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Abstract

The visual landscape plays a pivotal role in urban planning and healthy cities.
Recent studies of visual evaluation focus on either objective or subjective approach,
while describing the visual character holistically and monitor its evolution remains
challenging. This study introduces an embedding-driven clustering approach that
integrates both physical and perceptual attributes to infer the spatial structure of the
visual environment, and investigates its spatio-temporal evolution. Singapore, a highly
urbanised yet green city, is selected as a case study. Firstly, a visual feature matrix is
derived from street view imagery (SVI). Then, a graph neural network is constructed
based on road connections to encode visual features and spatial dependency leading
to a clustering algorithm that is used to discover the underlying characteristics of the
visual environment. The implementation characterises streetscapes of the city-state
into six types of clusters. Finally, taking advantage of historical SVI, a longitudinal
analysis reveals how visual clusters have evolved in the past decade. Among them,
one of the clusters represents high-density visual experience, affirming the work as
such streetscape dominates the central business district and it is evolving elsewhere,
mirroring the expansion of new towns. In turn, another identified cluster, indicating
sparse landscapes, decreased, while areas that are considered to be in the most visually
pleasant cluster, increased. For the first time, this study demonstrates a novel method to
understand the urban visual structure and analyse its spatio-temporal evolution, which
could support future planning decision-making and urban landscape betterment.
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1. Introduction

Urban landscape — the appearance of the city — provides an abstract depiction
of the urban function, identity, socio-demographics, and history (Krause, 2001).
As defined in the European Landscape Convention (Council of Europe, 2000),
the landscape of an area is generated from the action and interaction of natural
and/or human factors that are further perceived by humans, highlighting the sensory
connection between the observer and the landscape (Nijhuis et al., 2011). This
description also emphasises that the visual environment is not only an enumeration
of objective elements, such as physical cues and natural environment (Lynch, 1960;
Dramstad et al., 2006), but also the aggregation of subjective perception from human
beings (Kaplan and Herbert, 1987; Kaplan and Kaplan, 1989; Bell, 2001). In particular,
this environment would not only influence how people perceive and experience their
surroundings, but also have potential relationships with physical health (Jackson,
2003), psychological well-being (Smardon, 1988; Quercia et al., 2014; Jiang et al.,
2021), and the social environment (Kelling and Coles, 1997; Kotabe et al., 2016).
Therefore, assessing the visual quality of urban environment plays a critical role in
environmental improvement for urban planning and better quality of life for residents
(Kaplan, 1995).

Considering that multifaceted factors are interwoven in the urban environment, a
systematic approach is required to quantify visual quality. Traditional studies of the
visual environment commit to establishing representative indicators to monitor and
evaluate the visual quality (Kaplan and Herbert, 1987), which can be summarised
into two typical perspectives: objective and subjective (Lothian, 1999; Daniel, 2001).
These approaches predominantly rely on manual assessment of field images by
experts or respondents, which is cost-intensive and has a low coverage, inhibiting the
implementation at the urban scale. Street view imagery (SVI), with its wide coverage,
fine spatial sampling, as well as pedestrian perspective, has attracted widespread
attention in the assessment of urban visual quality (Biljecki and Ito, 2021). Typically,
various computer vision models and training datasets are applied, such as object
detection, semantic segmentation, and image classification, to extract physical objects
from images. At the same time, large-scale perception measurement is also conducted
by labelling and pre-training models (Zhang et al., 2018; Yao et al., 2019; Zhao et al.,
2023). Altogether, SVI-driven studies offer unparalleled opportunities to bridge the
gaps of previous visual assessment approaches.

However, due to the complex mechanisms between physical and perceptual
attributes (Zhang et al., 2018; Rossetti et al., 2019; Dai et al., 2021), there are significant
research gaps remain: first, previous evaluation of urban visual landscape focus either
on objective or subjective approach, while few of them established a framework to
comprehensively describe the environment from both aspects. Second, the approach
to describe and observe visual environment change is still vague. According to the
urban visual similarity research of Doersch et al. (2012) and Zhou et al. (2014),
as well as homogeneous geographic domain proposed by Yao et al. (2021), the
distribution of visual environment is believed to have potential similarity and spatial
aggregation in urban environment. Furthermore, SVI across years also provides
valuable opportunities to detect changes of streetscapes (Naik et al., 2017; Tang and

2



Long, 2019; Byun and Kim, 2022; Li et al., 2022; Hou and Biljecki, 2022; Han
et al., 2023), providing insight into how the visual environment evolves with urban
(re)development. Inspired by them, we determine to investigate the evolution of urban
visual environment through portraying its holistic patterns over time, raising three
research questions:

1. Do visual features reveal certain spatial patterns of the visual environment? And
what visual characteristics they represent?

2. How can we utilise SVI to indicate the dynamics of the built environment?
3. How does the visual pattern evolve within the urban fabric?

To answer these questions, discovering the underlying structure and evaluating the
visual environment, this study introduces a comprehensive and comparative framework
based on multi-year SVI. First, we start by selecting features from two most important
aspects: physical and perceptual, relying on previous visual landscape assessment
frameworks. Then, deep learning methods are employed to extract the features and
embed the visual properties with spatial structure. Once the compressed representation
is generated, clustering analysis is engaged to unpack the features of multiple research
periods into distinct partitions. Finally, following the interpretation of the characteristic
of the clustering result, the spatial distribution and temporal evolution are conducted
to analyse the variation patterns of visual environment in case study area. The
key contributions of this study are a new approach to characterise cities and their
street spaces at a high spatial resolution, a method to monitor changes in the built
environment, a new use case of SVI, and one that relies on data from multiple periods,
a rarity.

2. Background and Related Work

2.1. Traditional approaches in visual landscape studies

Preserving and promoting visual environment is one of the crucial missions
of urban planning. Previous studies have identified urban visual landscape as a
comprehensive environment condition (Tveit et al., 2006; Silver and Clark, 2016),
which consists of not only objective components, such as physical characteristics,
natural conditions, and spatial forms (Alexander, 1977; Dramstad et al., 2006; Quercia
et al., 2014; Harvey et al., 2015), but also contextual factors that could affect subjective
perception, such as weather, human activities, cultural familiarity, as well as social
and historical conditions (Kaplan and Herbert, 1987; Bell, 2001). Furthermore, the
integration of such visual and non-visual cues would not only invisibly but profoundly
affect an individual’s perception of a place and their psychological well-being (Lynch,
1960; Smardon, 1988; Quercia et al., 2014). Specifically, exposure to greenery has
been evidenced in many aspects as principal keys to human health (Jackson, 2003;
Jiang et al., 2016), while visual disorder in urban appearance might induce rule-
breaking behaviours (Kelling and Coles, 1997; Kotabe et al., 2016).

Taking into account the intertwined factors in visual environment, various
evaluative frameworks have been established to investigate the impact of multiple
indicators on visual landscape performance. As summarised by Lothian (1999) and
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Daniel (2001), previous visual landscape assessment can be generally divided into
two different paradigms: objectivist and subjectivist approaches, which focus on
physical components and psychological impression, respectively. The objectivist
approach assumes that visual quality can be measured by experts through the physical
characteristics inherent in environment, while subjectivist evaluates the quality from
beholders’ visual perception. For example, a comprehensive visual quality assessment
method, introduced by Daniel and Vining (1983), contains five different models ranging
from expert-based to perception-based approach. In addition, building on the proposal
by Daniel and Vining (1983), Kaplan et al. (1989) examine the relative merit of
judgemental and perceptual indicators in environmental preference and further revealed
the importance of combining multiple predictor domains in visual environment studies.

Recently, advances in geographical techniques triggered a data-driven stream
of large-scale assessment in visual environment studies, of which the previous
judgemental components have been translated into computer measurable indicators,
such as density, naturalness, transparency, complexity, and enclosure (Ewing and
Handy, 2009; Purciel et al., 2009; Tveit and Sang, 2014). For example, by measuring
the skeletal streetscape of New York City, Harvey (2014) indicates the physical
conditions, especially building enclosure and tree canopy geometry, have a significant
relationship with visual appeal. Besides, enclosure, the indicator significantly related
to a place’s sense of liveability and security (Porta and Renne, 2005; Jorgensen
et al., 2002), has been measured by various new approaches, such as sky visibility,
proportion of street wall, and section height to width ratio (Ewing and Handy, 2009;
Carmona and Tiesdell, 2007). Visibility modelling, another advanced application in
this field, is also widely used to simulate human point of view for assessing visual
quality (Štefunková and Cebecauer, 2006; Inglis et al., 2022), while these valuations
are mainly based on geographic information rather than authentic visual condition
observed by pedestrian. In short, traditional studies conclude the emphasis in the terms
of integrated perspective in visual environment, as well as the limitation on large-scale
and street-level evaluation.

2.2. Street view imagery in urban studies
Providing a unique ground-level perspective of cityscape with wide coverage and

fine spatial sampling, SVI has been widely used in urban built environment studies
across multiple scales (Biljecki and Ito, 2021). The images are typically labelled
according to different research purposes and are further applied in the training of
semantic segmentation models. In the field of urban studies, the most commonly
labeled elements are inherent ones such as green, sky, and building. These elements
are not only quantified as enclosure, openness, and greenery features of streetscape
(Li et al., 2018; Zhou et al., 2019; Tang and Long, 2019; Gong et al., 2019b),
but also utilised to investigate correlations with other urban information that has
underlying geographical characteristics, including urban form (Gong et al., 2019a;
Li and Ratti, 2019; Ito and Biljecki, 2021), socio-economic factors (Glaeser et al.,
2018; Meng et al., 2020), and land use (Srivastava et al., 2020; Hu et al., 2020; Li
et al., 2021). For example, classifying visual components into six categories: sky,
trees & plants, buildings, impervious surfaces, pervious surfaces and non-permanent
objects, Middel et al. (2019) analyse their spatial distribution and correlation in
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Philadelphia, and further identify the visual characteristics within three different types
of neighbourhoods. Additionally, by detecting visual elements, computer vision can
also help us to understand physical environment and its spatial structure in the city:
Doersch et al. (2012) investigate visual geographies from different geospatial scales
based on SVI, and further explore the visual identities of three central districts of
Paris based on their representative elements. On that note, geotagged images are also
used by Zhou et al. (2014) to conduct identity recognition experiments in global cities,
indicating visual differences and similarities geographically.

Besides sensing the appearance of the built environment, expert-based and
perception-based labelling are utilised for scalable visual landscape assessment based
on previous theoretical frameworks. To automatically measure the physical street
quality, Liu et al. (2017) establish criteria for expert rating to label images based on
the maintenance quality of building façade. From the non-physical aspects, Place
Pulse, a crowdsourced dataset containing multiple perceptual attributes (depressing,
boring, beautiful, safe, lively, wealthy), is created based on human-derived rankings
(Salesses et al., 2013). Building on this, Naik et al. (2014) introduce a model called
Streetscore-CNN, to predict the safety index of streetscape for multiple cities. Thanks
to the advantage of low-cost and high accuracy, both the dataset and model have been
widely used not only in later urban perception studies (Li et al., 2015; Zhang et al.,
2018; Rossetti et al., 2019; Liu et al., 2023), but also as the indicators representing
perceived quality of the urban environment (Harvey et al., 2015; Naik et al., 2017;
Luo et al., 2022). Similarly, Yao et al. (2019) developed a human–machine adversarial
scoring framework, with high throughput and accuracy for perception assessment. By
integrating the framework with a directed graph abstracted from the road network,
further exploration is carried out to discover the homogeneous geographic domains
of different perception attributes in Beijing, indicating that perceptual communities
exhibit specific characteristics (Yao et al., 2021).

In general, deep learning methods enable the scalability of visual assessment,
and recent studies explore the possibilities of predicting both physical or perceptual
attributes for SVI with high accuracy, bridging the gap of its traditional approach.
However, as the cityscape is a complex of subjective and objective factors, how these
visual factors affect the image of cities as a whole and how they converge into different
visual domains offer ample room for further research. Therefore, in line with the
traditional frameworks for the evaluation of visual environment, this study introduces a
synthesis method based on material–space view and space–perception view, including
the most representative attributes of urban visual environment identified by previous
studies. Further, it takes advantage of the availability of SVI at the same locations
from different time periods (i.e. over a decade) to assert a temporal component to this
important aspect of urban planning.

2.3. Clustering analysis based on urban informatics
Although supervised learning enables highly accurate urban information detection

on the basis of known semantic relationships, cities, as sophisticated products of
diverse human activities, house a myriad of interrelated information that are difficult
to penetrate (Bettencourt and West, 2010). Therefore, unleashing the implication
of urban complexity beyond human’s a prior knowledge is another essential task
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in urban studies. Unsupervised learning (UL), with its ability to automatically
explore high-dimensional data, has been routinely used for various purposes, such
as urbanisation evaluation (Deng et al., 2009; Ye and Chen, 2015), environmental
sound classification (Salamon and Bello, 2015; Oldoni et al., 2015), city substantiality
assessment (Akande et al., 2019), geographical data translation (Wu and Biljecki,
2022) and so on. Under this category, clustering analysis is the most commonly used
application for disentangling hidden patterns among heterogeneous information based
on feature similarity, with k-means as the most efficient and implementable algorithm
(Jain, 2010).

To identify geographical units and further portray the potential urban structure that
is distinct from administrative divisions, various studies perform a cluster analysis
involving multivariate geotagged data, including visual components features (Li et al.,
2017), socioeconomic indexes (Li and Xie, 2018), social media activities (Steiger
et al., 2016; Huang et al., 2021), built environment metrics (Bobkova et al., 2021; Niu
et al., 2021; Jochem et al., 2021), etc. Among them, Li and Xie (2018) summarise
the features by principal component analysis into four categories: race-poverty,
education-employment, housing and age-mobility, then further engage the k-means
algorithm to establish diverse neighbourhood typologies, which indicate the underlying
socioeconomic pattern of Metro Detroit. Such hidden patterns, on the one hand, are
usually interpreted by representative features, since label referencing is not capable for
UL (Tessler et al., 2016; Comber et al., 2020). On the other, the contextual information
is also typically used as supplement data for cluster definition and investigation. For
example, after generating multiple clusters based on landscape metrics by k-means,
Schmiedel et al. (2015) and Ferrara et al. (2017) profile the relationship between
environmental characteristics and human activities. Besides, automatic urban pattern
recognition is also conducted based on the integration of data from various aspects (Gao
et al., 2017; Tu et al., 2018; Zhang et al., 2019; Cai et al., 2019). To be specific, Tu et al.
(2018) apply hierarchical clustering to identify six types of urban functional zones by
incorporating landscape (remote sensing images) and human activity metrics (mobile
phone positioning data), with further exploration on gradient analysis of urban patterns
in Shenzhen. Furthermore, having revealed the underlying structure, the clustering
approach also facilitates the detection of large-scale urban change based on dynamic
data sources (Li and Xie, 2018; Qi et al., 2019; Tao et al., 2019).

However, traditional clustering approaches, such as k-means, mainly focus on
thematic characteristics of input variables without spatial constraints (MacQueen et al.,
1967; Gao et al., 2017), while the spatial adjacency relationship is a crucial factor
in urban structure analysis (Tobler, 1970). Therefore, some studies consider spatial
constraint as the connection between different venues in the city and further compile
nodes (geotagged information) and edges (spatial relationship) into a graph to detect
spatial aggregation (Yu et al., 2014; Steiger et al., 2016; Sun et al., 2016; Gao et al.,
2017; Yao et al., 2021; You, 2022). In this list, we feature the work of Yao et al. (2021),
who examine the homogeneous domain of human perception in Beijing. Integrating
the road network and image-based perception scores to establish a weighted directed
graph, they detect the irregular partition of each perceptual attribute based on the
Infomap algorithm, demonstrating that it is possible to explore the spatial aggregation
of mental attributes at community scale and their relationship with urban functions.
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Moreover, other methods, such as Delaunay-triangulation-spatial-constraints clustering
(Gao et al., 2017), geographical self-organising map (Steiger et al., 2016), and graph
sample and aggregate network (GraphSAGE) (Fan et al., 2021) are also employed for
network-based pattern detection. Taken together, these investigations highlight the
importance and possibility of considering spatial constraint to capture hidden patterns
in cities.

In summary, previous visual landscape research emphasises the importance of both
physical environment and human perception, which are further measured separately by
different SVI-based studies in terms of low-cost and large-scale. The related efforts
of streetscape clustering are introduced by Li et al. (2017) and Gong et al. (2019b),
focusing on the characteristics of physical visual features. We advance the evaluation
frameworks taken by them and aim to consider spatial dependency to gather visual
environment structure comprehensively. Moreover, it is important to underline that
our work is not confined to SVI in single period, as our clustering approach not only
examines the possibility of partitioning visual features from multiple years, but also
provides first exploration of visual character change.

3. Methodology

A research framework is established with three main steps (Figure 1):

1. Physical and perceptual features extraction: measurable physical component
indices and perceptual attributes of multi-year SVI are automatically assessed
by deep learning models, and the average value of representative features is then
calculated for each research unit.

2. Features embedding: to consider multiple features as well as spatial dependency,
the convolutional neural networks GraphSAGE is engaged to integrate feature
matrix (established from representative features in Step 1) and undirected graph
(generated by adjacency matrix based on road connections), resulting in a vector
representation of visual condition for each unit.

3. Visual features clustering: the agglomerative clustering method K-means is
employed to discover distinct visual clusters based on embedding features,
with the cluster number determined by silhouette method. Further, the
most representative variables and complementary built environment indicators
of clusters are utilised to generate substantive interpretations for their
characteristics. The detailed description of each part of the research framework
is as follows.

3.1. Physical and perceptual features extraction

In the computer vision community, traditional street visual quality indicators (e.g.
enclosure, greenery, openness, visual pavement) are commonly evaluated by physical
components extracted from SVI (Tang and Long, 2019; Zhou et al., 2019), with the
view index of vegetation, building, sky, and road as the most representative indicators
among them (Gong et al., 2018). Therefore, Cityscapes, a large-scale dataset designed
to capture urban scenes (Cordts et al., 2016), is selected as the training dataset due to its
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Figure 1: A comprehensive and comparative framework for revealing visual environment patterns based on
multi-year street view imagery.

collection of 5000 high-quality pixel-level images with more than 19 urban semantic
annotations. The deep learning model we employ in this study is DeepLabV3+, which
attains a high accuracy in semantic segmentation task when trained on Cityscapes
(Chen et al., 2018). To capture the inherent visual environment, we further exclude
the temporary objects (e.g. person, cars, and bicycles) and aggregate other physical
components into four indicators: sky, vegetation, building and road, following by six
classes proposed by Middel et al. (2019). Therefore, the images in study area are
segmented into different ratios of street composition, and further summarised into four
inherent environment indices based on the categories shown in Table 1.

For perceptual scores prediction, we emphasise Place Pulse 2.0 (PP 2.0), the
seminal work by Dubey et al. (2016), which introduces a crowdsourced dataset to
quantify human perception of urban appearance from six aspects (depressing, boring,
beautiful, safe, lively and wealthy) based on volunteer labelling. It contains 110,988
images from 56 cities in 28 countries. Based on examination of its initial version, no
significant cultural or individual preference biases were found, indicating its feasibility
for global studies (Salesses et al., 2013). To learn this compressed set of variables, we
employ the ResNet model (He et al., 2016), which introduces residual blocks to tackle
the degradation problem of deep convolutional neural network, and it is widely used
because of its practicality and high accuracy in solving complicated tasks. Thus, the
images are valued by ten dimensional features from physical and perceptual attributes
extraction based on the deep learning models and dataset we implemented in this study.
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Table 1: Summarising 19 features from the Cityscapes dataset into five categories, with the first four as
indicators representing inherent physical environment.

1. Sky 2. Vegetation 3. Building 4. Road 5. Non-inherent features
sky (11) vegetation (9)

terrain (10)
building (3)
wall (4)
fence (5)

road (1)
sidewalk (2)
pole (6)
traffic light (7)
traffic sign (8)

person (12)
rider (13)
car (14)
truck (15)
bus (16)
train (17)
motorcycle (18)
bicycle (19)

3.2. Feature embedding

Potential dynamic factors (e.g. location, weather, traffic conditions) are common
biases of SVI research that could affect the inherent visual features. In this study, we
draw inspiration from Tobler’s first law of geography as well as other urban studies
(Tobler, 1970; Hong and Yao, 2019; Yao et al., 2021) — urban areas have higher
spatial variable similarity and connectivity tend to share similar characteristics. We
assume that visual features are correlated in space and spatial constraint is a crucial
factor in shaping urban visual clusters. Therefore, network analysis is introduced to
capture spatial similarity and smooth the visual features according to geographical
relationships, in order to provide a better representation for performing clustering and
reveal the holistic patterns of visual environment. To consider spatial dependency, an
undirected graph (G = V , E), consisting of nodes (V) and edges (E), is established.
In this case, we apply the hexagonal hierarchical geospatial indexing system (H3)
provided by Uber Technologies at the scale of resolutions-10 (average hexagon area
0.017 km2), as our research units, which are considered as nodes (V) in graph network.
Following previous studies on urban patterns, road networks, as conspicuous patterns
in cities, are believed to have a shaping role in urban communities (Hong and Yao,
2019), such as urban functional areas and transport analysis zones. Therefore, the
OpenStreetMap (OSM) road map is employed to detect the physical connection of
adjacent nodes: first, the research units are overlaid with road network (Figure 2a).
Second, once each two units are linked by the same road, an undirected edge (e,
∀e ∈ E) is generated according to adjacent matrix, representing their spatial interaction.
Accordingly, the undirected graph G, which captures spatial similarity and topological
connectivity, is established as shown in Figure 2b.

Furthermore, the physical and perceptual features (ten dimensional features
mentioned in Section 3.1) of SVI are combined to represent the visual environment
of each research unit, belonging to which the features of images are averaged as initial
characteristic indices (ai), and are further normalised to values fi in the range [0, 1] with
Min-Max normalisation, as estimated by Eq.(1). Thus, a feature matrix is established
as Fv = ( f v

1 , f v
2 , . . . , f v

i ), where v equal to the total number of research units, and each
vector represents a set of feature values to represent nodes (V) (Figure 2c).
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(a) Research units & road network (b) Undirected graph G (c) Feature matrix Fv

Figure 2: Generating graph and feature matrix based on research units at resolution-10.

fi =
ai −min (ai)

max (ai) −min (ai)
(1)

i = sky, vegetation, buildings, surface, depressing, boring, beautiful, safe, lively, and
wealthy

To further incorporate spatial adjacency matrix (G) and features matrix (Fv), an
appropriate feature embedding model is required to abstract the information. Among
different methods of network analysis, graph embedding methods are commonly
employed to encode structure and property of network model, while rather than
identifying global topological structure, such methods focus more on the local topology
of the network and without considering propagation of features attributes (Kim and
Yoon, 2022). To address this dilemma, spatial-based graph neural networks (GNNs)
are introduced to capture spatial dependency and aggregate node information based on
graph convolution operation. Among them, in order to portray visual environment as an
overall image of a place, GraphSAGE, a spatial-based GNNs introduced by Hamilton
et al. (2017), is adopted in this study. As an inductive framework designed to generate
node embedding, GraphSAGE treats features sampling and aggregating from the node
neighbourhoods while considering network structure, resulting in a low-dimensional
vector representation of nodes that can be further applied to downstream tasks, such as
classification and clustering.

For brevity, the detailed technical developments of this model are moved to
Appendix A. In general, GraphSAGE is utilised because of two reasons: first, it is an
efficient unsupervised technique that considers node’s feature and graph information
and fits naturally to solve clustering type of graph problem. Second, this model can
propagate feature information based on graph network, which, since scenes in SVI
are often connected by road network, fits our purpose that bring the features of each
research unit closer to its neighbours, reducing the influence of dynamic factors such
as offset, time, etc. of SVIs. Through this case, we aim to validate the feasibility of
this method in urban studies, and to extend the application of network-based pattern
detection, alongside other approaches mentioned in Section 2.3.
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3.3. Visual features clustering

Having encoded all features and spatial structures of research units based on
neural network embedding, the vector representation can be further clustered to portray
homogeneous visual partitions between physical and perceptual features. In this task,
we employed K-means, a partitional algorithm commonly used in pattern recognition
due to its simplicity, effectiveness and veritable results (Jain, 2010). The clustering
is accomplished by relocating statistical centroids and grouping points (the feature
vectors of units) that are closest to particular centroid that identify the minimum
squared error between points and centroid. In this approach, data points inside each
cluster have relatively similar attributes, while clusters exhibit distinct characteristics
based on the cluster number specified by users. Following studies on urban pattern
recognition (Schmiedel et al., 2015; Spielman and Singleton, 2015; Comber et al.,
2020), the average silhouette width criterion (Rousseeuw, 1987) is applied to identify
the most efficient partition. To enable cluster comparison and interpretation, the
indicators of different clusters are further normalised from the average value of feature
attributes, combining with other urban functional data, such as point-of-interest (POI),
land use distribution, and urban morphology. Among them, indicators are quantified
into density based on research units, which are further averaged and normalised to
reveal the similarities and characteristics of certain clusters.

4. Case study and data collection

4.1. Study area

The main island of Singapore is selected as the study area, which houses a diverse
landscape and built environment from historical to modern times, due to its multiple
local ethnic cultures, architecture, and urbanisation of the city (Yuen, 2006). Singapore
is a highly urbanised metropolis that includes 23 towns and 3 estates that contribute to
its urban morphological features. It is also considered as a representative city of green
urbanism that balances the built and ecological environment (Newman, 2010; Palliwal
et al., 2021; Wu and Biljecki, 2021). Among planning zones, Singapore is characterised
by the Central Area, which includes the most densely developed places like the Central
Business District; the subzones in Western Region, which accommodate the vast
majority of industrial estates; the Central and Western Water Catchments, which are
nature reserves with rich natural resources and less urban development; and other
areas, which largely made up of residential towns (Figure 3). In line with the vision
of sustainable urban development of cities, it features the necessity of capturing the
distribution of visual patterns that have potential effects on physical and mental well-
being and monitoring the transformation and determinants of visual landscape for
future planning decision making.

4.2. Street view imagery data collection and processing

In this study, we divide the research span into three periods: 2008-2010, 2014-
2016, and 2019-2021 (with 2009, 2015, and 2021 being the main years of interest),
to obtain Google Street View (GSV) images covering all over Singapore for each
period (the periods are based on the imaging campaigns of the service). Then, datasets
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Figure 3: Map of the study area (main island of Singapore). The white lines represent the boundary of
planning areas, with the Central Area, industrial zones in the Western Region, the Central Water Catchment,
and the Western Water Catchment highlighted. These areas have distinct environment identities according
to their function (commercial, industrial, and nature), which will be automatically identified with our novel
method.

from the main years (2009, 2015, 2021) are overlayed with the H3 geospatial indexing
system at resolution-12 (average hexagon area 347 m2) to identify locations that have
been covered in all three years, and one image from each year is retained for each
identified hexagon. Subsequently, images from adjacent years (2008, 2010, 2014,
2016, 2019, and 2020) are included as supplementary data for the remaining resolution-
12 hexagons, where no information is available in the three main years. Hence, this
results in three images (from three different periods) collected in each of the 111,397
hexagons, which are identified to contain data from all the periods. Figure 4 indicates
the number of images collected per month within the periods under consideration. In
total, 334,191 images are used for further processing (111,397 images each period)
within 14,938 research units at resolution-10, as mentioned in Section 3.1, and the
volume of images contained in each research unit is shown in Figure 5.

4.3. Contextual data

With the objective of providing a comprehensive profile of visual patterns and a
foundation for spatial variation analysis, contextual urban indicators are calculated
from three dimensions: urban function, morphology, and human activity, which are
believed to have distinct influences on visual environment (Naik et al., 2017; Zhang
et al., 2018; Gong et al., 2019b; Yao et al., 2021).

The indicators of urban function originate from the Singapore Master Plan 2019
(Urban Redevelopment Authority, 2019), which is established as a guide to urban
development over the next 10 to 15 years. It is summarised into four categories
of indices based on the areas of land use types: industrial, living, transportation
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Figure 4: The number and temporal distribution of street view images utilised in this study (breakdown by
the considered periods).

Figure 5: The 14,938 research units (average hexagon area 0.017 km2 at resolution-10 according to the H3
system) and volume of imagery in each.
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Table 2: Contextual indices derived from different data sources are calculated for 14,938 units. The Mean
represents the normalisation of the average values of all hexagon units.

Category Variables Description Mean Data Source

Land use
Road index Proportion of road area 0.217

Master Plan 2019Residential index Proportion of residential area 0.527
industrial index Proportion of industrial area 0.070

Urban
morphology

Building index Proportion of footprint area of
buildings 0.302 OpenStreetMap

Building distance
index

Average building distance within 25
meter buffer 0.492 GBMI

Human
activity POI density index Average POI density 0.096 OpenStreetMap

and open spaces, revealing urban function distributions of the city. In addition,
POI data is also adopted to investigate the index of services in clusters. The urban
morphological indicators include building density and average building distance.
The first index originates from building footprints obtained from OSM, while the
second one is calculated based on the average building distance within 25 m of each
building according to the Global Building Morphology Indicators (GBMI) open dataset
(Biljecki and Chow, 2022).

Combining these datasets, as shown in the Table 2, the values of each study unit
are averaged and further aggregated to form contextual representations of the different
types of clusters. We acknowledge that the original datasets only reflect the urban
context at certain time periods, and therefore the study period closest to the release
date of dataset is chosen to further interpret the characteristics of visual pattern.

5. Results and analysis

Having the vector representation of visual features in case study area, silhouette
method is employed to determine the numbers of clusters following by (Spielman
and Singleton, 2015; Comber et al., 2020), and the average silhouette width of 100-
class k-means solution is calculated (Figure 6). Thus, considering an interpretable
number of clusters with higher silhouette width, a six-cluster solution is adopted in
this study, generating from the integration of feature embedding result of three periods.
In this section, we will describe our empirical findings from two perspectives. First,
significant features and contextual data in certain period are used to unravel the hidden
characteristic of six visual domains. Then, the spatial evolution and temporal variation
analysis are further conducted to reveal the dynamic changes of visual environment in
case study area.

5.1. Clustering results and interpretation

Non-hierarchical clustering identified six distinct visual clusters in three periods.
To generate substantive interpretations of our empirical findings, the third research
period (2019-2021) is selected, with the average value of visual features shown in Table
3. The distributions of each value are further visualised in density plots (Figure 7),
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Figure 6: The average silhouette width of 100-class k-means solution, with the applied six-class solution
indicated by a dotted line.

Table 3: Cluster characteristics represented by average value of visual features (maximum value in bold).

Indicators road building vegetation sky wealthy beautiful lively depressing safe boring

Cluster 1 0.414 0.265 0.170 0.577 0.608 0.475 0.581 0.493 0.520 0.476
Cluster 2 0.439 0.027 0.586 0.343 0.713 0.708 0.617 0.312 0.657 0.400
Cluster 3 0.418 0.099 0.192 0.704 0.562 0.468 0.487 0.530 0.478 0.546
Cluster 4 0.423 0.063 0.391 0.518 0.747 0.682 0.669 0.293 0.700 0.383
Cluster 5 0.406 0.118 0.269 0.607 0.690 0.591 0.634 0.375 0.630 0.426
Cluster 6 0.419 0.070 0.376 0.531 0.643 0.591 0.581 0.422 0.579 0.458

with images to present examples and with descriptor names we defined for each
cluster. Additionally, incorporating contextual data as multifaceted profile (mentioned
in Section 4.3), the statistical relationships between clusters and built environment are
displayed in Figure 8. The identities of visual environment reflected by six clusters are
interpreted as follows.

Cluster 1: Urban Jungle. As the second smallest group that comprises 1,448 units
(about 10%), it is distinguished by the highest view factor of urban construction and
the lowest proportion of vegetation. This is also verified by the fairly dense and
compact built environment indicated in contextual indicators (Figure 8), implying the
dominance of man-made structures over the visual landscape. Although it enjoys
relatively high scores in terms of liveliness, it has the lowest beauty index and tends to
be perceived as depressing. In general, Cluster 1 is a highly urbanised or vibrant area
with relatively crowded visual senses created by frigid cityscape, resulting in a negative
impact on human perception.

Cluster 2: Flanked by Nature. Cluster 2 characterises only 1,306 units and is
differentiated by the highest proportion of green view factor and extremely low
urbanised features (e.g. roads and buildings), conjuring the image of a place rich in
natural recourse and low in development. On the note that vegetation (e.g. tree or
grass) serves as a significant contributor of landscape preference (Jiang et al., 2015;
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Zhang et al., 2018), such as beauty and safety, these units also stand out for their
extremely high rate of beauty and safety, with relatively low rates of depressing and
boring. Overall, Cluster 2 projects the most nature-dominated landscape in the case
study area, providing a delightful and pleasant visual experience for observers.

Cluster 3: Expansive Horizons. Identified as Cluster 3, 2,099 research units share
visual similarity in their large proportion of sky view factors and relatively low in
other visual components (e.g. vegetation and buildings), which are also reinforced
by urban functional characteristic that these visual landscapes are mostly made up of
urban-industrial and traffic areas, with the least residential development. The second
identity of Cluster 3 is the significantly lower level in terms of wealthy, safety, and
lively compared to other clusters. These identities depict the scene of underdeveloped
neighbourhoods that lack proper consideration of the aesthetics of the visual landscape
and have a potential opportunity for future improvement.

Cluster 4: Balanced Living. There are 3,264 units contained by Cluster 4, sharing
the similarity of the highest index of safety, wealthy, lively, and beauty for its visual
environment. Compared to Cluster 2 that is extremely well endowed with greenery
which might reduce the sense of safety (Dai et al., 2021), the visual characteristic of
this cluster reflects a good balance between urban development and natural landscape,
resulting in a homogeneous domain that has a high visual quality in urbanised areas.

Clusters 5 & 6: Concrete Heights and Sparse Neighbourhoods. Consisting of a large
amount of research units, Cluster 5 and Cluster 6 are highly similar to each other, albeit
a few features can set apart the two clusters. These clusters represent the intermediate
state that both physical and perceptual attributes occur at medium magnitude among
other groups above, without particular visual feature dominating. In fact, Cluster 5
is characterised by the second highest building view factor, reflecting a high density
developed urban area with lower greenery coverage compared to Cluster 6. This
identity suggests a cross-balanced environment of visual features, revealing relatively
high-density but low-greenery areas. Additionally, although the physical features of
Cluster 6 are highly similar to Cluster 4, the values of perceptual factors are slightly
opposite, representing a lower visual quality of landscape. The overall image of this
cluster is sparse, lacking a dominant feature, and the overall visual perception of the
scene is relatively negative.

In general, the first three clusters exhibit different distinctive visual characteristics,
while others have a high similarity on physical features. In a synthesis of characteristics
and external circumstances in Figure 8, we can further reveal that firstly, as
mentioned above, the most representative visual features are consistent with contextual
information. For example, Cluster 1, a group with a high visual intensity of buildings
tends to allocate in the area with high building coverage and road density. Also,
such visual environment tends to distribute in a non-residential area but contains
vibrant services, indicated by highest POI density and lowest residential usage. On
the contrary, the lowest development and POI density are associated with Cluster 2,
which is the most well-vegetated cluster in the case study area. Moreover, we feature
the strong spatial relationship between the last three clusters and residential function,
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Figure 7: The six identified clusters of the visual environment in Singapore with epithets we assigned to
each. The average value distribution of 10 different visual features of each cluster is included, together with
their image samples.
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Figure 8: The average value of contextual information (land use, urban morphology, and human activity)
among the six clusters.

implying that such environments mainly represent a visual experience within living
neighbourhoods according to different perceptions. Such correlation between visual
landscape and land use is also present in Cluster 3, which tends to locate around
industrial areas in contrast to the other groups. Aligning with Yao et al. (2021), who
suggest that urban functions have a relationship with perceptual attributes, we also
identify the relationship among urban function, built environment, human activity, and
visual landscape, further enriching confidence in the validity of cluster representation.

5.2. Spatio-temporal evolution analysis

According to clustering analysis among three periods, sequential investigations
on the evolution of visual environment are conducted from three perspectives: 1)
Quantitative variation: detecting the overall changes of visual clusters longitudinally.
2) Spatial evolution: observing the location and changes of the spatial visual patterns.
3) Course and frequency of change: summarising the changing patterns and further
exploring the prominent forms of evolution.

5.2.1. Quantitative variation
Generally speaking, Singapore has witnessed an urbanisation and landscape

improvement according to changes in visual clusters (Figure 9). For example, the total
number of visually urbanised clusters (Clusters 1, 4, 5 and 6) has altogether increased,
representing 73.1%, 74.6% and 77.2% of the total units in each period (2008-2010,
2014-2016 and 2019-2021), respectively. Furthermore, the visual environment in
Singapore is largely occupied by the three living-focused clusters (4, 5, 6), which
comprise the common cityscapes of Singapore. Among them, the areas of Cluster 4
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Figure 9: The variation in the total number of each cluster from Period 1 to Period 3.

and 5 with relatively good visual quality have expanded, while the number of Cluster 6
has decreased from 3,431 to 2,387, indicating the improvement of visual environment.

The specific variation between cluster types can be observed in Table 4, with
almost half of the previous clusters remaining the same between periods. The global
cluster evolution is further visualised in Figure 10, indicating that Period 1 to 2 and
Period 2 to 3 share similar trends. For example, highly developed clusters (1, 5)
and well-perceived clusters (2, 4) tend to remain, with their conversion rates ranging
from 41.5% to 72.9% during these periods. Among them, the visual environment
in Cluster 2 (best vegetated domain) and Cluster 1 (highest urbanised domain) are
the most stable. In contrast, there is a higher probability of conversion from low
visual quality or underdeveloped clusters (Clusters 3 and 6) to other clusters, ranging
from 34.7% to 41.8%. This can be explained by the fact that the clusters contain
more dominant visual components that are difficult to be overridden, while fragmented
visual environment tends to evolve concomitantly with the urbanisation of Singapore.
Moreover, the transformation among living-orientated clusters (4, 5 and 6) have also
account for large proportions of their changes. The overall growth in Cluster 4 is largely
due to conversions from other two clusters (5 and 6), with 1,666 units evolving into it
from Period 1 to 2. Similarly, large numbers of research units labelled by Cluster 6,
have transferred to Cluster 4 and 5, indicating general visual enhancement. However,
in Cluster 2, a reduction from Period 1 to 2 can be observed, suggesting that the
cityscape occupied by adequate greenery has been compressed. Therefore, the overall
variation of clusters demonstrates the visual development of Singapore, reflecting the
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Table 4: The proportion of cluster variation between different periods.

Periods Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Period 1 (2008-2010) to
Period 2 (2014-2016)

Cluster 1 55.39% 0% 8.79% 2.74% 32.26% 0.83%
Cluster 2 0.22% 72.88% 1.93% 9.66% 1.86% 13.45%
Cluster 3 10.80% 0.49% 35.79% 5.83% 33.43% 13.67%
Cluster 4 1.16% 11.96% 6.29% 41.54% 14.15% 24.91%
Cluster 5 5.85% 0.41% 13.80% 18.23% 48.12% 13.57%
Cluster 6 1.46% 11.51% 9.33% 28.04% 13.09% 36.58%

Period 2 (2014-2016) to
Period 3 (2019-2021)

Cluster 1 64.95% 0% 9.97% 1.98% 22.47% 0.63%
Cluster 2 0.53% 59.03% 1.83% 22.43% 1.83% 14.34%
Cluster 3 9.31% 0.19% 41.81% 6.44% 32.41% 9.83%
Cluster 4 1.81% 4.68% 4.78% 46.60% 22.32% 19.81%
Cluster 5 8.11% 0.13% 13.87% 13.39% 56.47% 8.03%
Cluster 6 1.63% 5.34% 12.73% 27.26% 18.31% 34.72%

Figure 10: Temporal evolution of different visual clusters from Period 1 to Period 3.
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urbanisation and landscape upgrading being the main themes.

5.2.2. Spatial evolution
Besides quantitative analysis, further investigation is conducted on the dynamic

spatial distribution of urban visual patterns, with the first and last periods chosen
as examples to indicate the evolution of the visual environment over the course of
a decade (Figure 11). As a whole, clusters with significant characteristics indicate
strong spatial aggregation, while the three living-orientated clusters indicate a relatively
equal distribution. Cluster 1 is the main visual domain aggregated in the Central Area,
indicating an expansion associated with urban development. This visual condition is
also reflected in new built-up areas, with high-density developments that have not yet
been landscaped, whereas such areas are often transformed into other clusters in the
next period, as a result of post-construction greening improvements. Cluster 3, the
sky-dominated cluster, tends to be observed along major roads, reflecting a driving
visual experience with poor vegetation. It is spatially distant from urban areas, and
tends to aggregate in suburban or industrial areas.

As the dominated clusters in Singapore, Cluster 4, 5, and 6 are distributed more
equally in both urban and suburban areas where visual components are abundant, but
at the same time, their distributions exhibit their spatial characteristics. For example,
the old residential towns in the centre of Singapore are mainly occupied by clusters with
well-vegetated environment, while Cluster 5 is dominated in the East Region, where
most of the new mature towns are located. These spatial distributions are related to the
period of urban development in Singapore, suggesting that earlier built communities
provide a more pleasant and inclusive visual experience. This possibly not only due
to their relatively low development density, but also because vegetation grows over
a longer period of time. In contrast, the new towns contain a higher proportion of
Cluster 5 units, followed by Cluster 6. Such groups are especially associated with
public housing areas, representing the typical interior visual environment in non-gated
communities.

To be specific, spatial evolution also reflects changes in physical environment in
certain areas. Tuas, a newly developed heavy industrial district located in the West
Region (Figure 11, Area A), has witnessed a visual landscape upgrade. The first
period of this area is mainly covered by sky-dominated cluster, while the clusters
change can be detected because of the further construction and greenery improvement.
Similar changes also appear in Punggol District (Figure 11, Area C), where a new
town started to develop since 2007. The dominated clusters have transferred from high
dense domain to neighbourhood domain, representing a visual environment evolution
from underdeveloped area to fully constructed new town. Furthermore, the visual
environment in central residential area has also experienced an evolution (Figure 11,
Area B), varying mainly between Cluster 4 and 6. This represents that the changes
in physical compositions of these areas are negligible, while their evolution can be
differentiated from the variation of perception level, which strongly influenced by
other visual factors, such as vehicles, grass, sidewalks, enclosure and openness (Zhang
et al., 2018; Dai et al., 2021). These perceptual indicators facilitate the consideration
of the visual influence from non-dominant visual elements and thus avoid examining
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Figure 11: Maps visualising the spatial patterns of visual environment within Period 1 & 3 in Singapore, with
representative areas highlighted. Maps visualising the spatial patterns of visual environment within different
periods in Singapore, with some areas highlighted as examples.
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the complex mechanisms of these attributes, highlighting the importance of integrating
visual and non-visual factors in the study of urban visual environment.

5.2.3. Course and frequency of change
To unpack the changing patterns of visual environment, the most 10 frequently

appeared change courses are extracted from Period 1 to Period 2 and Period 2 to
Period 3 (Figure 12a), excluding the units remained as the same characteristic. As
we identified in Section 5.1, we further summarise the main change courses of visual
clusters into two directions: perception improved and perception declined, according
to Figure 7. In general, the changes appeared mainly between clusters having similar
characteristics, reflecting that the overall visual environment in Singapore is stable,
with other specific areas having significant changes. For example, the change from
Cluster 6 to Cluster 4 (c6-c4) is the most common direction of change and does not
indicate an apparent change in the physical environment, but rather an increase in the
general level of perception. The change from Cluster 3 to Cluster 5 (c3-c5) is the
second common direction of change across periods, which usually occurs in areas of
development and construction in the first period, while greening is improved in the
second. Correspondingly, changes in the opposite direction of these clusters (c4-c6 and
c5-c3) also account for high proportions of perception level decline. Moreover, change
courses that reflect significant transformations in the physical environment are also
observed across different periods. For instance, there are two significant change courses
from Period 1 to Period 2: Cluster 6 to Cluster 2 (c6-c2) and Cluster 1 to Cluster 5 (c1-
c5). They all indicate improvements of certain area from urbanised to better vegetated
(Figure 13). In Period 2 to 3, 321 units underwent significant visual changes from
Group 5 to Group 1 (c5-c1), mainly as a result of road maintenance, which strongly
affect the visual environment because it always occurs with the removal of greenery and
the increase of construction equipment, resulting in a typical change course from good
perceived environment to urbanised visual experience. Taken together, these directions
of change provide an understanding of dominant environmental transformation in
different periods and reveal potential changing trends between visual clusters.

Furthermore, the distributions of most 10 frequently appeared courses are mapped
based on the change directions of perception level Figure 12b. For Period 1 to Period
2, the improvement of visual environment is concentrated in most of the residential
areas of Singapore, while the industrial estates, such as the Tuas and northern region,
experienced a decrease in visual quality. This trend reversed in the second period:
although visual improvement was still the main theme, the perceptual level decline
mostly taken place in eastern Singapore. In accordance with this, spatial shifts in
the evolution of the visual environment are revealed, and potential areas for visual
remediation and enhancement are identified. This also indicates that the overall visual
environment tends to remain stable, while areas underwent visual quality degradation
tend to improve in the next period.

All in all, the results reveal that the characteristics of visual environment can be
differentiated by multivariate extracted from geotagged images at pedestrian level.
The evolution of visual clusters also reflects the change in the overall image of a
place behind physical changes. This finding validates the possibility to evaluate
visual environment from multifaceted view, as well as to detect the dynamic changes
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Figure 12: The most frequent courses of change between adjacent periods and the distribution of units that
indicate improvement/decline in the level of perception.

Figure 13: Examples of change courses in different periods.
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in a long period based on SVI. These findings give valuable insights for future
environment planning and place-making, with the aim of promoting urban liveability
and contributing to health and well-being.

6. Discussion

Visual landscape of the urban environment impacts both image of city and health of
its dwellers. Various assessment frameworks of visual landscapes have been discussed
in the past decades. This study introduced a new comparative approach to discover
urban visual pattern and its evolution. The contributions of this work are as follows:
first, we summarise and integrate representative visual features in large-scale urban
region for evaluation. Second, spatial-based graph neural networks is employed to
encode spatial dependency with the features, from which the sensible aggregation of
distinct visual environment is revealed. Third, for the first time, multi-year data are
applied to explore spatio-temporal evolution of the visual character in a city.

Various studies assess visual landscapes in terms of their physical components
or human perception, while a few of them integrate physical and perceptual factors
because of the uncertainty of the weighting among them. Through selecting the typical
visual components, incorporating them with perceptual attributes that might be affected
by other underlying features (Zhang et al., 2018; Rossetti et al., 2019), we are able to
investigate cityscapes from a systematic and quantitative perspective. For example,
Cluster 4 and Cluster 6 share similar physical elements visually, while perception
indicators distinguish their characteristics based on perception levels. This can balance
the contribution of each visual element in evaluating visual landscape, providing
more robust and stable experimental results. We believe that this exploration shows
great potential and establishes a benchmark for visual environment clustering and
sensing. In the future, robust and multifaceted variables can be gradually added to this
framework, helping us to better understand the underlying visual patterns and process
our surrounding environment. Although the distribution of certain visual clusters may
come as no surprise, e.g. Cluster 1 is mostly concentrated in the Central Area of
Singapore and Cluster 3 corresponds to areas that are less urbanised, the result indicates
the structure and aggregation of visual environment beyond individuals’ images of
certain city areas. For instance, instead of Cluster 1, there are certain units within
Central Area that reflect pleasant visual experience, and visual environment in different
urban functional areas can share similar visual characteristic. This approach highly
relies on transparent and consistent datasets for both model training and prediction,
which meet the visual character assessment framework proposed by Tveit et al. (2006),
offering a possibility to investigate the impacts of landscape change for visual character
and promote a better understanding of the visual environment in urban design.

Rather than evaluating the environment in certain geographical locations (Naik
et al., 2017; Tang and Long, 2019; Zhou et al., 2019; Nagata et al., 2020), this study
introduces a deep learning approach to consider urban environment from a holistic
perspective by learning compressed representation based on multiple features and
geographical relationship. We applied GraphSAGE to reveal visual homogeneous areas
at community scale, following the human perception homogeneity domain proposed
by Yao et al. (2021). This can help us to aggregate urban informatics as a whole
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based on their spatial structure and minimise the bias created by street view images
that capture the scene from different angle, weather, timing, and traffic conditions. The
same methodology can also be applied to other urban studies that involve multivariate
with strong spatial correlation.

Even though SVI is becoming a prominent data source in temporal studies (Naik
et al., 2017; Tang and Long, 2019; Kagan et al., 2021; Byun and Kim, 2022), few
studies have used it to investigate the overall evolution of the cityscape. This study
applied vast quantities of SVI from various years to conduct time series analysis
on visual environment, demonstrating the possibility of utilising it to reveal visual
similarity among periods. We summarise the characteristics of visual patterns changes
from three aspects: quantitative variation, spatial evolution, as well as course and
frequency of change. The results suggest that different types of visual environments
are linked to their contextual settings, raising a noteworthy opportunity that visual
environment has a potential evolutionary pattern. This could be further explored
alongside other temporal urban studies, such as urban morphology evolution and
socioeconomic variation, to investigate urban transformation, detect factors of change,
and monitor the effects of policies and urban planning.

Furthermore, there are also limitations that should be addressed in future research.
First, in addition to the representative factors identified in this study, visual quality of
an environment is fostered not only by dynamic visual factors (e.g., human activities,
urban function, traffic conditions, etc.), but also the non-visual factors (e.g., urban
soundscape, cultural familiarity, historical context, etc.), which simultaneously affect
human perception of a place (Kaplan and Herbert, 1987; Bell, 2001; Quercia et al.,
2014). Future evaluation of visual landscape could be extended to wider dimensions
by formulating a model or digital environment to investigate how such factors can be
integrated or transferred to visual sense. Second, SVI is not available everywhere for
all the periods. Thus, for newly urbanised areas for which SVI became available only
in the last period, the evolution of the visual environment from emergence to stability
can be observed only in the future. Finally, in our implementation, we focus on SVI
data, which has common limitation that it mainly represents the environment from
driving perspective (Zhang et al., 2018; Yao et al., 2021). Besides, despite combining
imagery from adjacent years to maximise research coverage, imagery-uncovered area,
e.g., parks, open spaces and communities, also constitute as one part of the urban
visual environment. Future research could account for off-road imagery (e.g., sidewalk,
bicycle lane), evaluating visual landscape from different viewshed and perspective.
Other data sources, such as Mapillary and KartaView, which may penetrate areas
beyond driveable roads and the typical reach of GSV (Yap et al., 2023), warrant further
exploration in future visual environment studies.

7. Conclusions

The urban visual environment, as the appearance of cities and streetscapes, plays
an essential role in urban planning and human well-being. However, visual evaluations
performed by previous studies focus mainly on a specific geographical location from
either physical or perceptual aspects, and how the environment evolves remains
unknown. As SVI is now an established urban data source, the same streets are being
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revisited, providing imagery from more than one period, a tremendous benefit that
has not yet been taken much advantage of in urban studies. Our work also follows
the recent trends in urban informatics, which is increasingly regarding multi-period
instances of emerging urban datasets for longitudinal analyses (Morlighem et al.,
2022; Li et al., 2022; Chen and Biljecki, 2022; Yu et al., 2022). In this research, we
established a comparative framework based on multi-year SVI and investigated the
change courses of visual domains. Graph neural network is introduced to associate the
visual properties and spatial dependency generated from features extraction and road
network structure, respectively. Specifically, this enables us to reveal the characteristics
of visual environment at city scale, which indicate potential association with built
environment and human activities. We have identified that the global quality of visual
landscape in the city has improved, with urbanisation and landscape upgrading as
main themes, and same visual cluster always indicate similar course and frequency
of change.

This work examined the possibility to utilise vast street level-imagery for urban
changes observation at city scale, providing a freely available method for governments
or planners to capture the overall image of a city and identify places for future
improvement. We believe that this method also has a great opportunity to be expanded
to other urban informatics studies, helping us to obtain urban patterns beyond prior
knowledge, which will contribute to future urban design and landscape planning.

Appendix A. GraphSAGE

The lack of consideration on spatial constraints is an inherent limitation of
traditional clustering approaches, while the spatial adjacency relationship is a crucial
factor in urban structure analysis. With this in mind, we employed a GNN model,
GraphSAGE algorithm, which uses both feature and graph information and fits
naturally to solve clustering type of graph problem, thereby taking spatial constraint
into account. As an inductive framework designed to generate node embedding,
GraphSAGE treats features sampling and aggregating from the node’s neighbourhood
while considering network structure (Figure A.14), resulting in a low-dimensional
vector representation of nodes that can be further applied to downstream tasks, such
as classification and clustering.

In this model, the inputs are the spatial adjacency matrix (G) and features matrix
(Fv) obtained in section 3.2, with the parameters of K (‘search depths’) representing
the number of hops for information collection and aggregation from neighbourhoods
nodes. Then, GraphSAGE is adopted to encode the information and relationships
among urban areas, generating representative embeddings as output. To be specific,
the model first combines the two matrices and result in one hidden matrix with
multiple dimensions (ten in this case). Second, sampling is operated to identify target
node’s neighbours that needed for subsequent computation. Third, concatenation layer
propagate the information from local neighbours of a node according to the adjacency
matrix, with different aggregators that can be operated to aggregate the information.
For example, in the kth layer, the embedding representation hk

i of a given node vi can
be calculated by:
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(a) Sample node’s neighbourhood (b) Aggregate feature information from neighbours

Figure A.14: Visual illustration of the GraphSAGE sample and aggregate approach (Hamilton et al., 2017)

hk
v = σ

(
Wk · Concat

(
hk−1

v , Aggregate
(
hk−1

u ,∀u ∈ N (v)
)))

(A.1)

where all the weight of neighbours of node v are defined as N(v), W is the learnable
weight parameter, Concat is the operation of concatenation, σ(·) is the activation
function ReLU and Aggregate is the aggregation functions that can be predefined,
including three candidate aggregator: mean, Long Short Term Memory, and pooling
based different aggregating strategies shown in Hamilton et al. (2017). In practice,
we choose Pooling aggregator, which assumes that all the input feature vectors are
sufficiently distinct, at search depth K = 2. Through this inductive approach, the
vector representation of each research unit is obtained based on multivariate feature
embedding and spatial interaction leveraging, thereby smoothing data based on spatial
structure of the units and achieving our goal of detecting the holistic representation of
the visual environment.

Appendix B. Perception differences between clusters

As a supplementary presentation, this appendix provides detailed visualisation of
experimental results to the main text. Addition to Figure 7, the differences of perception
values between each pair of clusters are further shown in Figure B.15. The red colour
represents certain perception values increase when a cluster transfer from y-axis to
x-axis, while blue indicates a decrease. For example, Cluster 3 (C3), identified as
Expansive Horizons in previous introduction, increases in value as it evolves to other
clusters in terms of safety, lively beautiful and wealthy, especially a significant surge
when it changes to Cluster 4 (C4), but a slight improvement in its change to Cluster 1
(C1). According to the figure, we can further evaluate the visual environment change
when the cluster evolves.
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Figure B.15: The comparison of perception values between each pair of clusters (red - x-axis cluster higher
than y-axis cluster, blue - x-axis cluster lower than y-axis cluster).
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Štefunková, D., Cebecauer, T., 2006. Visibility analysis as a part of landscape visual
quality assessment. Ekológia (Bratislava) 25, 229–239.

36



Steiger, E., Resch, B., Zipf, A., 2016. Exploration of spatiotemporal and semantic
clusters of twitter data using unsupervised neural networks. International Journal of
Geographical Information Science 30, 1694–1716.

Sun, Y., Fan, H., Li, M., Zipf, A., 2016. Identifying the city center using human
travel flows generated from location-based social networking data. Environment
and Planning B: Planning and Design 43, 480–498.

Tang, J., Long, Y., 2019. Measuring visual quality of street space and its temporal
variation: Methodology and its application in the hutong area in beijing. Landscape
and Urban Planning 191, 103436.

Tao, H., Wang, K., Zhuo, L., Li, X., 2019. Re-examining urban region and inferring
regional function based on spatial–temporal interaction. International Journal of
Digital Earth 12, 293–310.
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