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Exploring Spatiotemporal Pattern and Agglomeration of Road
CO2 Emissions in Guangdong, China

Abstract

Road transport is a prominent source of carbon emissions. However, fine-grained regional
estimations on road carbon dioxide (CO2) emissions are still lacking. This study estimates
road CO2 emissions in Guangdong Province, China, at high spatiotemporal resolution, with a
bottom-up framework leveraging massive vehicle trajectory data. We unveil the spatiotemporal
pattern of regional road CO2 emissions and highlight the contrasts among cities. The Greater
Bay Area (GBA) is found to produce 76% of the total emissions, wherein Guangzhou emits
the most while Shenzhen has the highest emission intensity. Emission agglomeration is still an
under-explored field, which we advance in this paper. We propose Quantile-based Hierarchical
DBSCAN (QH-DBSCAN) to explore road CO2 emission agglomeration in GBA. Our method is
the first one to identify the specific location and scope of emission hotspots. Emission hotspots
exhibit significant concentration on major urban centers. Considering emission characteristics
from multiple perspectives, we derive six emission categories, including four emission zones
and two emission connectors. The density-based property of our method results in spatially
contiguous regions with similar emission patterns. Accordingly, we divide policy zones and
propose targeted strategies for road carbon reduction. The study provides new technologies and
insights to achieve regional sustainable development.

Keywords: Road transport, Carbon emission, Spatiotemporal distribution, Vehicle trajectory,
GBA, Emission agglomeration

1. Introduction1

Carbon dioxide (CO2) emissions pose a great threat to the global environment as a culprit2

of global warming. The pattern of carbon emission and its relationship with different aspects of3

human development is an enduring topic to discuss (Shindell et al., 2008; Zhang et al., 2014;4

Zhang and Da, 2015; Huang et al., 2018; Shan et al., 2021). Among the multitudinous sectors of5

human activities, transport sector accounts for more than 20% of the global carbon emissions.6

(Yan et al., 2017; Van Fan et al., 2018). The share continues to climb up (IEA, 2019; Mohsin7

et al., 2019), rendering transport a challenging sector in carbon emission mitigation (Yang et al.,8

2015; Batur et al., 2019). Among all the transport modes, road transport is the closest to our9

Abbreviations: GBA, Guangdong-Hong Kong-Macao Greater Bay Area ; HDFV, Heavy-Duty Freight Vehi-
cle; QH-DBSCAN, Quantile-Based Hierarchical Density-Based Spatial Clustering Of Applications With Noise;
O-D, Origin-Destination.
Preprint submitted to Science of The Total Environment November 23, 2022



daily lives and contributes to 82% of the total carbon emission in the sector (IEA, 2020). In this10

regard, estimating road carbon emissions and exploring the patterns are essential for relevant11

carbon reduction policy making.12

To estimate road CO2 emissions, various kinds of data sources have been leveraged, but13

each faces different deficiencies. One group of studies use collective data, such as statistical14

yearbooks (Lin and Li, 2020; Zhou et al., 2018; Cai et al., 2018). Such method usually covers15

a broad geographic scale, but suffers from coarse resolution in both space and time. Some16

scholars seek to ameliorate the estimation granularity by using survey (Pérez-Martínez et al.,17

2020; McQueen et al., 2020; Sobrino and Arce, 2021; Patiño-Aroca et al., 2022), sensors (Liu18

and Zimmerman, 2021), smartphones (Manzoni et al., 2010) or video surveillance data (Li et al.,19

2019b). Although these methods can obtain fine-grained results, they are only applicable at a20

limited geographic scale. Balancing the trade-off between both data fineness and wide spatial21

coverage, vehicle trajectory is considered to be a suitable instrument to estimate road emissions22

(Kan et al., 2018; Xia et al., 2020; Sun et al., 2015; Zhao et al., 2017). However, existing vehicle23

trajectory datasets often only contain a subset of vehicle types, e.g. taxis (Zhao et al., 2017),24

ride-hailing (Sui et al., 2019), and light-duty vehicles (Li et al., 2019a). Emission patterns25

obtained with these datasets are characterized by low sampling rate and thus may considerably26

deviate from the actual pattern of the entire fleet, which is more valuable for policy-makers to27

understand the status quo and design emission mitigation strategies. Solving the problem calls28

for a trajectory dataset with higher sampling rate and more vehicle types. Correspondingly, a29

framework for estimating road CO2 emissions with massive vehicle trajectory dataset is also30

required.31

Besides deficiencies in emission estimation, limited attention is paid to emission agglom-32

eration. As an effective strategy to catalyze the development of economy, urbanization and33

industry (Fujita and Thisse, 1996; Malmberg and Maskell, 1997; Fang and Yu, 2017), agglom-34

eration also brings some negative externalities, of which an important aspect is the convergence35

of carbon emissions (Yu et al., 2020; Wang et al., 2019). In China, 1% of the land contributes36

to 70% national CO2 emissions, and the regions with high level of urban agglomerations are37

also those emitting the most (Wang et al., 2014). In our context, we define the concept of38

emission agglomeration as the phenomenon that massive emissions are concentrated in certain39
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contiguous territory. To better spatialize and visualize emission agglomeration, we introduce40

the “emission hotspot”, which indicates the spatially continuous region with high emissions per41

unit area. Although regional emission agglomeration has been verified statistically with city-42

level or county-level emissions, studies on identifying emission hotspots is extremely lacking.43

The hotspots of CO2 emissions may be prone to worse environmental problems and could also44

be the crux for overall emission reduction. Thus, how to determine the location and scope of45

emission hotspots becomes crucial. However, the literature falls short on relevant methods,46

which is another gap that this study intends to fill.47

In this paper, we conduct a regional study in Guangdong Province, which has the largest48

population and economy in China, and accordingly produces intensive emissions. Guangdong-49

Hong Kong-Macao Greater Bay Area (GBA) denotes the most developed region in Guangdong50

and is primary to the overall development of China (Hui et al., 2020). According to the Out-51

line Development Plan for the Guangdong-Hong Kong-Macao Greater Bay Area published by52

Chinese State Council, low-carbon development is among the major objectives of GBA. GBA53

maintains great economic, population and urban agglomeration (Chen et al., 2017, 2020; Yu,54

2019), making it a favorable region to study mesoscale emission agglomeration (Zhou et al.,55

2022a). Although some insights have been given in spatial (Lin and Li, 2020; Chen et al., 2017)56

and temporal (Zhou et al., 2018; Chen et al., 2017) patterns of carbon emissions in Guangdong57

or GBA, the results are either coarse in granularity or focus on total emissions instead of road58

emissions. Fine-grained regional patterns of road transportation CO2 emission and agglomera-59

tions in Guangdong and GBA is still under-explored. Exploring regional patterns of road CO260

emission is the prerequisite GBA to formulate strategies for sustainable development.61

Taking into account the research opportunities and deficiencies described so far, we aim to62

bridge the following gaps and present the following contributions to the field: (1) We implement63

a bottom-up framework for estimating road CO2 emissions based on a vehicle trajectory dataset64

with sampling rates surpassing the counterparts in the literature, and develop approaches to han-65

dle inherent data deficiencies. (2) We present fine-grained spatiotemporal patterns of regional66

road CO2 emissions in Guangdong Province where similar analysis is lacking. (3) We propose67

an approach to identify hierarchical emission hotspots, which uncover the spatiotemporal emis-68

sion agglomeration patterns in GBA. (4) We categorize our study area into emission zones with69
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Figure 1: Analytical framework.

distinct emission patterns and propose targeted emission reduction strategies.70

The analytical framework of this study is designed as illustrated in Figure 1. Our study71

estimates CO2 emissions at road segment level at the first stage. To achieve such an advance-72

ment, we harness a massive vehicle trajectory dataset that contains 12.9 million records in a73

day, encompassing all vehicle types. Its sampling rate exceeds most counterparts used hith-74

erto. We firstly introduce the dataset and elucidate the estimation process. Then we analyze the75

spatial distribution and the hourly variation of road CO2 emissions in Guangdong, highlighting76

the disparities among cities. Next, a density-based clustering algorithm is proposed to detect77

hierarchical emission hotspots. Their temporal variations are also explored. Finally, we inte-78

grate all facets of emission features and divide our study area into different emission categories.79

Based on the emission characteristics of each category, targeted carbon reduction strategies are80

proposed for the sustainable development in GBA and Guangdong.81

2. Methodology82

2.1. Study area83

Our study area (Figure 2) includes all the twenty-one prefectural-Level cities in Guangzhou84

Province. We highlight the nine GBA cities (Guangzhou, Shenzhen, Foshan, Dongguan, Zhuhai,85
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Figure 2: Study area: Guangdong Province (colored area) and GBA (pink area). Source of the basemap: (c) Esri.

Huizhou, Zhongshan, Jiangmen and Zhaoqing), considering their paramount role in the region.86

Hong Kong and Macao, which also belong to GBA but are not part of Guangdong Province, are87

not included in this study due to their absence in the trajectory dataset. Thus, we refer to the88

nine aforementioned and contiguous cities when we refer to GBA in this paper. The socioeco-89

nomic indicators of the corresponding cities are displayed in Supplementary Table S1 according90

to the Statistical Yearbook of Guangdong Province (2021) (Guangdong Province Statistical Bu-91

reau, 2021). GBA accommodates 62% of the population and contributes to 81% of the GDP92

with only 30% of land in Guangdong. It is four times as densely populated and three times as93

economically developed as the rest areas in Guangdong, showing significant agglomerations.94

To put that in context for international readers, these values are comparable with the population95

of Germany, economy of Brazil, and area of Croatia. Considering that GBA also has denser96

road networks and heavier traffic (Hui et al., 2020), in this study, we estimate the road CO297

emissions and delineate the patterns in the entire province, but focus on GBA when exploring98

emission hotspot patterns.99
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Table 1: Summary statistics of the trajectory data.

Vehicle
type

Raw
trajectories

Valid
trajectories Samples Total travel distance

(104 km)
Sampling rate

(%)

HDFV 527,396 520,924 137,963,458 505.1 100
Non-HDFV 12,371,644 10,623,090 385,648,577 1022.4 40

Total 12,899,040 11,144,014 523,612,035 1527.5 –

2.2. Data description and preprocessing100

In this study, we introduce a new vehicle trajectory dataset to estimate road CO2 emissions.101

The dataset is provided by PalmGo, a company offering driving navigation services in China.102

The dataset contains 12.9 million navigation trajectories of individual vehicles in a day (Monday103

19 October 2020) in Guangdong (Table 1). The dataset covers our study area well and is verified104

representative to the general traffic condition (Supplementary Note S1). A trajectory sample is105

shown in Supplementary Table S3. Each trajectory records the location and time of departure106

and arrival. The route is represented by a series of passed road segments (SegmentIDs). Every107

time the vehicle drives onto a new road segment, the road segment ID, direction, and time108

of entry would be appended to the record. By matching trajectory records with road network109

geodata provided by PalmGo, we can reconstruct the trajectories. Vehicles are divided by two110

types: heavy-duty freight vehicle (HDFV) and the others (non-HDFV). Since all HDFVs are111

obliged to install Global Positioning System (GPS) devices by law in China, the sampling rate112

of HDFV fleets is 100%. For non-HDFVs, the overall sampling rate is 40% according to the113

company. Despite covering the entire fleet with favorable sampling rate, the dataset is subject114

to one major issue. All the time-related fields of trajectory records are only accurate to minute,115

which causes difficulty in computing vehicular instantaneous status (speed and acceleration).116

To exclude abnormal records that may root from device errors, trajectories less than 500 m or117

with single sample are filtered out. As a result, we obtain 11.1 million valid trajectories.118

Meshing is a common approach to regularize and integrate anisotropic spatial attributes119

(road networks) to isotropic ones (grids). In our case, CO2 emissions would be measured at120

road segment level as the foundation. To facilitate emission hotspot analysis, the emissions121

would be further allocated to regular grids. Instead of defining our own grids, we use the 1122

km-resolution grids of WorldPop (WorldPop, 2018; Tatem, 2017) to integrate the population123

information and make our results attachable to other relevant initiatives using the same grid124
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system (Chen et al., 2021).125

2.3. Traffic status estimation126

To estimate road CO2 emissions with trajectories, the first step is to calculate the traffic127

status on road. Some studies are able to compute the instantaneous speeds and accelerations128

of individual vehicles at different positions based on second-level trajectory data (Böhm et al.,129

2022; Deng et al., 2020). Since our dataset is only accurate to minute, we propose the following130

strategies to estimate the traffic status with minimal deviation. Instead of distinguishing indi-131

vidual vehicles, we emphasize the average traffic status per road segment and update the status132

every hour. Besides, we only calculate speeds and avoid computing accelerations which require133

better fineness in time. Traffic volume per road segment per hour is gleaned by counting the134

number of passed trajectories. The volume of HDFVs and non-HDFVs is counted separately,135

but they are summed up to estimate the speed. The average speed on a road segment at an hour136

is calculated by dividing the aggregated travel distance by the total time cost (Equation 1).137

si,t =
|U(i, t)| · li

Â
u2U(i,t)

Tu,i
(1)

where si,t denotes the average speed on road segment i at hour t, U(i, t) is the set of vehicle138

trajectories that pass road segment i at hour t, and | · | represents the size of the set. In our case,139

|U(i, t)| or qi,t denotes the traffic volume on road segment i at hour t. li is the length of road140

segment i, and Tu,i is the passing time of vehicle u through road segment i.141

Another challenge is how to estimate actual passing times on road segments (Tu,i) with142

minute-level trajectories. Considering the way the trajectory is recorded (Supplementary Table143

S3), simply regarding time differences between consecutive road segments as passing times144

becomes infeasible because of two issues. First, if a vehicle passes through more than one road145

segment at the same minute, the time difference would be zero, resulting in the inability to146

calculate speed. Second, even with a non-zero time difference, the actual passing time would147

still be out of calibration. For example, a time difference of 1 minute could correspond to148

any actual passing time between 1 and 120 seconds. Out of our control, since 93.2% of the149

road segments are shorter than 500 m, 95.4% of the time differences are no larger than 1 min,150

rendering it a pervasive problem. To alleviate the problem, we amend the time differences based151
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on following strategies. We introduce the minimal time cost (T i
min) for each road segment, which152

is calculated with the maximum speed limit. The maximum speed is determined by the road153

class referring to the speed limit regulation (100 km/h for highways, 80 km/h for provincial and154

urban expressways, 60 km/h for arterial roads, 40 km/h for ramps and secondary roads, and 20155

km/h for branch roads). Tu,i smaller than T i
min is replaced by T i

min. Furthermore, we mitigate156

the uncertainty by accumulating the length and time difference of continuous segments until157

the added-up time difference exceeds a minimum threshold (t). Then we calculate the average158

speed based on the cumulative length and time, and reallocate the cumulative passing time to159

each road segment proportional to the segment length. After grid searching with t from 2 min160

to 7 min, t is finally set to 5 min as the trade-off between estimation accuracy and variance.161

Mathematically, the speed error caused by time uncertainty is constrained within a range of162

±20% (-1/5 to 1/5).163

2.4. Road CO2 emission estimation164

Table 2: Weighted average parameters to calculate emission factors for HDFV and non-HDFV. (Parameter a� k
are the coefficients of the polynomial fitting function between speeds and emission factors provided by (Boulter
et al., 2009).)

Vehicle
type a b c d e f g k

HDFV 5237.8 1003.4 -20.164 0.1603 1.28e-3 -1.67e-5 3.28e-8 1
Non-HDFV 2735.7 104.2 -0.468 0.0098 -3.43e-5 2.39e-7 -4.09e-10 1

With the segment-level traffic status per hour, we estimate the road CO2 emissions with165

a speed-based microscopic emission model (Boulter et al., 2009), which fits our data charac-166

teristics and emission standard system well, and has been widely applied in various scenarios167

(Carslaw et al., 2010; Lomas et al., 2010; Hicks et al., 2021). The model determines the emis-168

sion factor f by speed and parameters varying with vehicle attributes including the vehicle type,169

fuel type and emission standard (Equation 2). Due to lack of these vehicle attributes, we follow170

the approach commonly used in the literature (Pla et al., 2021; Zhou et al., 2022b), by assum-171

ing that the on-road shares of vehicle types, fuel types, and emission standards are consistent172

across all road segments, and estimating CO2 emissions with weighted average emission fac-173

tors. Non-HDFV consists of all the vehicle types except for HDFV, including large passenger174

vehicle, medium passenger vehicle, small passenger vehicle, mini passenger vehicle, medium175

8



freight vehicle, light freight vehicle, and mini freight vehicle. The shares of vehicle types in176

non-HDFVs are obtained from the vehicle possession structure in 2020 (Guangdong Province177

Statistical Bureau, 2021). The shares of fuel types and emission standards refer to the national178

level in 2018 (MEE, 2019). Despite some time inconsistencies, it is the official data closest179

in time to our trajectories. CO2 emissions from new energy vehicles are ignored in this study,180

given that new energy vehicles only account for 1.75% of the total vehicles in China in 2020181

(MEE, 2021). Details in shares of vehicle types, fuel types, and emission standards could be182

found in Supplementary Table S4-S6, while the parameters to calculate CO2 emission fac-183

tors for each combination are available Supplementary Table S7. With all of this information,184

we obtain the weighted average emission factors for HDFVs and non-HDFVs (Table 2), re-185

spectively. Accordingly, road segment-level CO2 emissions are estimated with the following186

formulas (Equation 3, 4, and 5):187

fi,t = k · (a+bsi,t + csi,t
2 +dsi,t

3 + esi,t
4 + f si,t

5 +gsi,t
6)/si,t (2)

188

Enon
i,t =

1
bnon

⇥ ( f non
i,t ⇥ li ⇥qnon

i,t ) (3)

189

Ehd f v
i,t =

1
bhd f v

⇥ ( f hd f v
i,t ⇥ li ⇥qhd f v

i,t ) (4)

190

Ei,t = Enon
i,t +Ehd f v

i,t (5)

where a- f are the weighted average parameters depending on vehicle type (Table 2), Ehd f v
i,t and191

Enon
i,t denote CO2 emissions at segment i and hour t from HDFVs and non-HDFVs respectively,192

Ei,t is the total CO2 emissions, f hd f v
i,t and f non

i,t are the average CO2 emission factors (g/km), and193

qhd f v
i,t and qnon

i,t indicate traffic volumes. The sampling rate of HDFVs bhd f v and non-HDFVs is194

1.0 and 0.4 respectively.195

2.5. Emission hotspot detection (QH-DBSCAN)196

Considering that emissions are continuously distributed in space, we deem density-based197

clustering algorithms an appropriate option to capture the hotspots. Density-based spatial clus-198
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Table 3: Description of emission hotspots at different levels.

Level Color Quantile Description

High Red 90% Clustered grids with emissions higher than the 90% quantile

Middle Orange 75% Clustered grids with emissions higher than the 75% quantile

Low Green 50% Clustered grids with emissions higher than the 50% quantile

tering of applications with noise (DBSCAN) (Ester et al., 1996) is widely used to detect clusters199

based on the proximity in the feature space. To decipher the hierarchy of emission hotspots, on200

the ground of DBSCAN, we propose a method called Quantile-based Hierarchical DBSCAN201

(QH-DBSCAN) to recognize hierarchical emission hotspots, which refer to spatially clustered202

high-emission areas. First, road-level CO2 emissions are allocated onto WorldPop grids. We203

use quantiles to identify high-emission grids. To explore a hierarchy of emission hotspots, we204

prepare a list of quantiles and repeat emission hotspot detection with each. For each quantile,205

the corresponding emission hotspots are identified by feeding the grids with emissions over the206

quantile into a DBSCAN model. We fully appraise the uncertainty hidden behind the method.207

The list of quantiles is determined through exploratory experiment on the relationship between208

the quantiles and the covered percentages of total emissions, while the hyper-parameters of DB-209

SCAN are determined by sensitivity analysis. Both experiments would be elaborated in Sec-210

tion 3.3. The selected quantiles with the associated levels of emission hotspots are displayed in211

Table 3. To clarify, the 90%-quantile grids are equivalent to the top 10% emitting grids, and so212

on. QH-DBSCAN has two major merits. First, it could detect hierarchical emission hotspots213

and present the results with intuitive maps. Second, as a density-based clustering method, it214

leads to results with spatial contiguity, which is more useful for potential policy making.215

3. Results216

3.1. Spatial pattern of road CO2 emissions in Guangdong.217

Based on the vehicle trajectory dataset and the proposed emission estimation method, segment-218

level CO2 emissions per hour are obtained. The spatial distribution of daily gross road CO2219

emission intensity is illustrated in Figure 3(a). Emission intensity denotes CO2 emissions per220

meter for each road segment. Road CO2 emissions in Guangdong Province show significant221

spatial agglomeration. GBA accounts for 76% of the total emissions, while non-GBA cities222

10



(a)

(b)

(c) (d)

Figure 3: Daily gross road CO2 emission pattern in Guangdong Province. (a) Daily gross CO2 emission intensity
per road segment in Guangdong. (b) Daily gross road CO2 emissions per city and vehicle type (GBA cities in
purple). (c) Daily gross road CO2 emissions per road class and vehicle type. (d) Emission intensity and total road
length per road class.
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generate considerably less emissions on a broader land. Comparing the daily gross emissions223

among the cities (Fig 3(b)), the capital city, Guangzhou, appears to be the topmost emitter,224

producing 15621t CO2 and contributing to 21% of the total. It is followed by the other ma-225

jor city, Shenzhen, with 9532t of road CO2 emissions. Although the total emission is lower226

than Guangzhou, Shenzhen is the most densely emitting city, with an average emission inten-227

sity (1.01 kg/m) twice as much as the provincial average (0.49 kg/m). Foshan and Dongguan228

are the other two emission-intensive cities with a total emission close to the one of Shenzhen.229

Their emission intensities are between Shenzhen and Guangzhou. These four cities are the ma-230

jor industrial cities in Guangdong. For the rest cities, both the total emissions and emission231

intensity drop dramatically. Zhuhai is the only GBA city at the bottom of the emission ranking.232

Qingyuan produces the most road CO2 among the non-GBA cities.233

GBA cities appear to have higher percentages of road CO2 emissions from non-HDFVs.234

Comparing the shares of emissions from different vehicle types across the cities, we find that235

GBA cities tend to have less proportions of HDFV emissions (generally around 30%), while236

those of most non-GBA cities are over 60%. GBA cities possess 71.7% of the non-HDFVs237

in Guangdong (Guangdong Province Statistical Bureau, 2021), but they generate 86.0% of the238

provincial non-HDFV emissions by our estimation. To discover whether non-HDFVs in GBA239

cities tend to emit more in average, we calculate and display the road CO2 emissions per non-240

HDFV possession across the cities in Supplementary Table S8. The results are affirmative.241

The average emissions per non-HDFV possession for GBA cities are 2.24 kg, while those for242

non-GBA cities are only 0.92 kg. GBA cities occupy the top 8 places in this indicator. In243

comparison, regarding emissions per HDFV possession, the mean of non-GBA cities is 16.02244

kg, which is a bit larger than that of GBA cities (11.14 kg). The difference is not as significant as245

that of non-HDFV. Our findings suggest that non-HDFVs are used in a more emission-intensive246

way in GBA than outside. It may be due to longer travel distances, more frequent vehicle travel,247

and severer congestion in GBA. However, we also cannot rule out the possibility that drivers in248

non-GBA cities use navigation less due to a less complicated traffic system and smaller active249

area, which leads to undersampling of trajectories in these regions.250

The distribution of CO2 emissions by road class is also heterogeneous (Figure 3(c)). High-251

way generates the most emissions (41% of the total), with 42% from HDFVs. The emission252
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intensity on highways is also the highest with 1.61 kg/m in average (Figure 3(d)). Provincial253

expressways as the other major regional connector, emit the second most CO2 (18% of the254

total). It has the highest share of HDFV emissions (61%), indicating its vital role in regional255

freight transportation. The rest road classes mainly serves local transportation. Although their256

emission intensities are generally more moderate, they cover 77% of the total road length and257

accordingly contribute to 50% of the total emissions. In particular, the branch roads exhibit258

substantially minor emission intensity (0.13 kg/m), but the massive length makes them generate259

14% of the total emissions.260

3.2. Temporal pattern of road CO2 emissions261

The hourly variations of road CO2 emissions during the day are revealed in Figure 4. Given262

that the total emissions of GBA and non-GBA cities differ considerably, we further compare263

their temporal fluctuation on emissions (Figure 4(a), 4(b)). In general, the city-level road CO2264

emissions share a “three-stage” pattern, including an ascending stage (4:00-10:00), a plateau265

stage (10:00-19:00) and a descending stage (19:00-4:00 the next day). During the plateau stage,266

the emissions experience a slight decrease at noon (11:00-13:00). An obvious trough is ob-267

served at dawn (around 4:00). To quantify the emission variance of a city in a day, we define268

the variation rate as the maximum hourly emissions divided by the minimum. Variation rates269

of GBA cities (ranging from 2.7 for Zhaoqing to 9.6 for Zhongshan) surpass non-GBA cities270

(ranging from 1.8 for Shaoguan to 6.8 for Shantou). Guangzhou is the top emitter at all hours,271

with a variation rate of 4.7. The other three emission-intensive cities, Shenzhen, Foshan and272

Dongguan, possess larger variation rates, which are 6.7, 6.8, and 5.3 respectively.273

To provide more insights in GBA, we compare the temporal patterns by vehicle types. The274

hourly variations of road CO2 emissions from HDFVs and non-HDFVs for GBA cities are275

demonstrated in Figure 4(c) and 4(d), respectively. Non-HDFV emissions follow a very similar276

“three-stage” pattern with the total emissions. In comparison, HDFV emissions fluctuate less277

during the day. Guangzhou is the city with the most stable and intensive HDFV emissions dur-278

ing the day, manifesting its dominant position in freight transportation in GBA. There are two279

obvious valleys of HDFV emissions at 6:00-9:00 and 17:00-20:00 in Guangdong, Shenzhen,280

Dongguan and Foshan. The declines may be attributed to HDFV traffic control during the peak281

time. In these four major cities, HDFVs show some degree of off-peak travel, and the pattern282
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Temporal patterns of road CO2 emissions in Guangdong. (a) Hourly variations of road CO2 emissions
for GBA cities. (b) Hourly variations of road CO2 emissions for non-GBA cities. (c) Hourly variations of non-
HDFV CO2 emissions for GBA cities. (d) Hourly variation of HDFV CO2 emissions for GBA cities. (e) Hourly
variations of contribution ratio for GBA and non-GBA cities. (f) Hourly variations of contribution ratio per vehicle
type in Guangdong.

is the most significant in Shenzhen. However, there are still apparent overlaps of high emis-283

sions from HDFVs and non-HDFVs during the period between the morning and evening peaks,284

rendering a space for relevant policy making.285

The study also outlines the temporal pattern of road CO2 emission agglomeration. We use286

the contribution ratio of the top 10% emitting road segments to the total emissions to quantify287

the level of emission hotspots in a region. In Guangdong, the top 10% emitting roads produce288

77.6% of the total emissions, presenting significant emission agglomeration. The phenomenon289

is also reported in other city-level road emission studies (Böhm et al., 2022; Chen et al., 2022).290

The contribution ratio of GBA cities (78.6%) exceeds the provincial average, while non-GBA291
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cities (75.9%) is below. The hourly variation of the contribution ratio of GBA and non-GBA292

cities is plotted in Figure 4(e). For both groups of cities, the contribution ratio culminates near293

90% around the valley hour of emission (4:00-5:00). It indicates that, although the total emis-294

sion shrinks at dawn, emissions are actually more concentrated on few roads. In terms of vehicle295

types (Figure 4(f)), HDFV emissions are more concentrated than non-HDFV emissions at all296

time. Nevertheless, the emission agglomeration of non-HDFV emissions is also nonnegligible.297

3.3. Emission hotspot analysis298

(a) (b)

(c)

Figure 5: Process of quantile selection for emission hotspot and analysis. (a) Spatial distribution of grid-level daily
gross road CO2 emissions in GBA. (b) Curves on relationships between quantiles and the covered percentages of
total emissions. (c) Spatial distributions of grids associated with the three selected quantiles.

In the preceding sections, we have presented the spatiotemporal pattern of road CO2 emis-299

sions in Guangdong. The findings suggest that GBA contributes to 76% of the total emissions300

with only 30% of the land. GBA is also found to exhibit more significant emission agglom-301

eration gauged by contribution ratios. Thus, in the following analysis, we focus on GBA to302

conduct emission hotspot analysis. To regularize the road-level emissions spatially, we lattice303

the GBA area into 70,750 1km-resolution (0.01�) grids and aggregate the emissions within each304

grid, resulting in the grid-level map of daily gross emissions in GBA (Figure 5(a)).305
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Before implementing QH-DBSCAN method to identify emission hotspots, we need to de-306

termine the list of quantiles. The relationship between quantiles and the percentages of the cov-307

ered daily gross CO2 emissions is illustrated in Figure 5(b) (the black curve). As the quantile308

decreases,the percentage increases dramatically at first. The 90%-quantile girds have covered309

around 60% of the total emissions. After that, the slope becomes flatter gradually and near all310

the emissions are covered with the minimum amount of grids at the 50% quantile. Emissions at311

different hours also follow a similar trend. Given the observation, we select 90% and 50% quan-312

tiles as the upper and lower limits respectively. To introduce some continuity and hierarchy, the313

75% quantile is added, which is associated with a percentage in the middle (80%). As a result,314

we confirm three quantiles, namely 90%, 75% and 50%. The spatial distribution of the grids315

fulfilling each quantile is shown in Figure 5(c). The 90%-quantile grids primarily distribute at316

the downtown of Guangzhou and Shenzhen and along the regional connectors among the four317

major cities. More areas with backbone roads are included for the 75%-quantile, and most built318

areas in GBA are involved for the 50%-quantile.319

Figure 6: The process of determining hyper-parameters of DBSCAN: the maximum neighborhood-searching
distance(e) and the minimum sample in a neighborhood (MinPt).

Have the quantiles determined, we perform DBSCAN with grids with emissions over each320

quantile respectively. To minimize the uncertainty caused by parameter selection, we design a321

sensitivity analysis on the two main hyper-parameters of DBSCAN, the maximum neighborhood-322

searching distance(e) and the minimum sample in a neighborhood (MinPt). The number of323
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neighborhoods and the percentage of clustered emissions, are the two metrics that we use to324

evaluate the rationality of clustering results. Based on daily gross emissions, we visualize how325

these two metrics change with different combinations of parameters (Figure 6). In general,326

the number of neighborhoods decreases the fastest when either e or MinPt increments indi-327

vidually. When the hyper-parameters grow synchronously, the rate of decrease slows down,328

and the smaller the quantile, the more obvious the decrease is. For the percentage of clustered329

emissions, the trend is simpler. Larger e induces more clustered emissions, while MinPt is the330

opposite. We note that extreme values of either metric can lead to unwanted clustering results.331

A too large number of neighborhoods could result in small and dispersive emission hotspots,332

while a too small one makes emission hotspots over-merged. Similarly, the percentage of clus-333

tered emissions reflects the severity of the conditions for identifying emission hotspots, which334

cannot be too loose nor too tight. Therefore, our strategy is to select a parameter couple that335

yields moderate values of both metrics at the same time. e determines how stringent we define336

the proximity between grids, so it should be constrained by the size of the grids. Given that our337

grids are in 0.01� resolution, the available range of e is from 0.01� to 0.05�. Finally, striking a338

balance among all the factors aforementioned, the hyper-parameters are settled for each quan-339

tile: 90% quantile (e = 0.03�, MinPt = 20), 75% quantile (e = 0.03�, MinPt = 25) and 50%340

quantile (e = 0.03�, MinPt = 30).341

With all the prerequisites set, we obtain the hierarchical emission hotspots of daily gross342

road CO2 emissions in GBA (Figure 7(a)). Metrics of different levels of emission hotspots are343

presented in Figure 7(b). Most hotspots locate in the core area of GBA (the zoomed-in area).344

Statistically, the 90%-quantile hotspots emit 29.6% of the total emissions with only 5% of land345

in GBA . The 75%-quantile hotspots cover twice the area of the 90%-quantile hotspots, con-346

tributing to 40.3% emissions. 50%-quantile hotspots aggregate 65.7% of emissions on 23% of347

land. For each quantile, we plot the location and scope of every single emission hotspot with348

the ranking of total emissions (Figure 7(c)). The 90%-quantile hotspots include two primary349

components, namely the Guangzhou-Foshan metropolis and Shenzhen center, exhibiting huge350

emission volume that far exceeds other hotspots scattering at the major industry and transporta-351

tion nodes in Guangzhou, Shenzhen, Foshan and Dongguan. The results suggest that road CO2352

emissions in Guangzhou and Foshan have formed a unified high-level emission hotspot, reflect-353
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(a) (b)

(c)

(d) (e)

Figure 7: Maps and statistics of hierarchical emission hotspots in GBA. (a) Hierarchical emission hotspots of daily
gross road CO2 emissions in GBA. (b) Metrics of different levels of emission hotspots. (c) Spatial distribution
and emission rankings of different levels of emission hotspots. (d) Hierarchical emission hotspots of daily CO2
emissions from HDFVs in GBA. (e) Hierarchical emission hotspots of daily CO2 emissions from non-HDFVs in
GBA. Source of the basemap: (c) OpenStreetMap contributors.

18



ing the promotion of integrated urbanization of the two cities (Zhang et al., 2021b). For the354

75%-quantile hotspots, the two primary hotspots retain and absorb broader area around. Some355

adjacent 90%-quantile hotspots are merged into 75%-quantile hotspots, and glean second-tier356

emissions. 90%-quantile hotspot 5 and 6 are integrated into 75%-quantile hotspot 4 in Dong-357

guan downtown. 90%-quantile hotspot 7 and 8 become 75%-quantile hotspot 3 at Shenzhen-358

Dongguan junction area. Meanwhile, some new hotspots pop up in central area of other small359

cities, including Zhongshan (75%-quantile hotspot 8), Huizhou (75%-quantile hotspot 13) and360

Zhuhai (75%-quantile 15). The top 50%-quantile hotspots (1 - 4) are characterized by huge foot-361

prints. Since the 50%-quantile hotspots are obtained with nearly all the grids with emissions,362

they reflect the spatially contiguous road CO2 emitting zones in GBA. One observation is that363

all the top hotspots cross city boundaries. It indicates that regional integration development364

in GBA is promoting huge spatially continuous road emission zones. Cross-border emission365

hotspots have been constituted between Guangzhou and Foshan, Dongguan and Shenzhen, and366

Foshan, Zhongshan and Jiangmen, while the contiguous discharge in the east and south direc-367

tions of Guangzhou has not yet formed. Even so, the current top 50%-hotspots have gathered368

the majority of road CO2 emissions. Although a large amount of small hotspots exists around369

the top hotspots, they only contribute to a tiny proportion.370

The disparity of agglomeration patterns between HDFV and non-HDFV emissions is high-371

lighted (Figure 7(d), 7(e)). HDFV CO2 emissions are significantly less clustered than the coun-372

terpart. Even the 50%-quantile hotspots only account for 32.8% of the total HDFV emissions.373

The 90%-quantile HDFV hotspots mainly refer to Huangpu District in east Guangzhou, Long-374

gang District in north Shenzhen, and Baoan District in west Shenzhen. These areas are the375

principal industrial zones in GBA. Comparatively, emission agglomeration of non-HDFV is far376

more considerable. The hierarchical pattern resembles that of the total emissions. Non-HDFV377

emissions are even more concentrated than the total emissions, with the three levels of hotspots378

covering 42.5%, 61.6% and 78.9% of the total non-HDFV emissions respectively.379

With the hyper parameters consistent, the temporal variation of hierarchical emission hotspots380

in GBA is analyzed (Supplementary Figure S2). The patterns from 7:00 to 0:00 the next day381

are analogous and are basically consistent with that of the daily gross emissions. From 1:00,382

all levels of emission hotspots start to shrink in scale visibly and become the smallest at 4:00.383
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After that, emission hotspots resume spreading and finally return the full state at around 7:00.384

As a scale metric of emission hotspots, the percentage of clustered emissions records the same385

process of variation in a quantitative way (Supplementary Figure S2(b)). These curves have386

a similar trend with the daily gross emissions (Figure 4(a)). However, they carry different in-387

formation. QH-DBSCAN reflects the relative level of emission agglomeration regardless of388

the absolute emissions. Thus, their remarkable consistency indicates that, in GBA, the rise of389

absolute emissions would promote the level of emission agglomeration.390

3.4. Category of emission patterns391

The preceding analysis has unfolded the road CO2 emission patterns in GBA from the per-392

spective of space, time, vehicle type and agglomeration. To gain an all-round insight from393

those sides, we attempt to categorize the grid-level emission patterns. The attributes used for394

the categorization consist of two portions. The first part indicates the overall emission quan-395

tities, including daily gross emissions, daily gross HDFV emissions, daily gross non-HDFV396

emissions, emission intensity and the percentage of HDFV emissions. The second one contains397

the cases where the grids belong to different levels of emission hotspots at different times. We398

use hotspot level rather than the absolute emissions to guide the generation of spatially continu-399

ous emission categories, which is conductive to policy making. Since emission hotspots do not400

vary drastically in consecutive hours, we use typical hours to represent the entire day. Focusing401

on representative hours alleviates the multicollinearity among attributes and is instrumental to402

interpret the results. Specifically, we choose five hours, that is the emission valley hour (4:00),403

the two emission peak hours (8:00 and 18:00), and two transitional hours (12:00 and 0:00). The404

hierarchical emission hotspots at each selected hour are converted into three dummy variables,405

indicating whether the grid belongs to each level of hotspot. As a result, the process gives rise406

to 15 dummies. In summary, the attribute set contains 20 explanatory variables. We employ407

K-Means clustering algorithm (Hartigan and Wong, 1979) to categorize the emission patterns.408

All the non-dummy attributes are normalized before entering the model. We experiment among409

Z-score, min-max scaling and inverse hyperbolic sine function, and find that the last one fits the410

best because it is capable of dealing with zero-inflated attribute sets as ours. To determine the411

optimal hyper-parameter k (number of clusters), we conduct assessments with multiple methods412

including elbow method (Bholowalia and Kumar, 2014), Silhouette score (Rousseeuw, 1987),413
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and gap statistics (Tibshirani et al., 2001). After testing with 100 random seeds, the optimal k414

is set to be 6. Consequently, we obtain the spatial distribution of the six emission categories415

in GBA (Figure 8(a)). There are two main geographical forms for the emission categories.416

Among the six categories, four are in zone form, whilst two are in linear form. According to417

the geographical form and the emission intensity, we define the zone categories as Primary,418

Secondary, Tertiary and Minor Emission Zone, and name the linear categories as Primary and419

Secondary Emission Connector. The differences in emission metrics among the categories are420

demonstrated in Table 4.421

Table 4: Differences in road CO2 emissions metrics among emission categories.

Category Population
(million)

Daily gross
emissions

(t)

Per capita
emissions

(kg/person)

Emission
intensity
(kg/m)

Non-HDFV
emissions

(t)

HDFV
emissions

(t)

HDFV
percentage

(%)

Primary Emission Zone 16.46 17,002 1.03 1.63 13,850 3152 18.5
Secondary Emission Zone 16.29 12,808 0.79 0.80 8897 3911 30.5
Tertiary Emission Zone 12.46 5333 0.43 0.34 3385 1948 36.5
Minor Emission Zone 11.22 344 0.03 0.04 283 61 17.7
Primary Emission Connector 5.73 15,890 2.77 1.03 7704 8186 51.5
Secondary Emission Connector 9.88 4864 0.49 0.24 1761 3103 63.8

The Primary, Secondary and Tertiary Emission Zone overlap with the urban area in GBA.422

The Primary Emission Zone includes the Guangzhou-Foshan metropolis and the main cities of423

Shenzhen and Dongguan, which are the most developed area in GBA, accommodating 16.46424

million residents according to the WorldPop (WorldPop, 2018). It not only generates the largest425

total emissions (17002 t), but also possesses the topmost emission intensity (1.63 kg/m) and426

per capita emission (1.03 kg/person). In Primary Emission Zone, non-HDFVs are responsible427

for the majority of emissions, with only 18.5% of the total emissions from HDFVs. The Sec-428

ondary Emission Zone points to the satellite towns around Guangzhou, Shenzhen, Dongguan429

and Foshan, and also the major cities of Zhongshan, Huizhou, Jiangmen and Zhuhai. The total430

population is close to the Primary Emission Zone, but less road CO2 emissions are produced431

(12808 t) because of the lower per capita emissions (0.79 kg/person) and emission intensity432

(0.80 kg/m). The Tertiary Emission Zone contains more outer suburbs around the Primary and433

Secondary Emission Zone. With 12.46 million residents in the zone, the zone products 5333t434

road CO2 emissions per day. The per capita emissions (0.43 kg/person) and emission intensity435

(0.34 kg/m) decline further. In the meantime, HDFVs account for a higher proportion of the436

total emissions (36.5%), which nearly doubles that of the Primary Emission Zone. The find-437

ings unveil that population size may not be the decisive factor of road CO2 emissions. In fact,438
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(b)

Figure 8: Emission Category in GBA. (a) Spatial distribution of road CO2 emission categories in GBA. (b) Tem-
poral variations of average emission hotspot level. Source of the basemap: (c) Esri.

22



some zones emit surplus emissions because of a higher unit average emission instead of exces-439

sive population. Besides, the emission addition is mainly triggered by non-HDFVs, implying440

a possibly more emission-intensive mode of mobility in those high-emission zones. The broad441

rural and natural area in GBA is mostly demarcated into the Minor Emission Zone. Road CO2442

emissions in this zone are comparatively negligible.443

By contrast with zones, the rest two emission categories are characterized by a spatially444

linear distribution along the road, especially the regional connector (highway and provincial445

expressway). The Primary Emission Connector mainly consists of highways that radiate from446

the emission-intensive zones. These connectors produce 15890 t road CO2 a day, which is447

second only to the volume of Primary Emission Zone. This emission category involves the least448

residents and has the highest per capita emissions (2.77 kg/person). Most emissions are related449

to inter-city long-distance travel or freight transportation. HDFVs contribute to 51.5% of the450

total emissions, which is considerably larger than those of the emission zones. The Secondary451

Emission Connector refers to the provincial expressways that primarily serve intra-city medium-452

distance mobility. The daily gross emissions and the emission intensity are much lower than the453

Primary Emission Connector. However, the HDFV percentage (63.8%) is the highest among454

all the categories. On emission connectors, HDFVs appear to be the dominant emitter, with455

55.4% of the daily gross HDFV emissions concentrating on Primary and Secondary Emission456

Connector.457

To further interpret the differences in the emission hotspot level among emission categories458

across the time, we conduct the following analysis. For grids included in multiple levels of emis-459

sion hotspots, the highest level is taken. For each grid, a numerical score is used to represent460

the highest hotspot level (90%-quantile hotspot— 3, 75%-quantile hotspot— 2, 50%-quantile461

hotspot — 1, no hotspot — 0). For each category, its average emission hotspot level is reflected462

by the mean score across the grids. In this way, we obtain the temporal variations of the av-463

erage hotspot level in Figure 8(b). Regarding the total emissions, only the Primary, Secondary464

and Tertiary Emission Zone exhibit significant emission agglomeration. Grids in the Primary465

Emission Zone mostly belong to 90%-quantile hotspots from 8:00 to 18:00, while one level of466

downgrade occurs at 4:00. Similar trend is also observed for the Secondary and Tertiary Emis-467

sion Zone with lower overall levels. The average hotspot level of Non-HDFV emissions has468
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analogous characteristics with the total emissions. In contrast, HDFV emission agglomeration469

is less considerable across all the categories, with average hotspot levels lower than 1 during470

the day.471

4. Discussion472

4.1. Validation of emission estimation473

Table 5: Comparison of estimation results between this study and the literature.

Study area Road type Study Year Data Source Approach CO2 Emissions
(Mt/year)

Guangdong Province All

Jia et al. (2018) 2011 Statistical Yearbooks Bottom-up 84.5
Jia et al. (2018) 2012 Statistical Yearbooks Bottom-up 94.1
Guo et al. (2014) 2012 Statistical Yearbooks Top-down 56.82
Jia et al. (2018) 2013 Statistical Yearbooks Bottom-up 101.9
Jia et al. (2018) 2014 Statistical Yearbooks Bottom-up 109.4
Jia et al. (2018) 2015 Statistical Yearbooks Bottom-up 112.5
Crippa et al. (2021) 2018 Energy Balances Top-down 90.9
Guan et al. (2021) 2019 Statistical Yearbooks Top-down 61.17
Xu et al. (2021) 2019 Statistical Yearbooks Bottom-up 50.1

Gao et al. (2022) 2020 China’s continuous emissions
monitoring systems (CEMS) Top-down 70.15

Liu et al. (2022) 2021 EDGAR transport emissions Top-down 80.3
This study 2020 Vehicle trajectories Bottom-up 27.28

Guangdong Province Highway Li et al. (2022) 2021 Highway toll data Bottom-up 5.59
This study 2020 Vehicle trajectories Bottom-up 11.26

Futian and Nanshan,
Shenzhen All Zhou et al. (2022b) 2017 Vehicle trajectories Bottom-up 0.03

This study 2020 Vehicle trajectories Bottom-up 0.84

Emission estimation is always vulnerable to the method and data source used. To validate474

our results and discover the pros and cons, we compare our results with other studies using475

different datasets and methods (Table 5). We make necessary conversions on our results to476

guarantee the consistency of study scenario (year, study area, road type and emission type) with477

previous studies and ensure the comparability. It turns out that road CO2 emission estimates478

vary significantly across studies. Top-down and bottom-up approach can lead to very different479

results using similar data source. Besides, data source also has a profound impact. Estimates480

based on trajectory data are commonly lower than those based on collective data. As the first481

study that uses vehicle trajectories to estimate daily gross road CO2 emissions in Guangdong,482

our estimates are considerably lower than those obtained from collective data such as China483

Statistical Yearbook and Energy Balances. However, it cannot be assumed that the sampling rate484

of our dataset is overrated, because our study yields higher emission estimates than other studies485

using similar dataset such as highway toll data (Li et al., 2022) or vehicle trajectories (Zhou486

et al., 2022b) at the same time. Li et al. (2022) harness full-sample O-D pairs between highway487
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tolls and route simulations rather than real trajectories to estimate highway CO2 emissions.488

Their lower estimates may root from overlooking accidents and detours that often happen in489

real life. Zhou et al. (2022b) use real trajectories in 2017 with limited samples. Considering490

the three-year time difference and the fact that our dataset contains over 16 times as many491

samples as theirs in the same area, the difference in results is generally acceptable. Even though492

most inputs are fixed, uncertainty of estimates can also be introduced by different empirical493

schemes adopted to determine the emission factor, vehicle kilometer traveled, fuel consumption,494

etc.. Therefore, in general, the estimates of this study lie in an appropriate range, and they495

compensate the lack of road carbon emission estimation in Guangdong using individual level496

activity data.497

4.2. Policy implications498

Based on the findings above, we intend to recommend some targeted measures to mitigate499

road CO2 emissions in our study area, especially in GBA.500

Several universal strategies can be widely applied. We outline the necessity of periodically501

supervising fine-grained regional road carbon emissions with intelligent systems and all sorts502

of big data approaches (Wang et al., 2022a). Our study suggests that special attention should be503

given to the core area of Guangzhou-Foshan metropolis and Shenzhen where emissions are the504

most intensive and clustered. The continuously updated database lays the foundation for down-505

stream applications, such as emission pattern analysis and emission reduction policy making.506

This study enriches the technical toolkits for both the supervision side and the application side,507

by proposing methods to handle trajectory data with deficiency in time granularity, identify508

emission hotspots, and categorize emission zones. Besides, our research confirms that raising509

vehicle emission standards and promoting new energy vehicles is instrumental to reduce over-510

all road carbon emissions (Zhang et al., 2022). HDFVs are found to be associated with much511

more intensive emissions per vehicle possession than non-HDFVs (Supplementary Table S8).512

Thus, HDFVs, especially those with higher accumulated mileage (Wang et al., 2022b), should513

be prioritized for emission standard upgrade or electrification.514

Furthermore, considering that resources are limited and extensive policies may cause nega-515

tive externalities, emission reduction policies should be adaptive to local emission patterns (Cai516

et al., 2018). To achieve that, we introduce policy zones where targeted measures are proposed,517
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(a) (b)

Figure 9: Maps for policy implications. (a) Spatial distribution of emission policy zones (b) Spatial distribution of
policy highways.

based on the spatial distribution of emission categories. Our methodology generates spatially518

continuous regions with similar emission patterns, which is inductive to defining policy zones.519

To further facilitate policy implementation, we use street (the smallest administrative division520

in China) as the unit to divide policy zones. The emission category of a street is determined521

by the emission category of the grids covering the largest area within the street. In line with522

the three major emission zones (Figure 8(a), Table 4), we define the Primary, Secondary and523

Tertiary Policy Zone (Figure 9(a)). The spatial distribution of emission zones and policy zones524

are similar. Primary Emission Zone is characterized by the highest emission intensity but low525

proportions from HDFVs. The measures should accordingly focus on mitigating emissions526

from daily travel. Considering that areas within Primary Emission Zone are equipped with527

comparatively more advanced public transportation resources in GBA, we suggest encouraging528

sustainability-oriented travel mode choice from two directions. First, more people should be529

guided to use the public transits by improving the competitiveness of the system. For exam-530

ple, the transportation department could optimize the bus lines and subway operations within531

this zone to achieve more volume and better accessibility. Second, government could toll extra532

emission taxes on personal vehicles driving in the Primary Policy Zone. Under our estimation533

regarding road CO2 emission reduction, converting residents in the Primary Policy Zone to534

public transits is five times more efficient than converting the same number of random people535

in GBA. The Secondary Policy Zone indicates the streets with most of their area categorized536

as Secondary Emission Zone whose emission intensity halved but proportions from HDFVs537

doubled compared with the Primary Emission Zone. Although some level of off-peak HDFV538
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delivery has been observed (Figure 4(c), 4(d)), there are still apparent overlaps of high emis-539

sions from HDFVs and non-HDFVs during the period between the morning and evening peaks.540

Therefore, we recommend enacting incentive policies such as midnight toll discount to guide541

HDFVs to reschedule their itinerary and operate during low-emission hours (22:00 - 6:00). Pro-542

moting off-peak delivery could alleviate the emission surplus caused by traffic congestion at543

peak hours (Chen et al., 2022). Last, Tertiary Policy Zone mainly indicates the marginal streets544

around the major urban areas. Although both the local emission volume and intensity are much545

less, the nonnegligible population size and the geographic adjacency with the major urban ar-546

eas may mean heavy external traffics. We would recommend more detailed future studies to547

uncover the pattern of emissions from traffics between these streets and the major urban ar-548

eas. Some measures might be necessary to reduce emission surplus from long-distance vehicle549

travels.550

The emission category, Primary Emission Connector, mainly consists of the inter-city high-551

ways with intensive emissions and a high proportion from HDFVs. We highlight these highways552

as the “policy highway”, which should be prioritized for carbon reduction policies (Figure 9(b)).553

We advocate promoting electrified HDFVs to run the transportation routes on these highways.554

Some policy and infrastructure facilities could be provided on these highways for electrified555

HDFVs, such as more convenient and affordable charging services and lower passing tolls.556

Also, we note that many of the policy highways are those radiating from Guangzhou and Shen-557

zhen. Thus, another strategy could be strengthening the construction and integration of regional558

freight railway infrastructure around these two cities, to divert corresponding transportation559

needs from roads to railways.560

4.3. Limitations and future studies561

The findings of this study have to be seen in light of the following limitations. The ve-562

hicle trajectory data used in our study is at minute-level granularity, which may still induce563

uncertainty in traffic status and CO2 emission estimation, although some corrections are im-564

plemented. Besides, due to limited data availability, this analysis is conducted with data in a565

single day. Panel data should be helpful to examine the emission fluctuation in a longer time566

span. Since the vehicle type, fuel type and emission standard of each trajectory are unavailable,567

these factors are considered to be constant across all the road segments. We suggest using more568
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advanced data sources and local emission model to validate our results. Besides, our results569

identify a considerably higher proportion of HDFV CO2 emissions in non-GBA cities, which570

might be partly attributed to the possibility that drivers in these cities count less on navigation571

during daily travel. It means the possible spatial heterogeneity in the sampling rates, which may572

influence trajectory-based emission estimation but remains under-explored in the literature.573

This study obtains emission category zones in GBA and accordingly divides policy zones574

with targeted carbon reduction strategies. We are aware that policy making is a rigorous and575

complicated process where multiple aspects should be considered. Due to space limitations, this576

study focuses more on emission pattern analysis, and thus does not involve other perspectives577

such as demography, land use, finance, and so on. A more detailed depiction on the demo-578

graphic structure in each emission category zone may help to understand the status quo better579

and formulate more solid strategies (Deng et al., 2021; Zhang et al., 2021a). Other indicators580

regarding urban form (Shi et al., 2020; Wang et al., 2017; Chen et al., 2021; Biljecki and Chow,581

2022) and built environment (Cao and Yang, 2017) could also be taken into consideration. Fur-582

thermore, distinguishing the emission patterns of different vehicle usages and trip purposes583

(Zhao et al., 2017) is also instrumental to deepen the understanding of road emissions. Our584

follow-up research would be intended to remedy these deficiencies.585

5. Conclusions586

Based on massive vehicle trajectories, this study demonstrates the spatiotemporal pattern587

of road CO2 emissions in Guangdong. Emissions are estimated per road segment and per588

hour, with both broad spatial coverage and fine granularity. Overall, GBA produces 76% of589

the total emissions with only 30% of land in Guangdong. Guangzhou is the primary emitter590

in Guangdong, producing 15621 t CO2 and contributing to 21% of the provincial emissions.591

Shenzhen has the highest average emission intensity (1.01 kg/m). Most GBA cities rank high in592

road CO2 emissions except for Zhuhai. Compared with GBA cities, non-GBA cities have twice593

the percentage of HDFV emissions. Regarding the road class, highway appears to generate the594

most emissions, accounting for 41% of the total. Road classes serving local transportation also595

contribute to 50% of the total emissions. Temporally, we discover a “three-stage” pattern for all596

the cities, while the trend of non-GBA cities is flatter. We use the contribution ratio of the top597

10% emitting road segments to quantify the level of emission agglomeration. Top 10% emitting598
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roads discharge 77.6% of the total emissions in Guangzhou. The contribution ratio culminates599

at the emission valley hour. Besides, GBA cities exhibit more significant contribution ratio.600

We propose QH-DBSCAN to detect hierarchical emission hotspots with emissions projected601

onto 1 km grids in GBA, identifying the location and scope of emission hotspots. Then we602

demonstrate a comprehensive sensitivity analysis to examine the influence of hyper-parameter603

selection for the method. The results show that the 90%-quantile hotspots emit 29.6% of the604

daily gross road CO2 emissions with only 5% of land in GBA. The associated regions refer to605

the Guangzhou-Foshan metropolis and Shenzhen center. The 50%-quantile emission hotspots606

cover most urban areas in GBA, presenting cross-border integration development between ad-607

jacent cities represented by Guangzhou and Foshan, and Shenzhen and Dongguan. HDFV CO2608

emissions show less significant agglomeration than the non-HDFV counterpart. The temporal609

variation of emission hotspots is highly synchronized with the daily gross emissions. Differ-610

ent interactions among the three levels of emission hotspots are found in high-emission and611

low-emission periods.612

We aggregate all aspects of emission features and derive six emission categories, including613

four emission zones and two emission connectors. The Primary Emission Zone refers to the614

most developed urban area in GBA, which produces the largest total emissions (30% of GBA615

total). It has the topmost emission intensity but the lowest percentage of HDFV emissions616

in emission zones. The Secondary and Tertiary Emission Zone emit less intensively but have617

a higher percentage of HDFV emissions. The Primary Emission Connector mainly contains618

the inter-city highways radiating from the emission-intensive zones, with the highest emission619

intensity and over 50% of emissions contributed by HDFVs. On the ground of the differences of620

emission patterns among emission categories, we propose policy zones and recommend targeted621

strategies for carbon reduction.622

In summary, the study demonstrate a bottom-up road CO2 estimation method based on a623

massive vehicle trajectory dataset. The results unveil the spatiotemporal pattern of road CO2624

emission in Guangdong and emission agglomeration in GBA. This study expands the toolkit of625

regional emission studies and offers insightful findings that support the carbon reduction policy626

making and sustainable development in Guangdong and especially GBA.627
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