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Abstract

The accurate prediction of travel demand by bus is crucial for e↵ective urban mobility
demand management. However, most models of travel demand prediction by bus tend to
focus on the bus’s spatiotemporal dependencies, while ignoring the interactions between
buses and other transportation modes, such as metros and taxis. We propose a Multiview
Spatiotemporal Graph Neural Network (MSTGNN) model to predict short-term travel
demand by bus. It emphasizes the ability to capture the interaction dependencies among
the travel demand of buses, metros, and taxis. Firstly, a multiview graph consisting
of bus, metro, and taxi views is constructed, with each view containing both a local and
global graph. Secondly, a multiview attention-based temporal graph convolution module
is developed to capture spatiotemporal and cross-view interaction dependencies among
di↵erent transport modes. Especially, to address the uneven spatial distributions of fea-
tures in multiview learning, the cross-view spatial feature consistency loss is introduced
as an auxiliary loss. Finally, we conduct intensive experiments using a real-world dataset
from Shenzhen, China. The results demonstrate that our proposed MSTGNN model per-
forms better than the existing models. Ablation experiments validate the contributions
of various modes of transportation to the improvement of the model’s performance.
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1. Introduction

The buses serve as one of the most crucial modes of transportation since they con-
tribute to promoting environmental sustainability, o↵ering low-cost and accessible tran-
sit, enhancing social and economic connections, and decreasing tra�c congestion (May,
2013; McLeod et al., 2017; Sultana et al., 2019). The prediction of travel demand by5

bus has become an important issue that allows policymakers and transportation au-
thorities to ensure e�cient and e↵ective transportation services. The demand for bus
travel is a↵ected by the macroscopic built environment and the dynamic factors in the
transportation system. In the long term, the spatial layout of the built environment pro-
foundly influences the spatiotemporal distribution of citywide travel demand by bus (Mc-10

Nally, 2007; Ma et al., 2018; Qi et al., 2018). Individual characteristics, such as ed-
ucational background, income, and family structure, have also been demonstrated to
influence long-term travel behaviors, i.e., travel modes, travel times, and travel frequen-
cies (Recker et al., 1986; Wang et al., 2011a). In contrast, in the short term, competition
and cooperation among buses, metros, and taxis a↵ect the availability of travel choices,15

thereby influencing travel demand by bus.
Recently, advances in information and communication technology (ICT) have en-

abled the collection of massive, timely transportation data, allowing us to capture the
dynamic interactions among multiple travel modes. For example, Zhang et al. (2018b)
revealed the interaction patterns of buses and taxis by considering the spatial distribu-20

tions of trips and travel distances. They demonstrated that the competition and coopera-
tion among di↵erent transport modes in multimodal trips were spatially correlated. Chen
et al. (2020) unraveled latent transfer patterns between buses and metros and reported
21 typical patterns. Their results suggested that the transfer from one mode of travel to
another is dynamic across space and time. Wu and Liao (2020) revealed that extreme25

weather events significantly a↵ect travel behaviors. In experiments conducted on data
from Beijing’s metro system and a survey, they found that passengers prefer subways or
cars to buses and bicycles when the weather is bad.

We summarize the dynamic interactions among buses, metros, and taxis into two
types, as shown in Figure 1. (1) Global interaction transfer. For example, a commuter30

may travel from station Metro B to station Metro A and then transfer to station Bus A. In
this case, the travel demand at bus station Bus A is a↵ected by the global spatial influence
of metro station Metro B. (2) Local interaction transfer. For example, if a rainstorm
occurs, people who board the bus at Bus A may transfer to a taxi service at Taxi A, as
they will not walk to the bus station in the rain (Wu and Liao, 2020). From the travel35

records, we can observe that the trips of Bus A decrease while those of the neighboring
Taxi A station increase. Therefore, considering multimodal travel would enable us to
better understand and predict travel demand (Li et al., 2021; Ke et al., 2021).

Essentially, predicting the demand for bus travel is a time series problem. Capturing
the nonlinear dependencies of travel demand across space and time is a challenge (Zheng40

et al., 2014). In recent years, many di↵erent neural network models have been devel-
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Figure 1: Interactions among the travel demands of buses, metros, and taxis. travel demand by bus may be
influenced by other transportation modes in its neighborhood (local) and those that are far away (global).

oped to address this challenge. For instance, graph convolutional networks (GCNs)
and recurrent neural networks (RNNs) have been used to capture spatial and temporal
dependencies, respectively (Ren et al., 2020; Zhang et al., 2017). Some studies have
developed more complex and powerful neural network models to capture specific spa-45

tiotemporal dependencies; examples include as long short-term memory (LSTM) (Cui
et al., 2019) and graph attention networks (Guo et al., 2019). These models are generally
based on historical demand features; they treat each mode of transportation as an isolated
and independent environment, ignoring its interaction with other transportation modes.
Recently, Liang et al. (2022) proposed a graph-based deep learning approach for bike50

sharing demand prediction considering the interactions among bike sharing, subway rid-
ing, and ride hailing. They developed intermodal similarity and di↵erence modules to
capture multimodal transportation interaction dependencies. Their findings demonstrate
that graph-based deep learning outperforms existing methods. However, designing an
e↵ective structure to capture multimodal dynamic interactions remains a challenge. A55

multimodal interaction fusion model training strategy is also absent.
To fill these gaps, we propose a new Multiview Spatiotemporal Graph Neural Net-

work (MSTGNN) model to predict short-term travel bus demand. Unlike previously
developed approaches, the MTGNN model considers the interactions among di↵erent
transport modes from both global and local perspectives. Specifically, a multiview graph60

with bus, metro, and taxi views is constructed according to spatial adjacency and mo-
bility among di↵erent regions. A multiview attention-based spatiotemporal graph con-
volution module is designed to capture spatiotemporal and cross-view interaction de-
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pendencies among di↵erent transport modes. The cross-view feature spatial consistency
(CVSFC) loss is introduced to overcome the issue regarding the uneven spatial distribu-65

tions of multiview features. Intensive experiments are conducted using a real-world bus,
metro, and taxi dataset in Shenzhen. The results demonstrate that the MSTGNN model
outperforms the baseline methods.

The remainder of this manuscript is organized as follows. Section 2 reviews related
studies. Section 3 defines the studied problem. Section 4 describes the presented MST-70

GNN model. Section 5 reports the experimental results and discusses them. Finally,
Section 6 concludes this study and outlines future work ideas.

2. Related work

2.1. Multimodal urban mobility
Urban mobility, which includes various travel modes, such as walking, cycling,75

buses, and metros, is typically related to the built environment, demographics, and urban
dynamics. (Zhang et al., 2020b; Li et al., 2020b; Tu et al., 2017; Yue et al., 2018; Tu et al.,
2020; Gao et al., 2021). As a result, the multimodal demands of di↵erent travel types
are highly correlated with each other in the long term. Previous studies depended on
passenger surveys to investigate the interactions between human travel and multimodal80

transportation (Barry et al., 2009; Nassir et al., 2015). These studies aimed to investigate
the impact of passengers’ subjective perceptions and service provisions on multimodal
travel in public transportation systems. Cherry and Townsend (2012) used more than 300
surveys and developed a satisfaction analysis and ordinal regression model to analyze the
influencing factors of passengers on metro and bus transfers. The results indicated that85

safety and the distances between metro exits and bus stops were the most critical factors
that a↵ected transfers. Hernandez and Monzon (2016) analyzed a transfer satisfaction
survey using the principal component analysis method and discovered that minimizing
the required waiting time and increasing transfer station comfort are the most important
factors that influence the willingness to transfer. Zhao and Li (2017) investigated the90

interactions between two modes of transportation metros and bicycles in Beijing. It was
discovered that trip distance is the most influential element for transfer travel between
metro stations and houses or businesses. Furthermore, income, individual views, and the
built environment also substantially impact transfer.

With the advancement of ICT, smart cards and GPS data provide comprehensive95

spatial and temporal travel information, enabling us to explore the spatial scopes and
temporal dynamics of multimodal transportation interactions (Fang et al., 2012; Siła-
Nowicka et al., 2016; Li et al., 2020a; Zhang et al., 2020b). By combining these big
multisource transport data, the state-of-the-art methods can finely identify passengers’
transfer behaviors and travel chains in a multimodal transportation system, which acts100

as a foundation for evaluating multimodal transportation interactions. Zhao et al. (2017)
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provided a method for recognizing transfer behaviors using smart card data and con-
structed various frameworks for analyzing the multifactor interactions involved in mul-
timodal travel, such as built environment associations and spatiotemporal similarity. Tu
et al. (2018) explored bus, metro, and taxi ridership; revealed the associations between105

multimodal ridership and demographic, land use, and transportation factors; and com-
pared the similarities and di↵erences among these associations.

In the short term, the interactions that occur in multimodal transportation are re-
flected in the travel mode choices made in a dynamic urban environment (Tao et al.,
2018; Zhao et al., 2020). Wu et al. (2022) employed a multivariate generalized Poisson110

regression model to investigate the relationships between bus and subway transfer pas-
senger flows and socioeconomic, built environment, holiday, and weather variables on
di↵erent days. They found that the transfer ridership of the metro-to-bus mode signifi-
cantly increased under the high wind, heavy rain, and high-temperature conditions. Kim
(2020) examined the impacts of weather and calendar events on subway and bus mode115

choices. They found that bad conditions, including cold weather, increased subway use,
and the magnitudes of the influences of di↵erent features varied over the tested periods.
In summary, as components of the urban transportation system, buses, metros, and taxis
all a↵ect each other. Capturing their dependencies is quite helpful for predicting travel
demand.120

2.2. Travel demand prediction
Travel demand prediction operates based on historical travel information and addi-

tional variables (weather, dates, etc.) to predict long-term or short-term travel demand
(Ma et al., 2014; Liu et al., 2020; Karnberger and Antoniou, 2020; Huang et al., 2021).
The related methods are mainly divided into two categories: knowledge-driven meth-125

ods and data-driven methods. Knowledge-driven approaches are generally used in urban
research and queuing theory; they predict travel demand by understanding the laws of
travel demand and the built environment, as well as by constructing resident behaviors
(Ma et al., 2018; Xu et al., 2014). Despite their strong interpretability, these methods
cannot e↵ectively capture the dynamic changes in travel demand in a complex realistic130

context. Typical data-driven methods include the moving average (MA) model and the
autoregressive integrated moving average (ARIMA) model (Ahmed and Cook, 1979;
Hamed et al., 1995). These models have high computational e�ciency, can be applied
to various fields and are widely used in transportation prediction. However, such meth-
ods can only capture the linear temporal correlations in travel demand data; the more135

complex nonlinear space-time correlations cannot be captured, limiting the prediction
performance of such approaches.

In recent years, deep learning models have achieved great performance in terms
of travel demand prediction because they can capture temporal and spatial dependen-
cies (Zhao et al., 2019; Miglani and Kumar, 2019; Kashyap et al., 2022). In terms of140

temporal dependence, an RNN considers the time series correlations among multiple
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input time points, processes the input information from the previous instant, and re-
tains it in the operation used for the current information; thus, RNNs are widely used
to capture temporal dependencies (Zaremba et al., 2015; Cho et al., 2014). RNN model
variants, such as the LSTM network and gated recurrent unit (GRU) (Hochreiter and145

Schmidhuber, 1997; Shu et al., 2021), have been developed to overcome the vanishing
gradient and overfitting problems and have performed well in transport prediction tasks.
In terms of spatial dependence, many studies treat urban space as a standard grid or a
non-European graph structure and employ convolutional neural networks (CNNs) and
GCNs to capture spatial dependencies (Ren et al., 2020). For example, Ren et al. (2020)150

divided their study area into a regular two-dimensional grid; captured spatial dependen-
cies through a two-dimensional CNN; used LSTM to capture the proximity, periodicity,
and trend features in time series; and predicted the tra�c flow. Zhao et al. (2019) built a
graph based on a road network and proposed a temporal GCN (T-GCN) model, a com-
bination of a GCN and a GRU, to capture the spatiotemporal characteristics of tra�c155

flows. Many more complex networks have been proposed to better capture the temporal
and spatial dependencies in transport prediction tasks, such as graph attention networks
(Zheng et al., 2020) and graph WaveNet (GWNET) (Wu et al., 2019).

Most deep learning-based travel demand prediction models focus on complex spa-
tiotemporal dependencies (Yu et al., 2018; Guo and Zhang, 2020), while the interactions160

of multimodal transportation dependencies receive little attention. Few recent studies
have attempted to use a multiview learning approach to fuse multimodal transporta-
tion information to achieve improved model performance. Ke et al. (2021) proposed a
deep multitask multigraph learning approach for predicting the solo and shared service
modes in ride hailing systems. They constructed neighborhood, distance, and functional-165

ity graphs and proposed a regularized cross-task learning structure to achieve knowledge
sharing between di↵erent modes. Liang et al. (2022) proposed a graph-based deep learn-
ing approach for bike sharing demand prediction by considering the interactions among
bike sharing, subway riding, and ride hailing. They developed intermodal similarity and
intermodal di↵erence modules to capture multimodal transportation interaction depen-170

dencies. Their results demonstrated the superior performance of their approach over that
of existing methods. However, challenges remain with regard to designing an e�cient
structure for capturing multimodal dynamic interactions, and a model training strategy
for the fusion of multimodal interaction features is unavailable. Here, we propose a
new MSTGNN model to predict short-term travel demand. Unlike previously developed175

approaches, this model considers multimodal transportation interactions from both lo-
cal and global transfer perspectives, developing global and local cross-view multigraph
learning structures. Specifically, a CVSFC loss is presented to overcome the uneven
distribution issue exhibited by multiview features during model training.
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3. Problem statement180

Here, we provide the basic definitions used in this study.
Definition 1: Spatial graph
A spatial graph is represented by G = (V, A, X), where V = v1, v2, · · · , vN is the set of

nodes, A is a feature matrix with dimensions of N⇥N, and X is the feature matrix for the
nodes. In this study, each node is a street-level transportation analysis zone (TAZ) (Zhao185

et al., 2022), and N is the number of TAZs. If there is an edge that goes from node i to
node j, then Ai j=1; otherwise, Ai j=0. The feature matrix X is defined below. Multiple
graphs can be constructed by considering the di↵erent connections between TAZs, and
the detailed graph construction procedure is demonstrated in Section 4.1.

Definition 2: Feature matrix190

A feature matrix refers to the historical travel demands of the three transportation
modes of each node in the spatial graph G. The feature matrix is denoted by X 2
RM⇥F⇥N . At each time step t, the graph G has a dynamic feature matrix Xt 2 RM⇥F⇥N ,
where M represents the number of transportation modes, F represents the length of the
historical time series, and N is the number of TAZs. Xm

t represents the travel demand for195

all TAZs at time t under transportation mode m.
Definition 3: Travel demand prediction problem
Given one or more graphs G and its/their feature matrix X = [Xt�n, · · · , Xt�1, Xt],

the travel demand prediction problem is to learn a function f that can predict the next k
steps of graph features belonging to transportation mode m, as shown in Equation 1.200

h
Xm

t+1, X
m
t+2, · · · , Xm

t+k

i
= f (G(s); [Xt�n, · · · , Xt�1, Xt]) (1)

4. Methodology

This section introduces the proposed MSTGNN model for travel demand prediction.
The schematic structure of the MSTGNN is presented in Figure 2. The MSTGNN model
consists of three main components: a multiview graph construction module, a multiview
attention-based temporal GCN (MVATGCN) module, and a cross-view spatial-temporal205

feature fusion module. First, multiview graphs (e.g., bus, metro, and taxi graphs) are
constructed. Each view has local and global graphs, which are built according to the
historical origin-destination records of trips. Then, the multiview graph features are
independently fed into the MVATGCN module to capture both local and global cross-
view dependencies. Finally, the predicted travel demand results are obtained by fusing210

the global and local cross-view spatiotemporal dependencies through a parameter matrix.
The details of each module are described below.

4.1. Generating a multiview graph
It is challenging to directly model multimodal travel flow data due to the complex

spatial and temporal dependencies of various transportation modes. Multiview learning
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Figure 2: The framework of the proposed MSTGNN model.

can decompose complex interaction patterns into multiple independent simple patterns,
separately capture the spatiotemporal dependencies of each view, and then fuse the mul-
tiview features(Zhang et al., 2020a; Sun et al., 2022; Wang et al., 2022). On the one
hand, this approach reduces the burden of capturing complex nonlinear dependencies.
On the other hand, it makes the resulting model more interpretable. The foundation of
graph-based multiview learning is to build multiple spatiotemporal graphs. We struc-
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ture bus, metro, and taxi views according to the di↵erent transportation modes. In each
view, we consider two types of spatial relationships among TAZs, spatial adjacency and
mobility, which two graphs can represent. (1) The local graph GL = (V, AL, X) encodes
the spatial adjacency relations. Tobler’s first law of geography states that ‘everything is
related to everything else, but near things are more connected than distant things’ (To-
bler, 1970). In a transportation system, adjacent TAZs may share similar travel patterns.
Therefore, we construct adjacency relationship graphs to consider spatial autocorrela-
tions, and the adjacency matrix AL can be computed as in Equation 2. (2) The global
graph GG = (V, AG, X) encodes the mobility among TAZs. Intuitively, geographically
distant TAZs with strong mobility have higher travel demand correlations due to trans-
fer. Historical travel demand records provide information on the mobility among di↵er-
ent TAZs, which can be used to build a global graph; AG can be calculated as shown
in Equation 3, where vi j denotes the number of travel between TAZs i and j and � is a
threshold. Here, we set the threshold to the count of the top 20% of trips entering a TAZ.
This means that we construct edges for each TAZ with other TAZs that have the top 20%
of the strongest mobility.

AL,i j =

8>><
>>:

1, vi and v j are adjacent
0, otherwise

(2)

AG,i j =

8>><
>>:

1, vi j>�

0, otherwise
(3)

The bus, metro, and taxi views of the graph data models Gbus , Gmetro , and Gtaxi are
constructed for multiview learning, as shown in Equations 4-6. Each view contains two215

types of data graph models: a local graph GL and a global graph GG. Although the GG
have di↵erent edges, they share the nodes V , and the travel demand features X belong
to the nodes. The local multiview graphs include Gbus

L , Gmetro
L and Gtaxi

L , and the global
multiview graphs include Gbus

G , Gmetro
G and Gtaxi

G . Finally, the global and local multiview
graphs are fed into the MVATGCN module.220

Gbus =
n
Gbus

L ,G
bus
G

o
=
n⇣

V, Abus
L , X

bus
⌘
,
⇣
V, Abus

G , X
bus
⌘o

(4)

Gmetro =
n
Gmetro

L ,Gmetro
G

o
=
n⇣

V, Ametro
L , Xmetro

⌘
,
⇣
V, Ametro

G , Xmetro
⌘o

(5)

Gtaxi =
n
Gtaxi

L ,Gtaxi
G

o
=
n⇣

V, Ataxi
L , Xtaxi

⌘
,
⇣
V, Ataxi

G , Xtaxi
⌘o

(6)

4.2. The MVATGCN
The MVATGCN module captures heterogeneous spatiotemporal and cross-view de-

pendencies. As shown in Figure 3, it includes a multiview TGCN that stacks four tem-
poral convolutional networks (TCNs) and GCNs, as well as a cross-view attention net-
work. The multiview TGCN is used to capture the spatiotemporal dependencies of the225
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individual transportation views. The cross-view attention network is used to capture the
cross-view dependencies of various transportation modes.

Figure 3: The multiview attention-based temporal graph convolution module.

4.2.1. Multiview TGCN
Convolution is an excellent method for aggregating neighborhood information, and

it is commonly used in local feature extraction tasks (Rawat and Wang, 2017; Cao et al.,230

2020). Inspired by previous studies, we use the convolutional-based method to extract
temporal and spatial features. In terms of the temporal aspect, although RNN-based
models have become widespread in time series analysis cases, many challenges remain
regarding the use of recurrent networks for travel prediction, including their long training
time requirements and their di�culty in dealing with long-range sequences. CNN-based235

models have the advantages of quick training processes, simple structures, and no depen-
dency limitations concerning prior stages. As a result, we adopt dilated causal convolu-
tion structures (Yu and Koltun, 2016) as our TCNs to capture the temporal dependency
of each zone.

As shown in Figure 4, the dilated causal convolution operation, a special case of240

standard 1D convolution, slides over inputs by skipping values with a certain step size.
The dilated convolution algorithm varies from the traditional CNN because it has a wider
kernel, which can more e↵ectively learn connections between data at di↵erent time in-
tervals. For each group of view graph data Gv, Xv is the time series feature of view v,
and the dilated causal convolution operation of Xv at step s is represented as:245
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X̄v =

LX

l=1

Xv(l) ⇥ K(s � l ⇥ d) (7)

where X̄v denotes the features obtained after the dilated causal convolution, K 2
RL is the kernel with a size of L and d is the dilation factor that controls the skipping
distance. When the network is dilated by a factor of 1, it is similar to a CNN, and a
kernel with a dilation factor of 2 has one kernel that skips the input. This structure
can obtain a larger receptive field while the convolution kernel size remains the same.250

The receptive field of the network can be calculated as r = 2(n�1) ⇥ L, which means
that the r value of the network grows exponentially with the number of network layers
n. Gating mechanisms have been demonstrated to be e↵ective for controlling the flow
of information through layers in dilated causal convolution networks. We use gated
activation units to further capture temporal dependencies, as shown in Equation 8. In255

the equation, W f and Wg are the learnable convolution filters, X is the input feature, �
denotes an elementwise multiplication operator, � (·) is a sigmoid function, and b and c
are learnable bias parameters. Finally, the graph feature Ẋv of each view v after temporal
convolution is obtained.

Ẋv = tanh
⇣
W f ⇤ X̄v + b

⌘
� �
⇣
Wg ⇤ X̄v + c

⌘
(8)

Figure 4: The dilated causal convolution with a kernel size of 2.

GCNs have recently become popular for capturing non-Euclidean spatial dependen-260

cies (Yu et al., 2018; Zhang et al., 2020c). GCNs can be roughly categorized into two
groups: spectral graph convolution and spatial graph convolution approaches. Spec-
tral graph convolution transfers signals from the graph domain to the Fourier domain
through a graph Laplacian. This paper uses the spectral-based graph convolution method
to implement the GCN. The input is the graph Ġv 2 (V, Av, Ẋv) obtained after temporal265

convolution. Ẍv denotes the feature matrix after utilizing the GCN. Generally, a graph
convolution can be expressed as Ẍv = ⇥(L)Ẋv, i.e., the multiplication of a feature matrix
Ẋv with a kernel ⇥. Here, L = I � D�1/2AD�1/2 is the symmetric normalized Lapla-
cian matrix of G, I is an identity matrix, and D denotes the diagonal degree matrix
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of A. However, this normalization approach is time-consuming, with a complexity of270

o(n2). We use Chebyshev polynomial approximation to simplify the normalization task
instead (De↵errard et al., 2017); formally, the graph convolution can then be rewritten
as:

Ẍv = ⇥(L)Ẋv ⇡
KX

k=0

wkTk(L̂)Ẋv (9)

where L̂ = 2L/�max � I denotes the scaled Laplacian matrix. �max is the largest
eigenvalue of L, and wk is the Chebyshev coe�cient. The Chebyshev polynomials are275

recursively defined as Tk(x) = 2xTk�1(x) � Tk�2(x), with T0(x) = 1 and T1(x) = x. K is
the number of consecutive filtering operations or convolutional layers in a model, where
node information utilizes the information derived from the K � 1st-order neighborhood
of the central node in a convolution operation.

4.2.2. Cross-view attention network280

The mutual influences of di↵erent transportation views are diverse; for example,
during morning rush hour, the demands for metros and buses are strongly correlated. An
attention mechanism is capable of adaptively assigning weights between di↵erent views
(Vaswani et al., 2017; Guo et al., 2019). We design a cross-view attention module to
learn the contribution of each transportation mode to the target zone.285

a = so f tmax
⇣
U
⇣
concat

⇣
Ẍbus, Ẍmetro, Ẍtaxi

⌘
W + b

⌘⌘
(10)

where concat(⇤) concatenates the three view (bus, metro and taxi view) features
obtained after the temporal and spatial convolutional networks Ẍv 2 RCin⇥N into a high-
dimensional vector. W 2 RN⇥Cout is a learnable parameter matrix that maps the connected
high-dimensional features to a new feature space, Cout is the output channel of the high-
dimensional features, and Cout = 3 ⇤Cin. U 2 RCout⇥Cout is a learnable parameter matrix,290

and b is a trainable bias. The resulting weight matrix a 2 RCout⇥Cout is the learned
attention weight. Finally, the features of the three views are concatenated and multiplied
by the attention weight matrix to obtain the cross-view dependency features X̃; this
process is formulated as follows:

X̃ = concat
⇣
Ẍbus, Ẍmetro, Ẍtaxi

⌘
· a (11)

The cross-view attention network has the ability to assign di↵erent attention weights295

to the various transportation views. Intuitively, as shown in Figure 5, the GCN aggre-
gates the local and global information of buses, metros, and taxis from a spatial perspec-
tive. The three transportation mode signals are then fed into the attention module, where
the bus, metro, and taxi signals are aggregated for each zone and the weights of various
transportation modes are allocated by using the attention mechanism.300
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Figure 5: The process of sharing messages between di↵erent spaces and multiple views through a GCN and
a cross-view attention network.

4.3. Cross-view spatial-temporal feature fusion
Through the MVATGCN module, we obtain local and global cross-view dependency

features, which are denoted as X̃l and X̃g, respectively. We propose utilizing a fusion
layer to fuse the local and global cross-view spatial-temporal features. Previous multi-
view transportation prediction tasks found that various views can have di↵erent degrees305

of influence on the final prediction results (Sun et al., 2022). Inspired by this, the two
types of features can be combined using a parametric matrix-based fusion method:

Ŷ = Wl � X̃l +Wg � X̃g (12)

where Wl and Wg are the learnable parameters, and � represents the Hadamard prod-
uct.

4.4. Loss functions310

To achieve e↵ective model training and address the uneven spatial distribution of
multiview features, two kinds of losses are proposed to constrain the network training
process, i.e., major and auxiliary losses. The major loss is the mean squared error loss
LL2. The auxiliary loss function is the spatial feature distribution consistency loss LS C .
The overall loss is formulated as follows:315

L = �1LL2 + �2LS C (13)

where �1 and �2 control the relative importance levels of the two losses. The best
values for �1 and �2 are found by changing the value of �1/�2 from 0.01 to 100 while
keeping the other parameters fixed. Specifically, LL2 calculates the gaps between the
elements in the predicted travel demand by bus Ŷ and the ground truth Y . It can be
expressed as follows:320
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LL2 =
1
k

MX

t=0

NX

i=0

⇣
Ŷt,i � Yt,i

⌘2
(14)

The multimodal travel demand is not uniformly distributed across space. For exam-
ple, metro travel demand is only observed in limited TAZs, and the taxi travel demand in
the central urban area is significantly higher than that in the suburbs. However, the spa-
tial feature distribution imbalance may be considered data noise. To allow the GCN to
better learn the interactions of features between di↵erent TAZs, we design an auxiliary325

loss to ensure the consistency of the spatial feature intensity distribution across views,
thus avoiding the e↵ect of data noise. In this way, the CVSFC loss is computed by the
cosine distance as:

Lsc =
X

v2(metro,taxi)

0
BBBBB@1 �

Ẍbus · Ẍv
���Ẍbus

��� ·
���Ẍv
���

1
CCCCCA (15)

where Ẍv represents the feature of the transportation view v calculated by the TCN
and GCN.330

5. Results and discussion

5.1. Datasets
To demonstrate the e↵ectiveness of the presented MSTGNN, experiments are con-

ducted on multimodal datasets from Shenzhen, China. The collected travel demand data
for buses, metros, and taxis extend from December 1, 2018, to December 31, 2018.335

These data come from the Shenzhen Transportation Bureau; specifically, the dataset has
the following three parts.

• Bus: The data of travel demand by bus come from Shenzhen smart card and GPS
data. The data cleaning procedures involve adjusting the swipe system time and
GPS time and removing some GPS abnormalities. By employing the technique340

suggested by Wang et al. (2011b), we can estimate the origin stop, destination
stop, and travel time of each trip using GPS and smart card data. Finally, ap-
proximately 3.1 million bus trips are recorded every day, encompassing 7875 bus
stops.

• Metro: The metro travel demand data are collected from the same smart card data,345

which include the times and station names of each trip when stations are entered
and exited. A person’s metro trip information, including their boarding/alighting
location and time, may be retrieved directly from the smart card database. Anoma-
lies related to trip times and metro stations are removed from the records as part
of the data cleaning procedure. The 290 metro stations are distributed across 156350

TAZs, and approximately 2.2 million metro trip records are created daily.
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• Taxi: The taxi GPS dataset includes record times, taxi locations, and service sta-
tuses (0 for idle, 1 for service). We delete GPS records with abnormal passenger
load statuses and those that are not in Shenzhen. Consecutive taxi GPS data with
statuses changing from 0 to 1 indicate that a taxi trip has started. Utilizing the355

method, taxi trips are estimated (Tu et al., 2018). Approximately 0.78 million
taxi pick-up and drop-o↵ locations and time records per day are created from 20
thousand taxis.

Following Zhao et al. (2022), 1386 TAZs are generated using a Voronoi diagram
based on the main roads in Shenzhen, which includes the primary, secondary, and trunk360

types of the OpenStreetMap (OSM) road classification. This method has the advantage
that bus stops on both sides of the same route are grouped together, and the predicted
results are better for bus schedules. We measure the travel demands for di↵erent modes
of transportation in each TAZ with a 5-minute time resolution. This new multimodal
transportation travel demand dataset (SZ) is available.365

5.2. Preliminary analysis
Before formally presenting the prediction experiments and analytical results, it is

necessary to conduct a preliminary analysis to validate the cross-view spatiotemporal
dependencies. We use Spearman correlation analysis to evaluate various dependencies.
Inspired by Li et al. (2017), the total travel demand for each transportation mode in each370

region is used as a spatial correlation variable. The sum of all TAZ travel demands every
5 minutes for each transportation mode is used as a temporal correlation variable. As
shown in Table 1, from the spatial perspective, the spatial correlation coe�cients of bus-
metro, bus-taxi, and metro-taxi travel demands are 0.39, 0.55, and 0.53, respectively.
This suggests that the travel demands for buses and taxis have the strongest spatial cor-375

relation, while those of buses and metros have the weakest correlation due to the lack of
metro stations in many TAZs. From a temporal perspective, the correlation coe�cient
of bus-metro travel is 0.97, which is higher than their spatial correlation. The bus-taxi
and metro-taxi travel demands have correlation coe�cients of 0.31 and 0.41, respec-
tively. This shows that the temporal correlations between taxi travel demand and other380

transportation modes are relatively weak. Specifically, Figure 6 shows the temporal dis-
tributions of the travel demands for the three modes of transportation. The temporal
distributions of bus and metro travel demands are similar, with obvious morning and
evening peaks. The travel demand for buses is higher during the morning peak than the
metro demand, but the two demands are almost equal during the evening peak. The peak385

demand for taxis occurs in the early hours (22:00-24:00), and no significant demand fluc-
tuation occurs throughout the day (8:00-20:00). Furthermore, significant di↵erences are
observed between the characteristics of taxi and bus operations. Taxis operate through-
out the day. However, during the nighttime hours of 0:00-6:00 AM and 22:00-24:00,
bus services are reduced or discontinued, and the demand for bus travel is not observed.390
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To reduce the e↵ect of data noise, we reduce the demand for taxis to zero for these two
periods in the dataset.

Table 1: Spatial and temporal correlation coe�cients.

Spatial correlation Temporal correlation

Bus Metro Taxi Bus Metro Taxi

Bus 1 0.39 0.55 1 0.97 0.31
Metro 0.39 1 0.53 0.97 1 0.41
Taxi 0.55 0.53 1 0.31 0.41 1

Figure 6: Temporal distributions of the three transportation modes.

5.3. Hyperparameter selection
Parameter tuning is essential for obtaining a deep learning model with optimal per-

formance (Ke et al., 2017; Zhang et al., 2018a). The MSTGNN model contains three395

important hyperparameters: Kt, Ks, and Dstg. Kt is the size of the temporal convolution
kernel, Ks is the size of the spatial convolution kernel, and Dstg is the number of spa-
tiotemporal convolution layers. The optimal model parameter combination is generally
found using a control variable approach (Cheng et al., 2020). To test Kt, Ks and Dstg are
fixed to 3 and 4, respectively, and Kt varies from 2 to 5. Ks varies from 2 to 5 when Kt400

and Dstg are fixed to 3 and 4, respectively. Correspondingly, Dstg varies from 1 to 5 when
Kt and Ks are fixed to 3. We use the root mean square error (RMSE) and the running
time required for one epoch as evaluation metrics, and Figure 7 presents the obtained
results. The RMSE decreases and then increases with increasing Ks and Kt values. The
proposed model performs best when Ks/Kt = 3; thus, we set Ks/Kt to 3. Even though the405

performance tends to be better as Dstg rises, the training time also significantly increases.
Finally, we set Dstg to 4.
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Figure 7: RMSE and epoch runtime changes obtained with di↵erent parameters on the SZ dataset.

5.4. Experimental setup
5.4.1. Evaluation metrics

The ground truth is the travel demand by bus within each TAZ. yi denotes the ground410

truth of the i� th TAZ. ŷi is the corresponding predicted value, and ȳ is the average of all
yi. We use three evaluation metrics, including the mean absolute error (MAE), RMSE,
and coe�cient of determination (R2), which are defined as Equations 16, 17 and 18,
respectively. Here, S denotes the set of all TAZs.

MAE =
1
S

SX

i=1

|yi � ŷi| (16)

RMSE =

vut
1
S

SX

i=1

(yi � ŷi)2 (17)

R2 = 1 �
PS

i=1 (yi � ŷi)2

PS
i=1 (yi � ȳ)2 (18)

5.4.2. Baselines415

We compare the MSTGNN model with several baseline methods, including a sta-
tistical method (ARIMA), a machine learning method (SVR), and several deep learning
methods (LSTM, STGCN, and T-GCN*). In particular, we use the improved T-GCN
model to test the advantages of our proposed model in fusing the three modes of trans-
portation. The six baseline methods are described briefly below.420

• ARIMA: This is a statistical method that is widely used for time series prediction
(Box and Pierce, 1970).

• SVR: This is a machine learning-based regression approach to modeling the re-
lationship between future demand and historical time series (Lau and Wu, 2008).
Here, we use a radial basis function (RBF) as the kernel, and the penalty parameter425

C is set to 1.
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• LSTM: This is an RNN-based deep learning model that captures complex rela-
tionships and long-term dependencies in time series data, and it has attracted ex-
tensive attention in tra�c prediction tasks (Hochreiter and Schmidhuber, 1997).
Here, we set the number of hidden layers toas 3 and the hidden state size to 128.430

• Spatiotemporal GCN (STGCN): This is a deep learning model that captures
temporal and spatial dependencies by employing gated CNNs and spectral-based
GCNs, respectively (Yu et al., 2018). Here, we set the numbers of channels in the
three layers of the ST-Conv block to 64, 32, and 128 each, and both the graph and
temporal convolution kernel sizes are set to 3.435

• GWNET: This is a spatiotemporal graph learning approach based on a self-learned
adjacency matrix for capturing complex spatial dependencies via node embedding
(Wu et al., 2019). Here, we adopt a self-adaptive adjacency matrix and a graph
convolution layer with a di↵usion step size of 2 in the model.

• T-GCN*: This is one of the most widely used transport prediction models, which440

is combined with a GCN and a GRU (Zhao et al., 2019). Here, the main structure
of the T-GCN model remains unchanged. We use the concatenation operation to
integrate the features of the three transport modes instead of inputting one trans-
port mode as input. We set the number of hidden units to 100 in our experiments.

5.4.3. Network training445

We aggregate the multiview transportation demand data into 5-minute intervals and
apply z score normalization to each mode to align the di↵erent datasets. The input histor-
ical time step is m=12, and the prediction step is n=6, as this setting utilizes the historical
observed travel demand of the previous hour to predict the demand for the following half
hour. Seventy percent of the data are used for model training, 10% are employed for vali-450

dation, and 20% are applied for model testing. The adaptive moment estimation (Adam)
optimizer is used to train the networks with a learning rate of 0.001 that decays by a
factor of 0.8 after 50 epochs. The training batch size is 64. According to the hyperpa-
rameter optimization results obtained in Section 5.3, the temporal convolution kernel is
set to 3, the spatial convolution kernel is set to 3, the number of convolutional layers is455

set to 4, and the number of convolution channels is set to 32. The output channel size
of the multiview TGCN module is set to 96. Fixed random seeds are used for each ex-
periment. We use LibCity (Wang et al., 2021) to implement the baseline model and tune
the parameters based on the performance of the validation set. All experiments are im-
plemented on an NVIDIA DGX A100 server with 512 GB of RAM and eight NVIDIA460

A100 tensor core GPUs (40 GB).
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5.5. Results and analysis
5.5.1. Overall results

The prediction performance of the proposed MSTGNN model is reported in Table 2
and Figure 8. Overall, the model’s three metrics (the MAE, RMSE, and R2) are 1.216,465

2.909, and 0.965, respectively, when the time granularity is 15 minutes. The prediction
accuracy decreases as the time granularity increases; for example, the MAE increases
from 0.807 to 1.283 when the time granularity is increased from 5 minutes to 30 minutes.
For visualization analysis, we choose the prediction results obtained for TAZ No. 617 at
various time granularities. Figure 8 (a), (b), and (c) show the true travel demand by bus470

and predicted values for time granularities of 5, 15, and 30 minutes in a day, respectively,
as well as green bars indicating their absolute errors. The larger residual occurs between
7:00-9:00 and 17:00-19:00 due to the strong fluctuating travel demand during this period,
which is consistent with the results obtained by Guo and Zhang (2020).

Figure 8: The ground truths and prediction results, as well as an error analysis of the MSTGNN model for
TAZ No. 617. (a) 5-minute time granularity; (b) 15-minute time granularity; (c) 30-minute time granularity.

5.5.2. Comparison with the baselines475

The performances of various models are summarized in Table 2. Taking a time
granularity of 15 minutes as an example, compared to those of the best baseline (T-
GCN*), the MAE and RMSE of the proposed model are reduced by 5.59% and 3.51%,
respectively. This suggests that the MSTGNN outperforms these baseline methods. The
ARIMA performs worse than the other baseline models, with MAE and RMSE values480

of 2.006 and 5.557, respectively, demonstrating the limitations of traditional statistical
models in obtaining nonlinear spatiotemporal relationships. SVR performs better than
the ARIMA model, with MAE and RMSE values of 1.66 and 4.956, respectively, due to
its ability to handle complex temporal features; however, it performs worse than the deep
learning models. LSTM, a deep learning model, can capture nonlinear temporal depen-485

dencies and outperform traditional statistical and machine learning models; its MAE and
RMSE reach 1.375 and 3.698, respectively. However, among the deep learning models,
LSTM performs worst, demonstrating the importance of considering spatial dependen-
cies in travel demand prediction. The MAEs of the STGCN and GWNET are 1.369
and 1.327, respectively; GWNET has a 3.17% advantage. Although GWNET and the490

STGCN both consider spatial dependencies, the adaptive spatial adjacency matrix used

19



in GWNET enables it to outperform the STGCN, demonstrating that the utilized graph
structure significantly impacts the prediction results. T-GCN* combines the three trans-
portation modes via a simple connection approach, and the MAE improves by 3.35%
over that of GWNET. Our model outperforms all other baselines because it considers495

multiple spatial relationships and the cross-view dependencies of various transportation
modes. In addition, we evaluate the prediction results obtained for workdays and week-
ends, and our proposed MSTGNN model still performs best. The R2 values produced
for workdays and weekends are 0.968 and 0.957, respectively. The R2 value obtained
for weekends is lower than that of workdays. As there are few commuters on weekends,500

bus travel is highly random and di�cult to predict on weekends.

Table 2: Performance comparison among di↵erent models.

Model 5 min 15 min 30 min

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

ARIMA 1.235 3.277 0.958 2.006 5.557 0.876 2.847 8.285 0.722
SVR 1.256 4.304 0.925 1.660 4.956 0.900 1.982 5.963 0.854
LSTM 1.124 3.506 0.950 1.375 3.698 0.944 1.641 3.752 0.925
STGCN 1.040 2.447 0.975 1.369 3.314 0.955 1.438 3.504 0.949
GWNET 0.897 2.173 0.983 1.327 3.147 0.963 1.460 3.697 0.942
T-GCN* 0.882 2.019 0.983 1.284 3.011 0.964 1.398 3.503 0.951
MSTGNN 0.807 1.919 0.985 1.216 2.909 0.965 1.283 3.080 0.961

5.5.3. Contributions of di↵erent modes of transportation
We construct three simplified versions of the MSTGNN to quantify the contributions

of various modes of transportation.

• MSTGNN-B: This model only accepts bus transportation data, and the rest of its505

architecture is consistent with that of the MSTGNN model. The cross-view at-
tention module is removed because only one mode of transportation is considered
here.

• MSTGNN-BM: The structure of this model is consistent with that of the MSTGNN
model, and both local and global cross-view interaction views are considered, but510

the input data are limited to the combination of bus and metro data.

• MSTGNN-BT: Similar to the MSTGNN-BT model, the bus and taxi transportation
mode data are combined and fed into this model.

Table 3 summarizes the performance achieved by the MSTGNN model variants with
di↵erent modes of transportation. The MSTGNN performs best when the bus, metro, and515

taxi information are considered, while MSTGNN-B performs poorly when only the bus
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view is considered. Utilizing the 15-minute time granularity as an example, the MAE
and RMSE of the MSTGNN model are improved by 10.06% and 11.51%, respectively,
over those of MSTGNN-B. The di↵erence in performance between the MSTGNN-BM
and MSTGNN-BT models is minor, especially when the time granularity is 5 minutes,520

and MSTGNN-BM performs better than MSTGNN-BT when the time granularities are
15 and 30 minutes. From the analysis in Section 5.2, it is clear that the spatial correlation
between taxis and buses is stronger. However, the temporal correlation between metros
and buses is stronger. Combining the results, it can be suggested that the temporal
correlations among multiple modules can play a more important role in achieving model525

performance improvements than spatial correlations.

Table 3: Performance comparison performed while considering di↵erent views.

Model 5 min 15 min 30 min

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

MSTGNN 0.807 1.919 0.985 1.216 2.909 0.965 1.283 3.080 0.961
MSTGNN-B 0.857 2.019 0.983 1.347 3.249 0.957 1.464 3.561 0.948
MSTGNN-BM 0.803 1.922 0.985 1.233 2.947 0.965 1.319 3.117 0.960
MSTGNN-BT 0.807 1.917 0.985 1.246 2.983 0.964 1.324 3.166 0.959

Figure 9 illustrates the spatial MAE distributions of the MSTGNN-B, MSTGNN-
BM, and MSTGNN-BT models to investigate the contributions of metros and taxis.
Darker TAZs have larger MAEs. MSTGNN-BM and MSTGNN-BT, which incorporate
additional transportation modes, achieve improved prediction accuracies for most of the530

TAZs compared to MSTGNN-B. When considering metros, the MAE of MSTGNN-BM
increases significantly in the TAZs along the metro lines and in the downtown area. Tak-
ing highlighted area ≠ as an example, MSTGNN-BM reduces the MAEs of the TAZs
belonging to and around the metro station. MSTGNN-BT can make some contribution
to the prediction performance in the suburbs where there are no metro stations (such as535

highlighted area ¨).

Figure 9: Spatial MAE distributions. (a) MSTGNN-B, (b) MSTGNN-BM, (c) MSTGNN-BT.
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5.5.4. Contributions of local and global cross-view dependencies
Multimodal transportation interactions are mainly reflected in the local neighbor-

hood transfer and the global commuter transfer processes. We develop two components
in the MSTGNN model to capture local and global cross-view dependencies. To ex-540

plore the contributions of the global and local cross-view dependencies to the model, we
construct two simplified models to conduct ablation experiments.

• MSTGNN-G: The architecture is the same as that of the MSTGNN, but the adja-
cency graph network is abandoned, and the local MVATGCN module is removed.

• MSTGNN-L: The connection graph network and global MVATGCN module are545

removed, similar to MSTGNN-G, and only the local influences of the three views
are considered.

Table 4 compares the performance achieved when considering global or local cross-
view dependencies in the MSTGNN model. Overall, the MSTGNN, which considers
both global and local cross-view dependencies, performs best. Specifically, although550

the MAE of the MSTGNN is greater than those of the other two models when the time
granularity is set to 5 minutes, the RMSE and R2 are superior to those of the other mod-
els. When the time granularity levels are 15 and 30 minutes, the MSTGNN significantly
outperforms the other two models in terms of all three metrics. This suggests that the
use of multiple graph structures can yield improved model performance by considering555

more comprehensive spatial relationships. Among the simplified models, MSTGNN-L
is slightly better than the MSTGNN-G model considering global cross-view dependen-
cies. This suggests that global dependencies contribute less than local dependencies to
the travel demand prediction performance.

Table 4: Performance comparison between local and global cross-view dependencies.

Model 5 min 15 min 30 min

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

MSTGNN 0.807 1.919 0.985 1.216 2.909 0.965 1.283 3.080 0.961
MSTGNN-L 0.804 1.963 0.984 1.293 3.197 0.958 1.388 3.408 0.952
MSTGNN-G 0.791 1.967 0.984 1.318 3.241 0.957 1.435 3.427 0.952

5.5.5. Evaluation of the proposed losses560

The travel demands for di↵erent transportation modes are unevenly distributed across
space. In multiview learning, if the features of di↵erent views significantly di↵er, they
may be considered data noise, thus reducing the resulting model performance (Cao et al.,
2020). We propose the CVSFC loss to constrain the training process of the network. The
auxiliary loss function may cope with missing and abnormal data for a particular view. It565
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has the ability to learn features of other views via feature consistency rules. Specifically,
we design noisy datasets based on the SZ dataset. They are tested in two scenarios to
demonstrate the e↵ectiveness of the proposed CVSFC loss. (1) SZ: This is the real-world
dataset from Shenzhen. (2) SZ-Missing: Based on the Shenzhen dataset, the bus data are
kept constant, and 20% of the areas are randomly selected for metro and taxi data re-570

moval. On these two datasets, we examine the predictive performance achieved with and
without the CVSFC loss. The loss weights �1 and �2 are set to 1 and 1, respectively.

The results are shown in Table 5; overall, the results obtained on these two datasets
show that the proposed CVSFC loss can improve the robustness of the model with a
very limited negative impact and even a slight performance improvement. Specifically,575

on the SZ dataset, although the accuracy of the model without the CVSFC loss is slightly
higher than that with the CVSFC loss at a time granularity of 5 minutes, the performance
achieved with the CVSFC loss improves at other time granularities, with MAE improve-
ments of 3.45% and 3.82%, respectively. On the SZ-Missing dataset, the CVSFC loss
enables MAE improvements of 2.34%, 3.90%, and 1.83% for the three time granulari-580

ties. The CVSFC loss can improve the model performance at all time granularities when
the feature distribution inhomogeneities are artificially increased. These results demon-
strate that the proposed CVSFC loss is e�cient for training our model and beneficial
for addressing the uneven distribution of multiview features and enhancing the model’s
robustness.585

Table 5: The results of loss performance comparisons conducted in di↵erent scenarios.

Dataset loss 5 min 15 min 30 min

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

SZ LL2 0.805 1.904 0.985 1.258 2.943 0.965 1.332 3.097 0.961
LL2 +Lsc 0.807 1.919 0.985 1.216 2.909 0.965 1.283 3.080 0.961

SZ-Missing LL2 0.832 1.946 0.985 1.279 3.009 0.963 1.333 3.133 0.960
LL2 +Lsc 0.813 1.924 0.985 1.231 2.947 0.965 1.309 3.117 0.960

5.5.6. Multiview interaction analysis
To intuitively investigate the roles of the attention mechanisms in our model and the

dynamic interactions of buses, metros, and taxis, we plot an attention matrix. The model
contains local and global multiview attention matrices. We select three di↵erent periods
of the day from the two matrices for analysis purposes: morning rush hour (7:00-9:00),590

evening rush hour (17:00-19:00), and o↵-rush hour (14:00-17:00). We calculate the
average attention weight across all channels of each view to obtain a 3 ⇥ three attention
matrix. Each row and column of the attention matrix can be divided into three parts,
representing the bus, metro, and taxi views, as the input features are concatenated from
the three transport views. As shown in Equation 11, the attention-weighted feature X̃ =595

concat
⇣
Ẍbus, Ẍmetro, Ẍtaxi

⌘
· a.
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As shown in Figure 10, in the attention matrix, the weights of the columns represent
each transportation mode’s contribution to the feature X̃. The weights of the rows indi-
cate how a certain transportation mode is a↵ected. For the local attention map, overall,
buses play a significant role in feature X̃, with metros making the weakest contribu-600

tion. The contributions of buses, metros and taxis vary during di↵erent periods. During
the morning rush hour, metros are more important than taxis, while during the evening
rush hour, taxis are more critical than metros; the two contributions are similar during
o↵-rush hours. For the global attention map, buses have the most significant impact on
these features. The contribution of buses is most obvious during o↵-rush periods, but605

there are also substantial contributions from metros and taxis during the morning and
evening rush hours. When comparing the local and global attention maps, the local fea-
tures appear to be more influenced by buses. At the same time, the other modes (i.e.,
metros and taxis) also play important roles in the global features.

Figure 10: Global and local attention maps produced at various periods throughout the day.

6. Conclusions610

This study presents an MSTGNN model that integrates bus, metro, and taxi informa-
tion to predict travel demand by bus. The TCN and GCN layers are stacked to capture
the temporal and spatial dependencies of each transportation mode, and an attention
mechanism is developed to capture the cross-view interaction dependencies. The pro-
posed model is evaluated on a real-world dataset from Shenzhen, which includes bus,615

metro, and taxi travel records. Experiments show that the MSTGNN model outperforms
many state-of-the-art baselines according to the RMSE, MAE, and R2 metrics. The pro-
posed model reduces the MAE and RMSE by 5.59% and 3.51%, respectively. Further
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analysis of MSTGNN’s attention mechanism demonstrates its good interpretability for
understanding the interactions between various transport modes. With the development620

of smart cities, it is possible to collect a large amount of real-time data on various trans-
port modes, including shared bicycles, walking, and even private cars. The novel model
of to capture the interaction dependencies between di↵erent modes of transportation can
maximize the value of multisource big data.

The proposed model can be further improved in the following ways. First, several625

other factors that influence travel demand, including the built environment, weather con-
ditions, emergencies, etc., can be further incorporated (Qi et al., 2018; Guo and Zhang,
2020). This research focused on the interactions among di↵erent transportation modes
in multimodal travel cases to achieve more accurate travel demand prediction based on
historical travel demand data. In future studies, multisource data can be examined for630

data fusion to further improve the prediction performance and robustness of the model.
Second, our study was conducted only at the spatial scale of TAZs. The interactions
among multiple transportation modes at various spatial resolutions may be worthy of
exploration in future studies.
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