1.35 0.85 0.44 0.30/0.44* 0.30/0.35*

Floor U-Value
[W/m2K] 1.21/0.96* 1.21/0.96* 0.79/0.60* 0.60/0.50* 0.60/0.50*

Roof U-Value
[W/m2K] 0.57 0.38 0.30 0.30 0.23

Window U-Value
[W/m2K] 1.22 1.22 1.22 0.72 0.60

Window SHGC 0.54 0.25 0.25 0.25 0.25

Table 4: Defined baseline values and uncertainty ranges of simulation inputs [53, 54, 55, 56, 57, 58].

Variables Units Baseline Uncertainty Selected Values

Average walls U-value W/m2K Table 3 U(0.1-3) Calibrated
Floor U-value W/m2K Table 3 U(0.1-3) Table 3
Roof U-value W/m2K Table 3 U(0.1-3) Calibrated

Average windows U-value W/m2K Table 3 U(0.5-5) Calibrated
Windows average g-value - Table 3 U(0.1-0.8) Table 3

Min. Temperature set-point °C 18 U(16-20) 18
Max. Temperature set-point °C 22 U(20-24) Calibrated

Infiltration rate h−1 0.5 U(0.1-1) Calibrated
Average walls short-wave ref. - 0.3 U(0.1-0.6) 0.3

Window to Wall Ratio - Measured Measured Measured
Average roofs short-wave ref. - 0.3 U(0.1-0.6) 0.3

Average ground short-wave ref. - 0.3 U(0.1-0.6) 0.3

glazing ratios were available at the building level. Therefore, input information for construction,
type and usage, and glazing ratios have been collected for each building. The detailed informa-
tion on the Window to Wall Ratio (WWR) is collected for each orientation (East, West, South,
North) from building elevations when they are available; otherwise, Google Earth is used for
WWR prediction. Only 13 buildings out of 123 buildings do not have drawings available. For
buildings with adjacent buildings, the WWR has been defined as zero for the orientation with
the adjacent building. Construction methods and thus the resulting heat transfer coefficients (U-
values) of building elements have changed considerably over time. Therefore, a categorization is
adopted in the model based on ASHRAE 90.1 Standards release years. Thus, we create construc-
tion data referring to the thermal transmittance coefficient of roofs, walls, floors, and windows;
the solar energy transmittance of window glazing (g-value of the window). It is impractical to
collect specific construction parameters for each building by collecting minimum requirements
for given years based on ASHRAE 90.1 standards [48] for five different construction periods.

In our model, we also defined the cooling source as a heat pump with minimum and maxi-
mum temperatures of 5 and 20, respectively to cover the maximum load in the buildings related
to the indoor temperature setting. Pmax, representing the electrical capacity of the Heat Pump,
is chosen to cover the largest load and the same for each building.
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Figure 6: Occupancy Schedules [60].

4.1.3. Occupancy Loads
The mappings between space type and ASHRAE standard 60.2 [48], the resulting occupancy

density values for individual space types listed in UT space use are presented in Table 5. Space
used for each building is obtained from UT-interactive maps that are available to UT affiliates
[59]. In order to reflect building diversity in terms of occupant densities, we assigned a number
of occupancy to each building which has been calculated using standards for a person/ft2 defined
in ASHRAE 62.1-2013 Occupancy density calculation Table 6.2.2.1 and the spaces for different
purposes by multiplying by the number of people/per floor area of 100 m2( 1070 ft2) (seen in
table 5 [48]).

Table 5 shows the library as the sum of the area of the library stack room, open Stack reading
room, reading/study room, and library processing room. The Laboratory area has been calculated
as the sum of the class laboratory and research laboratory. Finally, the Athletic Service and
Recreation facility area are calculated by the gym area, sports arena, and play area. We also
created occupancy schedules for five different primary use types to reflect the stochastic occupant
presence and activity patterns 6 based on Ahmed et al. (2016) study [60]. It shows the occupancy
presence variation between 0 (absence) and 1 (presence). For the non-operational hours, such
as after working hours and on the weekend, the value is given as 0. The profiles are given on
an hourly basis, and for some hours, it shows a fractional value. For instance, the occupancy
rate from 10 am to 11 am is 0.7, indicating that the building reaches 70% of full occupancy
between 10:00–11:00.We assume that the mechanical rooms and circulation areas (stairways
and elevators) would be empty most of the time and assigned them occupancy density values of
zero, and the internal gains from occupants were calculated assuming 80 W of heat per person of
sensible heat for all buildings [48]. The heated area that is used to compare simulation to metered
data is found by summing the total size of each space, except mechanical rooms, circulation, and
alteration areas.

4.2. Temporal Resolution of Campus Metered Data

Utilities and Energy Management of UT, at Austin, has been recording energy consump-
tion data for most of the buildings on campus. In this study, we included three years of energy
consumption records (hourly) from 2017 to 2019 at the building level and used them to vali-
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Table 5: Occupancy density used to calculate occupancy for each building [48].

List of Space Definitions
Used at UT campus

Person / 100 m2 List of Space Definitions
Used at UT campus

Person / 100 m2

Office Space 5 Public Restroom 1

Conference Room 50
General-Purpose

Classroom
65

Library 10 Laboratories 25
Study
Sleep/Dormitory
Bedroom

10
Athletic Service and

Recreation facility
7

Daycare 25
Assembly Facilities

(Conference, dining,
gym)

100

Multi-use
Cafeteria/Dining

100
Lounge-Public

Assembly Lobbies
150

Exhibition Facilities
(museum)

40 Storage -

Locker room 2 Radio 25
Data Processing 1 Shop Facilities 15
Nurses Station,
Surgery, Healthcare

200

date simulation results on hourly, weekly, monthly, and annual levels for cooling consumption.
Calibration was only performed by using annual data.

4.3. Different Spatial Resolution of Campus Buildings

In this study, we predict the cooling consumption for 70 buildings by using CitySim. We
perform the Bayesian calibration process for five different spatial resolutions by using the annual
temporal resolution of metered data, as seen in Figure 3. Spatial resolution is explained as the
error of the output has been calculated for a cluster of buildings based on building properties
(archetype), or for a cluster of buildings based on their location (neighborhood, city), or at a
building scale, [27, 29]. For each spatial resolution, groups have been created based on available
data, and we excluded some groups when there were less than three buildings in each group.
Finally, we perform Bayesian calibration by using two different levels of spatial resolution for
the measured data. The scenarios presented in this study can be listed as follows:

• SR/LOD2.0 Aggregated Level. We use aggregated annual and monthly data of buildings
on the location, UT’ Campus while calibrating each building’s unknown input parameters
to predict cooling demand realistically. The error has been discussed on building levels
for different temporal resolutions. This aggregation methodology is commonly used to
validate the UBEMs.
• SR/LOD2.1 Aggregated Level. We use aggregated annual and monthly data of buildings

on the location, UT’ Campus, grouped by their construction year on the location UT’
Campus while calibrating each building’s unknown input parameters to predict cooling
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demand realistically. The error has been discussed on building levels for different temporal
resolutions. (Construction year groups: Before 1980, 1980-2004, 2004-2007, 2007-2013).

• SR/LOD2.2 Aggregated Level. We use aggregated annual and monthly data of buildings
on the location, UT’ Campus, grouped by the definition of their primary use type, while
calibrating each building’s unknown input parameters to predict cooling demand realis-
tically, and the error has been discussed in building levels for different temporal resolu-
tions (R: Research Laboratory, H: Housing, OA: Office and Administration, CA: Class-
room and Academics, PA: Public Assembly and Multi-Purpose). Grouping is performed
based on UT’s Portal Database [59]. Classroom and Academic buildings contain teaching
and community space for faculty and students. These buildings often have longer opera-
tional hours due to students gathering for classes, group study, or organizational meetings.
These buildings’ Heating, Ventilation and Air Conditioning (HVAC) systems are typically
modified to save energy during unoccupied periods. Research Laboratories are the most
energy-intensive buildings on campus due to their high ventilation needs. Air delivered
to laboratory spaces is often 100% outside air that is conditioned, delivered to the space,
and exhausted from the building. Therefore they are the most energy-intensive buildings.
Housing facilities provide student housing as well as dining, community space, exercise
facilities, and other student services. Office and Administrative buildings contain faculty
and staff offices primarily and maintain fairly regular hours. Public Assembly and Multi-
purpose buildings are those that house museums, libraries, sports facilities, and other com-
munity gathering spaces. These buildings often have periods of high occupancy or specific
indoor environmental requirements that can cause them to be very energy intensive. Based
on these definitions, the occupancy schedule in the model is created accordingly.

• SR/LOD2.3 Aggregated Level. We use aggregated annual and monthly data of buildings
on the location, UT’ Campus, clustered by using unsupervised learning to discover data-
driven building classes from the buildings’ chilled water energy profiles. The hypothesis
is that each building has a dominant energy profile, and a group of buildings that have the
same dominant profile belong to the same data-driven class. We use the k-means algorithm
to cluster the conditioned area-normalized daily chilled water profiles (Wh/m2) for summer
weekdays, i.e., Monday - Friday in June, July, and August, for the 70 buildings. Using the
elbow method on the sum of square error, We infer that the area-normalized daily chilled
water profiles are distributed across three distinct clusters where 18.3%, 40.1%, and 39.5%
of profiles belong to Cluster 1, 2, and 3 respectively. The dominant profile in each building
is identified such that a building’s dominant profile is the cluster to which greater than 50%
of the building’s profiles belong. If there is no such cluster for a building, the building is
assigned to the “Unidentified” class. We conclude that 18.3%, 40.1%, and 39.5% of the
buildings belong to Cluster (class) 1, 2, and 3, respectively, and there is one unidentified
building.

• SR/LOD3.0 Building Level measured annual and monthly data have been used to calibrate
each building, and the error has been discussed on building levels for five different temporal
resolutions.

We demonstrate if significant improvements in model accuracy can be obtained even using
simple uncertainty models and less streamed data.
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4.4. Bayesian Calibration Framework

Bayesian calibration has been proposed and used by other studies ([31, 38]). Equation 1 was
employed to analyze the uncertainty in every introduced spatial resolution; the analysis was car-
ried out through a formulation introduced by Kennedy and O’Hagan [61]. We calculate the pos-
terior probability P(QS R/LODn|ES R/LODny) with prior probability P(QS R/LODn) and the likelihood
function (P(ES R/LODny)|(QS R/LODn)). The five unknown parameters go through the calibration
process to demonstrate whether the simulation outputs are compatible with the measured data on
different spatial resolutions. It has been decided to calibrate Maximum Temperature Set-point,
Infiltration, Average Walls Uvalue, Roof Uvalue, and window Uvalue, which are each divided into
five levels with a uniform prior probability distribution respectively, and this leads to 625 input
combinations.

The Bayesian calibration provides which input combination, QS R/LODn, is most likely to be
correct, given the simulation model and the metered data ES R/LODny, where y is the temporal
measurement resolution in the training set.

The Bayesian inference equation is as follows:

P(QS R/LODn|ES R/LODny) =
P(ES R/LODny|QS R/LODn)P(QS R/LODn)

P(ES R/LODny)
(1)

and

P(ES R/LODny) =
∑

QTmax

∑
QNin f

∑
QUwall

∑
QUroo f

∑
QUwindow

P(ES R/LODny|QS R/LODn) × P(QS R/LODn) (2)

In reality, many factors can affect the likelihood function, and the explicit form does not exist.
As a consequence, we assume the likelihood function P(ES R/LODny|QS R/LODn) can be described
by a Gaussian normal distribution function as shown below:

P(ES R/LODny|QS R/LODn) =
1

σS R/LODn
√

2π
×

exp−
(ES R/LODny − µS R/LODny )

2

2σ2
S R/LODn

 (3)

where ES R/LODny is the measured cooling (Wh/m2) of the individual spatial resolution of the
corresponding measurement time y; µS R/LODny is the simulated cooling of each building under
given the specific input combination QS R/LODn; the standard deviation σS R/LODn accounts for
the inherent variability of energy consumption in the spatial resolution and is estimated from
the standard deviation of the measured consumption of the buildings under the same spatial
resolution subgroups. The likelihood function is described for each building separately for each
spatial resolution. As a result, we obtained posterior distribution for each building and each
spatial resolution group. Statistics for each spatial resolution and temporal resolution are given
in the table. The campus model is calibrated annually and monthly with three years of measured
data.

Validation is performed by comparing the baseline simulation result as well as the cali-
brated simulation result to the measurement data (five different temporal resolutions), using the
a CV(RMSE) defined in Equation 4 to measure how well the model fits the measured values at
validation period 2017-2019 and compared with following standards by the ASHRAE Guideline
14-2014.
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Table 6: Characteristic of each Spatial Resolution.

Spatial
Resolution Aggregation Buildings σS R/LODannual ES R/LODannual

SR/LOD2.0 All Buildings 70 22,421.0 401,175.2

SR/LOD2.1

Before 1980 55 30,681.6 348,577.6
1980- 2004 8 8,564.0 358,693.2
2004-2007 3 57,551.1 743,923.0
2007-2013 4 29,365.9 801,754.3

SR/LOD2.2

RL 11 9,148.0 281,174.1
H 9 24,840.9 333,159.8
OA 4 20,498.4 409,266.5
CA 24 10,496.7 342,759.6
PA 22 77,119.0 846,757.6

SR/LOD2.3
Class 1 13 9,052.8 288,728.6
Class 2 29 39,298.0 517,035.8
Class 3 28 10,147.9 326,582.1

CV(RMS E)S R/LOD2.n =
100

ymean
×

√√√
∑NS R/LOD2.n

i=1 (yimetered − yisimulation)
2

NS R/LOD2.n

 (4)

where NS R/LOD2.n is the number of cooling measurements for each spatial resolution and
sub-groups defined for them, yimetered is the metered cooling data for the ith spatial resolution and
subgroups, while yisimulation stands for the simulated cooling demand and ymean is the mean of the
NS R/LOD2.n metered chilled water (Wh/m2) for each group presented in the Table 6.

Then the CV(RMSE) is calculated for each building (Equation 5) to discuss the difference be-
tween aggregation approaches and understand how well clustering is predicting cooling demand
compared to building level calibration.

CV(RMS E)BuildingID =
100

ymean
×

√√√√
∑NS R/LOD3

i=1 (yimeteredBuildingID
− yisimulationBuildingID )

2

NS R/LOD3

 (5)

where NS R/LOD3 is the number of cooling measurements for each building, yimeteredBuildingID
is

the metered cooling data for each building, while yisimulationBuildingID
stands for the simulated cooling

demand for each building, and ymean is the mean of the NS R/LOD3 metered chilled water (Wh/m2)
for each building.

5. Results

In this section, the results of parametric simulations are presented to analyze the impact of
the level of detail used for data aggregation during the calibration process. The results provided
are based on geometry model G/LOD1.2.2 and TZ/LOD0. Bayesian calibration was performed
using TR/LOD0, and results are provided for different temporal and spatial resolutions. The
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same calibration is performed using monthly data only; however, the marginal distribution for
the prior and the posterior distribution of the calibration parameters had approximately the same
range and distribution, meaning that the data is non-informative about the calibration parameters.

5.1. Results for SR/LOD3 Building Level Spatial Resolution

Building scale (SR/LOD3) performance of the Bayesian calibration with the annual temporal
resolution is discussed, and errors are provided for each building in Figure 8. We assess errors
in cooling consumption data [Wh/m2]. Before performing Bayesian calibration on the building
level (SR/LOD3), the annual cooling consumption prior to the Bayesian process is provided.
After performing Bayesian calibration, the resulting marginal probability mass distributions are
obtained and presented as a heat map for the five variables of each building in Figure 7. Based
on the posterior distribution of each parameter, the most likely parameter is assigned to each
building in the simulation file, and CV(RMSE) is calculated for the calibrated model. The pos-
terior distribution also shows that window property doesn’t depart far from their initial uniform
distributions for most buildings because it has a more negligible effect on cooling usage except
for ten buildings out of 70 buildings.

This observation indicates that less influential parameters can be treated as a constant value
instead of being included among the probabilistic parameters. Although there is no standard for
urban energy modeling, ASHRAE sets the allowable maximum percentage error of the annual
calibrated model for electricity use to be 5% for building energy modeling. With the calibration
process of each building, the CV(RMSE) for all buildings decreased at least below 30% while
only for five buildings, the ASHRAE standard of CV(RMSE) is achieved for annual cooling con-
sumption (Figure 9. Figure 8 shows that 50% of the buildings have annual CV(RMSE) over the
average error of 42% error when we define unknown inputs based on literature (deterministic),
not probabilistic approach as given in the Table 3. The highest and the lowest CV(RMSE) of
annual cooling consumption with a deterministic approach are obtained as 102% and 10% for
Building 21 and Building 51, respectively. The simulation model over-predicts the cooling load
for most of the buildings. The reason is that the simulation model uses only one thermal zone
for the whole building. The results have been discussed on higher temporal resolutions, and it
is observed that the calibration by using annual data introduced more bias to hourly data and
resulted in higher errors compared to the deterministic approach.

5.2. Results for SR/LOD2-Aggregated Spatial Resolution

We aggregated data for different spatial resolutions and calculated posterior distribution using
Bayesian calibration methodology. We try to understand which data aggregation methodology
gives the closest predictions to the building level calibration by performing this aggregation.
Recent studies have shown the quality of the Bayesian approach. Still, because of the lack of
data granularity on the building level, they could not discuss the performance of the approach
on the building level. The Bayesian approach used in these studies has also been only discussed
annually, again because of privacy concerns and data availability.

Figure 10 shows us the simulation results error compared to the measured data for each
spatial resolution group before the Bayesian calibration was applied. CV(RMSE) for each spatial
resolution and subgroup are calculated by comparing the sum of the measured data and the sum of
the simulation results of each building (before and after calibration). The results are provided for
five temporal resolutions to understand how the error changes with the increase of the resolution
before the Bayesian calibration is applied. It is seen with the deterministic parameters for each
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Figure 7: Marginal posterior distribution of Maximum Temperature set-point, Infiltration rate, Walls U-value, Roof U-
value, and Window U-Value visualized in a heat map. Each row represents one building, and color intensity represents
probability (%).The prior distribution is constant as 20% for given inputs. Calibration is performed by using each
building’s annual cooling consumption data available for three years.
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Figure 8: CV(RMSE) of each building before Bayesian Calibration at Annual Temporal Resolution (TR/LOD0).
21



Figure 9: CV(RMSE) of each building after Bayesian Calibration at Annual Temporal Resolution (TR/LOD0).
22



Figure 10: CV(RMSE) of each spatial resolution before Bayesian Calibration at all Temporal Resolutions.

building that CV(RMSE) of our predictions changes between 10% to 60% depending on the
subgroup that we defined for each spatial resolution. When the discussion is performed for all
buildings, the CV(RMSE) is 34%, meaning that without calibration applied, the total annual
cooling prediction for 70 buildings differs 34% from actual cooling consumption.

As seen in the provided results before the calibration process,CV(RMSE) of daily, weekly,
and monthly temporal resolutions are closer to each other. The highest difference between hourly
and annual temporal resolution is obtained for housing, classroom-Academics, and Public As-
sembly and Multi-Purpose. The occupancy and schedules can explain why these primary use
types are hard to predict. Nevertheless, this provided insight into data aggregation and how the
primary use type plays an essential role in different temporal resolutions. The same behavior also
has been seen for different subgroups under different spatial resolutions, such as SR/LOD2.1 the
construction year 1980-2004, and SRLOD2.3 unsupervised clustering, class 3. These are the
subgroups with the high number of buildings from Public Assembly and Multi-Purpose and
Classroom and Academics.

Aggregated prediction CV(RMSE) of the 70 buildings are shown in Figure 11 against the ag-
gregated measured data for all subgroups with the probabilistic parameters. It is found that when
we look into overall annual consumption for 70 buildings before and after calibration, the error
is improved for each group; for some aggregated groups, the improvement in the CV(RMSE) is
high after calibration. Comparing the aggregated data from these groups to improve the cooling
demand predictions obtained through UBEM and predict annual consumption, we have a max
15% error for all campus buildings after applying the probabilistic approach. However, it is also
observed that the results did not improve for subgroups that had less than 20% CV(RMSE) with
the deterministic approach (before Bayesian calibration).

Although this probabilistic Bayesian calibration improves the results on an aggregated level,
it would result in at least a +-40% error change on the building-level prediction. The annual
CV(RMSE) is either improved or worsened for these 70 buildings on the campus. Figure 12
shows building distribution with the error change for each group. Negative change means that
the calibration process worsened the annual CV(RMSE) of predicted cooling consumption, and
positive shows the opposite, an improvement for each building.

All these approaches can be used for forecasting annual cooling consumption under different
scenarios. However, discussing the probabilistic approach for different primary use types should
be considered. Based on the sensitivity analyses performed for form and climate, specific pa-
rameters were decided to be calibrated. However, our results show that for different primary use
types, there is a need to include other input parameters to better the performance of the simula-
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Figure 11: Annual CV(RMSE) of each spatial resolution after Bayesian Calibration performed against cooling data at
annual temporal resolution (TR/LOD0).

tion results, such as occupancy density. Because of the number of people and the schedules of
the housing/dormitory, Public Assembly and Multi-Purpose and classrooms, and Academics are
hard to predict. Therefore the application of the Bayesian calibration did not improve our results.
On the other hand, the user behavior in office and research lab buildings is better predictable and
structured, leading to better predictions on the cooling demand than different primary use types
within the campus.

5.3. Comparison between SR/LOD2 and SR/LOD3

This section is created to discuss how close our cooling demand predictions are when we
perform Bayesian calibration with annual aggregated cooling consumption against building-
level calibration. The previous section discussed how using probabilistic Bayesian calibration
of the unknown parameters improved the simulation error on annual cooling consumption for
both calibrating five parameters of 70 buildings by using measured annual data at building level
(SR/LOD3) and aggregated level (SR/LOD2). CV(RMSE) is calculated for each building by us-
ing annual measured data of each building and simulation results when the probabilistic param-
eters are decided using aggregated data. Figure 13 provides annual CV(RMSE) for 70 buildings
after probabilistic Bayesian calibration is applied using different spatial resolutions compared to
calibrating each building with annual building level data. In Figure 13, we see that building level
calibration results in CV(RMSE) between 17.23% (upper Quartile) and 9.4% (lower Quartile)
with a median of 12% for 70 buildings.

The closest CV(RMSE) distribution for buildings is calculated when we used aggregated data
based on primary use type. Among the three box plots, except spatial resolution SR/LOD2.2,
two have compact interquartile ranges and long tails, indicating CV(RMSE) at the building scale
deviates but generally performs well. There are buildings with much better estimates within
each spatial resolution group. We then conducted a t-Test of means between the distributions of
CV(RMSE) to assess if reported CV(RMSE) differs when different spatial resolutions are used
to perform annual calibration compared to building level calibration (Table 7). We observe the
statistically insignificant relationship between CV(RMSE) of SR/LOD3 and other SR/LOD2.n;
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Figure 12: How the annual simulation error improved and worsened for the buildings based on aggregation approach.

Figure 13: Annual CV(RMSE) distribution after Bayesian Calibration performed against annual cooling data compared
to the building level error for 70 Buildings.
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So any measured data used to predict the annual cooling demand is giving significantly different
than what annual building level CV(RMSE) is. It is also concluded that the difference between
obtained CV(RMSE) from aggregated level data based on construction year and based on the
clustering method is not significant (p-value:0.66). So this shows that if the UBEM tool is used
to forecast the annual consumption of the buildings, these two methodologies can be swapped.
Based on the t-test results, the difference between SR/LOD2.0 and SR/LOD2.1 is also not signif-
icant. This can be explained by 55 buildings belonging to the group built before 1980. The only
difference between SR/LOD2.0 and SR/LOD2.1 is 15 buildings. The least favorite aggregated
level data is a spatial resolution based solely on location, SR/LOD2.0.

6. Discussion

Validation of a UBEM tool’s result is a challenging task because of the lack of measurement
data availability. We performed Bayesian calibration using metered data for different spatial
and temporal resolutions in this study. We discussed how the reported error changes when we
validate our results for the given method. It is hard to conclude from previous studies if the
discussed methodology will perform well on energy predictions by looking into reported errors,
first because of inconsistent error reporting and second the privacy issue of reporting the error.
Previous studies performed result validation at different temporal and spatial resolutions because
of the data availability. The typical approach is to validate results on the zip code level or based
on the archetype. Here are the answers to our research questions listed as key findings:

What are the relevant and frequently used levels of detail in UBEM? The geometry of the
buildings in the UBEM has shown a different level of detail; however, the discussed case studies
have leaned toward the common use of G/LOD1.1, which is described as detailed 2.5D extrusion
with 2D geometry of the building’s detailed footprint, including 19 case studies out of 54. The
geometry details show various approaches, from a very fine modeling approach to a very coarse
approach, based on the purpose of the study. Within the group of G/LOD1.1, there are subgroups
with more details about the model geometry, which can be found in Appendix A. Our discussion
showed that the details of the number of floors of the given geometry are the most commonly
used property to report the model’s accuracy. G/LOD2 is the least widely used because of the
roof’s complexity. The sub-categories in Appendix A can be extended to include more studies in
building energy modeling to compare them; however, it is essential to remind our audience that
our literature only has UBEM.

The thermal zone is the basis for the heat transfer calculations in the energy models. We
create thermal zones for the geometry to reflect the different spaces in the building. Our literature
review for UBEM showed that the most commonly used thermal zoning is Z/LOD1.0 which has
a Zone per Floor/Space in 3D models. Moreover, 9 out of 23 studies performed their model
accuracy discussion using TZ/LOD1.0 in their model. The least used approach is the TZ/LOD3,
which has detailed Internal Zoning and is not feasible considering the computational cost and
time required to run UBEM simulations. However, it is challenging to discuss which level of
detail is necessary to get more accurate predictions compared to the computing effort in UBEM.

What is the level of detail for spatial and temporal resolution necessary to validate the
urban energy model with a deterministic approach? How the reported error differs for
each approach? One of the earliest studies in the literature by Davila et al. (2016) [31] validated
the MIT UMI tool on the hourly and annual scale at the aggregate level by zip code. The obtained
error was between 5 and 20% for aggregated data based on primary use type; however, they
found a higher averaged absolute error of 40% for 23 zip codes with individual errors ranging

26



Table 7: Results for t-Test of means between the distributions of annual CV(RMSE) for spatial resolutions- Dataset:70
Buildings

p-value SR/LOD2.0 SR/LOD2.1 SR/LOD2.2 SR/LOD2.3 SR/LOD3
SR/LOD2.0 1.00 0.25 <0.005 0.07 <0.005
SR/LOD2.1 1.00 0.08 0.67 <0.005
SR/LOD2.2 1.00 0.09 <0.005
SR/LOD2.3 1.00 <0.005
SR/LOD3 1.00

between 5% to 94%. A study performed by Sokol et al. (2017) [32] using the EnergyPlus
engine presented their calibrated and non-calibrated results. Calibration was performed with two
temporal resolutions, annually and monthly, and errors were reported as annual errors. They have
shown that monthly calibration improved the error by 10% on the annual level error. According
to the ASHRAE standard, the RMSE of monthly energy consumption of a computer model
must be about 15%. However, as seen from the literature, this is hardly possible and needs an
adjustment depending on the purpose of the model used. Some studies provided errors only to
validate their results. Nageler et al. (2018) [43] discussed the monthly CV(RMSE) both on the
building level and archetype level, but the discussion on the building level was performed only
for two buildings; thus, it makes it hard to compare the archetype level error versus building level
error. While building level CV(RMSE) is 24.9% and 40.2% for two buildings, the aggregated
level error is reported as 21.4% for 34 buildings. The other validated results by Nutkiewicz et al.
(2018) [42] present the quality of their approach for 22 buildings and prove that the CV(RMSE)
is nearly doubled from aggregated to building level. They also discussed the error change for
different temporal resolutions and provided how the error doubles from monthly resolution to
hourly resolution.

According to our findings, reporting the accuracy of the prediction with aggregated data
on an annual level shows that the error changes between 10% up to 60% depending on the
subgroup in each aggregated data, and the CV(RMSE) of the highest temporal resolution, hourly,
changes between 50% to 79%. This shows that even on an hourly level, our predictions are not
bad for aggregated data. But on building level CV(RMSE), our hourly and annual CV(RMSE)
with deterministic approach can go up to 400% and 102% for a building within 70 buildings.
Therefore, when we report the accuracy of our methodology by using aggregated data, it is
seen that any aggregation methodology will report lower errors compared to the building-level
error. Additionally, our results present that the change between annual, monthly, and hourly
CV(RMSE) can be high depending on the aggregation approach. However, it is seen that daily,
weekly, and monthly CV(RMSE) show closer results. Therefore, if the measured daily/weekly
data is unavailable, monthly data should be enough to discuss the error of the UBEM before any
calibration is applied.

How does performing Bayesian calibration with aggregated data improve the predic-
tions of cooling demand? Which approach gives the closest results to the building level?

It is expected that while some of the building-level predictions are close to the measurement
data, some will have much higher errors because of the nature of the simulation tools. But,
the aggregated or archetypes level predictions averages these errors and provide us with lower
errors. Unfortunately, the lack of study on this topic makes it hard to compare UBEM tool and
their performance. Because of data availability, a limited number of studies discuss how well the
UBEM predicts the building level consumption with and without calibration processes.
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Recently, Risch et al.(2021) [24] discussed the performance of the Bayesian calibration
on building level error, yet it was only three buildings. Rashidfarokhi (2021) also performed
Bayesian calibration on two buildings and reported the absolute percentage error improved from
33% to 13% and from 35% to 15% by re-calibrating posterior distributions. Tardioli et al. (2020)
also performed Bayesian calibration for 326 individual buildings and provided validation error
within +/-20% for 70% of the buildings.

In this research, we discussed the annual aggregated level of measured data to perform
Bayesian calibration, reported errors of these approaches for both aggregated simulation results,
and compared it with building-level results for 70 buildings. Our results show that aggregat-
ing the annual measured data based on primary use type gives the closest median error to the
building-level calibration result. Furthermore, using both aggregated level data and building
level data improved the model predictions compared to the deterministic approach. But when we
perform the t-test, the results proved that all aggregations error significantly differs from building
level error, proving that without solving the privacy issue and calibrating input parameter with
building data, we should avoid projections on the building level with the help of UBEM tools.

Providing building-level comparisons without performing building-level calibration can be
misleading. More importantly, the results suggest that any analysis based on an UBEM should
be careful when interpreting model predictions at a higher resolution. Some studies suggest
that aggregating multiple buildings’ energy consumption provides acceptable accuracy. How-
ever, this should be discussed since ASHRAE currently does not have a standard to evaluate
prediction accuracy at higher spatial resolutions. Many studies discussed their accuracy based
on these criteria [42, 62, 23]. Therefore, it is important to have criteria for higher spatial resolu-
tions. Future studies should consider improving the current methodology by discussing different
likelihood functions and input distributions.

How should we report our results so everyone can benefit from the accuracy of the
methodology discussed?

Our findings and literature review showed that the reporting of the model accuracy is essen-
tial. There is no single key attribute that is in control of the accuracy of the model. When the error
is reported on annual temporal resolution and for aggregated data, the tool can be reported as a
practical tool, and methodology can be seen as a valid approach to predict future consumption;
however, the chances of errors at the individual building resolution can get extreme, increased up
to 102% on a building level. While Bayesian calibration has been reported to show improvement
on UBEMs, it is rarely discussed on the building level. When it is discussed, the given results
are for a smaller group of buildings. Therefore, this study provides valuable information on how
reporting can be misinterpreted. Consequently, we recommend reporting the errors systemati-
cally and providing details on each level of detail presented in this study. Thus, future studies
can decide the most suitable UBEM and calibration method for their application. Also, created
data management tools for these processes should be openly shared within UBEM study groups
to improve efficiency.

7. Conclusions

Adapting proper spatial and temporal resolutions to use UBEM for energy policy assessment
and scenario analysis to mitigate the impact of the climate crisis is essential. This study used
a validated Bayesian calibration approach on a higher temporal resolution to examine the opti-
mal temporal resolution of the metered data that keeps the model’s accuracy and requires less
computational effort. Bayesian Calibration was performed by using annual and monthly metered

28



data, but the results were not informative for the monthly data, therefore they were excluded.
Although this probabilistic Bayesian calibration by using annual data improves the results on an
aggregated level, our results have shown that it results in at least a +-40% error change on the
building-level prediction, meaning that the annual CV(RMSE) is either improved or worsened
for these 70 buildings on the campus. Building level calibration results in CV(RMSE) between
17.23% (upper Quartile) and 9.4% (lower Quartile) with a median of 12% for 70 buildings.
The impact of data availability and granularity on simulation results is noticeable; therefore,
the discussion of different aggregate-level resolutions should be studied to allow data collection
for higher data quality and release available data under secured conditions. If the calibration is
performed by using building-level data, then the strategies could be developed for each build-
ing’s savings. However, it should be avoided to provide single building-level savings by using
aggregated data.

The proposed approach based on the calibrated urban building energy model would be mainly
wanted by municipalities, urban planners, utilities, and engineering consultancy firms who might
show intense interest in implementing energy policy assessment and scenario analysis. Likewise,
it would also be possible to implement large-scale building performance mapping and labeling
to building retrofit targets and for building stock renovation and energy conservation. In this
research, reported accuracy on different levels with aggregated data on an annual level show that
the error changes between 10% up to 60% depending on the subgroup in each aggregated data,
and the CV(RMSE) of the highest temporal resolution, hourly, changes between 50% to 79%.
Performing calibration by using four different approaches on aggregating data has shown that
the difference between obtained CV(RMSE) from aggregated level data based on construction
year and based on the clustering method is not significant (p-value:0.66). So this shows that if
the UBEM tool is used to forecast the annual consumption of the buildings, these two method-
ologies can be swapped when data is not available on the building level to calibrate the model.
Overall, we suggest that the urban energy prediction accuracy on annual temporal resolution can
be increased significantly when the Bayesian calibration is performed by using building-level
data; however, whenever privacy is a concern, then the data should be provided by aggregating
them based on primary use type, showing CV(RMSE) of 21.50% (upper Quartile) with a median
of 19% for 70 buildings.

The next step in developing this methodology should include discussing the input numbers
and having more discrete inputs defined as the prior distribution. Although the proposed method-
ology is not suitable for using measured monthly data because of including only 5 discrete inputs
for the prior distribution and providing posterior distribution for the unknown parameter, it should
be considered to calibrate input parameters seasonally, which will lead to more computational
effort and cost by giving more accurate posterior distributions. Also, Our model had precise
information on the heated area by using UT’ campus online data platforms and subtracting me-
chanical rooms, circulation, and alteration areas, which is challenging in practice is challenging
due to a lack of information. Therefore, occupancy as a calibration parameter should be consid-
ered to be calibrated to decrease the error in simulation results against measured consumption
when the data is not available.

Limitations of the study should be addressed in future work about the proposed modeling
technique and the analysis. The Gaussian normal distribution is initialized to depict the likeli-
hood function for unknown parameters in the proposed Bayesian methodology and calibration
framework. Our results show that this assumption is reasonable when we perform the method
with annual temporal resolution; however, it led to the inaccurate description of the posterior dis-
tribution of the variables. An iterative calibration process may be an alternative to improve the
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effectiveness of the assumption on likelihood functions; for example, the posterior distribution
function from the annual calibration can be used as a new prior for the calibrated input in the
calibration framework for monthly calibration. Also, the efficient granularity of the input data
set is worth to be discussed; changing the prior distributions to include a broader range instead
of five steps would be beneficial. Additionally, the other limitation of the study is to not explore
the zoning part in CitySim. We would like to explore the future of building scale calibration to
see how these errors could be lessened for cooling demand predictions by discussing different
zoning details, applying higher temporal resolution data to calibrate the model, and considering
more computationally efficient studies that can be available to everyone.

In addition, while efforts are being made to improve UBEM models to reduce computational
requirements and resources for predicting the energy demand of cities, future research should
also prioritize refining these models to more accurately predict the performance of solar energy
systems in urban environments. This includes taking into account factors such as building ori-
entation, shading, and local weather patterns, especially under the effects of climate change. By
enhancing our understanding of how solar energy systems can perform in varying urban con-
texts, we can promote the wider adoption of renewable energy sources and contribute to a more
sustainable future.

Appendix A. Introduced LoDs

Appendix A.1. Building Geometry Layer

Building geometry used in urban energy modeling is categorized into three subcategories as
and explained in the provided figure. The literature review reveals that in urban energy modeling
case studies, either LOD1 or LOD2 is used to create the energy models. The other observation
is, defined LOD3 has openings in the city model; however, in energy modeling, this attribute can
be also given LOD1 and LOD2 geometries. Therefore, the sub-levels are created to reflect the
energy modeling 3D approach and LOD1 and LOD3 are excluded from the geometry layer of
the UBEM, contrary to defined geometries by Biljecki et al. (2016) [28].

• G/LOD1.0.0: Simplified 2.5D extrusion- 2D geometry of the building simplified footprint
extruded to their respective heights

• G/LOD1.0.1: G/LOD1.0.0 and including the number of floors

• G/LOD1.0.2: G/LOD1.0.0 and including window openings

• G/LOD1.0.3: G/LOD1.0.0 and G/LOD1.0.1

• G/LOD1.1.0: Detailed 2.5D extrusion- 2D geometry of the building detailed footprint
extruded to their respective heights

• G/LOD1.1.1: G/LOD1.1.0 and including the number of floors

• G/LOD1.1.2: G/LOD1.1.0 and including window openings

• G/LOD1.1.3: G/LOD1.1.0 and G/LOD1.1.1

• G/LOD1.2.0: Detailed 2.5D extrusion- 2D geometry of the building’s detailed footprint
extruded to their detailed heights

• G/LOD1.2.1: G/LOD1.2.0 and including the number of floors

• G/LOD1.2.2: G/LOD1.2.0 and including window openings
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• G/LOD1.2.3: G/LOD1.2.0 and G/LOD1.2.0

• G/LOD2.0.0: 3D Geometry-The simplified 3D geometry of the buildings accounting for
different shapes of a roof as opposed to the prismatic flat roof.

• G/LOD2.0.1: G/LOD2.0.0 and including the number of floors

• G/LOD2.0.2: G/LOD2.0.0 and including window openings

• G/LOD2.0.3: G/LOD2.0.0 and G/LOD2.0.1

• G/LOD2.1.0: 3D Geometry-The actual detailed 3D geometry of the buildings accounting
for different shapes of a roof as opposed to the prismatic flat roof.

• G/LOD2.1.1: G/LOD2.1.0 and including the number of floors

• G/LOD2.1.2: G/LOD2.1.0 and including window openings

• G/LOD2.1.3: G/LOD2.1.0 and G/LOD2.1.1

• G/LOD2.2.0: 3D Geometry-The actual detailed 3D geometry of the buildings with detailed
heights and corresponding shapes of the roofs as opposed to the prismatic flat roof.

• G/LOD2.2.1: G/LOD2.2.0 and including the number of floors

• G/LOD2.2.2: G/LOD2.2.0 and including window openings

• G/LOD2.2.3: G/LOD2.2.0 and G/LOD2.2.1

Appendix A.1.1. Building-Thermal Zoning Layer
Thermal zoning is divided into four sub-categories as:

• TZ/LOD0: Single Zone per Building- Each building volume is a single thermal zone

• TZ/LOD1: Zone per Floor/Space–Separate thermal zone to have different adjacency and
exposure.

• TZ/LOD2.0: Core-Perimeter Zoning for the whole volume– Accounts for the impact of
different orientations.

• TZ/LOD2.0: Core-Perimeter Zoning per Floor/Space – Accounts for the impact of differ-
ent orientations, different adjacency, and exposure

• TZ/LOD3: Detailed Internal Zoning – Further divides interiors spaces following the build-
ing’s interior layout e.g.

Figure 1 provides visualization. The subset for the level of detail is based on previous literature
in energy modeling.

Appendix A.1.2. Model Calibration/Validation-Temporal Resolution Layer
Temporal resolution refers to the discreet resolution of the measured data with respect to the

time used for validation. The temporal resolution layer is divided into three categories based on
the availability of collected measured data and discussed in the literature:

• TR/LOD0: Annual Measured Data

• TR/LOD1: Monthly/bimonthly Data

• TR/LOD2: Weekly/Daily Data

• TR/LOD3: Hourly Data
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Appendix A.1.3. Model Calibration/Validation-Spatial Resolution Layer
The spatial resolution layer is divided into four main categories [29] Mather et al. suggested

and we extended it by adding sub-categories to the aggregated data since they have been pre-
sented in the literature as:

• SR/LOD0: No calibration

• SR/LOD1: Archetype Level

• SR/LOD2: Aggregate Level

• SR/LOD2.0: Aggregated Level based on location (ZIP, District)

• SR/LOD2.1: Aggregated Level based on construction year

• SR/LOD2.2: Aggregated Level based on primary use type

• SR/LOD2.3: Aggregated Level based on supervised/unsupervised clusters

• SR/LOD3: Building Level – Metered energy data for each building being simulated in
UBEM used for calibration building by building

While the definition of temporal resolution of measured data is quite clear and consistent in the
literature, spatial resolution is discussed differently. So this area also needs more explicit study.

Appendix A.1.4. Model Accuracy Layer
The metrics used for model accuracy were observed and presented as:

• (%): Percentile Error or Percentage Error,

• (R2):The Coefficient of Determination

• (CVRMSE): The coefficient of Variation of the Root Mean Squared Error

• (NMBE): Normalised mean bias error

• (MAPE): Mean Absolute Percentage Error

• (MPE): Mean Percentage Error

• (NRMSE): Normalized Root Mean Square

• (TEDI): Total Thermal Energy Demand Intensity Error
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