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a Global Feature-Rich Network 
Dataset of Cities and Dashboard  
for Comprehensive Urban analyses
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Urban network analytics has become an essential tool for understanding and modeling the intricate 
complexity of cities. We introduce the Urbanity data repository to nurture this growing research field, 
offering a comprehensive, open spatial network resource spanning 50 major cities in 29 countries 
worldwide. Our workflow enhances OpenStreetMap networks with 40 + high-resolution indicators from 
open global sources such as street view imagery, building morphology, urban population, and points 
of interest, catering to a diverse range of applications across multiple fields. We extract streetscape 
semantic features from more than four million street view images using computer vision. the dataset’s 
strength lies in its thorough processing and validation at every stage, ensuring data quality and 
consistency through automated and manual checks. Accompanying the dataset is an interactive, 
web-based dashboard we developed which facilitates data access to even non-technical stakeholders. 
Urbanity aids various GeoAI and city comparative analyses, underscoring the growing importance of 
urban network analytics research.

Background & Summary
Urban networks offer a powerful and intuitive lens to view, understand, and model the complexity of cities1–6. 
Presently, network analytics is employed to optimise decision-making procedures across all urban scales, rang-
ing from coordinating city-wide vehicle fleets to the planning and design of active mobility systems7,8. Machine 
learning and predictive GeoAI offer numerous untapped opportunities to extract valuable insights from urban 
networks and expand existing use cases9–12. While significant progress has been made, the task of generalis-
ing machine learning methods to urban networks remains a critical challenge. Specifically, constraints in data 
consistency and interoperability, model explainability, and the feature representation of varied built environ-
ment features within networks make this a complex task13–15. Moreover, current graph-based learning methods 
continue to prejudice a technical interpretation of urban streets based largely on the structural properties of 
networks, despite emerging evidence that graph algorithms learn from both structural and attribute-based fea-
tures16. Towards advancing analytical and methodological innovation in urban networks, uniform, contextually 
comprehensive, and open spatial network datasets can serve as an invaluable resource for the urban research 
community. Good feature representation not only helps to improve model performance but makes it easier for 
domain experts and decision-makers to understand and interpret the results of GeoAI models. This is particu-
larly important in urban applications where the rationale behind the model’s predictions needs to be transpar-
ent and explainable. Developments in related built environment domains have demonstrated the wide-ranging 
potential of open datasets to unify community analytical efforts and cultivate a more rigorous and critical urban 
science17–21.

Urban streets, serving as multifaceted channels of city life, naturally lend themselves to modeling urban net-
works. Although various network representations exist due to diverse analytical motivations across urban dis-
ciplines, primal planar road networks have emerged as the predominant representation in modern efforts22–27. 
These networks depict road segments as edges and intersections as nodes28. Primal planar networks have gained 
prominence for their geometric fidelity, data and tool interoperability, and use case flexibility, making them 
particularly useful and effective for a wide range of applications.

Primal planar networks preserve the geometric accuracy of urban streets in 2D euclidean space, result-
ing in a visually intuitive model that facilitates interpretation and communication among researchers, urban 

1Department of Architecture, national University of Singapore, Singapore, Singapore. 2Department of Real estate, 
national University of Singapore, Singapore, Singapore. ✉e-mail: filip@nus.edu.sg

DAtA DeScrIptOr

OpeN

https://doi.org/10.1038/s41597-023-02578-1
http://orcid.org/0000-0002-6229-7749
mailto:filip@nus.edu.sg
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-02578-1&domain=pdf


2Scientific Data |          (2023) 10:667  | https://doi.org/10.1038/s41597-023-02578-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

planners, and policymakers. Furthermore, these networks are compatible with numerous geospatial data types, 
allowing for seamless integration with popular geospatial analytical tools and techniques29–34. This compati-
bility enables primal planar representations to directly benefit from the growing availability of spatially accu-
rate, location-based urban data, including social media check-ins, business location data, and crowdsourced 
information35.

For urban and regional planning, primal planar graphs supplemented with contextual built environment 
data can support various applications and use cases. These networks are essential in transportation planning for 
assessing traffic flow, identifying bottlenecks, and optimizing road networks36–38. Network population estimates 
can also help evaluate the accessibility of public facilities, such as schools, hospitals, or parks, empowering plan-
ners to pinpoint underserved areas and prioritise infrastructure investments39–41. Street view indicators along 
network edges are crucial for modeling pedestrian-friendly urban environments and suggesting improvements 
to promote walking, cycling, and other active transportation modes42–45 In emergency planning, identifying 
critical nodes and links can inform strategies to enhance city resilience against various shocks and stresses, 
including climate change, natural disasters, or economic fluctuations. Lastly, building morphology information 
along networks plays a vital role in energy-based modeling and carbon forecasting for urban areas, providing 
insights into the implications of urban growth for social, economic, and environmental outcomes19,46.

The growing availability of open urban data presents opportunities to construct a global-scale network data-
set of cities with rich contextual and semantic embeddings, including street view imagery, building morphol-
ogy, points of interest, and urban population indicators. However, to our knowledge, no such dataset currently 
exists for individual cities or urban regions. Existing projects, such as the Stanford Network Analysis Project 
(SNAP) and the Network Data Repository, offer undirected road networks for investigating structural network 
attributes, but feature representation is limited to structural and topological indicators47,48. Similarly, the Global 
Urban Street Networks project offers a comprehensive repository that encompasses both directed and undi-
rected geometric and topological properties of urban networks49. Currently, users also experience considerable 
entry barriers since substantial software expertise is required to effectively visualise and analyze network data. 
Although the OpenStreetMap (OSM) project hosts a comprehensive crowdsourced collection of road networks 
and points of interest, raw OSM network data often suffer from data consistency issues and lack useful network 
indicators32,50,51.

This paper introduces the Urbanity dataset52, which spans 50 global cities across 29 countries, overcoming 
these limitations. Urbanity53 collects comprehensive spatial information on urban network elements, supporting 
various urban applications and use cases in urban planning and research. Our open and consistent workflow 
ensures reproducibility of urban networks and enables comparative analyses between cities. We ensure high 
usability and consistency of generated urban networks through meticulous data screening, pre-processing, and 
harmonisation efforts. Extensive data validation, involving both automated and manual checks, is performed 
throughout the process to guarantee data quality and consistency. Our work expands upon previous efforts in 
several ways: (1) we develop a completely open workflow to generate urban networks; (2) we create and augment 
city networks with rich contextual and semantic indicators; (3) we build an interactive visual dashboard that 
makes urban network data accessible even to non-technical users.

The dataset is available under a Creative Commons Attribution 4.0 International (CC BY 4.0) license and it 
is hosted on Figshare (https://doi.org/10.6084/m9.figshare.22124219)52. All source code used to generate and 
validate the dataset are available under an open-source MIT license (https://github.com/winstonyym/urbanity). 
The Urbanity dashboard source code is fully accessible (https://github.com/winstonyym/urbdash).

Methods
Our data workflow consists of the following three main steps: (1) data identification, retrieval, and 
pre-processing; (2) data harmonisation, generation, and integration into urban networks; (3) dashboard con-
ceptualisation and development. We employ a consistent and standardised analytical pipeline to pre-process 
open data from various built environment domains (population, street view imagery, building morphology, and 
urban amenities). Figure 1 provides an overview of our workflow.

Data identification, retrieval, and pre-processing. Several considerations factor into the selection of 
urban datasets: (1) open source; (2) use case suitability. A key aim of our data set is to promote open benchmark-
ing and comparative analyses of global cities. Open benchmarking and comparative analysis help to promote 
urban innovation, optimise resource allocation, and facilitate the transfer of knowledge between cities. For this 
purpose, we selected open datasets with reasonable global coverage. Another motivation for data selection is to 
continue supporting the open source eco-system. Free and open source projects have been one of the main con-
tributors of planning technologies innovation in the last decade54. Recent breakthrough technologies such as the 
ChatGPT series were almost entirely developed on open source technologies and information55. For this reason, 
we selected datasets with open access licenses to faciliate usage for downstream analytical purposes. Another 
important consideration is use case suitability. We see an increasing trend among urban network analytical use 
cases to use spatially granular location data for local scale prediction. For such cases, coarse urban environment 
data could negatively impact model predictive performance by masking fine-grained heterogeneity along urban 
networks. To address this concern, we made the decision to include population data with high spatial resolution. 
These conditions imply that some popular datasets such as Google Street View, WorldPop, and the Global Human 
Settlement Layer were omitted due to either proprietary or granularity reasons.

Data retrieval is a non-trivial task given the size, scope, and diversity of data. To create a consistent and 
standardised data collection process, we developed customised workflows to automate data extraction and 
pre-processing.
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population data. High resolution population data is essential to support planning efforts, playing a critical 
role in infrastructure planning and resource distribution. We obtain population data from Meta’s high-resolution 
(30-metre) population density maps which is built from global satellite imagery and census data56,57. Population 
data is updated on an annual basis by Meta and currently unavailable for Russia, Ukraine, and Mainland China. 
The data set is released under a Creative Commons Attribution International (CC BY 4.0) which permits users to 
freely share and adapt the data set. Each country’s population file is distributed as either Tag Image File Format 
(TIFF) or Comma Separated Values (CSV) and includes population counts for socio-demographic groups such 
as total population, women, men, elderly, youths, and children. For large geographic areas (e.g., United States), 
population data is further split into multiple files. Meta provides two options for information retrieval: (1) 
Humanitarian Data Exchange (HDX) or (2) Amazon Web Services (AWS). Since HDX is free and allows for direct 
download for desktop pre-processing we opt for the HDX approach (metadata and data files available at: https://
dataforgood.facebook.com/dfg/tools/high-resolution-population-density-maps). Accordingly, we webscrape 
uniform resource locator (URL) from HDX for all countries, socio-demographic groups, and file types. The most 
recent population statistics are now accessible for the year 2020. In the course of our analysis, we noticed that 
the data files for certain countries include supplementary columns related to the preceding year, 2019. To ensure 
uniformity across all cities, even those without 2019 data, our dataset exclusively reports population figures for 
the year 2020.

Street network, points of interest, and building footprints. We extract street networks, points 
of interest, and building footprint data from OpenStreetMap (OSM). OSM is an open collaborative mapping 
platform that hosts the most comprehensive global crowdsourced collection of geospatial data58. The data from 
OpenStreetMap (OSM) is released under the Open Data Commons Open Database License (ODbL). Access to 
OSM data is facilitated via the Pyrosm API, granting users entry to raw, regularly updated OSM data sourced 
from GeoFabrik. This method serves to avert potential bottlenecks that could arise from repeated queries to 
OSM’s Overpass API.

Fig. 1 Overview of open workflow. Our workflow integrates urban data from heterogeneous open layers and 
provides a consistent framework to construct feature rich urban networks of global cities. Sources of the data 
samples: (c) OpenStreetMap contributors, Mapillary, Meta. Basemap: OpenStreetMap and Mapbox.
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Figure 2 presents an overview of our pre-processing workflow for OSM data. For street networks, we 
pre-process raw road networks by removing nodes that do not conform to primal planarity32. This helps to sim-
plify network structure and reduce over-estimation of node degree in networks22. Points of Interest (POI) entries 
are recorded under OSM’s primary key tags (amenity, shop, tourist, leisure). However, not all tags correpond 
directly to urban amenities. To address this issue, we manually inspect and choose relevant tags under each pri-
mary key tag. For example, we extract ‘museum’, ‘gallery’, ‘artwork’, and ‘attraction’ from the tourist primary key 
tag. A further pre-processing step was employed to deal with duplicate tagging. For instance, some amenities 
were found to be tagged with multiple labels (e.g., amenity and shop). To prevent double counting, we apply pro-
cedural selection across each observation. More specifically, we first check if the amenity field is empty, and if it 
is, we check for values in the order of tourist, leisure, and shop. Finally, we relabel the list of amenities according 
to eight main categories–civic, recreational, entertainment, food, healthcare, institutional, social, and commer-
cial. While we strive to establish useful urban categories, we acknowledge that any approach to urban classifica-
tion remains a complex and subjective endeavour due to the diverse and eclectic nature of human systems which 
span many cultures and disciplines. In line with this viewpoint, our software grants users the adaptability to 
harmonise POI categorisations with their precise needs and the distinct local contexts they are operating within.

For buildings footprints, we implement a procedural script to ensure that all buildings correspond to valid 
polygons. This step is necessary to ensure that building footprint area can be computed downstream. In particu-
lar, we first check the geometric type of each building row and convert line objects into polygons. For objects 
with multiple lines (e.g., compounds with inner courtyards), we build polygons in a two-step process: (1) iden-
tify the exterior building perimeter by geographic extent; (2) build polygon with building perimeter as bounds 
and interior lines as open space within each building.

Street view imagery. Street view imagery (SVI) provides a scalable and accessible option for planners to 
understand the physical characteristics of streetscapes, such as greenery, building cover, and visual complexity. 
We obtain SVI from Mapillary which is the world’s largest platform for free and open street view imagery. Till 
date, Mapillary’s coverage has penetrated most global cities around the world thanks to myriads of contributors. 
Compared to proprietary options such as Google Street View, Mapillary images are hosted under a CC-BY-SA 4.0 
licence, which allows users to freely share, use, and adapt images. Images may also be updated more frequently 
and enjoy better coverage for dense urban areas44,59. The latest access point is provided via Mapillary’s Version 
4.0 application programming interface (API). To obtain a list of target images that correspond to each city’s 
boundary, we adopt a two step approach: (1) spatial query intersecting vector tiles (see Mapbox documentation: 
https://docs.mapbox.com/help/glossary/zoom-level/) for image meta data; (2) spatially filter image points that 

Fig. 2 OpenStreetMap preprocessing workflow. Flowchart of OpenStreetMap preprocessing workflow for road 
networks, building footprints, and urban points of interests. Sources of the data samples: (c) OpenStreetMap 
contributors. (a) Road networks are topologically simplified to primal planar representation. (b) Building 
footprints are converted to valid polygons. (c) Points of interest are retrieved, procedurally checked, and re-labelled.
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lie within administrative boundary. Subsequently, we extract meta information such as geographic coordinates, 
image ID, camera bearing, and timing of image capture. The image segmentation process involves the automated 
identification and extraction of semantic label masks that represent various visual elements, such as buildings, 
roads, cars, and greenery. On hardware, we segment SVI images with a NVIDIA Geforce RTX 3090 GPU which 
allows processing up to 90,000 images daily. Pre-computation enables users to compute SVI indicators within 
seconds, even if they lack GPU access or expertise in SVI workflows, considerably facilitating such analyses and 
lowering entry barriers in this domain.

Data harmonisation, generation, and integration. Administrative boundaries. We employ pre-post 
processing to harmonise spatial data across a variety of data representations and urban scales. First, we manually 
inspect and extract city administrative boundary and subzone data from various sources–Database of Global 
Administrative Areas (GADM)(https://gadm.org/), OSM Overpass (https://overpass-turbo.eu/), and local gov-
ernment sites (Germany: https://github.com/codeforgermany/click_that_hood/tree/main/public/data; New 
Zealand: https://catalogue.data.govt.nz/dataset/auckland-council-boundary-area).

In general, GADM data is provided under the GADM license which permits free usage for academic 
and non-commercial application (except files for Austria which are shared under the Creative Commons 
Attribution-ShareAlike 2.0 license). OSM data are provided under the ODbL license and Code for Germany files 
are provided under an open MIT license. Similarly, files provided by the New Zealand government are released 
under the CC BY 4.0 license.

OpenAI’s ChatGPT 4 model was helpful in providing OSM Overpass queries for municipal administrative 
boundaries (e.g., Kowloon and Zagreb). In many cases, administrative boundaries had to be integrated across 
various sources. For instance, certain cities only had subzone level information for the country level (e.g. GADM 
Level 0) or wider metropolitan region (GADM Level (1) but not directly for the city level. To deal with such 
cases, we adopt a general four step spatial harmonisation process: (1) project all shapefiles to common global 
coordinate reference systems (CRS); (2) obtain spatial entities that spatially intersect city boundary via spatial 
overlay; (3) filter out spatial entities that do not correspond to valid polygons; (4) visually check spatial cor-
respondence and manually relabel missing subzone names. To the best of our knowledge, there is no existing 
method capable of automating the manual relabelling process on a large scale. Although we note that the emer-
gence of expansive geospatial foundational models could provide a promising way forward in this domain. We 
subsequently project administrative boundaries to local CRS and implement a spatial buffer (to account for edge 
entities) before extracting road network, building, and POIs from GeoFabrik.

Urban population. Meta provides population data in both Tag Image File Format (TIFF) and Comma 
Separated Values (CSV). For some countries, population data is available in only one file format for certain sub-
groups. To facilitate downstream analytical tasks, we implement workflows to process both raster and tabular 
formats into a common vector point representation. Raster formats are transformed using an affine transforma-
tion matrix (via the Rasterio package) to obtain coordinate representations.

One concern is the poor match between city administrative boundaries and the geographic extent of popula-
tion data. For example, the population data file for Spain extends beyond its national boundaries, encompassing 
a large part of North Africa and the Mediterranean Sea. This issue poses significant usability challenges, particu-
larly when users are only interested in population figures at the neighborhood or precinct scale. To address this 
challenge, we conduct extensive geospatial processing in two main steps: (1) geospatial tiling; and (2) providing 
an updated geospatial query interface. First, we split larger administrative boundaries into uniform, fixed-size 
spatial grids (e.g., the entire United States is split into 130 equally sized grid cells). Next, we compute the spatial 
intersection between population data and their respective grids. Traditional spatial querying with Python geo-
spatial libraries is challenging due to the massive data size (>100 million data points). To address this challenge, 
we employ the RapidsAI cuSpatial library to implement GPU-accelerated spatial query. As a technical caveat, 
users seeking to re-implement this approach should set up a Compute Unified Device Architecture (CUDA) 
enabled Linux local distribution, as cuSpatial is not supported on MacOS or Windows systems. Finally, we 
merge population data with their respective grids. We release the tiled population dataset and polygon shape-
files for 28 countries (except Singapore) under a CC BY 4.0 license at Figshare (https://doi.org/10.6084/m9.figs
hare.22580806)60.

Street view imagery. To harmonise semantic classes across diverse urban contexts, we adopt a unified image 
segmentation pipeline. More specifically, we utilise the ‘Mask2Former’ approach by61, a universal transformer 
architecture applicable to a wide range of image segmentation tasks. Mask2Former is trained and validated 
on the Mapillary Version 1.2 validation dataset17, comprising 65 semantic classes, and reports state-of-the-art 
performance (MIoU = 63.2%). Mask2Former offers two main advantages for our purposes: (1) improved accu-
racy to pick out fine-grained semantic categories in images (previous models commonly ignore small regions 
in images); and (2) lightweight and scalable computation. Readers interested in the specifics of Mask2Former 
architecture and training are referred to61,62. To ensure consistency of daylight conditions for images taken in 
different cities, we implement timestamp alignment by converting Unix epoch time (POSIX) to local timezones 
and selecting images taken between 9 am and 5 pm.

Node-level integration. This section discusses steps taken to integrate and embed contextual and semantic 
information into network nodes. A variety of spatial measures have been used to delimit catchment areas and 
measure access coverage for urban locations. Popular methods include uniform euclidean63,64, network-based 
distance65, network voronois66, and spatial modelling approaches9,39. For node attributes, we adopt a uni-
form euclidean approach, as it provides a consistent, straightforward, and extensible basis for integrating 
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heterogeneous data sources across different network locations. Accordingly, we construct 100-metre euclidean 
buffers for each network node and compute the spatial intersection with spatial targets (e.g., street view imagery 
points, points of interest, and building footprints). In this situation, closely situated nodes might have overlap-
ping spatial areas, which aligns with the concept of urban catchment areas. This recognition reflects the shared 
geographical context between neighboring nodes. To ensure spatial consistency and accurate distance compu-
tation, we project spatial entities into local coordinate reference systems (CRS). To support other use cases, we 
provide an open source python package where users can generate euclidean buffers of arbitrary distance. As an 
example, building footprint proportion corresponds to the ratio between the building area and the buffered area 
around each node19.

Edge-level integration. To obtain indicators for network edges, we spatially interpolate spatial entities to their 
nearest network edge29,65. More specifically, we adopt a two-step approach: (1) compute the distance between 
each spatial point of interest and its proximate edges in the network, and (2) assign entities to the corresponding 
edge with lowest distance. This makes intuitive sense as streets can be characterised by their adjacent amenities. 
To account for remote edges (e.g., peripheral routes that are not located close to any amenities), we specify a 
distance threshold of 50 metres. From a computational standpoint, a 50-metre radius effectively encompasses 
nearby points of interest along edges due to their elongated nature. When we consider the urban context, it 
makes intuitive sense to use a smaller distance threshold for edges, as edges are meant to encompass elements 
that are immediately adjacent. For example, a significant portion of buildings are directly adjacent to an edge. For 
buildings, we compute the distance between building centroids and their respective network edge. Accordingly, 
we compute spatial indicators based on the set of elements assigned to each network edge.

Dashboard conceptualisation and development. The Urbanity network dataset52 is accompanied by an interac-
tive, web-based dashboard to support comparative analyses and visualisation of network metrics (see Figure 3). 
Users can use the Urbanity dashboard to examine and compare urban networks through multiple scales–global, 
city, and local. At the global scale, users can access a variety of network indicators’ distributions (such as building 
footprint proportions and green view index) across cities worldwide. This functionality helps cities identify their 
strengths and weaknesses, offering guidance for improvement. Expanding on the global overview, our dash-
board provides features to analyze and compare network structures at the city subzone level. As an example of 
equitable planning, planners can pinpoint infrastructure gaps by evaluating population density and civic facility 
availability across different subzones. Finally, users can delve into the local scale by directly accessing attrib-
utes of nodes and edges. A potential use case would be multi-criteria site assessment which can help planners 
to quickly identify sites with various characteristics (e.g., low building footprint but high visual complexity). 
Urbanity dashboard source code is available through an open MIT license (https://github.com/winstonyym/
urbdash).

Data Records
The Urbanity dataset52 consists of urban network data for 50 cities across seven regions–Europe (14); Asia (12); 
North America (11); South America (7); Oceania (5); South Africa (1). We adopt a consistent data workflow to 
create each city’s network data through the Urbanity Python package (https://github.com/winstonyym/urbanity). 
Each city’s network consists of two separate Geographic Javascript Object Notation (GeoJSON) files which cor-
respond to attributes and geometry for nodes and edges. Direct spatial representation of nodes and edges allows 
for rapid visualisation of primal planar networks while also allowing for seamless conversion to popular network 
formats (NetworkX or igraph). Nodes and edges are assigned unique IDs and retain their original OSM labels. A 
complete list of node- and edge-level spatial indicators is provided in Table 1.

Indicators were selected and computed according to their perceived empirical importance in urban ana-
lytics literature. The dataset is hosted under a CC BY 4.0 license at Figshare (https://doi.org/10.6084/m9.figsh
are.22124219)52.

technical Validation
In order to conduct meaningful comparative analyses of cities worldwide, the Urbanity dataset52 employs data 
components that feature consistent global jurisdictional coverage. Numerous studies have previously examined 
the validity and robustness of urban open data. Generally, the OSM community validates OSM data, as described 
in their documentation (http://wiki.openstreetmap.org/wiki/Accuracy). Significant efforts have been made to 
evaluate the availability and quality of OSM data in areas such as road networks51,67–70, points of interest71, and 
building footprints58,72–74. Likewise, several studies have assessed the quality and coverage of street view imagery 
on crowdsourced platforms like Mapillary and KartaView59,75,76. The spatial accuracy of high-density population 
maps has been systematically validated against population census data in a methodology paper57.

Notwithstanding, we employ a multi-level framework involving both automated and manual tests to improve 
the consistency and reliability of network data components. This framework comprises visual cross-validation, 
null value and outlier checking, systematic comparisons with available census data, and automated image suita-
bility evaluations, as detailed below.

automatic population validation. In this section, we undertake a rigorous assessment of the Meta pop-
ulation dataset through a comprehensive process, comparing it against the well-established WorldPop urban 
population dataset77. Over recent years, WorldPop has gained prominence as a leading open dataset, widely 
utilised across numerous domains in urban research and decision-making–population health78,79, sustainable 
development80,81, socioeconomics82. We opted to utilise the WorldPop dataset over comparable alternatives like 
the Gridded Population of the World (GPW), Global Rural Urban Mapping Project (GRUMP), Global Human 
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Settlement Layer-Population (GHS-POP), or LandScan Population database because of spatial resolution and 
temporal frequency compatibility between the WorldPop dataset and the Meta population dataset.

Accordingly, we conduct a systematic comparative analysis of gridded population counts at the 100-metre reso-
lution between the Meta and WorldPop datasets. For the WorldPop dataset, we utilise a top-down approach which 
employs building footprint constrained and United Nations national population-adjusted figures to disaggregate 
the population into land cell grids (https://hub.worldpop.org/geodata/listing?id=79). Our analysis encompasses 25 
cities from our original dataset, representing diverse geographical regions. For each city, Table 2 enumerates statis-
tics such as mean absolute error, correlation, aggregate population proportion, and the percentage of binary corre-
spondence (zero population/population above zero) between the WorldPop and Meta population datasets. Similarly, 
Figure 4 displays the spatial distribution of mean absolute error across 100-metre grid cells covering each city.

In general, although there are subtle distinctions, our empirical findings underscore a robust and consist-
ent convergence between the two datasets across a range of comparative metrics. Several noteworthy metrics 
warrant careful consideration. For instance, the significant level of binary correspondence provides compelling 
evidence that both datasets adeptly forecast the presence or absence of built-up areas within administrative city 

Fig. 3 Urbanity dashboard exploratory panels. Urbanity dashboard offers an interactive, user-friendly interface 
for exploring urban network data without the need to code. Complementary panels provide insights into 
various urban scales and features, incorporating popular methods for urban network data analysis. Sources 
of the data samples: (c) OpenStreetMap contributors, Mapillary, and Meta. Basemap: OpenStreetMap and 
Mapbox. (a) Global comparative analyses of cites across selected indicators. (b) Bivariate scatterplot of network 
indicators across city subzones. (c) Univariate spatial distribution of aggregate values across city subzones.  
(d) Urban network of Paris. (e) Gridded density plot of urban population distribution across Paris.
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https://www.mapbox.com/about/maps/
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boundaries. Moreover, when we aggregate population estimates across urban boundaries, the results demon-
strate remarkable similarity.

Although there is generally a strong correlation at the grid cell level, it’s important to acknowledge the pres-
ence of some variability. This divergence can be attributed to the distinct methodologies employed in disaggre-
gating population data. In the case of the Meta dataset, population counts are directly attributed to building 
footprints. Conversely, the WorldPop dataset employs a two-step process for population assignment: first, build-
ing footprints are predicted using a settlement growth model for buildings; subsequently, population is allocated 
to grid cells identified as housing buildings or established settlements83.

Indicator Node1 Edge2 Data Type Unit References3

Metric & Topological

Node Density Yes Integer Count Boeing32 and Huang et al.86

Street Length Yes Yes Decimal m Xue et al.3

Degree Yes Integer Count Prieto-Curiel et al.87

Clustering Coefficient Yes Decimal — Boeing49

Clustering Coefficient 
(Weighted) Yes Decimal — Boeing49

Closeness Centrality Yes Decimal — Ozuduru et al.88

Betweenness Centrality Yes Decimal — Kirkley et al.89

Eigenvector Centrality Yes Decimal — Agryzkov et al.13

Katz Centrality Yes Decimal — Curado et al.90

PageRank Yes Decimal — Jia et al.91

Building Morphology

Footprint Proportion (Total) Yes Yes Percentage m2 Asadi et al.92

Mean Area Yes Yes Decimal m2 Hu et al.93

Area St. dev Yes Yes Decimal m2 Li et al.94

Total Perimeter Yes Yes Decimal m2 Tikhonova & Beirao95

Mean Perimeter Yes Yes Decimal m2 Litardo et al.96

Perimeter St. dev Yes Yes Decimal m2 Biljecki & Chow19

Complexity Mean Yes Yes Decimal m2 Basaraner & Cetinkaya97

Complexity St. dev Yes Yes Decimal m2 Labetski et al.98

No. of Buildings Yes Yes Integer Count Liu et al.99

Population

Total Population Yes Yes Integer Count Szarka & Biljecki100

Women Yes Yes Integer Count Cerin et al.101

Men Yes Yes Integer Count Gauvin et al.102

Elderly (aged 60 + ) Yes Yes Integer Count Wang et al.103

Youth (15–24) Yes Yes Integer Count Ha & Thill104

Children (under 5) Yes Yes Integer Count Kruse et al.105

Points of Interest

Social Amenities Yes Yes Integer Count Lucchini et al.106

Recreational Amenities Yes Yes Integer Count Klinkhardt et al.107

Healthcare Amenities Yes Yes Integer Count Weiss et al.108

Entertainment Amenities Yes Yes Integer Count Liu et al.109

Civic Amenities Yes Yes Integer Count Liu & Long110

Institutional Amenities Yes Yes Integer Count Zhou & Yang111

Food Amenities Yes Yes Integer Count Liu et al.112

Commercial Amenities Yes Yes Integer Count Wang et al.113

No. of Street View Images Yes Integer Count Hou & Biljecki59

Green View Index Yes Yes Decimal — Li114

Sky View Index Yes Yes Decimal — Middel et al.115

Building View Index Yes Yes Decimal — Ki & Lee116

Road View Index Yes Yes Decimal — Dong et al.117

Visual Complexity Index Yes Yes Decimal — Yap et al.44

Table 1. List of computed network spatial indicators. 1Node features derived from 100-metre euclidean buffers 
and spatial feature aggregation. 2Edge features derived via linear interpolation and assignment of nearby spatial 
entities to proximate edges. 3Recent articles that illustrate the empirical importance of the associated indicator 
for various urban analytics use cases. 4To mitigate the constraints posed by SVI data limitations, we employ a 
methodology of imputing estimates derived from geographically adjacent neighbors. 
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Automatic SVI assessment. Crowdsourced SVI imagery relies on the contributions of numerous volun-
teers, which can result in significant variations in image quality59. Consequently, it is crucial to evaluate the suita-
bility of these images, as they could adversely affect segmentation results if left unaddressed. We assess the images 
based on three criteria: (1) perspective; (2) daylight visibility; and (3) occlusion.

People contribute different types of images to crowdsourced street-level imagery, including images taken 
from different angles such as front-facing, side-facing, overhead, and panoramic84. However, segmentation 
models are typically trained on front-facing imagery. Therefore, other perspective views can skew segmentation 
results due to object appearance distortion. To manage image perspective, we first determine the orientation of 
all network edges and subsequently exclude images with an orientation angle deviation exceeding 20 degrees 
(selected following visual inspection) from their respective network edges. To ensure adequate daylight visibil-
ity, we narrow the image set to those captured between 9 am and 5 pm (local time), using image metadata. In 
some rare instances, we encountered images with severe occlusion, such as a street view obstructed by a large 
bus or street furniture. To tackle this issue, we have devised a post-segmentation heuristic that utilises visual 
complexity (information cross entropy on semantic classes) to identify and eliminate problematic images. This 
approach works intuitively by detecting images with low semantic information (e.g., where the majority of pixels 
correspond to a vehicle). Figure 5 displays examples of problematic images and their respective visual complex-
ity values for Zurich, Switzerland. Based on our experiments, we determined that a cross entropy threshold of 
1.0 is effective in filtering out such images.

Last but not least, where there are many images within a tile, we reduce computational workload by down-
sampling the available pool of images. More specifically, we apply random proportional sampling (10%) to each 
tile and set a minimum image count threshold of 250. In total, we segmented approximately 4 million images 
spanning 50 cities out of an initial selection of 97 million images. An overview of the image screening and selec-
tion process is enumerated for each city (see Table 3).

automated checks for construct validity. To ensure construct validity at the level of individual data com-
ponents, we employ a series of automated checks. For buildings, we programmatically validate each building foot-
print entry and use a procedural script to merge multiple polygons into a single one. For networks, we eliminate 
self-connections, duplicate nodes, and edges. Additionally, we verify that the network is a fully connected subgraph. 
For urban population data, we systematically compare aggregate figures with available census data to confirm the 
reliability of our estimates. To address the integration of various spatial data layers at different scales, we utilise an 

City
Binary Correspondence 
(Proportion)

Meta 
Population

WorldPop 
Population Correlation MAE1

Adelaide 0.754 1,279,450 1,334,155 0.785 4.293

Antwerp 0.711 1,158,770 1,057,246 0.543 6.738

Athens 0.859 2,508,459 2,935,090 0.669 22.936

Auckland 0.865 1,059,257 1,151,367 0.763 7.54

Austin 0.785 713,240 715,235 0.758 8.295

Bangkok 0.796 13,993,114 14,342,154 0.756 24.816

Budapest 0.914 2,002,245 1,826,055 0.54 12.141

Campinas 0.66 3,764,216 3,675,747 0.719 17.464

Chicago 0.926 3,444,824 3,402,691 0.772 10.008

Denver 0.893 1,641,215 1,646,064 0.775 6.531

Edinburgh 0.836 507,829 495,732 0.68 12.467

Glasgow 0.915 809,246 815,467 0.717 9.95

Hanoi 0.958 1,785,191 1,578,247 0.694 73.577

Madrid 0.837 5,678,730 5,023,775 0.666 24.01

Manila 0.951 15,730,416 15,324,991 0.788 84.387

Melbourne 0.982 1,905,490 1,967,284 0.758 6.736

Milan 0.901 1,500,331 1,498,404 0.834 18.84

Paris 0.984 3,258,001 2,922,765 0.519 61.07

Phoenix 0.884 2,450,696 2,444,093 0.779 5.671

San Jose 0.944 745,321 695,970 0.706 19.425

Santiago 0.886 6,807,438 6,351,675 0.805 25.765

Seattle 0.916 698,244 687,313 0.768 7.845

Singapore 0.813 5,525,543 5,341,286 0.855 46.614

Taichung 0.692 3,217,240 3,137,196 0.824 16.441

Taipei 0.796 4,469,983 4,382,751 0.787 54.235

Table 2. Comparison of Meta and WorldPop population datasets across 100-metre grid cells. Cities sorted 
alphabetically. 1MAE—Mean Absolute Error. Corresopnds to the population count difference between the 
WorldPop and Meta population datasets across 100-metre grid cells for each city’s administrative boundary. 
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interactive and visually-oriented data processing pipeline to maintain spatial consistency. Each subsequent data 
layer undergoes visual cross-validation against its target boundary before we proceed with any spatial computation.

Fig. 4 Comparing WorldPop and Meta population datasets using a spatial 100-metre gridded analysis across 
25 cities. Highlighting variations in aggregated population counts across administrative boundaries in 25 cities 
between the WorldPop and Meta Datasets. In the heatmap, regions indicating a higher population count in 
the Meta dataset compared to WorldPop are visualized in red, while areas where WorldPop predicts a greater 
population count than the Meta dataset are represented in blue. Data Source: Meta and WorldPop. Basemap: (c) 
CARTO.

Fig. 5 Distribution of visual complexity within streetview images in Zurich. Visual complexity corresponds to 
information cross entropy of semantic classes in each image. We show the visual complexity distribution for the 
entire image set of Zurich, Switzerland (N = 18,565). Images with low visual complexity reveal little semantic 
information on streetscapes and are removed. Source of imagery: Mapillary.

https://doi.org/10.1038/s41597-023-02578-1
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Usage Notes
Urbanity network data can be utilised for a wide range of descriptive and predictive urban network analytical 
tasks. Descriptive use cases include understanding linear associations between network indicators, multi-criteria 
location analysis, examining the similarity of contextual and semantic attributes across scales, and facilitating 
comparative analyses between various cities and their neighborhoods. Users can access many of these descrip-
tive use cases through the Urbanity dashboard. Using Tokyo as an example, Figure 6 presents a multiscalar 
visualisation of various network indicators.

City Adelaide Amsterdam Antwerp Athens Atlanta Auckland Austin Barcelona

Initial 2,802,291 286,395 5,402,430 1,537,459 625,164 353,156 2,162,429 189,797

Excluded

Alignment 1,075,263 120,273 2,655,748 1,011,414 177,073 134,228 1,075,652 90,673

Daylight 888,111 49,600 1,293,082 123,986 184,432 140,102 579,929 31,642

Sampling 730,387 92,623 1,268,032 357,115 233,294 61,247 451,865 57,234

Final Set 108,530 23,899 185,568 44,944 30,365 17,579 54,983 10,248

City Belo Horizonte Berlin Bern Brisbane Bogota Boston Brisbane Budapest

Initial 1,902,895 9,182,485 93,118 3,009,352 3,379,425 997,005 263,839 4,476,229

Excluded

Alignment 937,815 5,670,429 43,448 1,475,597 2,125,875 224,526 83,826 1,626,411

Daylight 342,504 965,366 14,612 892,280 408,076 265,494 118,196 809,197

Sampling 550,240 2,261,792 29,382 562,938 757,650 452,731 41,399 1,826,857

Final Set 72,336 284,898 5,676 78,537 87,824 54,254 20,418 213,764

City Buenos Aires Campinas Chiang Mai Chicago Denver Edinburgh Glasgow Hanoi

Initial 1,924,268 3,434,931 1,031,741 1,299,032 715,003 393,155 141,249 245,814

Excluded

Alignment 1,313,143 1,398,166 403,326 392,735 174,572 166,563 54,996 161,716

Daylight 200,061 530,400 329,385 478,447 200,910 70,200 14,762 55,664

Sampling 332,076 1,329,840 266,639 367,300 294,617 124,503 53,872 24,882

Final Set 78,988 176,525 32,391 60,550 44,904 31,889 17,619 3,552

City Houston Johannesburg Kowloon Kuala Lumpur Madrid Melbourne Mexico Miami

Initial 1,111,777 1,861,856 121,673 1,823,540 524,564 2,872,774 5,265,189 195,989

Excluded

Alignment 132,394 1,229,335 74,692 1,233,384 212,099 690,406 2,945,509 60,178

Daylight 222,493 138,620 17,325 142,977 94,249 586,015 588,918 32,637

Sampling 658,793 416,163 25,423 400,711 160,571 1,432,388 1,550,496 91,368

Final Set 98,097 77,738 4,233 46,468 57,645 163,965 180,266 11,806

City Milan Paris Phoenix San Jose Santiago Sao Paulo Sapporo Seattle

Initial 1,035,534 275,138 5,573,756 129,054 1,326,959 8,729,024 345,355 2,219,755

Excluded

Alignment 370,120 128,857 1,504,118 56,746 880,883 4,038,022 91,713 767,680

Daylight 307,417 68,199 2,058,236 39,656 101,677 1,166,079 93,805 525,040

Sampling 318,062 64,471 1,792,031 27,456 291,824 3,150,399 128,706 829,213

Final Set 39,935 13,611 219,371 5,196 52,575 374,524 31,131 97,822

City Singapore Sydney Taichung Taipei Tokyo Toronto Washington Yokohama

Initial 913,358 1,891,064 428,610 1,689,293 3,610,395 1,290,948 5,623,925 1,436,846

Excluded

Alignment 396,483 1,192,311 168,850 1,197,065 1,754,845 299,357 1,404,115 259,128

Daylight 99,205 433,596 91,065 276,056 402,605 221,769 1,628,221 232,547

Sampling 367,934 170,299 122,749 188,950 1,299,839 673,961 2,331,651 847,190

Final Set 49,736 94,858 45,946 27,222 153,106 95,861 259,938 97,981

City Zagreb Zurich Total (50 cities)

Initial 656,242 333,735 97,135,015

Excluded

Alignment 188,262 125,521 43,995,541

Daylight 155,157 60,402 18,770,404

Sampling 267,878 129,247 30,266,288

Final Set 44,945 18,565 4,102,782

Table 3. SVI pre-processing process for each city.
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Network data can be incorporated into existing data science workflows with minimal pre-processing. For 
instance, city planners can combine population and POI indicators with local mobility data to investigate net-
work accessibility to various urban amenities. Urban researchers can also develop better contextual and semantic 
understanding of networks by examining how attributes change across network structure. An example use case 
could be to employ network assortativity methods85 to evaluate distribution of urban greenery throughout the 
urban fabric. Network data can also be readily extended for various urban network predictive tasks. For graph 
machine learning use cases, users can easily transform the dataset to popular graph deep learning frameworks 
such as PyTorch Geometric (PyG) or Deep Graph Library (DGL). Users can extend their analysis by combining 
the network data with other local information, such as socio-economic indicators derived from census or local 
surveys. We support use case development with code notebooks (https://urbanity.readthedocs.io/en/latest/).

All source code, example notebooks, datasets, data derivatives, and technical validation code are released 
under open source licenses to facilitate reproducibility and use case extension. Data files are provided separately 
for each city and include feature sets for both network nodes and edges. Our data set is released in accessible 
formats to facilitate usability across different analytical environments and pipelines. Network data are released 
in the popular Geographic Javascript Object Notation (GeoJSON) format which can be easily loaded and visual-
ised in various open geospatial environments such as QGIS (vector layer), R (simple features), and Python 
(GeoPandas). We provide example notebooks to show how users can load and visualise urban network data in 
our package (https://urbanity.readthedocs.io/en/latest/). Non-spatial data such as aggregated statistics for cities 
and subzones are provided in common comma separated values (CSV) format. Alternatively, we also provide a 
dashboard interface for users to explore global urban network data set.

The Urbanity network dataset52 is an ongoing global data effort to capture important contextual and semantic 
network characteristics of global cities. Till date, we have aimed to cover numerous cities across different geo-
graphical regions. Nonetheless, it is inevitable that we might have left out certain cities that are of interest. In the 
context of urban analytics studies, the primary concern often revolves around the availability of data. Focusing 
crowdsourced volunteered geographic information efforts on enhancing street view image coverage in cities 
across the global south would represent a significant stride towards improving overall coverage. In the mean-
time, subject to data availability, users can submit a request to have their city of interest included at the following 
discussions page (https://github.com/winstonyym/urbanity/discussions/1).

Code availability
Urbanity Python package source code is hosted under an open source MIT license (https://github.com/
winstonyym/urbanity). Urbanity dashboard is generated with Dash version 2.7.1. with open source code (https://
github.com/winstonyym/urbdash).

Received: 18 May 2023; Accepted: 16 September 2023;
Published: xx xx xxxx

References
 1. Batty, M. Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals (The MIT press, 

2007).
 2. Batty, M. Cities as complex systems: Scaling, interaction, networks, dynamics and urban morphologies. (2009).
 3. Boeing, G. A multi-scale analysis of 27,000 urban street networks: Every us city, town, urbanized area, and zillow neighborhood. 

Environment and Planning B: Urban Analytics and City Science 47, 590–608 (2020).
 4. Lai, S.-K. Planning within complex urban systems (Routledge, 2020).
 5. Bettencourt, L. M. Complex networks and fundamental urban processes. In Handbook of cities and networks, 41–61 (Edward Elgar 

Publishing, 2021).

Fig. 6 Multiscalar descriptive analysis of network indicators. Network indicators can be used for multi-
scalar descriptive analyses of cities. (a) Comparative analysis of the distributions of building footprint 
proportions across network nodes with a 100-meter catchment area in ten cities. (b) Visualizing the spatial 
distribution of urban context and semantics layers at various levels of aggregation in Tokyo. Sources of the 
data samples: (c) OpenStreetMap contributors, Mapillary, and Meta.

https://doi.org/10.1038/s41597-023-02578-1
https://urbanity.readthedocs.io/en/latest/
https://urbanity.readthedocs.io/en/latest/
https://github.com/winstonyym/urbanity/discussions/1
https://github.com/winstonyym/urbanity
https://github.com/winstonyym/urbanity
https://github.com/winstonyym/urbdash
https://github.com/winstonyym/urbdash


13Scientific Data |          (2023) 10:667  | https://doi.org/10.1038/s41597-023-02578-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

 6. Portugali, J. Cities, complexity and beyond. In Handbook on Cities and Complexity, 13–27 (Edward Elgar Publishing, 2021).
 7. Zhong, C., Arisona, S. M., Huang, X., Batty, M. & Schmitt, G. Detecting the dynamics of urban structure through spatial network 

analysis. International Journal of Geographical Information Science 28, 2178–2199 (2014).
 8. Loder, A., Ambühl, L., Menendez, M. & Axhausen, K. W. Understanding traffic capacity of urban networks. Sci. Rep. 9, 16283 

(2019).
 9. Spadon, G., de Carvalho, A. C., Rodrigues-Jr, J. F. & Alves, L. G. Reconstructing commuters network using machine learning and 

urban indicators. Sci. Rep. 9, 1–13 (2019).
 10. Janowicz, K., Gao, S., McKenzie, G., Hu, Y. & Bhaduri, B. Geoai: spatially explicit artificial intelligence techniques for geographic 

knowledge discovery and beyond. International Journal of Geographical Information Science 34, 625–636 (2020).
 11. Liu, P. & Biljecki, F. A review of spatially-explicit geoai applications in urban geography. International Journal of Applied Earth 

Observation and Geoinformation 112, 102936 (2022).
 12. Mai, G. et al. A review of location encoding for geoai: methods and applications. International Journal of Geographical Information 

Science 36, 639–673 (2022).
 13. Agryzkov, T., Tortosa, L., Vicent, J. F. & Wilson, R. A centrality measure for urban networks based on the eigenvector centrality 

concept. Environment and Planning B: Urban Analytics and City Science 46, 668–689 (2019).
 14. Chen, M., Wei, Z., Huang, Z., Ding, B. & Li, Y. Simple and deep graph convolutional networks. In International conference on 

machine learning, 1725–1735 (PMLR, 2020).
 15. Gharaee, Z., Kowshik, S., Stromann, O. & Felsberg, M. Graph representation learning for road type classification. Pattern 

Recognition 120, 108174 (2021).
 16. Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: Methods and applications. Preprint at https://arxiv.org/

abs/1709.05584 (2017).
 17. Neuhold, G., Ollmann, T., Rota Bulo, S. & Kontschieder, P. The mapillary vistas dataset for semantic understanding of street scenes. 

In Proceedings of the IEEE international conference on computer vision, 4990–4999 (2017).
 18. Miller, C. et al. the building data genome project 2, energy meter data from the ashrae great energy predictor iii competition. Sci. 

Data. 7, 1–13 (2020).
 19. Biljecki, F. & Chow, Y. S. Global building morphology indicators. Computers, Environment and Urban Systems 95, 101809 (2022).
 20. Lei, B., Stouffs, R. & Biljecki, F. Assessing and benchmarking 3D city models. International Journal of Geographical Information 

Science 37, 788–809, https://doi.org/10.1080/13658816.2022.2140808 (2023).
 21. Zhao, T., Liang, X., Tu, W., Huang, Z. & Biljecki, F. Sensing urban soundscapes from street view imagery. Computers, Environment 

and Urban Systems 99, 101915, https://doi.org/10.1016/j.compenvurbsys.2022.101915 (2023).
 22. Barthélemy, M. Spatial networks. Physics reports 499, 1–101 (2011).
 23. Burger, M. J., Van Der Knaap, B. & Wall, R. S. Polycentricity and the multiplexity of urban networks. European Planning Studies 22, 

816–840 (2014).
 24. Ducruet, C. & Beauguitte, L. Spatial science and network science: review and outcomes of a complex relationship. Networks and 

Spatial Economics 14, 297–316 (2014).
 25. Derudder, B. & Neal, Z. Uncovering links between urban studies and network science. Networks and Spatial Economics 18, 441–446 

(2018).
 26. Marshall, S., Gil, J., Kropf, K., Tomko, M. & Figueiredo, L. Street network studies: from networks to models and their 

representations. Networks and Spatial Economics 18, 735–749 (2018).
 27. Batty, M. Integrating space syntax with spatial interaction. Urban Inform. 1, 4 (2022).
 28. Porta, S., Crucitti, P. & Latora, V. The network analysis of urban streets: a primal approach. Environment and Planning B: Urban 

Analytics and City Science 33, 705–725 (2006).
 29. Okabe, A., Okunuki, K.-i & Shiode, S. Sanet: a toolbox for spatial analysis on a network. Geographical analysis 38, 57–66 (2006).
 30. Foti, F., Waddell, P. & Luxen, D. A generalized computational framework for accessibility: from the pedestrian to the metropolitan 

scale. In Proceedings of the 4th TRB Conference on Innovations in Travel Modeling. Transportation Research Board, 1–14 (2012).
 31. Sevtsuk, A. & Mekonnen, M. Urban network analysis. Revue internationale de géomatique–n 287, 305 (2012).
 32. Boeing, G. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, 

Environment and Urban Systems 65, 126–139 (2017).
 33. Raffler, C. Qneat3 - qgis network analysis toolbox 3. https://doi.org/10.13140/RG.2.2.13042.02248 (2018).
 34. Tripathy, P., Rao, P., Balakrishnan, K. & Malladi, T. An open-source tool to extract natural continuity and hierarchy of urban street 

networks. Environment and Planning B: Urban Analytics and City Science 48, 2188–2205 (2021).
 35. Cottrill, C. D. & Derrible, S. Leveraging big data for the development of transport sustainability indicators. Journal of Urban 

Technology 22, 45–64 (2015).
 36. Makarov, V. V. et al. Interplay between geo-population factors and hierarchy of cities in multilayer urban networks. Sci. Rep. 7, 

17246 (2017).
 37. Bellocchi, L., Latora, V. & Geroliminis, N. Dynamical efficiency for multimodal time-varying transportation networks. Sci. Rep. 11, 

1–14 (2021).
 38. Xue, J. et al. Quantifying the spatial homogeneity of urban road networks via graph neural networks. Nature Machine Intelligence 

4, 246–257 (2022).
 39. Alves, L. G., Rybski, D. & Ribeiro, H. V. Commuting network effect on urban wealth scaling. Sci. Rep. 11, 1–10 (2021).
 40. Chirigati, F. Gauging urban development with neural networks. Nature Computational Science 2, 216–216 (2022).
 41. Carmody, D. et al. The effect of co-location on human communication networks. Nature Computational Science 2, 494–503 (2022).
 42. Basu, R. & Sevtsuk, A. How do street attributes affect willingness-to-walk? city-wide pedestrian route choice analysis using big data 

from boston and san francisco. Transportation research part A: policy and practice 163, 1–19 (2022).
 43. Sevtsuk, A. & Kalvo, R. Predicting pedestrian flow along city streets: A comparison of route choice estimation approaches in 

downtown san francisco. International journal of sustainable transportation 16, 222–236 (2022).
 44. Yap, W., Chang, J.-H. & Biljecki, F. Incorporating Networks in Semantic Understanding of Streetscapes: Contextualising Active 

Mobility Decisions. Environment and Planning B: Urban Analytics and City Science 50, 1416–1437 (2023).
 45. Chen, S. & Biljecki, F. Automatic Assessment of Public Open Spaces Using Street View Imagery. Cities (2023).
 46. Strano, E., Nicosia, V., Latora, V., Porta, S. & Barthélemy, M. Elementary processes governing the evolution of road networks. Sci. 

Rep. 2, 1–8 (2012).
 47. Leskovec, J., Lang, K. J., Dasgupta, A. & Mahoney, M. W. Community structure in large networks: Natural cluster sizes and the 

absence of large well-defined clusters. Internet Mathematics 6, 29–123 (2009).
 48. Rossi, R. & Ahmed, N. The network data repository with interactive graph analytics and visualization. In Proceedings of the AAAI 

conference on artificial intelligence, vol. 29 (2015).
 49. Boeing, G. Street network models and indicators for every urban area in the world. Geographical Analysis 54, 519–535 (2022).
 50. Haklay, M. & Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive computing 7, 12–18 (2008).
 51. Karduni, A., Kermanshah, A. & Derrible, S. A protocol to convert spatial polyline data to network formats and applications to 

world urban road networks. Sci. Data. 3, 1–7 (2016).
 52. Yap, W. & Biljecki, F. The urbanity global network dataset. figshare https://doi.org/10.6084/m9.figshare.22124219.v11 (2023).

https://doi.org/10.1038/s41597-023-02578-1
https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/1709.05584
https://doi.org/10.1080/13658816.2022.2140808
https://doi.org/10.1016/j.compenvurbsys.2022.101915
https://doi.org/10.13140/RG.2.2.13042.02248
https://doi.org/10.6084/m9.figshare.22124219.v11


1 4Scientific Data |          (2023) 10:667  | https://doi.org/10.1038/s41597-023-02578-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

 53. Yap, W., Stouffs, R. & Biljecki, F. Urbanity: automated modelling and analysis of multidimensional networks in cities. npj Urban 
Sustainability 3, https://doi.org/10.1038/s42949-023-00125-w (2023).

 54. Yap, W., Janssen, P. & Biljecki, F. Free and open source urbanism: Software for urban planning practice. Computers, Environment 
and Urban Systems 96, 101825 (2022).

 55. van Dis, E. A., Bollen, J., Zuidema, W., van Rooij, R. & Bockting, C. L. Chatgpt: five priorities for research. Nature 614, 224–226 
(2023).

 56. Facebook Connectivity Lab and Center for International Earth Science Information Network - CIESIN - Columbia University. 
High resolution settlement layer (hrsl). Source imagery for HRSL © 2016 DigitalGlobe. Accessed 1 Aug 2023 (2016).

 57. Tiecke, T. G. et al. Mapping the world population one building at a time. Preprint at https://arxiv.org/abs/1712.05839 (2017).
 58. Biljecki, F., Chow, Y. S. & Lee, K. Quality of crowdsourced geospatial building information: A global assessment of OpenStreetMap 

attributes. Building and Environment 237, 110295 (2023).
 59. Hou, Y. & Biljecki, F. A comprehensive framework for evaluating the quality of street view imagery. International Journal of Applied 

Earth Observation and Geoinformation 115, 103094, https://doi.org/10.1016/j.jag.2022.103094 (2022).
 60. Yap, W. TILE_POPULATION_SHAPEFILES, Figshare, https://doi.org/10.6084/m9.figshare.22580806 (2023).
 61. Cheng, B., Schwing, A. & Kirillov, A. Per-pixel classification is not all you need for semantic segmentation. Advances in Neural 

Information Processing Systems 34, 17864–17875 (2021).
 62. Cheng, B., Misra, I., Schwing, A. G., Kirillov, A. & Girdhar, R. Masked-attention mask transformer for universal image 

segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1290–1299 (2022).
 63. Marselle, M. R. et al. Urban street tree biodiversity and antidepressant prescriptions. 10, 1–11 (2020).
 64. Nori-Sarma, A. et al. Impacts of the choice of distance measurement method on estimates of access to point-based resources. 

Journal of Exposure Science & Environmental Epidemiology 1–7 (2022).
 65. Sevtsuk, A. & Basu, R. The role of turns in pedestrian route choice: a clarification. Journal of transport geography 102, 103392 

(2022).
 66. Chen, B. Y., Teng, W., Jia, T., Chen, H.-P. & Liu, X. Transit voronoi diagrams in multi-mode public transport networks. Computers, 

Environment and Urban Systems 96, 101849 (2022).
 67. Haklay, M. How good is volunteered geographical information? a comparative study of openstreetmap and ordnance survey 

datasets. Environment and Planning B: Urban Analytics and City Science 37, 682–703 (2010).
 68. Neis, P. & Zielstra, D. Recent developments and future trends in volunteered geographic information research: The case of 

openstreetmap. Future internet 6, 76–106 (2014).
 69. Barrington-Leigh, C. & Millard-Ball, A. The world’s user-generated road map is more than 80% complete. PloS one 12, e0180698 

(2017).
 70. Higgs, C. et al. Policy relevant health related liveability indicator datasets for addresses in australia’s 21 largest cities. Sci. Data. 10, 

113 (2023).
 71. Zhang, L. & Pfoser, D. Using openstreetmap point-of-interest data to model urban change–-a feasibility study. PloS one 14, 

e0212606 (2019).
 72. Fan, H., Zipf, A., Fu, Q. & Neis, P. Quality assessment for building footprints data on openstreetmap. International Journal of 

Geographical Information Science 28, 700–719 (2014).
 73. Zhang, Y., Zhou, Q., Brovelli, M. A. & Li, W. Assessing osm building completeness using population data. International Journal of 

Geographical Information Science 36, 1443–1466 (2022).
 74. Milojevic-Dupont, N. et al. Eubucco v0. 1: European building stock characteristics in a common and open database for 200+ 

million individual buildings. Sci. Data. 10, 147 (2023).
 75. Juhász, L. & Hochmair, H. H. User contribution patterns and completeness evaluation of mapillary, a crowdsourced street level 

photo service. Transactions in GIS 20, 925–947 (2016).
 76. Quinn, S. & León, A. L. Every single street? rethinking full coverage across street-level imagery platforms. Transactions in GIS 23, 

1251–1272 (2019).
 77. Tatem, A. J. Worldpop, open data for spatial demography. Sci. Data. 4, 170004, https://doi.org/10.1038/sdata.2017.4 (2017).
 78. Dwyer-Lindgren, L. et al. Mapping hiv prevalence in sub-saharan africa between 2000 and 2017. Nature 570, 189–193 (2019).
 79. Southerland, V. A. et al. Global urban temporal trends in fine particulate matter (pm2. 5) and attributable health burdens: estimates 

from global datasets. The Lancet Planetary Health 6, e139–e146 (2022).
 80. Mapping disparities in education across low-and middle-income countries. Nature 577, 235–238 (2020).
 81. Zhang, X. et al. A large but transient carbon sink from urbanization and rural depopulation in china. Nature Sustainability 5, 

321–328 (2022).
 82. Wang, T. & Sun, F. Global gridded gdp data set consistent with the shared socioeconomic pathways. Scientific Data 9, 221 (2022).
 83. Stevens, F. R., Gaughan, A. E., Linard, C. & Tatem, A. J. Disaggregating census data for population mapping using random forests 

with remotely-sensed and ancillary data. PloS one 10, e0107042 (2015).
 84. Biljecki, F., Zhao, T., Liang, X. & Hou, Y. Sensitivity of measuring the urban form and greenery using street-level imagery: A 

comparative study of approaches and visual perspectives. International Journal of Applied Earth Observation and Geoinformation 
122, 103385, https://doi.org/10.1016/j.jag.2023.103385 (2023).

 85. Newman, M. E. Mixing patterns in networks. Physical review E 67, 026126 (2003).
 86. Huang, Y., Hong, T. & Ma, T. Urban network externalities, agglomeration economies and urban economic growth. Cities 107, 

102882 (2020).
 87. Prieto-Curiel, R., Schumann, A., Heo, I. & Heinrigs, P. Detecting cities with high intermediacy in the African urban network. 

Computers, Environment and Urban Systems 98, 101869 (2022).
 88. Ozuduru, B. H., Webster, C. J., Chiaradia, A. J. & Yucesoy, E. Associating street-network centrality with spontaneous and planned 

subcentres. Urban Studies 58, 2059–2078 (2021).
 89. Kirkley, A., Barbosa, H., Barthelemy, M. & Ghoshal, G. From the betweenness centrality in street networks to structural invariants 

in random planar graphs. Nature Communications 9, 1–12 (2018).
 90. Curado, M., Tortosa, L., Vicent, J. F. & Yeghikyan, G. Analysis and comparison of centrality measures applied to urban networks 

with data. Journal of Computational Science 43, 101127 (2020).
 91. Jia, C., Du, Y., Wang, S., Bai, T. & Fei, T. Measuring the vibrancy of urban neighborhoods using mobile phone data with an 

improved PageRank algorithm. Transactions in GIS 23, 241–258 (2019).
 92. Asadi, A., Arefi, H. & Fathipoor, H. Simulation of green roofs and their potential mitigating effects on the urban heat island using 

an artificial neural network: A case study in Austin, Texas. Advances in Space Research 66, 1846–1862 (2020).
 93. Hu, Y., Dai, Z. & Guldmann, J.-M. Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: 

A boosted regression tree approach. Journal of Environmental Management 266, 110424(2020).
 94. Li, Y., Schubert, S., Kropp, J. P. & Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nature 

Communications 11, 1–9 (2020).
 95. Tikhonova, O. & Beirão, J. A tale of two cities-A comparative study of historical urban cores. Journal of Urbanism: International 

Research on Placemaking and Urban Sustainability 13, 448–465 (2020).
 96. Litardo, J. et al. Urban Heat Island intensity and buildings’ energy needs in Duran, Ecuador: Simulation studies and proposal of 

mitigation strategies. Sustainable Cities and Society 62, 102387 (2020).

https://doi.org/10.1038/s41597-023-02578-1
https://doi.org/10.1038/s42949-023-00125-w
https://arxiv.org/abs/1712.05839
https://doi.org/10.1016/j.jag.2022.103094
https://doi.org/10.6084/m9.figshare.22580806
https://doi.org/10.1038/sdata.2017.4
https://doi.org/10.1016/j.jag.2023.103385


1 5Scientific Data |          (2023) 10:667  | https://doi.org/10.1038/s41597-023-02578-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

 97. Basaraner, M. & Cetinkaya, S. Performance of shape indices and classification schemes for characterisingperceptual shape 
complexity of building footprints in GIS. International Journal of Geographical Information Science 31, 1952–1977 (2017).

 98. Labetski, A., Vitalis, S., Biljecki, F., Arroyo Ohori, K. & Stoter, J. 3D building metrics for urban morphology. International Journal 
of Geographical Information Science 37, 36–67 (2023).

 99. Liu, H., Gou, P. & Xiong, J. Vital triangle: A new concept to evaluate urban vitality. Computers, Environment and Urban Systems 98, 
101886 (2022).

 100. Szarka, N. & Biljecki, F. Population estimation beyond counts—Inferring demographic characteristics. PloS one 17, e0266484 
(2022).

 101. Cerin, E. et al. Determining thresholds for spatial urban design and transport features that support walking to create healthy and 
sustainable cities: findings from the IPEN Adult study. The Lancet Global Health 10, e895–e906 (2022).

 102. Gauvin, L. et al. Gender gaps in urban mobility. Humanities and Social Sciences Communications 7, 1–13 (2020).
 103. Wang, R. et al. Perceptions of built environment and health outcomes for older Chinese in Beijing: A big data approach with street 

view images and deep learning technique. Computers, Environment and Urban Systems 78, 101386 (2019).
 104. Ha, H.-H. & Thill, J.-C. Analysis of traffic hazard intensity: A spatial epidemiology case study of urban pedestrians. Computers, 

Environment and Urban Systems 35, 230–240 (2011).
 105. Kruse, J., Kang, Y., Liu, Y.-N., Zhang, F. & Gao, S. Places for play: Understanding human perception of playability in cities using 

street view images and deep learning. Computers, Environment and Urban Systems 90, 101693 (2021).
 106. Lucchini, L. et al. Living in a pandemic: changes in mobility routines, social activity and adherence to COVID-19 protective 

measures. Sci. Rep. 11, 1–12 (2021).
 107. Klinkhardt, C. et al. Using OpenStreetMap as a Data Source for Attractiveness in Travel Demand Models. Journal of the 

Transportation Research Board 2675, 294–303 (2021).
 108. Weiss, D. et al. Global maps of travel time to healthcare facilities. Nature Medicine 26, 1835–1838 (2020).
 109. Liu, X., Wu, M., Peng, B. & Huang, Q. Graph-based representation for identifying individual travel activities with spatiotemporal 

trajectories and POI data. Sci. Rep. 12, 1–13 (2022).
 110. Liu, X. & Long, Y. Automated identification and characterization of parcels with OpenStreetMap and points of interest. 

Environment and Planning B: Urban Analytics and City Science 43, 341–360 (2016).
 111. Zhou, J. & Yang, Y. Transit-based accessibility and urban development: An exploratory study of Shenzhen based on big and/or open 

data. Cities 110, 102990 (2021).
 112. Liu, S. et al. A generalized framework for measuring pedestrian accessibility around the world using open data. Geographical 

Analysis 54, 559–582 (2022).
 113. Wang, Z., Ma, D., Sun, D. & Zhang, J. Identification and analysis of urban functional area in Hangzhou based on OSM and POI 

data. PLoS one 16, e0251988 (2021).
 114. Li, X. Examining the spatial distribution and temporal change of the green view index in New York City using Google Street View 

images and deep learning. Environment and Planning B: Urban Analytics and City Science 48, 2039–2054 (2021).
 115. Middel, A., Lukasczyk, J., Maciejewski, R., Demuzere, M. & Roth, M. Sky View Factor footprints for urban climate modeling. 

Urban climate 25, 120–134 (2018).
 116. Ki, D. & Lee, S. Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and 

deep learning. Landscape and Urban Planning 205, 103920 (2021).
 117. Dong, G., Yan, Y., Shen, C. & Wang, H. Real-time high-performance semantic image segmentation of urban street scenes. IEEE 

Transactions on Intelligent Transportation Systems 22, 3258–3274 (2020).

acknowledgements
The authors gratefully acknowledge the contributions of the open-source community. We thank the members of 
the NUS Urban Analytics Lab for the discussions. The first author thankfully acknowledges the NUS Graduate 
Research Scholarship granted by the National University of Singapore. This research is part of the project Large-
scale 3D Geospatial Data for Urban Analytics, which is supported by the National University of Singapore under 
the Start Up Grant R-295-000-171-133.

author contributions
Winston Yap (1) Conceptualisation and Design; (2) Software and Dashboard Development; (3) Data Acquisition, 
Generation, and Analysis; (4) Data Testing and Validation; (5) Use Case Development; (6) Manuscript Drafting. 
Filip Biljecki (1) Conceptualisation and Design; (2) Data Testing and Validation; (3) Use Case Development; (4) 
Manuscript Drafting; (5) Research Supervision; (6) Project Funding.

Competing interests
The authors declare no competing interests.

additional information
Correspondence and requests for materials should be addressed to F.B.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2023

https://doi.org/10.1038/s41597-023-02578-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A Global Feature-Rich Network Dataset of Cities and Dashboard for Comprehensive Urban Analyses

	Background & Summary

	Methods

	Data identification, retrieval, and pre-processing. 
	Population data. 
	Street network, points of interest, and building footprints. 
	Street view imagery. 
	Data harmonisation, generation, and integration. 
	Administrative boundaries. 
	Urban population. 
	Street view imagery. 
	Node-level integration. 
	Edge-level integration. 
	Dashboard conceptualisation and development. 


	Data Records

	Technical Validation

	Automatic population validation. 
	Automatic SVI assessment. 
	Automated checks for construct validity. 

	Usage Notes

	Acknowledgements

	Fig. 1 Overview of open workflow.
	Fig. 2 OpenStreetMap preprocessing workflow.
	Fig. 3 Urbanity dashboard exploratory panels.
	Fig. 4 Comparing WorldPop and Meta population datasets using a spatial 100-metre gridded analysis across 25 cities.
	Fig. 5 Distribution of visual complexity within streetview images in Zurich.
	Fig. 6 Multiscalar descriptive analysis of network indicators.
	Table 1 List of computed network spatial indicators.
	Table 2 Comparison of Meta and WorldPop population datasets across 100-metre grid cells.
	Table 3 SVI pre-processing process for each city.




