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Abstract

Conventional sidewalk studies focused on quantitative analysis of sidewalk
walkability at a large scale which cannot capture the dynamic interactions
between the environment and individual factors. Embracing the idea of
Tech for Social Good, Urban Digital Twins seek AI-empowered approaches
to bridge humans with digitally-mediated technologies to enhance their pre-
diction ability. We employ GraphSAGE-LSTM, a geo-spatial artificial in-
telligence (GeoAI) framework on crowdsourced data and computer vision
to predict human comfort on the sidewalks. Conceptualising the pedestri-
ans and their interactions with surrounding built and unbuilt environments
as human-centric dynamic graphs, our model captures such spatio-temporal
variations given by the sequential movements of human walking, enabling the
GraphSAGE-LSTM to be spatio-temporal-explicit. Our experiments suggest
that the proposed model provides higher accuracy by more than 20% than a
traditional machine learning model and two state-of-art deep learning frame-
works, thus, enhancing the prediction power of Urban Digital Twin. The
source code for the model is shared openly on GitHub.
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1. Introduction

Cities are the systems of networks and flows (Batty, 2013) of which urban
sidewalks are a crucial component (Ning et al., 2022; Hosseini et al., 2022).
Sidewalks function not only for transportation and everyday commute but
also as a carrier for social interactions and recreational physical activities
(Liu et al., 2020), i.e., walking, that promote active lifestyles (Kelly et al.,
2007). In the urban environment, increased walking activities benefit the
city from various perspectives, from air pollution reduction to urban spaces
safety maintenance; it is also an essential measure of the life quality of a
community (Ataman and Tuncer, 2022; Cottrill et al., 2020; Gozalo et al.,
2018; Bicycle, 2008; Blacklock et al., 2007; Patterson and Chapman, 2004).
Therefore, designing and maintaining sidewalks for pedestrians is one of the
key focuses of urban planners to develop a healthier and happier city.

In recent years, human perceptions have become a useful measurement
to assess urban outdoor environment (Bivina and Parida, 2022; Luo et al.,
2022; Abdollahzadeh and Biloria, 2021; Deng et al., 2021; Florio et al., 2021;
Zhang et al., 2018; Nazarian and Lee, 2021). During the walking activity
on the sidewalks, people perceive multi-sensory experiences (e.g., thermal
experience, surrounding traffics) interacting with a series of urban spatial
objects (e.g., buildings, trees, road conditions) that impact their state of
comfort when navigating and path-finding in the urban realm (Gao et al.,
2022). Previous research primarily focused on the thermal experiences (i.e.,
thermal comfort) of the pedestrians, which are essential to understanding
the relationship between urban micro-climate and spatial urban morphology
(Vasilikou and Nikolopoulou, 2020; Nice et al., 2022) and also as an indicator
of the sidewalk quality (Abdollahzadeh and Biloria, 2021). However, thermal
comfort measures do not capture a complete comprehension of the walking
experience in the environment, particularly in the outdoor settings where the
inter-play between pedestrians and spatial objects along the walking is con-
stantly changing (Bivina and Parida, 2022). The sense of the crowdedness
of the road, safety, fear or willingness to walk in the sun, the slope condi-
tion of the roads, and other facets can heavily affect human comfort when
walking on the routes (Guan et al., 2022; Miranda et al., 2021; Natapov and
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Fisher-Gewirtzman, 2016; Meng and Kang, 2016). In this paper, we expound
on personal comfort beyond the single-dimensional consideration of thermal
experiences but as a consequence of complex interactions between people
and urban spatial entities (i.e., built and unbuilt environment) along the
sidewalks, comprising the visual semantics output by computer vision-based
technologies, together with physiological senses of the urban spaces. There-
fore, the human comfort defined in this study is a consequence driven by a
set of complex factors, including the thermal environment (e.g., solar inten-
sity of the day), the visual ambience of the changing environment, acoustics
perception, and the impact of other people’s activities.

For conventional (thermal) comfort studies in the outdoor environment,
data used for analysing spatial objects’ impact are often collected using var-
ious professional, if not, complex, equipment and sensors, such as weather
stations (Vasilikou and Nikolopoulou, 2020), infrared lasers (Yoon et al.,
2022), and heart stress trackers (Peng et al., 2022). As accurate as the data
collected, the equipment and sensors used for those studies require domain-
specific experts to set up the experiments and collect data. Such technologies
and devices can be a barrier for non-expert people who want to contribute
their data for mass evaluation of the sidewalk or any built environment of
where they are and how they perceive. This study aims to bridge such a gap.
As we are shifting into an increasingly digitally-meditated world (Ash et al.,
2018) in which crowdsourced data play a vital role, data used in this study
(see, Section 4) can all be collected through smart and portable devices from
users, thus, setting the path for using crowdsourced data in studying outdoor
human comfort and sensing the built environment.

With the rapid development of digital twins (DT), a concept that refers
to the digital representation of a physical entity, person, place, system, or de-
vice, enabling (near) real-time data exchange and simulations of real-world
features and processes (Charitonidou, 2022; Lei et al., 2023), its city-scale
applications (Urban Digital Twin, UDT) are proliferating and have been in-
creasingly adopted into various urban-related projects, including sidewalks
planning (Zhao et al., 2022a; Ahn et al., 2020) and outdoor comfort studies
(Onan Demirel et al., 2021; Zaballos et al., 2020). Artificial Intelligence (AI)-
empowered models is a key in the UDT to provide simulation and prediction,
thus, aiding the decision-making process for both urban planners and resi-
dents (Lei et al., 2023; Charitonidou, 2022; Li et al., 2021a). Inspired by the
recent advance of spatial-explicit geo-spatial artificial intelligence (GeoAI) in
urban studies (Liu and Biljecki, 2022) which incorporates spatial locations
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and dependencies into the AI computation process, this paper aims to de-
velop a spatio-temporal-explicit GeoAI model through a graph-based LSTM
neural network (see Section 3) that can be integrated into a UDT. It can
capture the dynamic nature of the interactions between urban spatial ob-
jects and pedestrians based on a human-centric graph conceptualisation (see
Section 3.2) for predicting personal comfort. It is also important to note that
as a methodology-driven study rather than behavioural research, we are not
seeking to explore why the pedestrian will perceive the walking experience
with certain comfort feedback nor to calibrate and validate how the feedback
is produced. In this paper, by leveraging the crowdsourced data to train a
GeoAI model that can enhance the prediction ability of UDT, a two-way in-
teraction between the digitally-mediated City Brain (Feng et al., 2018) and
people can be established, thus, working towards building a human-centric
digital twin (Ye et al., 2022; Charitonidou, 2022; Li et al., 2021a; Batty,
2018).

Therefore, in this paper, we:

• introduce a human-centric dynamic graph construction method that
brings pedestrians as the central components in the quantitative com-
putational framework;

• advance the studies of using user-contributed (crowdsourced) data to
analyse individual human comfort;

• propose a spatio-temporal-explicit GeoAI GraphSAGE-LSTM which
captures the dynamic nature of pedestrian walking and supports (near)
real-time personal comfort prediction, which can be integrated into
UDT. Such methodological advancement would support citizen-centric
applications. The source code developed in this research is shared
openly on GitHub1.

2. Background

2.1. Perception, Comfort and Crowdsourced Data

Human perception and comfort have long been an important measure for
studying urban spaces (Zhang et al., 2018), which not only scientifically help

1https://github.com/PengyuanLiu1993/GSL-sidewalk-comfort
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Figure 1: Example of the dynamic surrounding environment along a sidewalk. Standing
point refers to each location of a pedestrian walking. Survey route is an example of
sidewalk chosen in this paper, more details will be provided in Section 4. Scene 1 and 2
showcase what are the surrounding environment when a pedestrian at the two location
points.

the researchers understand urban spaces and places (Liu and De Sabbata,
2021; Zhou et al., 2021; Zhu et al., 2020) but also practically provide guidance
for urban planning (Luo et al., 2022; Jo and Jeon, 2020).

In the studies of urban sidewalks, previous research shows that personal
experience of the urban continuum is perceived in a dynamic nature (Potvin,
2000). The sequential manner of pedestrians experiencing the interconnected
urban spaces reinforces such a dynamic perceptual mode through the actual
movement between spaces (Vasilikou and Nikolopoulou, 2020), as shown in
Figure 1. Most outdoor comfort and perception studies seek to establish
the correlations between environmental conditions (e.g., micro-climate) and
human comfort (mostly thermal comfort) (Guan et al., 2022; Peng et al.,
2022; Abdollahzadeh and Biloria, 2021; Vasilikou and Nikolopoulou, 2020),
aiming to explain and validate why and how human perceive the walking
experiences with various sensory data (e.g., heart rates, near-body temper-
ature) collected. Among the data collected, visual perceptions are crucial
because what people see links directly with their sense of the environment
(Li et al., 2022b; Cureau et al., 2022; Lee et al., 2022; Chen et al., 2022; Lam
et al., 2020; Abu-Ghazzeh, 1999; Schroeder and Anderson, 1984), and they
can capture the dynamic variation of the interactions with the constantly
changing surrounding spatial objects along human walking. In our study,
visual sensing is also an important component that will be incorporated in
the GeoAI model introduced; detailed data collection steps and description
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will be introduced in Section 3 and 4.
Recent years have witnessed a growing interest in using crowdsourced

data to study urban spaces (deSouza et al., 2020; Mak and Lam, 2021; Li
et al., 2021b; Kim et al., 2019; Chen et al., 2019b; Song and Sun, 2010).
Crowdsourced data, in the context of geo-spatial studies, often refers to geo-
referenced content produced by non-professionals using self-location services
provided by crowdsouring platforms or mobile applications. Although re-
search in human comfort studies largely relies on the data collected through
professional equipment, the use of mobile devices and applications (e.g., Fit-
bit, Apple Watch) is also gaining its prevalence (Peng et al., 2022; Abdelrah-
man et al., 2022). Our study aims to drive such study practices forward with
all data collected through mobile applications or cheap and widespread avail-
able devices, thus, encouraging the general public to contribute their personal
comfort to the outdoor urban environment, which can serve as suggestions
for designing better sidewalk services. It is worth noting that although in
our study, which will be introduced in the rest of this paper, data collected
through the designed experiment were not necessarily ‘crowdsourcingly’ con-
tributed by the participants, we still choose to articulate the data collected as
crowdsourced data. This is because one of the primary contributions of the
model developed is its potential of incorporating user-generated data from
readily available devices.

2.2. Predicting Human Comfort

Although, in this paper, our research objective is to predict human com-
fort when walking on outdoor sidewalks, the initial idea was inspired by
an indoor thermal comfort study. Abdelrahman et al. (2020) proposed a
Build2Vec model to convert labelled property graphs transferred from a
Building Information Model (BIM) into vector representations, and it cap-
tures different building objects’ semantic relations and similarities. Build2Vec
consists of two important components: spatial graph constructions and Node2Vec
(Grover and Leskovec, 2016). The spatial graph construction step creates
graphs at each timestamp of human movement in the indoor environment.
Each space from a building is divided into cells of nodes using spatial dis-
cretisation. Each cell is connected to the building object’s nodes (e.g., walls,
windows, doors) in the graph structure when the cell is within the building
objects’ area of influence (AoI, e.g., fan radius). For a person in the building,
the location of the cells also represents where the person is. Hence, such a
conceptualisation envisions the graph structure at each timestamp where the
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person is human-centric. The graph varies at each timestamp when a human
moves in a space transition. The original building space cells-oriented graph
is converted to a human-oriented graph. Node2Vec extracts semantic similar-
ities between different building objects, represents them in multi-dimensional
vector representations (i.e., embedding) and outputs embeddings of the hu-
man movements in the space cells. Later in their study, they combined such
embeddings with physiological data collected (e.g., heart rates, near-body
temperatures) and fed the data into Random Forest for the thermal com-
fort prediction in the indoor environment (Abdelrahman et al., 2022). Their
study provides a useful tool for spatial recommendations in the context of
human-centric building DT applications (Kim et al., 2018).

As elaborated in the previous section, outdoor walking faces the same
challenges of dynamic variations of the surrounding environments. There-
fore, we find the concept of the Build2Vec model is suitable for developing
a quantitative framework for predicting human comfort in outdoor sidewalk
context. However, three primary deficiencies of the model inhibit its direct
employment in our study. First, the outdoor surroundings are much more
complicated than the indoor environment. The indoor objects can relatively
easily be extracted from the BIM models, and most objects (e.g., walls,
doors, windows) are fixed in their spatial locations. In contrast, for the out-
door sidewalks, the environmental factors (e.g., rain, solar intensity), and
road objects (e.g., buildings, road conditions, crowdedness of the sidewalks)
are constantly changing during people’s walking. Within the discipline of
DT, although City Information Model (CIM) and 3D city models (Biljecki
et al., 2015) are a trending topic that attracts numerous efforts to develop a
model with rich semantic information about urban entities (Lei et al., 2022),
we can hardly find a CIM has the same level of meta information as a BIM
used in Abdelrahman et al. (2022). Meanwhile, we argue that a static CIM
do not fully capture the dynamics (e.g., the volumes of the traffic on the
road, sound levels, weather changes) of the changing urban environment in
solving real-world problems, particularly when humans as the central com-
ponent to be studied. Second, Build2Vec was designed in a stack of methods
instead of an end-to-end manner. That is, the model is separated into two
consecutive steps that Node2Vec’s output is not specifically tailored to the
thermal comfort prediction task; only the step of Random Forest is a learn-
ing task that serves for the prediction. We argue that such a model may
require high-quality data collected through sensors and lack the ability to
take crowdsourced data as input, whose data quality is comparably lower.
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Thirdly, Node2Vec can only take static graph as input. Therefore, despite
Abdelrahman et al. (2022) formalised the thermal comfort prediction as a
time series problem, both the Node2Vec model and the Random Forest lack
the ability to handle time-series data; hence, their introduced framework
is a-temporal. Inspired by their efforts, we introduced an end-to-end deep
learning framework that can capture the dynamics of the interactions be-
tween urban spatial objects and pedestrians for predicting outdoor comforts,
see Section 3.

2.3. Urban Digital Twin and GeoAI

As a trending topic in recent urban-related studies, UDT offers urban
planning with models and platforms for sustainable development that ef-
fectively combines digital technological innovations with urban operational
mechanisms, and points out a viable path for urban upgrading (Lei et al.,
2022, 2023). Prediction and simulation and are two of the most important
characteristics of the UDT in which AI plays a vital role (Li et al., 2021a).
Recent advances of the AI development in urban geography stress the im-
portance of incorporating location and spatial dependency and heterogeneity
into the AI computation process, thus, formalising the initiatives of build-
ing spatial-explicitly GeoAI (Liu and Biljecki, 2022; Janowicz et al., 2020;
Li, 2020). Graph representation of spatial locations and phenomenons and
graph neural networks (GNN) has been recognised as a core to develop better
AI frameworks that offer high-quality predictions in urban studies (Liu and
Biljecki, 2022). However, most existing studies using such methods based on
fixed graphs (nodes and edges do not change over time, e.g., street networks)
(Zhao et al., 2022b; Zhu et al., 2021), and the dynamic graphs (nodes and
edges vary over time) which are suitable to capture individual level of inter-
action with the spatial objects are underexplored. Our study will address
such a limitation by developing a GNN-based framework.

3. Methodology

Figure 2 illustrates our proposed approach to predict human comfort, and
it consists of three components: Crowdsourced Data Collection, Dynamic
Spatial Graph Constructions and GraphSAGE-LSTM (GSL). This section
will introduce the three components in detail in their corresponding sections.
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Figure 2: The overall framework of the proposed method. The photos of the surrounding
environment will be conceptualised into dynamic graphs which will be used by the GSL
model for the comfort prediction.
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3.1. Experiment Design and Crowdsourced Data Collection

This work sets up an experiment with 15 participants (NUS students in
their 20s with normal visual and walking abilities, regardless of their gender,
race and cultural backgrounds) that collected dynamic status from partici-
pants about their comfort scores (at scale 1-10, 1 denotes the least comfort,
and 10 is the highest comfort) walking on the selected path (see, Section
4). The 10-level comfort scale design (Syed Ahmad et al., 2022) aimed to
capture in-depth correlation between human feedback and their surrounding
environment, especially for people who may be sensitive to the changes along
the walking. Furthermore, such a design and its correlation analysis will in-
crease the interpretability of our proposed method (see, Section 5.1 and 5.3).
It is also important to emphasise that the human comfort defined in this
paper is a consequence of complex interactions affected by the surrounding
environment of pedestrians. For example, a pedestrian may prefer (i.e., give
higher scores) a path that has shade but is crowded than another path in
open and empty spaces, and vice versa. The comfort feedback was collected
every 5 to 10 seconds.

As shown in Figure 2, we used four different devices for the crowdsourced
data collection. The Cozie application2 (an open-source application for sub-
jective feedback built on the Apple Watch platforms) was deployed to collect
participants’ heart rates and comfort feedback along the walking. A Go-
Pro action camera was used to collect the panoramic photos at the locations
of where the participants gave their comfort feedback. The sound metre
(UT353/UT353BT mini digital sound level meters3) was adopted to record
the level of sound surrounding the participants. A smartphone was used
to collect solar intensity (through Photometer application4) and capture the
changes of altitudes of participants’ walking (using sports tracking applica-
tion, Foooooot5). Each participant was accompanied with a research team
member while walking on the sidewalk around the path. The GoPro was car-
ried by the researcher, and all other devices were with the participant. The
researcher was responsible for taking panoramic photos when the participant
gave comfort feedback on Cozie, and they did not interfere or talk with the
participant unless certain instructions needed (e.g., directing the path). The

2https://cozie-apple.app/
3https://meters.uni-trend.com/product/ut353-ut353bt/
4https://photometer.pro/
5http://www.foooooot.com/
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experiments were conducted three times a day with one participant per walk
(started at 10 am, 2 pm and 5 pm) to cover as many outdoor conditions
as possible, such as changes of solar intensity, crowdedness of the sidewalks
because of rush hours, etc. Therefore, the experiments took place for five
consecutive working days around the second half of July 2022.

For panoramic photos collected using the GoPro, as shown in Figure
2, we conducted object detection (a computer vision technique for locating
instances of objects in images) using the pre-trained fifth version of YoLo6

(Redmon et al., 2016) to count cars and pedestrians in the photo. Then,
we segmented each image using DeepLabv3 (Chen et al., 2017) to obtain
the percentages of each spatial object that occurred in each photo. The
DeepLabv3 was pre-trained on the CityScape dataset (Cordts et al., 2016)
using PaddleSeg (Liu et al., 2021; PaddlePaddle Authors, 2019). CityScape
is a dataset designed to have a semantic understanding of urban street scenes,
and it helps to classify 30 categories of urban objects in street view images
(see, Cordts et al. (2016)). In this paper, we only used following classes:
building, wall, fence, pole (vertically oriented poles, e.g., sign pole, traffic
light poles), traffic sign, vegetation (vertical vegetation, e.g., trees, hedge),
terrain (horizontal vegetation, e.g., grass field), and sky.

As motivated in Section 1 and 2, our study is intended to set the path for
promoting crowdsourced data in outdoor comfort studies, thus, in designing
the experiment we made sure that all devices and applications required should
be readily available or cheap to purchase (as for the portable sound metre).
However, compared to conventional comfort studies using professional and
complicated devices (Peng et al., 2022), the quality of collected crowdsourced
data is hard to measure, which brings uncertainty into the model development
as well as in the output and analysis (more discussion will be provided in
Section 5 and 7). Another missing point of the data collection is micro-
climate variables (e.g., wind, temperature, rain and humidity). Those micro-
climate variables commonly require professional-grade sensors (e.g., weather
stations) for the collection. At the time of writing this article, we have not
identified any cheap and portable devices that can be easily used to collect
those data; therefore, we consider such data collection beyond the scope of
promoting crowdsourced data and accessible research. Further discussion
will be provided in Section 6 and 8. As a designing choice and a possible

6https://docs.ultralytics.com/
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substitute, the use of solar intensity in this paper was adopted as a variable
ensuring the model is robust to the changing weather (i.e., high intensity in
the open spaces indicates sunny weather and vice versa).

The Institutional Review Board of our university has reviewed and ap-
proved the ethical aspects of this experiment.

3.2. Dynamic Human-centric Graph Constructions

As mentioned in Section 2.3, graph representations and GNNs have played
a vital role in developing spatial-explicit GeoAI models in urban-related stud-
ies (Liu and Biljecki, 2022). Many existing studies used fixed graphs (where
nodes and edges are unchanged) to conceptualise spatial and spatio-temporal
components in the models (Zhao et al., 2022b; Liu and De Sabbata, 2021;
Zhu et al., 2020; Zhao et al., 2019). However, although their nodes’ values
may vary subjective to the temporal differences, those fixed graphs are less
intuitive in scenarios where spatial objects and environment are consistently
changing (e.g., outdoor walking). In this paper, we propose a human-centred
graph construction method using dynamic graphs that can better capture
the dynamic nature of people’s movements.

As illustrated in Figure 2, the graph at each timestamp was constructed
based on what the participant saw on the sidewalk. Figure 3 provides a
more intuitive understanding of the graph construction step. Data collected
in Section 3.1 were classified into categories conceptualised as spatial objects
around the participants: Sidewalk Traffics (number of cars and pedestrians),
Built Environment (building, wall, fence, pole, and traffic sign), Environ-
mental Variables (sky, terrain and vegetation). Those data were encoded as
nodes in the graph. In addition, we created two artificial nodes (defined as
Virtual Nodes) to take solar intensity and sound level in the graphs. Nodes’
values were attributed with the data collected at each location point (see
Section 4.1) when the participant walked.

Figure 3 showcases that when a participant on the sidewalk, the traffic
condition (cars and other pedestrians) are different at each timestamp. Thus,
graphs vary accordingly, as well as their corresponding adjacency matrix (1
or 0 according to whether nodes are connected or not). In our study, graphs
are different based on the appearance and omit of spatial objects, not only
traffic conditions but also other variables, along the walking. However, it is
worth to mention that although the graphs were dynamically changing, we
kept the shape of the adjacency matrix same.
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Figure 3: Graphs vary at different location points subjective to the change of timestamps.

3.3. GraphSAGE-LSTM

The primary GeoAI framework is designed as a stack of GraphSAGE
(Hamilton et al., 2017) and Long short-term memory network (LSTM) (Hochre-
iter and Schmidhuber, 1997), as shown in Figure 2. As a type of graph
convolutional network, GraphSAGE is an iterative algorithm that learns em-
beddings (dense numerical representations of the targeted variables) for every
node in a graph. Each node in the graph is represented by the aggregation of
its neighbourhoods. In other words, GraphSAGE learns nodes’ embeddings
using the graph structures (dynamic spatio-temporal graphs constructed in
Section 3.2). Meanwhile, GraphSAGE offers few options for the nodes’ values
aggregation (i.e., mean aggregator, pooling aggregators, and attention aggre-
gator). In this paper, we chose the (max) pooling aggregator method because
Hamilton et al. (2017) proved the pooling aggregator could achieve desired
performance with reasonable time costs, which was reckoned as one of the
most promising aggregation approaches in their paper. An intuitive under-
standing of the max pooling aggregator is that each neighbour’s embedding
is passed through a non-linear layer (a neural network), and an element-wise
max operation is applied to their outcomes. At each location point of the
corresponding timestamp, GraphSAGE produces node embeddings that are
based on the graph structure and its node values, and the output embeddings
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will be fed as input to the LSTM, formalised as a sequence classification task
on human comfort.

LSTM is a type of recurrent neural network that has successfully handled
sequential or time-series data in various disciplines, such as language mod-
elling (Liu et al., 2022), traffic forecasting (Zhao et al., 2019). LSTM is used
to capture the temporal dependency of personal comfort changes and the
variations of the surrounding environment along the walking in this study.
Following Equation 1, each sequence of participants’ walking, together with
the built environment and environmental features (in the form of nodes’ em-
beddings output by the GraphSAGE), are the input into the LSTM cell.
Each cell has three designed gates (the input gate it, the forget gate ft, and
the output gate ot) to regulate the information to obtain the current state
of cell ct and output hidden state ht. σ is the sigmoid activation function,
⊗ is the dot product operation, and W and U are the weights of input and
recurrent connections, b is the bias.

it = σ(Wxixt + Uhiht−1 + bi)

ft = σ(Wxfxt + Uhfht−1 + bf )

ot = σ(Wxoxt + Uhoht−1 + bo)

ct = ft ⊗ ct−1 + it ⊗ tanh(Wxcxt + Uhcht−1 + bc)

ht = ot ⊗ tanh(ct)

(1)

Through such a combination, GraphSAGE captures the spatial structures
of each participant and the surrounding environment at each location point;
LSTM addresses the dynamic nature (temporal variations) of people walking
and predicts human comfort along the walking. Thus, our proposed GeoAI
framework is spatio-temporal-explicit.

3.4. Data Labelling and Augmentation

Following Abdelrahman et al. (2022), we formalised our comfort predic-
tion task as a ternary classification problem. That is, our proposed GeoAI
model will predict human outdoor comfort on the sidewalk into three classes:
Comfortable, Uncomfortable and Neutral. As mentioned in Section 3.1, the
participants were asked to give their comfort scores at scale of 1 to 10. Thus,
a data labelling step is necessary to transform numeric measures into discrete
classes. However, it is worth noting that a participant’s comfort feedback was
a subjective feeling that differs individually. Some people are generous with
the scores they give in a situation, but others may be more preservative.
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Figure 4: The distribution of labels.

For example, one may score Comfortable as between 8 to 10 but another
might only give score between 6 to 8. Therefore, it is unfair to have a set
of universal categories (based on naive categorisation methods, e.g., equal
intervals) but not to differentiate individual experiences. To address such
an issue, following common practices in urban studies (Xia et al., 2022; Wei
et al., 2022) where machine learning and deep learning involved, including
those urban space perception (Ji et al., 2021; Verma et al., 2020), walkabil-
ity (Motieyan et al., 2022),and comfort-related research (Gao et al., 2022),
we classified each participant’s comfort using Jenks Natural Breaks method
(Jenks, 1967). Jenks Natural Breaks is a data clustering method designed to
optimise the arrangement of continuous values into different classes. Such a
method was applied to each individual’s comfort scores. As such, although
the class labels of outdoor comfort are the same, those classes are tailored
to each individual’s subjective scoring measures. Figure 4 shows the overall
distribution of the three categories, and it demonstrates that Neutral is the
dominating class and Comfortable and Uncomfortable share a similar amount
of proportion in the labels.

In our model, intuitively, each node would only take one value (single
dimension) in every graph at each location point. However, such an im-
plementation neglects the temporal dependency of the outdoor environment
during the walking activities, particularly in the scenario where participants
were asked to give their comfort feedback in short temporal intervals (5 to
10 seconds). The impact of the surrounding environment at one location will
likely be prolonged (although it may be weaker) to the next in a sequential
movement of each person. To fully incorporate such a temporal dependency,
we included a data enrichment step. At the model training step, each node in
a graph at every location point takes values from its previous five consecutive
location points, see Figure 5. For the first five location points in the selected
path, we set each node in each graph to always use the first five values. Such

15



Figure 5: Showcase of nodes’ values processing.

a step also benefits the model training by increasing the dimension of the
data and their non-linearity. Note that such a design is considered as one
of the most important hyperparameters in the model which required further
testing in Section 5.4.

Data augmentation is another designing choice in our proposed method.
It is a set of techniques to increase the diversity and the volume of the ma-
chine/deep learning training set by applying random (but realistic) transfor-
mations (Rebuffi et al., 2021; Van Dyk and Meng, 2001), and is commonly
seen in various domains, such as computer vision (Shorten and Khoshgof-
taar, 2019), natural language processing (Shorten et al., 2021), and comfort
studies (Li et al., 2022a; Du et al., 2021). As mentioned in Section 3.1, as
a methodology-driven research, we did not include a large number of partic-
ipants involved. To avoid the potential issue raised by insufficient training
data, we adopted data augmentation strategies by using Bootstrap proce-
dure (Efron, 1994) on the training data (70% of the whole data) to create
re-sampled values and merged into the training data to increase its size, thus,
improving the model performances.

3.5. Model Implementations

We implemented our GSL model in Python using Deep Graph Library
(Wang et al., 2019) and Pytorch (Paszke et al., 2019). We trained the model
in a Google Colab7 environment for 100 epochs (training iterations) using
Adam (Kingma and Ba, 2014) (learning rate at 0.0001) as the optimisation
algorithm. Meanwhile, the model adopted the loss function of cross-entropy
loss. All the network parameters were randomly initialised, and the batch

7https://colab.research.google.com/
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Figure 6: Study area: College of Design and Engineering (CDE) on the campus of the Na-
tional University of Singapore (NUS). Map sources: Esri, HERE, Garmin, INCREMENT
P, © OpenStreetMap contributors, and the GIS user community.

size was set to 128. Following Abdelrahman et al. (2022, 2020), the eval-
uation metrics used in the experiments is accuracy. Additionally, because
the Jenks Natural Breaks created personalised labels based on the comfort
scores distribution, the labels created are imbalanced as shown in Figure
4. As such, we included F-score to be another evaluation metrics. F-score
is considered a harmonic mean of the precision and recall, which is widely
adopted in machine/deep learning models to evaluate model performances
on imbalanced datasets (Liu et al., 2022; Liu and De Sabbata, 2021; Wang
et al., 2020; Maxwell et al., 2017).

4. Study Area

4.1. Selected Sidewalk

As a city-state with tropical climate near the equator, Singapore has con-
sistent temperature and humidity throughout the year. Our pilot case study
and experiments were conducted around the sidewalk of the College of De-
sign and Engineering (CDE) of the National University of Singapore (NUS).
As illustrated in the Figure 6, the selected path around CDE has around
1.7 kilometres walking distance with a mixture of sidewalk conditions: open
space (outdoor sidewalks), semi-open space (the sidewalk through buildings
but connected to the open space, e.g., ground floor areas), down-hill, up-hill,
and flat road. Those changing conditions of the sidewalk were recorded as
the variations of solar intensity (e.g., walk from open space to the semi-open
space) and altitudes. The visual sense of the surrounding objects were taken
by using panoramic photos as mentioned in Section 3.1.
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Figure 7: Data points processing. Map sources: Esri, HERE, Garmin, INCREMENT P,
© OpenStreetMap contributors, and the GIS user community.

4.2. Location Points Processing

We collected 1,356 comfort feedbacks from 15 participants in the ex-
periments. Subjective mainly to the individual’s walking pace, 85 to 123
feedbacks were given by each participant. To ease the GeoAI model devel-
opment (input features require the same dimension and shape, see, Section
3), we selected 85 key spatial points by applying KMeans clustering on the
location points and chose clusters’ centriods, as shown in Figure 7. For par-
ticipants who gave more than 85 feedback, we cut down the number of data
points to match and map to those selected 85 location points. A a result, a
final set of 1275 (15 participants × 85 location points) comfort feedback and
corresponding data collected on the sidewalk were used in this study.

5. Results

5.1. Preliminary Analysis

Figure 8 demonstrates the data collected in the experiment described in
Section 3.1, which indicates participants’ comforts are influenced by the sur-
rounding environment along the path and heart rates conditions. Figure 9
shows a preliminary investigation of the data collected. Human comfort when
walking outdoors tend to be significantly positively correlated to buildings
(0.21) but negatively correlated to solar intensity (-0.41), vegetation (-0.17),
terrain (-0.11), and sky (-0.15). Because of Singapore’s tropical weather, with
temperatures above 30 degrees most days, participants preferred shaded areas
(particularly provided by the buildings) to outdoor open spaces when they
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Figure 8: Plots of data collected in this study. Top left is the plot of all participants’ hearts
rates along the route with the highlighted mean; top right is the plot of the collected
comfort feedback with the highlighted mean; the image in the middle is the change of
semantic classes of the surrounding spatial objects along the sidewalk, and the bottom
image is the variations of the elevations.

walked, even if the trees can provide some shade, affirming existing findings
in the literature (Siqi et al., 2022; Jacobs et al., 2019). As in our study, the
temperature every day in our experiment is assumed invariant because of
the tropical weather and considered the same for every participant during
their walking activities. As such, the thermal experiences of the participants
were largely decided by the solar intensity they received (i.e., exposure to
the sunlight) during the walks. Therefore, Figure 9 indicates that although,
as mentioned in Section 1, we define comfort as a complicated consequence
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Figure 9: Correlations of data collected. The data used in the correlation analysis were
normalised between 0 and 1.

of inter-playing with a pedestrian’s surrounding environment, thermal pref-
erences(i.e., the unwillingness to be exposed to the sunlight) still contribute
most to the human feelings (Vasilikou and Nikolopoulou, 2020). Meanwhile,
Figure 9 also shows that comfort negatively correlates with heart rate, mean-
ing the higher the heart rate, the less comfortable the participants. Such a
result is consistent with many existing comfort studies (Peng et al., 2022;
Vasilikou and Nikolopoulou, 2020; Abdelrahman et al., 2022). The corre-
lation analysis presented in this section formalises the fundamental design
strategy for the ablation studies in Section 5.3, which seeks to increase the
interpretability of the introduced spatio-temporal-explicit GeoAI framework.
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5.2. Baseline Comparisons

We set up baselines which include a traditional machine learning algo-
rithm Random Forest and two neural network-based on deep learning ap-
proaches (LSTM and Build2Vec) to compare their performance with our
proposed spatio-temporal-explicit GeoAI classification framework:

• Random Forest: As one of the most popular machine learning ap-
proaches, Random Forest has been intensively used in many geographic
studies (including research on sidewalks) (Lee et al., 2022; Tribby et al.,
2017; Li et al., 2013), and it is also the classifier used by Abdelrahman
et al. (2022) to output the classification based on the embeddings pro-
duced by Build2Vec. We followed the same hyperparameters as in
(Abdelrahman et al., 2022) (with number of estimators as 200, max
depth as 220, and max features as default) to set up the model. The
Random Forest took all data collected in Section 4.1 as input and out-
put the classification based on the labels assigned in Section 3.4. Note
that such a model was naively performed on data features but not take
into account the spatio-temporal information of the walking activity;
thus, the random forest model is a-spatial and a-temporal.

• LSTM: the setup of this baseline method was a removal of GraphSAGE
part in the model. That is, the model neglected the spatial interactions
between participants and the surrounding environment but focused on
the temporal dependencies of the data collected and individual’s com-
fort. Therefore, the LSTM model used here is a-spatial but temporal-
explicit.

• Node2Vec+Random Forest: as discussed in Section 2.2, Build2Vec is
developed based on Node2Vec. Because in our study, we do not have a
CIM that is as detailed as the BIM used in Abdelrahman et al. (2022),
we can not set up Build2Vec as a direct comparison. However, the
idea of a combined method using Node2Vec and Random Forest is still
a useful comparison to our proposed GSL. We employed Node2Vec
at each location point to capture the spatial interactions between each
pedestrian and the surrounding environment, and we extracted the em-
bedding for the node representing the experiment’s participant. Then,
the output embedding was combined with data described in Section
3.1 and fed into the Random Forest, following the similar pipeline as
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described in Abdelrahman et al. (2022). The Node2Vec was imple-
mented by using StellarGraph (CSIRO’s Data61, 2018). As mentioned
in Section 2.2, Node2Vec can only handle static graphs, such a baseline
is spatial-explicit but a-temporal.

As summarised in Table 1, the results reveal that GSL approach out-
performed all three baselines introduced above. Our model significantly
outperformed the a-spatio-temporal non-neural network model Random For-
est by over 20% in accuracy. Also, the F-score achieved by Random For-
est is significantly lower than accuracy, suggesting such a machine learn-
ing model lack the ability to process the imbalanced labels that created
by the Jenks Natural Breaks (as mentioned in Section 3.4). Meanwhile,
the temporal-explicit model LSTM achieved higher performance than Ran-
dom Forest, indicating the essence of incorporating temporal dependencies
of walking activities on the sidewalk into the quantitative model develop-
ment; the LSTM proved to be less accurate than our model. The spatial-
explicit Node2Vec+Random Forest approach performed much lower than our
proposed GSL. As Node2Vec+Random Forest is a stacked pipeline, the pa-
rameters of the machine learning models in each part must be optimised
individually. Such a result shows that an end-to-end learning framework
(such as GSL) is more reasonable for outdoor comfort studies where the
collected data quality is lower compared to the indoor setting (as in Abdel-
rahman et al. (2022)) because all the network parameters can be learnt and
optimised simultaneously (LeCun et al., 2015).

Meanwhile, the Node2Vec+Random model’s performance is lower than
the LSTM model but better than the Random Forest baseline. Such a com-
parison suggests that, although capturing the spatial interactions is impor-
tant, in a sequential movement of human walking, the temporal dependencies
of the walking activities play a more prominent role; thus, indicating that
one’s previous experiences largely influence human comfort at one location
(more discussions in Section 5.4). The results demonstrate the importance of
the spatio-temporal component in outdoor walking activities studies, thus,
addressing the speciality of spatial (and temporal) within the disciplines of
Spatial Science and GeoAI development (Liu and Biljecki, 2022; Mai et al.,
2022; Janowicz et al., 2020; Li, 2020; Wu et al., 2022).

5.3. Ablation Studies
Previous experiments showed the robust capabilities of our introduced

spatio-temporal-explicit GSL in the task of outdoor comfort prediction on
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Table 1: Performances of GSL, baseline models and ablation studies. ‘X’ represents
features that the model incorporates. Results reported as the average values by running
each model 10 times.

Features RF LSTM Node2Vec+RF GSL GSL-visual-only GSL-no-open-space GSL-no-build-env GSL-no-crowd

Spatial Dependencies X X X X X X
Time Series X X X X X X

Heart Rate X X X X X X X
Solar Intensity X X X X X X
Sound X X X X X X X
Altitudes X X X X X X X

Cars X X X X X X X
Pedestrians X X X X X X X

Building X X X X X X X
Wall X X X X X X X
Fence X X X X X X X
Pole X X X X X X X
Traffic Sign X X X X X X X

Vegetation X X X X X X X
Terrain X X X X X X X
Sky X X X X X X X

Accuracy 53.52% 62.09% 58.82% 74.53% 64.78% 60.39% 62.73% 69.18%
F-Score 27.67% 63.21% 43.22% 73.87% 62.56% 58.29% 61.52% 67.58%

the sidewalk. To increase the model interpretability and determine which
sets of variables contribute the most to the prediction output, we designed a
set of ablation studies based on the correlation analysis introduced in Section
4.2:

• GSL-visual-only: we omit data collected from smart devices and the
sound metre (heart rates, solar intensity, sound and altitudes) and cor-
responding nodes in the dynamic graphs to examine to what extent
visual perceptions contribute to the human comforts prediction. Such
a test was inspired by Lee et al. (2022), which examined the relation-
ship between visual features and sidewalk satisfaction using street view
images.

• GSL-no-open-space: Section 4.2 shows how comforts are negatively
correlated to variables on solar intensity (-0.41), sky (-0.15), terrain
(-0.11) and vegetation (-0.17), indicating participants preferred not to
walk in the open spaces where there was direct sunlight. Therefore,
we design such a test excluding those data and nodes in the graphs to
examine how those variables impact the model performance.

• GSL-no-build-env: Figure 9 demonstrates that comforts are positively
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correlated with building (0.21), indicating participants were much pre-
ferred walking with buildings in sights where shades can be found. In
this ablation test, we excluded all urban built environment variables
(wall, fence, pole and traffic sign) in the model to examine to what ex-
tent those built environments may deteriorate the model performance.
This test can be seen as a direct comparison with GSL-no-open-space
where the latter focused more on the unbuilt environment impacts.

• GSL-no-crowd: in Section 1, one hypothesis we mentioned was the
crowdedness of the sidewalks (due to other pedestrians and traffic along
the road). Figure 9 does not show a clear correlation existed in our
experiments. However, we chose to include this test which excludes
variables of cars and pedestrians, to investigate if they would still be a
driven factor that impacts model predictions on human comforts.

The ablation study’s results are also presented in Table 1. GSL-visual-
only, GSL-no-open-space, and GSL-no-build-env demonstrate the GSL on
these three settings had similar performances among each other. Meanwhile,
those results are proved to be much worse than the original model setting
(see the column for GSL). Thus, it suggests all those variables are essential
for the model prediction; hence, human comfort is a consequence of complex
interplay with the surrounding environment. Concluded from these three
tests, the variables of solar intensity, sky, terrain, and vegetation have the
most impacts that worsen the model’s prediction quality. Such a finding
seems to echo the fact that thermal experiences contribute most to human
outdoor comfort, as illustrated in Section 4.2 and existing studies (Vasilikou
and Nikolopoulou, 2020). Meanwhile, cars and pedestrians have comparably
less influence on the model’s performance. However, as suggested by the
results, the model’s performance would still be more robust by including
these two variables.

5.4. Hyperparameters Testing

In Section 3.4, we introduced that for each location point and its cor-
responding graph, one node in the graph took values from its previous five
consecutive location points to model the temporal impacts of the surrounding
environment through a sequential movement. However, the five consecutive
location points as the step length is a designing choice that, as mentioned,
is a hyperparameter in the model that requires further testing. This section
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Figure 10: Accuracy changes according to the choices of step length (best results reported).

tests the model’s robustness against the changes in step lengths from 1 to
10, and the results are shown in Figure 10.

As suggested by Figure 10, the settings of such a step length choice im-
pacted the model accuracy. When the step length is one, referring to each
node taking one value at the corresponding location, the model performed
significantly worse than (32%) our default setting (step length is 5). The
model performance increased prominently when the step length was set to
3, indicating the fact that adding temporal impact from the surrounding en-
vironment into the model is useful to improve the model’s accuracy. Such a
finding implies that human comfort can be impacted not only by the context
in which one is standing but also is influenced by one’s previous experiences.
The model performance dropped after a step length set larger than 7, sug-
gesting that longer step length introduced noises in the model, which may
deteriorate the model performance. Therefore, such testing, from the model’s
perspective, suggests the importance of fine-tuning hyperparameters in the
deep learning models (Yang and Shami, 2020); from the outdoor comfort
studies perspective, implying human comfort can be more strongly impacted
by short-term dependencies of the transitions in the urban continuum (Vasi-
likou and Nikolopoulou, 2020).

6. Showcase Study

Figure 11 shows one additional case study in which we included another
participant who walked on the same sidewalk path with the same experi-

25



Figure 11: Qualitative investigation of the additional experiment. Map sources: Esri,
HERE, Garmin, INCREMENT P, © OpenStreetMap contributors, and the GIS user
community.

mental settings as we described in Section 4. Having such a new experiment
allows us to validate the model performance; meanwhile, it enables us to in-
vestigate the result qualitatively, particularly on those incorrectly predicted
labels.

The GSL model achieved 72.94% accuracy (62 correctly predicted com-
forts at their corresponding location points and 23 incorrect labels) in this
showcase study, which is consistent with the experiments’ output presented
in Section 5. As shown in Figure 11, among the output of the incorrectly
predicted results, one area where errors clustered (red circle with red marked
location points) is particularly interesting. These location points and the
area is around E7, a prominent building in the campus. The selected side-
walk path went through the stairs on the side of the building (semi-open
space defined in Section 4.1, also shown on the top right in Figure 11) and
followed by an open space (bottom right in the figure). The errors clustered
in this area can be explained through a fact of one general missing point in
this article and the experiment: wind. E7 is a recently constructed build-
ing (completed in 2021) with sustainable design philosophy in mind and is
a part of the university’s Campus Sustainability Roadmap 2030 (National
University of Singapore, 2022). The facility is designed to the highest green
building standards (Architects61, 2021), which includes vertical sun-shading
fins around the building facade and allows natural ventilation to flow through
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the building. The design of the building undoubtedly impacted human com-
forts along the walking; however, the model cannot capture such an influ-
ence as the wind was not incorporated in the model (discussed in Section 7).
Nevertheless, the results still demonstrate the robustness and accuracy of
our introduced GSL model, which illustrates its potential in sidewalk-related
studies and predicts human outdoor comfort.

7. Discussion

The primary contribution of this paper is GraphSAGE-LSTM (GSL), a
novel end-to-end GeoAI approach to predicting outdoor comfort on sidewalks.
The GSL model takes users-contributed crowdsourced data and dynamic
human-centric graphs as input, capturing the interactive nature of humans
and surrounding built and unbuilt environments to predict human comforts
through sequential movements. Thus, the introduced GeoAI model is spatio-
temporal-explicit.

The conceptual formalisation of the human movements along the sidewalk
and their interactions with urban spatial objects as dynamic graphs was es-
tablished as a critical aspect in abridging the concept of human-centric AI
(Ruffolo, 2022; Lepri et al., 2021; Nahavandi, 2019), and taking into account
spatio-temporal characteristics of human walking led to better predictions.
The results also promote the idea of human-as-sensors (Goodchild, 2007)
in quantitative GeoAI-empowered urban studies (Liu and Biljecki, 2022) by
encouraging the use of crowdsourced data from the general public. GSL
can provide reasonable predictions even though crowdsourced data often suf-
fer from the defect of data quality (in our study, all data were collected
through non-expert mobile applications or portable and easily available de-
vices) (Grira et al., 2010). Thus, our introduced model ease the barrier
in data collection and bridge human with the digitally-mediated city brain
(Feng et al., 2018), particular in the context of Urban Digital Twins (UDT)
(Charitonidou, 2022).

As mentioned in Section 2.3, prediction and simulation are two of the
most important characteristics of the UDT in which AI plays a vital role
(Li et al., 2021a). Through a series of baseline comparisons, our model pro-
vides better predictions compared to conventional a-spatio-temporal machine
learning method (Random Forest) and a-spatial but temporal-explicit deep
learning-based approach (LSTM). Therefore, it has the potential to be inte-
grated into UDT and provide better predictions of human outdoor comforts
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in real-life conditions.
Apart from technological innovations, our study shed light on walking

activity studies. In this paper, we defined human comfort beyond a single
dimension of conventional visual perception (Lee et al., 2022) or thermal
comfort (Abdelrahman and Miller, 2022) but as a consequence of complex
interactions with the environment that a human is in. Through the correla-
tion analysis (Section 4.2) and the ablation studies (Section 5.3), the results
indicated the fact that in Singapore, where temperatures are often above 30
degrees, people more likely to prefer not to walk in the open space where
no shading areas can be found, which suggests that thermal experiences are
one of the most critical factors driven to comfort experiences along the walk-
ing. Such a study suggests more covered corridors and intentional shadings
from buildings’ facades benefit human comforts and, therefore, might lead to
increased walking activities.

8. Conclusion and Outlook

This paper introduced a novel approach to predicting human outdoor
comforts on the sidewalks, leveraging the use of crowdsourced data and com-
puter vision, together with the spatio-temporal dynamics captured by the
GeoAI framework, thus, breaking new ground in developing human-centric
GeoAI in Urban Digital Twin. Furthermore, our experiments show that our
framework can also benefit research in mobility, for example, walkability (Yap
et al., 2023; Lo, 2009) and bikeability (Ito and Biljecki, 2021), in the analysis
where big data is involved, and a combination of quantitative and qualitative
studies might be necessary.

We hope to continue this research in several directions in our future work.
First, as indicated in Section 4.1, the experiments were conducted in the day-
time. However, Singapore and many other countries have an active nightlife,
which features nighttime walking, an interesting research topic. Thanks to
the recent advance in low-light and nighttime image processing (Fu et al.,
2022; Al-Ameen, 2019; Gu et al., 2018), a similar workflow used to extract ur-
ban spatial objects through GoPro has become feasible. Meanwhile, sample-
based video analysis (Chen et al., 2019a, 2018a,b) can be another option
to achieve real-time comfort predictions, thus, improve the framework’s effi-
ciency. Second, in our current experiment, we consider each participant as
average person, and we did not further differentiate their other physiological
factors that will enrich the data on each participant and possibly influence the
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model performance, such as gender, weight, and socio-cultural background.
In our future work, we will incorporate those related variables to develop
a more individual-tailored human-centric GeoAI model. Third, we will fur-
ther integrate the model into the UDT with other datasets. Although we
discussed the fact that our study aims to promote the use of crowdsourced
data and deliberately not include some other environmental variables (e.g.,
wind) because many of those data cannot be user-contributed, the showcase
study introduced in Section 6 indicates some variables might drive the model
to be more accurate. Because UDT is often a well-established model with
a wide range of data (e.g., wind and some other micro-climate variables)
integrated and processed simultaneously, we hope to seek a practical way
of integrating our model with other datasets and enable the framework to
be more robust. Fourth, driven by the goal of AI for social good (Tomašev
et al., 2020), we will use this model to study sidewalk walkabilities at an
urban scale with more participants and scenarios. We hope to integrate such
a model in the DT platform to achieve a near real-time comfort prediction
to support downstream applications, such as human-oriented comfort-driven
navigation. We also aim to extend the research objective of this research by
including vulnerable groups (e.g., mobility-impaired communities) not only
to include more human participants but also to increase human complexity
in the model. Thus, by leveraging the prediction ability of our proposed
GSL and the enhanced prediction power of UDT, we expect to build a more
inclusive society to achieve the goal of One City for All (Beall, 1997).

In summary, this paper introduced a spatio-temporal-explicit GeoAI model
to predict outdoor human comforts using crowdsourced data and dynamic
graphs. We consider our GSL an valuable addition to the UDT, which, from
an academic perspective, to advance research in completing UDT by incor-
porating humans into the model, thus evolve UDT into a human-centric
digitally-mediated environment; from a technological perspective, to inte-
grate GeoAI-empowered models in the UDT to achieve location-attentive
predictions; from societal-impact perspective, to provide cutting-edge tech-
nologies and research to envision city services more tailored to its residents’
needs.
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plications of 3d city models: State of the art review. ISPRS International
Journal of Geo-Information 4, 2842–2889.

Bivina, G., Parida, M., 2022. Objective and subjective approaches towards
analysis of level of service of sidewalks, in: Proceedings of the Fifth Inter-
national Conference of Transportation Research Group of India, Springer.
pp. 343–367.

Blacklock, R.E., Rhodes, R.E., Brown, S.G., 2007. Relationship between
regular walking, physical activity, and health-related quality of life. Journal
of Physical Activity and Health 4, 138–152.

Charitonidou, M., 2022. Urban scale digital twins in data-driven society:
Challenging digital universalism in urban planning decision-making. In-
ternational Journal of Architectural Computing , 14780771211070005.

31



Chen, C., Ding, F., Zhang, D., 2018a. Perceptual hash algorithm-based
adaptive gop selection algorithm for distributed compressive video sensing.
IET Image Processing 12, 210–217.

Chen, C., Li, H., Luo, W., Xie, J., Yao, J., Wu, L., Xia, Y., 2022. Predicting
the effect of street environment on residents’ mood states in large urban
areas using machine learning and street view images. Science of The Total
Environment 816, 151605.

Chen, C., Wu, Y., Zhou, C., Zhang, D., 2019a. Jsrnet: A joint sampling–
reconstruction framework for distributed compressive video sensing. Sen-
sors 20, 206.

Chen, C., Zhou, C., Liu, P., Zhang, D., 2018b. Iterative reweighted tikhonov-
regularized multihypothesis prediction scheme for distributed compressive
video sensing. IEEE Transactions on Circuits and Systems for Video Tech-
nology 30, 1–10.

Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2017.
Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence 40, 834–848.

Chen, M., Arribas-Bel, D., Singleton, A., 2019b. Understanding the dynam-
ics of urban areas of interest through volunteered geographic information.
Journal of Geographical Systems 21, 89–109.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B., 2016. The cityscapes dataset for semantic
urban scene understanding, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3213–3223.

Cottrill, C., Gaglione, F., Gargiulo, C., Zucaro, F., 2020. Defining the char-
acteristics of walking paths to promote an active ageing, in: Pedestrians,
Urban Spaces and Health. CRC Press, pp. 209–213.

CSIRO’s Data61, 2018. Stellargraph machine learning library. https://

github.com/stellargraph/stellargraph.

32



Cureau, R.J., Pigliautile, I., Kousis, I., Pisello, A.L., 2022. Multi-domain
human-oriented approach to evaluate human comfort in outdoor environ-
ments. International Journal of Biometeorology , 1–13.

Deng, M., Yang, W., Chen, C., Wu, Z., Liu, Y., Xiang, C., 2021. Street-level
solar radiation mapping and patterns profiling using Baidu Street View
images. Sustainable Cities and Society , 103289doi:10.1016/j.scs.2021.
103289.

deSouza, P., Anjomshoaa, A., Duarte, F., Kahn, R., Kumar, P., Ratti, C.,
2020. Air quality monitoring using mobile low-cost sensors mounted on
trash-trucks: Methods development and lessons learned. Sustainable Cities
and Society 60, 102239. doi:10.1016/j.scs.2020.102239.

Du, X., Sun, C., Zheng, Y., Feng, X., Li, N., 2021. Evaluation of vehicle
vibration comfort using deep learning. Measurement 173, 108634.

Efron, B., 1994. Missing data, imputation, and the bootstrap. Journal of
the American Statistical Association 89, 463–475.

Feng, L., Liu, F., Shi, Y., 2018. City brain, a new architecture of smart city
based on the internet brain, in: 2018 IEEE 22nd International Conference
on Computer Supported Cooperative Work in Design ((CSCWD)), IEEE.
pp. 624–629.

Florio, P., Peronato, G., Perera, A., Blasi, A.D., Poon, K.H., Kämpf, J.H.,
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