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Abstract

Planning for active mobility satisfies many fundamental tenets of good urban design and plan-
ning. However, planning for active mobility is a complex endeavour due to numerous local,
place-based factors that influence active mobility decisions. Recent advancements in urban
data research have demonstrated the effectiveness of deep learning methods in evaluating active
mobility potential for urban environments. However, the incorporation of semantic informa-
tion from deep learning models and street view imagery into spatio-temporal contexts remains
a challenge. In particular, knowledge extraction from deep learning models remain an open
question for urban planning and decision-making. Towards this issue, we propose a functional
deep learning and network science workflow that employs open data from OpenStreetMap and
Mapillary to assess factors affecting active mobility decisions and route planning. We demon-
strate the generaliseability of our analytical workflow through two case studies focusing on
urban greenery in Nerima city (Japan), and urban visual complexity in Pasir Ris town (Sin-
gapore). Our results reveal clear patterns of heterogeneity in urban streetscapes and identifies
unevenness in street infrastructure provision based on destination types. Using this informa-
tion, we propose specific areas for design intervention to improve active mobility planning.
Our workflow is applicable for a diverse range of use cases making it relevant to a wide range
stakeholders, not limited to, urban researchers, policy makers, and urban planners.

Keywords: Computer vision, Volunteered Geographic Information, Machine learning, Urban
analytics, Walking behaviour

1. Introduction

Active mobility is critical for healthy living and has been recognised as a multi-pronged ap-
proach to achieve various planning related goals such as sustainability and successful ageing-
in-place (Wong et al., 2018; Tao and Cheng, 2019; Yang, 2020; Yang et al., 2021). In recent
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years, global policymakers have increasingly addressed barriers to active mobility. For exam-
ple, the Chinese government implemented the ‘Opening and Prohibiting Gated Communities
Policy’ in 2016 to prevent the formation of edge communities (Xinhua News Agency, 2016).
This effort is followed by the ‘Healthy Cities Initiative’, which is a nationwide health campaign
centred around active mobility. Similarly in Europe, active mobility has been a key component
of the European Commission’s 2020 climate change strategy, which aims to create active mo-
bility friendly environments, and improve urban mobility for older adults and persons with
disabilities (European Commission, 2021). The 15-minute-city concept which first emerged in
the 2015 Paris COP21 conference, advocates for human-centric neighbourhood design where
people need not spend more than 15 minutes travelling to urban opportunities (Moreno et al.,
2021; Gaglione et al., 2022; Kissfazekas, 2022). Such ideas prompt the human-centric redesign
of urban mobility systems and as a corollary underscores the importance of urban environments
to encourage active mobility travel.

However, efforts to promote walking and cycling remain a longstanding struggle for poli-
cymakers (Hackl et al., 2019). In particular, traditional methods (e.g. residential surveys and
geospatial-based studies) to study active mobility continue to be challenged by the complex,
and contextually heterogeneous nature of urban environments (Logan et al., 2019; Saxon, 2021;
Tang et al., 2021). For example, it is well-known that residential surveys face scalability limi-
tations given that they are time-consuming and costly to administer. On the other hand, while
geospatial-based studies help to address some of the shortcomings of residential surveys, they
suffer from limitations when generalising to real world phenomenon. For planning practition-
ers, the mismatch between Euclidean and shortest path distance in the context of planning
catchment areas is a well-recognised shortfall (Giles-Corti et al., 2011; Banerjee et al., 2014;
Clark et al., 2016; Sun et al., 2018). In addition, the treatment of geographic features as discrete,
homogeneous entities is also problematic as previous research have shown that the quality of
urban spaces matters as much as quantity (Van Dillen et al., 2012). As active mobility plan-
ning becomes increasingly widespread, there is a clear need for scalable and context-based
solutions that can be used to examine and assess urban accessibility across varying urban scale
and locations. Given the importance of contextual information towards human-centric planning
and design, such solutions should ideally account for the close linkage between people’s active
mobility decisions and their proximate urban environment.

With these considerations in mind, we propose a deep learning and network-based work-
flow to extend novel applications and use cases for active mobility studies. In recent years,
advancements in computer vision (CV) techniques and street view imagery (SVI) offer oppor-
tunities to understand, assess, and explore local street conditions (Dubey et al., 2016; Warburg
et al., 2020). For example, recent SVI-based studies have demonstrated that street conditions
such as greenery exposure, daylight accessibility, or visual stimulation could improve the like-
lihood of frequent walking or cycling (Tribby et al., 2017; Hillnhütter, 2021). Notwithstanding
the emergent success of SVI-based studies, current approaches face limitations when applied
to active mobility planning. Notably, the representation of urban indicators through aggregated
indices do not explicitly account for spatial topology inherent in urban systems. In particular,
the aggregation of SVI indicators over broad geographic areas abstracts away important local
information, limiting the ability to pinpoint target sites for intervention without further study.
Moreover, the fine-tuning of grid size is a subjective and tedious process (Fotheringham and
Wong, 1991; Mitra and Buliung, 2012; Gao et al., 2021). To avoid this concern, we choose to
preserve the spatial fidelity of our analytical results by embedding SVI semantic information
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directly into urban networks.
In the subsequent section, we outline current approaches which have employed SVI to

improve active mobility planning. Next, we present our methodology, which consists of an
automated, open-source, and generaliseable workflow using open data to assess active mobility
conditions in urban precincts. We introduce our results in the form of a urban greenery and
visual complexity case study to evaluate older adult active mobility in Tokyo, Japan and Sin-
gapore. Our approach is transferrable to other factors and geographies. Based on our findings,
we identify high priority intervention locations to improve active mobility planning. More
broadly, our study demonstrates that SVI can be used effectively to improve active mobility
analysis and that it is increasingly possible to develop urban streetscape assessment models
with deep learning methods. Our analysis can be replicated for any use case, population group,
and geographic location, making it relevant to a wide range stakeholders, not limited to, urban
researchers, policy makers, and urban planners. A further contribution of the work is that it
relies on crowdsourced SVI, a valuable but overlooked source of street-level imagery in the
state of the art, being overshadowed by commercial sources such as Google Street View and
Baidu.

2. Related Work

Till date, many studies have successfully employed semantic information from street view
imagery to improve city planning (Crooks and See, 2022). Deep learning methods fall under a
subset of wider approaches which employ SVI to study and improve the planning and design
of urban systems (Biljecki and Ito, 2021). In general, SVI studies employing deep learning
based methods can be segregated into two domains: 1) studies exploring tangible aspects of
urban streetscapes; 2) studies mapping tangible aspects of the built environment to normative
user perceptions.

Studies assessing the physical condition of urban spaces have a broad spatial coverage,
ranging from the micro to macro scale in application. For example, Hara et al. (2012), Serna
and Marcotegui (2013), and Najafizadeh and Froehlich (2018) extracted information on side-
walk quality to assess and propose design interventions to improve neighbourhood walkability.
Towards understanding the relationship between shading and walkability, Middel et al. (2019)
and Szcześniak et al. (2022) examine local conditions such as daylight accessibility in urban
intersections and canyons while Zhou et al. (2019) developed an integrated visual walkability
index (VWI) to identify walkable environments in the planning and design of healthy cities. As
an extension into the temporal dimension, Li et al. (2022) utilised SVI to monitor changes in
intersection-level marked crosswalks over a period of 14 years across the United States. Aside
from walkability studies, Ito and Biljecki (2021) explore the potential of SVI indicators to as-
sess urban bikeability. On a related note, Ding et al. (2021) show how SVI data can be used
to map a network of cycling paths across various cities. Relating to street safety and scenery,
Law et al. (2020) investigate frontage quality of streets and demonstrates applications for the
Greater London area. These automatic visual assessments of the physical condition of cities
can benefit numerous city planning efforts, not limited to, maintenance and large-scale map-
ping socio-spatial inequalities across urban areas. Aside from physical evaluation of cities,
SVI can also be used to measure normative and socio-economic aspect of the urban: evaluating
urban vitality (Gebru et al., 2017; Botta et al., 2020), measuring aesthetics of routes (Quer-
cia et al., 2014), and predicting footfall along routes (Basu and Sevtsuk, 2022; Sevtsuk, 2021;
Sevtsuk and Kalvo, 2022) . The real-time and long term prediction of urban human activity
could benefit emergency planning situations.
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Amidst rapid population ageing and an increasing emphasis on healthy cities, another ac-
tive line of deep learning research investigates the multi-faceted relationship between urban
greenery and walkability. Using large scale walking behaviour and SVI data, Lu et al. (2018)
established that street greenery is as important as parks for promoting walking behaviour. In a
recent study, Yang et al. (2021) show clear non-linearity between street greenery and walking
behaviour. This finding is important and indicates that, though street greenery is beneficial, it
has limits and does not substitute for good accessibility. In a similar vein, Lu (2019) shows that
street greenery acts as a powerful driver to stimulate recreational physical activity, underlying
its role in the realisation of healthy cities. On a global scale, Li et al. (2015), Li et al. (2017),
Lumnitz et al. (2021), and Wu and Biljecki (2021) demonstrate the wide-scale scalability of
deep learning based methods to analyse and map urban greenery across different geographical
contexts.

An extension of physical assessment studies are those that aim to correlate tangible built
environment indicators with user opinion. For example, Seresinhe et al. (2018), Ye et al.
(2019), and Li et al. (2021), employ SVI and user information to qualify the quality of ur-
ban streetscenes. The incorporation of human perception could help bridge the gap between
objective and normative concerns related to the planning and design of urban spaces.

Previous studies illustrate the increasing plausibility of an SVI oriented workflow for vari-
ous urban analytical tasks. Our approach expands on previous approaches in three major ways:
1) we demonstrate the feasibility of embedding semantic information directly into urban net-
works, preserving the spatial fidelity of streetscape semantic information, 2) we employ the
topological structure of networks as a basis to integrate SVI information with other open data
sources (e.g. points of interest and origin-destination flows from OSM) for analytical purposes,
and 3) we show that SVI studies can go a significant step further to optimise active mobility
planning and cut across different considerations.

3. Methodology

Active mobility decisions are closely linked to urban environments (Pajares et al., 2021).
For our study we adopt an operational definition of urban environments as defined by Silva
and Pinho (2010), focusing on how urban environments affects travel choices. In this sense,
urban environments can be measured in terms of tangible characteristics that enable or disable
people’s ability to fulfill daily travel needs. Our computational approach involves a network-
based model which associates active mobility characteristics through edge-weighted indicators
that are connected by nodes (Boeing, 2017a; Foti et al., 2012).

3.1. Data Selection and Screening
We employ Mapillary’s Python Software Development Kit (SDK) to download and ac-

cess crowdsourced street view imagery. Mapillary is a free, global crowdsourced open plat-
form which provides high resolution SVI for cities and urban regions. Mapillary images are
also empowered by a liberal CC-BY-SA 4.0 license which permits users to freely share and
adapt images. While image distribution varies, Mapillary’s coverage has penetrated most cities
around the world with the number of high resolution imagery on the platform doubling from
500 million in April 2019 to 1 billion in December 2019 (Solem, 2019; Ma et al., 2019). The
latest access point is provided by Mapillary API Version 4.0 which allows location-based query
of image vector tiles. For use case analysis, we choose two sites located in Nerima city, Tokyo,
and Pasir Ris estate in Singapore. For each site, we specify a two kilometres sampling radius
(based on network distance) and extract two thousand images in each precinct (Figure 1). We
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selected these precincts based on factors concerning image availability, residential land-use,
and the availability of ageing amenities to support further analysis in our case study, but it is
important to note that our study is applicable widely, as suggested by these two disparate study
areas.

(a) Nerima, Tokyo (b) Pasir Ris, Singapore (waterbody occupies northbound region)

Figure 1: SVI locations and OpenStreetMap network. Data sources: (c) OpenStreetMap and Mapillary contribu-
tors.

We proceed to manually screen images to determine their suitability for inclusion. The
challenges of working with crowdsourced imagery are documented by previous studies (Al-
varez Leon and Quinn, 2019; Mahabir et al., 2020). Accordingly, we exclude images for the
following main reasons: 1) quality (blurred or discoloured images); 2) narrow field of view
(images with high degree of visual obstruction); 3) routes that are not accessible by pedestrians
(e.g. highways or train tracks); 4) indoor environments. The selection process resulted in a
final set of 3,777 geo-tagged images. The manual screening process of 4,000 images took a
single researcher approximately three hours to complete. Though tedious, this should not pose
a problem for practitioners to implement across multiple sites of interest. An overview of the
image screening process is enumerated in Table 1.

3.2. Model Architecture
The landscape of deep learning is evolving at a rapid pace and there are as many deep

learning model architectures as there are cities in the world. A recent comprehensive review of
semantic segmentation datasets and models by Garcia-Garcia et al. (2017) found the "DeepLab"
model architecture to be the most consistent and robust performer across all RGB channel
datasets. We follow their recommendation and adopt the approach taken by Bulo et al. (2018)
which consists of a DeepLabV3 segmentation head (Chen et al., 2017) trained on top of a
WideResNet-38 model (Zagoruyko and Komodakis, 2016). The training procedure proceeds in
a two-step manner. First, training hyper parameters (e.g. batch size, learning rate, image size)
are optimised with the smaller (5000 images) Cityscapes SVI dataset (Cordts et al., 2016).
To account for under-represented classes, a class-uniform oversampling strategy was further
employed. Subsequently, the tuned settings were applied to the larger Mapillary Vistas (global
research edition) dataset (Neuhold et al., 2017), training with 18,000 images and validating on
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Table 1: Image screening process

Site
Nerima, Tokyo Pasir Ris, Singapore

No. of Images % No. of Images %

Initial Set 2000 100 2000 100

Excluded 74 3.7 149 7.5
Poor Quality / Limited FOV1 16 0.8 52 2.6
Obstruction 11 0.6 16 0.8
Indoor Image 21 1.1 18 0.9
Inaccessible (e.g. Highway) 26 1.2 63 3.2

Final Set 1926 96.3 1851 92.5
1 Heavily slanted, poorly lit, or images with narrow camera aperture were excluded.

2,000 images, yielding state of the art results with a mean Intersection over Union (mIoU) of
53.12%.

The wide residual network architecture employs larger layer depth to promote the learning
of useful feature representations in each layer. This helps to mitigate well known issues such
as the "diminishing feature reuse" problem which is commonly seen in narrow and deep model
architectures. In addition, DeepLabV3 is well suited for segmentation of urban scenes as it
is able to segment objects across multiple scales. The model achieves this through multiple
atrous convolution layers that translates to an expansion in the effective receptive field for
feature learning. Last but not least, the implementation by Bulo et al. (2018) offer several
advantages over the original implementation. One notable change is the in-place activated batch
normalisation layer which allows for significant memory savings through layer integration (up
to 50%) at low (0.8-2%) computational overhead.

Figure 2: WideResNet-38 + DeepLabV3 schematic.

Our model is trained on the Mapillary Version 1.2 validation dataset which comprises of
65 semantic classes (Neuhold et al., 2017). Figure 3 displays examples of model predictions.
As shown, the predicted image masks display a high degree of visual fidelity in mapping out
objects in the original image. In some cases, the model manages to pick out street elements
such as fences and manholes which are challenging for humans to spot.
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Figure 3: Examples of segmentation mask outputs.

3.3. Computing Active Mobility Indicators
The segmentation process was conducted on a Nvidia Geforce RTX 3090 GPU which took

slightly less than two hours to segment all images (N=3777). We adopt a similar computational
approach to previous work (Section 2) and compute indices as the pixel ratio between classes
of interest and the total number of pixels for each image (Hara et al., 2012; Li et al., 2015;
Zhou et al., 2019). Previous studies have demonstrated a strong positive relationship between
urban greenery and active mobility (Tsai et al., 2019; Vich et al., 2019; Heikinheimo et al.,
2020). Urban visual complexity of urban environments play an important role in influencing
active mobility decisions (Johansson et al., 2016; Bornioli et al., 2019). Visual complexity has
been recognised as a core component of urban design and refers to the amount of sensory in-
formation perceivable per unit time during travel (Ewing and Handy, 2009; Rapoport, 2013).
Empirical evidence suggests that too much urban complexity might result in sensory overload
for users (Cassarino et al., 2018; Grassini et al., 2019), while too little urban complexity might
result in dull environments (Marshall, 2012; Desouza and Flanery, 2013). It is hence important
to measure the amount of visual complexity, especially for highly dense urban environments. In
this instance, we employ Shannon’s theory of information entropy (Shannon, 2001) to measure
the visual complexity of street view imagery. Intuitively, the indicator measures the amount of
information in images where scenes with high number of visual elements (e.g. street infras-
tructure) that are proportionately distributed, correspond to high levels of visual complexity.
Readers interested in the confluence of complexity and urban design are referred to (Boeing,
2018). As a caveat, we did not include other popular indicators such as sidewalk accessibility
(e.g obstacles on pavements) and sky view factor. Street obstacle occurrences are often dis-
crete and non-linear, limiting their interpretation to interpolation along networks. In addition,
crowdsourced SVI images are not guaranteed to offer a clear, consistent view of sidewalks,
making this use case unsuitable. On the other hand, while sky view factor (SVF) offers a natu-
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Table 2: List of computed indices, definition, formula, and explanation

Indices Definition Formula Explanation Range

Green View Index Visual extent of urban Gi =
Gn

Tn
Gn is the no. of vegetation pixels [0, 1)

greenery for pedestrians Tn is the total number of pixels

Visual Complexity Index Visual extent of urban Ci = −
K∑

i=1
P(xi)(logbP(xi)) P(xi) is class probability for [0, 6.02* )

complexity for pedestrians i-th class over K possible classes

* Based on max entropy of K=65 classes with equal probability; can be interpreted as white noise. Maximum complexity empirically from
our image set is 2.466 with 11 observable classes.

ral continuous interpretation along networks, it has been empirically shown to exhibit complex
relationship with active mobility decision making (Li et al., 2018; Basu and Sevtsuk, 2022;
Sevtsuk and Kalvo, 2022). Not discounting the importance of SVF, interpretations should be
supported by further empirical and contextual data. Building on this understanding, we specify
exposure to urban greenery and visual complexity as our target indicators of interest for use
case analysis. Table 2 specifies the list of computed indices.

For case study analysis, we extract geometric features from OpenStreetMap (OSM). OSM
is an open collaborative mapping platform that hosts the most comprehensive crowdsourced
collection of urban geometric features, not limited to, building footprints, amenities, and street
networks. We preprocess and automate network accessibility analysis with OSMNx (Boeing,
2017b) and Pandana (Foti et al., 2012).

4. Results

4.1. Case Study: Urban Greenery Exposure
There are many possible use cases for active mobility. We choose to focus on population

ageing since it is an existential problem for society. Active mobility is an important strategy to
improve population health and promote successful ageing in place (Loo and Lam, 2012; Hou
et al., 2020; Song et al., 2020). With these considerations, we choose an urban precinct in
Tokyo, Japan in the midst of rapid population ageing. Nerima is one of 23 special wards lo-
cated in the Tokyo Metropolitan Region with a population count of 381,000 (Nerima City Hall,
2022). Currently, more than one-fifth of residents are aged 65 and above. Nerima is primarily
a residential district and hosts a wide range of amenities for older adults. For our analysis, we
pick five amenities within close proximity to residential apartments: clinics, social facilities,
restaurants, libraries, and community centres. Figure 4 shows one possible combination of
origin-destination (OD) flows between residential apartments and social facilities, and walking
time throughout the network.

We proceed by embedding green view index (GVI) into the network. First, nodes with
SVI information are geo-located and embedded into the street network. Subsequently, SVI
information is distributed to all other nodes in the network based on a distance threshold and
linear weight decay over edge distance (Foti et al., 2012). As a technical note, distance thresh-
old will vary depending on data density as well as across different application and use cases.
Figure 5a, the greenest regions of the neighbourhood lies along the western corridor and are
located close to residential areas. However, a visual observation shows that the distribution of
urban greenery among residential areas is quite uneven. For example, residential apartments
located northbound enjoy less greenery.
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(a) Origin and Destination Locations. (b) Network Accessibility (walking time).

Figure 4: Example of origin-destination accessibility computation. Source: (c) OpenStreetMap contributors.

(a) Linear interpolation of GVI. (b) Sample routes (red circle marks end).

Figure 5: GVI is unevenly distributed and appears to cluster along arterial roads at Nerima, Tokyo. Along sample
routes, GVI tends to peak when traversing along arterial roads and is relatively lower for streets within residential
neighbourhoods.

Ideally, urban greenery should be placed along paths where most users travel. While the
number of possible paths in a network is possibly intractable (ON where N is trip length),
previous studies on older adult mobility have noted that travel patterns are highly correlated
with destination type and availability (Loo and Lam, 2012; Lorenzo et al., 2012; Loo et al.,
2017; Szeto et al., 2017; Wong et al., 2018; Song et al., 2020; Hou et al., 2020). On this basis,
we scope our analysis to routes based on key amenities: clinics, social facilities, restaurants,
libraries, and community centres. We chose these amenities based on OSM data availability
and empirical evidence from earlier mentioned studies. However, the analysis conducted is
extendable to any points of interest.

Figure 6 shows the relationship between the distribution of trips across all residential apart-
ments to the nearest target amenity type and greenery. For pragmatic considerations, we report
the top three shortest paths for each OD pair. This assumption makes reasonable sense as we

9



expect people to prioritise the shortest route while having some flexibility in their routing path.
From Figure 6 we observe several notable patterns. First, the average exposure to greenery is
higher on average for trips to community centres, social facilities, and restaurants. This finding
is not surprising given that leisure related trips and urban greenery are often found to be jointly
correlated with active travel. On the other hand, trips to clinics and libraries have less exposure
to urban greenery which could signify a gap in urban greenery coverage since urban greenery
can play a significant role in improving physical, social, and mental health for older adults. For
example, a visual observation shows that trips to clinics experience significantly lesser green-
ery than trips to community centres. A two-sample Kolmogorov–Smirnov test validates the
statistical significance of this comparison (value = 0.688, p-value = 4.43E-41).

Figure 6: Distribution of greenery exposure exhibit clear differences across different amenity types. Mean greenery
exposure for trips to clinics and libraries is significantly lower relative to trips towards social facilities, restaurants,
and community centres.

Next we adopt a network topological approach to investigate urban greenery provision.
Preferably, routes that are most commonly used by residents to access amenities should have
higher greenery coverage than less frequently used routes. Based on shortest paths between
all origin (residential locations) and destination (amenities) pairs, we aggregated the number
of times each edge is traversed and plot the results. Our analysis is similar to the conventional
computation of betweenness centrality in graphs but is applied to edges instead of vertices
(Agryzkov et al., 2019; Sevtsuk, 2021). In addition, each edge is coloured by the average
greenery exposure (accounting for edge length) to indicate the degree of greenery exposure
along routes. Figure 7 shows the most commonly travelled edges between residential apart-
ments and amenities.

The width of an edge indicates its spatial importance in the network. Edges with thicker
margins correspond to street segments with many shortest paths (between OD pairs) traversing
through them, vice versa. Looking at Figure 7, we can observe that street segments such as
A and C have high greenery exposure but have fewer paths routing through them. On the
other hand, street segments such as B experience the most movement traffic but have the lowest
greenery exposure compared to other areas. Our findings suggest that the distribution of urban
greenery in Nerima, Tokyo is currently not optimal and residents could benefit from efforts to
increase greenery at targeted streets.
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Figure 7: Network showing most used paths weighted by network betweenness and coloured by greenery exposure
along edges. Despite being a route traversed often by residents to various amenities, site B has low greenery
exposure relative to site A which appears to be a car-oriented street.

4.2. Case Study: Urban Visual Complexity
Given the close relationship between complexity and willingness to walk/cycle, it is impor-

tant to measure the amount of visual complexity for dense urban environments. Visual com-
plexity depends on many elements, not limited to, buildings, street furniture, traffic signage,
human activity, and urban greenery (Gehl, 1987; Arnold et al., 1980; Jacobs et al., 1993; Botta
et al., 2020; Ernawati, 2021). Streetscapes with more visual elements (e.g. street infrastructure)
correspond to higher levels of visual complexity while scenes with less visual elements have
lower visual complexity. In this regard, SVI provides an intuitive way to understand urban
visual complexity of streetscapes.

Building on these considerations, we choose for our analysis, a dense urban residential
district in Pasir Ris, Singapore. Pasir Ris is a mature town with total population of 144,610
residents and population density of 9615 people per km2 (Department of Statistics, 2021). The
residential population is young compared to other planning areas in Singapore with only 12%
of its population aged 65 and above. To examine active mobility patterns among a younger de-
mographic, we specify a mix of recreational (cafes, community centres) and essential (banks,
places for worship, clinics, schools) amenities to generate OD trips. We follow a similar ap-
proach to the previous case study and embed visual complexity into the network through linear
interpolation. One technical note for data pre-processing is that visual complexity is highly
sensitive to image availability and areas with complexity of zero correspond to null instances.
In other words, a value of zero for complexity implies that an image is filled entirely with only
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one class. However, it is highly unlikely that urban scenes display only one visual class (e.g. all
building or all sky). Therefore, we adopt an additional step to assign areas with null instances
the mean complexity value for the entire site. This is a reasonable assumption as we found
complexity values to be normally distributed across the site.

Figure 8a shows consistent patterns of visual complexity (µ = 0.79, σ = ±0.32) through-
out Pasir Ris estate. Notably, edges with high visual complexity are mainly situated within
housing estates where footpaths and car parks are located. On the other hand, areas with low
visual complexity tend to fall along roads along the residential estate periphery. The derived
patterns confirm the close correspondence between travel speed and visual complexity (Ewing
and Handy, 2009). Overall, our findings suggest evidence of a meticulously planned urban
neighbourhood in Pasir Ris, Singapore.

(a) Linear interpolation of visual complexity index. (b) Sample routes (green circle marks end).

Figure 8: Visual complexity distribution at Pasir Ris is well balanced with high complexity within estates and
low visual complexity along axial roads. Along sample routes, visual complexity exposure tend to peak within
residential neighbourhoods.

As previously established, routes with well-balanced visual complexity (i.e., not too high
or too low) are perceived as being ideal for active mobility. It is hence important to quantify
the amount of visual complexity for targeted daily trip destinations. Figure 9 illustrates the
distribution of visual complexity across trips from public housing apartments to the nearest
target amenity type. Each row corresponds to an amenity type while each column translates to
the mean visual complexity for the respective decile range.

We proceed to highlight several observations. First, visual complexity exposure is on the
whole higher for trips to cafes, clinics, and community centres. This makes intuitive sense
as cafes, clinics, and community centres are highly localised services and likely to be embed-
ded within residential neighbourhoods. Another interesting observation we identified is the
presence of distinct clusters based on visual complexity distribution. With the caveat that clas-
sifications tend to be complex and may be subjective, we found three patterns/clusters that have
intuitive explanations:

Macro, Localised Amenities Amenities such as clinics and community centres serve the en-
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tire urban precinct (macro) and can be found throughout the residential district. Trips are
characterised by a well-spread, balanced range for visual complexity..

Macro, Peripheral Amenities Banking facilities in Pasir Ris are located at the periphery of
the housing estate (along a primary arterial road). The distribution is characterised by
consistent low visual complexity. For example, almost 90% of trips have mean value
below the site average.

Meso/Micro, Localised Amenities Another identifiable distribution pattern is that for places
of worship, schools, and cafes which show higher than average visual complexity. These
amenities serve the meso and micro urban scales are located within residential estates
that have high visual complexity.

Figure 9: Distinct clusters can be recognised from the distribution variance between amenity types. Centralised
amenities such as clinics and community centres exhibit the highest distribution variance since they are embedded
within residential estates. On the other hand, banks have the lowest distribution variance as they are located at the
site periphery (main road) where visual complexity is consistently low.

Overall, our finding indicates interesting patterns about visual complexity among travel to
different amenity types. The varying patterns suggest that visual complexity is highly informa-
tive of user travel experience and its incorporation should benefit active mobility planning.

Lastly, we look into a place-based analysis of visual complexity and network edge impor-
tance. As illustrated in Figure 10, commonly used path generally have balanced visual com-
plexity values throughout Pasir Ris. However, our analysis identified one well-used primary
arterial road running from west to east of the site with strikingly high visual complexity (three
standard deviations above the mean). A closer inspection of the site via Mapillary revealed
many banners and traffic signs along the site. High visual complexity from ‘urban visual clut-
ter’ has been found to be associated with higher traffic accident risk for pedestrians and drivers
(Oviedo-Trespalacios et al., 2017; Tapiro et al., 2020). Our findings suggests that efforts to
reduce the amount of visual stimuli at sites with high visual complexity could help to improve
traffic safety and promote active mobility at Pasir Ris estate.

5. Discussion

An important gap in current active mobility research is limited understanding of how con-
textual information from streetscapes can contribute to planning efforts. Network-based SVI
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Figure 10: Network showing most used path weighted by network betweenness and coloured by visual complexity
along edges. Sites within residential estates (e.g. Site B) tend to have higher visual complexity. Despite being
located on an arterial road, Site C exhibits high visual complexity due to a large number of advertisements and
traffic signs.

studies value-add to existing active mobility studies by allowing high resolution, context-based
information to be incorporated into local planning decisions. In this work, we demonstrate that
the combination of methods established in the fields of urban network science and deep learn-
ing can provide insight on this issue. By accounting for semantic information, it is possible to
propose localised intervention measures and understand how streetscapes contribute to active
mobility experiences for various use cases, population groups, and locations. Subject to data
availability, our analysis can be replicated at any urban scale and is generaliseable across urban
contexts.

Our findings have four broad ranging implications for ongoing active mobility studies. First,
it allows us to abstract away from our view of cities and urban areas as aggregated and static
instances in space and time. As mentioned by Batty (2021), the Covid-19 pandemic has laid
bare tensions and problems with urban analytical approaches treating urban phenomenon with
a cross-sectional lens. For instance, the increasing dynamism and uncertainties associated with
complex urban systems have challenged the validity of methods with low temporal frequency
(e.g. population surveys at 5 or 10 year intervals). In particular, we have seen how presumably
immovable patterns of urban mobility (such as the 9 to 5 rush hour) fade into oblivion. Subject
to data availability, SVI-based studies can be implemented for any time period/interval and im-
age collection for target sites can be completed within hours. Such analytical methods provide
a powerful mechanism to monitor, detect, and compare urban change over time and addresses
current gaps for evidence-based planning (Yap et al., 2022).
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Second, we see crowdsourced SVI datasets like Mapillary playing an increasingly important
role in global street view analysis. Compared to images from proprietary datasets (e.g. Baidu or
Google), Mapillary images offer the following benefits: 1) hosted on a free and open platform
which promotes liberal use and ownership, 2) images might be available for areas not covered
by proprietary alternatives. In addition, images are high quality and vetted for quality, privacy,
and consistency during the upload process (e.g. Mapillary automatically applies a CV pre-
processing algorithm on each upload). Last but not least, the liberal license allows global deep
learning datasets such as Mapillary Vistas (Neuhold et al., 2017) to be created and shared with
the community.

Third, our findings extend applications related to the incorporation of visual semantic in-
formation of urban environments into networks. For active mobility studies, a paradox is often
drawn between the need to contextualise interventions and the need to replicate analyses at nu-
merous locations. However, geospatial computations are computationally expensive and scal-
ability has been a longstanding area of research in geospatial-based studies (Lai et al., 2018;
Murakami et al., 2019). Network-based methods are well-defined and developed, allowing for
highly efficient data processing. This allows us to tap into the wealth of analytical tools, func-
tionalities, and highly optimised workflows that have been developed in the network sciences
(Liang and Kang, 2021; Liu and Biljecki, 2022). Moving forward, we expect networks to con-
tinue to grow in importance as a fundamental component of urban systems. A recent study
by Zhang et al. (2022) demonstrates the utility of networks to evaluate optimality of active
mobility trips. As the amount of urban data is expected to increase significantly in the foresee-
able future, novel analytical methods to understand complex urban systems will likely demand
near real-time learning and prediction to better support evidence-based planning and decision
making (Kandt and Batty, 2021).

Last but not least, it is important to stress that the push towards more powerful analytical
capabilities should not neglect the emancipatory goals of planning. As forewarned by Boeing
et al. (2021), urban data and analytics warrant serious consequences for representativeness,
privacy, and equity. The estimation of popularity of street segments based on network topology
allows urban planners and practitioners to pinpoint highly accurate intervention sites without
compromising user privacy. It is also transparent and straightforward to extend the method
to promote equitable planning. For example, network POIs can be readily augmented with
aggregated information (e.g. assigning higher importance values to rental housing units) to
promote more equitable planning outcomes. To ensure representativeness, network estimates
should be extended and calibrated with actual travel flow data where available. Analytical
methods should thus be practiced with mindful criticality to avoid unintended consequences.

On limitations, data concerns and usability remain forefront. On usability, the lack of ac-
cessible tools continue to challenge our ability to conduct open science and reason with the
complexity of our urban environments (Harris et al., 2017; Boeing, 2020; Poorthuis and Zook,
2020; Arribas-Bel et al., 2021; Anselin and Rey, 2022; Boeing et al., 2022). In particular, a
significant chasm remains between the complex problems faced daily by planning profession-
als and the software solutions available to them. We believe that practitioners should not need
to master a dozen software interfaces to solve a single task. On the bright side, all software
and models used in our workflow are mature software with good documentation, clear installa-
tion instructions, and easy to follow tutorials. Nonetheless, there is a need for more integrative
software solutions that recognise the multidimensional nature of urban problems (Yap et al.,
2022).

Another key challenge is data availability. The analysis is dependant on the availability of
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street view imagery as well as geospatial information of points of interest from OpenStreetMap.
At present, extending the study to areas with poor data coverage is not possible without manual
data collection. The unequal distribution continues to pose challenges for comparative studies
in lesser developed regions (Ma et al., 2019; Mahabir et al., 2020). Another limitation is the
noisiness of crowdsourced street view data. For example, images may be taken from vehicles,
on bicycles, or via walking which provide various vantage points. There is currently also no
standardised and automated way to check for unsuitable images aside from manual inspection
(Juhász and Hochmair, 2016).

6. Conclusion

Bringing together innovations from the fields of network science and deep learning, we
demonstrate the feasibility of an open analytical workflow which can produce interesting in-
sights for active mobility studies. Towards realising healthy cities, our approach affirms the
importance of semantic information from streetscapes for contextualising active mobility plan-
ning and decision-making.

The development of network-based SVI use cases and applications in active mobility stud-
ies is still in its early phases. Further research opportunities for active mobility include aug-
menting network analyses with open building data. Buildings share an intimate relationship
with road networks, and are as much as networks, indicative of the hierarchical processes in-
herent in urban systems. On that note, the increasing availability and accessibility of large
scale, high quality global building morphology indicators and footprints presents unique op-
portunities to improve our multi-scalar understanding of complex urban networks (Biljecki and
Chow, 2022). Another area for further research includes bridging gaps in data distribution and
inequality. More specifically, network-based structures can be used to fill existing data gaps
by mapping relationship across correlated urban indicators. For example, one direction could
be to employ semi-supervised learning algorithms (e.g. graph convolutional networks (GNNs)
or generative adversarial networks (GANs)) for data translation tasks (Xu et al., 2018a,b; You
et al., 2020; Wu and Biljecki, 2022; Zhao et al., 2022; Wang and Biljecki, 2022). Such learning
have demonstrated huge potential to fill data gaps in under-represented regions. Last but not
least, the increasing popularity of 360 degree panoramic street view imagery present opportu-
nities to develop better contextual understanding of urban environments for active mobility. As
an example, slope and surface pavement material could be assessed to determine risk of falli-
bility along routes. In this regard, this work is a novel attempt to bridge recent developments in
network sciences and deep learning research, and contributes to the growing body of research
underlying the potential of SVI to improve planning and design of cites. An additional con-
tribution of this work is its use of crowdsourced SVI, an overlooked but growing and valuable
source that we believe will become more common in urban studies in the future. Our work
shows that for some use cases in urban studies, volunteered geographic information such as
Mapillary can rival commercial sources such as Google Street View.

Amidst rapid urbanisation and population ageing, active mobility concerns will continue
to grow in prominence. Moving forward, the integration between deep learning methods and
network sciences provides opportunities to address new analytical demands that reflect rising
uncertainties and dynamism in the study of complex urban systems.
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