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A B S T R A C T
Urban microclimate prediction is crucial for various fields, including Building Performance
Simulation (BPS), outdoor thermal comfort, building life cycle, and residential health. Existing
methods involve using classical weather file data, such as Typical Meteorological Years (TMY),
or machine learning techniques for time-based forecasting. However, the incorporation of both
spatial and temporal dimensions and land use/land cover (LULC) data is seldom considered. This
paper proposes a novel approach to predict microclimate: the Geo-LSTM-Kriging model, which
is applicable for fine-scale microclimate prediction within a few hundred meters around weather
stations. The Geo-layer processes and learns from LULC data, the LSTM layer learns from
historical data, and the Kriging layer extracts spatial distance information. This comprehensive
combination integrates spatial, temporal, and environmental conditions, providing accurate
results with higher spatial resolution (1 m × 1 m) and shorter time intervals (10 min). These
prediction results were achieved by employing statistical downscaling calculation and utilizing
data from 14 weather stations located within our university campus. Upon the analysis of these
prediction results, we found that the proposed model can accurately predict temperature and
humidity at high spatial and temporal resolution. Compared to traditional interpolation models,
the RMSE of temperature decreases from 1.59 °C to 0.64 °C, and the RMSE of relative humidity
(RH) decreases from 7.70 to 3.23. A thorough analysis of the model prediction results reveals the
varied impacts of different LULC features on microclimate predictions, highlighting the value
of the proposed model and the importance of incorporating LULC data.
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1. Introduction
The proportion of the world’s population in urban areas has increased significantly over the past decade. It is

predicted to exceed 70% by 2050, according to a report by the United Nations (United Nations, 2019). Built environment
and human activity have led to the urban heat island (UHI) effect (Arnfield, 2003; Akbari, Cartalis, Kolokotsa,
Muscio, Pisello, Rossi, Santamouris, Synnefa, Wong and Zinzi, 2016; Chakraborty, Sarangi and Lee, 2021). This
effect leads to higher temperatures compared to less urbanized areas, significantly contributing to global warming,
heat-related deaths, and unpredictable climate variations (Deilami, Kamruzzaman and Liu, 2018). Recently, there has
been an increased interest in research investigating the relationship between human activities and the surrounding
environment, in an attempt to mitigate the UHI effect that negatively affects the built environment and its climate.
Urban microclimate, pertaining to the immediate atmospheric conditions surrounding buildings distinguished from
the broader urban climate (Wang, Li, Guo, Ma, Feng and Bao, 2021), has gained significant attention in this regard
(Yang, Wang, Stathopoulos and Marey, 2023).

Previous studies have utilized experimental and mathematical methods to demonstrate how microclimate features
(e.g. temperature, humidity) influence building energy systems (Bijarniya, Sarkar and Maiti, 2020; Im, Srinivasan,
Maxwell, Steiner and Karmakar, 2022), including air conditioning systems and solar power systems (Bevilacqua,
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Morabito, Bruno, Ferraro and Arcuri, 2020; Wu, Hou, Hui, Tang and Wang, 2022). In the outdoor thermal comfort field,
Zhang, Zhang, Gou and Liu (2022b) confirmed that microclimatic factors have a similar impact on outdoor thermal
comfort as macroclimate factors, and therefore microclimate factors are particularly important for outdoor thermal
comfort in regions with disadvantageous macroclimates. Some studies have explored the impact of various parameters
within microclimates on the physical health of residents (Wu, Liu, Li and Yin, 2020; Heidari, Mohammadbeigi,
Khazaei, Soltanzadeh, Asgarian and Saghafipour, 2020). Hayles, Huddleston, Chinowsky and Helman (2022) found
that the microclimate changes in precipitation and humidity have a significant impact on the service life of building
materials. Gaining accurate knowledge and predicting various indicators of local microclimates can be beneficial
for extensive research on microclimate impacts. In summary, characterizing the local microclimate has different
applications in improving building performance, building material life-cycle, occupant health, and thermal comfort.
Under constantly changing climate conditions, the prediction of microclimates becomes increasingly crucial.

However, various features of the microclimate may exhibit significantly different performances and drastic
fluctuations within a very small spatial and temporal range. In Figure 1, we have compiled the changes in temperature
and humidity for one hour from 14 weather stations within the scope of this study, which is a 1.9 km× 1.6 km urban area,
as shown in Figure 2. The data represent the statistical results of minute-by-minute data within one hour. In Figure
1, the red numbers represent the standard deviation of temperature and humidity among different weather stations
within one hour. We can observe fluctuations not only between adjacent weather stations, but also within the same
station, with standard deviations of temperature reaching approximately 2 °C and standard deviations of RH reaching
7% within one hour. However, existing research on microclimate prediction often overlooks this aspect. There are two
relatively obvious gaps here: (1) the lack of microclimate data at high spatial and temporal resolution; (2) the need for
more targeted predictions by incorporating contextual spatial data such as land use/land cover (LULC). Meanwhile,
many studies have demonstrated the influence of LULC on microclimate data. Estoque, Murayama and Myint (2017)
demonstrated that the mean temperature of the impervious surface is about 3 °C higher than that of the green space.
However, there is still a lack of research that integrates land use in predicting the urban microclimate indicators at high
spatial and temporal resolution. Therefore, this paper has the following two objectives:

• To provide downscaling temperature and humidity data at a high spatial resolution and short temporal intervals
that are sufficient for micro-climate-related studies.

• To develop a model that considers the surrounding environmental conditions and further enhances the model
performance based on existing algorithms.

To achieve the aforementioned objectives, this paper proposes a Kriging-based LSTM neural network model
combined with geographical land use data, which is called Geo-Kriging-LSTM, to estimate temperature and RH for the
locations without weather stations or sensors. The rest of the paper is organized as follows: in Section 2, an extensive
examination of previous studies on microclimate prediction is presented, encompassing a range of methodologies.
Section 3 illustrates the structure of the model and the inferences of the network, including the overview and verification
of the data sources. Then in Section 4, the experiment results are displayed and evaluated. Sections 5 and 6 discuss the
significance and conclude this study.

2. Related Work
In this section, we will provide existing research relevant to the following two main aspects: the impact of

microclimate data on a wide range of studies and commonly used microclimate prediction methods. Among these
prediction methods, they are categorized into temporal methods, spatial methods, and combined spatio-temporal
methods.
2.1. Impact of microclimate

Studying and predicting the variation of the urban microclimate variables in space and time is vital for various
studies. In building performance simulation, weather data form the boundary condition for energy calculations and
daylight analysis. Existing studies often utilize typical weather files such as the Weather Year for Energy Calculation
2 (WYEC2) and the Typical Meteorological Year (TMY) (Han, Ang, Malkawi and Samuelson, 2021). However,
typical weather files lack a precise depiction of the microclimate conditions specific to the local area. Past studies
have highlighted notable distinctions in temperature, humidity, and other variables between weather files data, urban
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Figure 1: Temperature and Relative humidity changes within one hour in the research area.

climate stations, and adjacent microclimate stations (Wang et al., 2021; Lazos, Sproul and Kay, 2014). Hosseini, Lee
and Vakilinia (2017) undertook an extensive building performance simulation to investigate the impact of weather
uncertainty on building energy estimation in Montreal, Canada, showing variances ranging from 3% to 29% in energy
consumption when comparing simulations using actual weather data versus TMY2 data.

In the field of outdoor thermal comfort, Zhang et al. (2022b) confirmed that microclimate factors have a similar
impact on outdoor thermal comfort as macroclimate factors. Vinayak, Lee, Gedam and Latha (2022) revealed that
future increases in temperature in microclimates could result in 20% Mumbai Metropolitan Region experiencing
outdoor thermal discomfort. Lin and Brown (2021) determined that incorporating microclimate information into urban
landscape design can create outdoor environments with enhanced thermal comfort. Zhang, Li, Wei and Hu (2022a)
explored the interaction mechanism among building spatial morphology, urban microclimate, and thermal comfort,
indicating that geographical factors, such as urban vegetation, further influence outdoor thermal comfort by affecting
various microclimate characteristics.
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Figure 2: The positions of weather stations whose data are used in model training, together with street-level imagery
showing the streetscape in the study area.

Microclimate conditions also have an impact on different facets, such as residents’ health. Schinasi, Benmarhnia
and De Roos (2018) summarized the association between microclimate indicators and epidemiology, and found that
people living in hotter areas within cities had a 6% higher risk of mortality/morbidity compared to those in cooler
areas. Zeren Cetin, Varol and Ozel (2023) demonstrated a strong positive correlation between microclimate indices,
particularly land surface temperature (LST), sleep deprivation, and heat stress among residents. Alimukhamedov et al.
(2022) assessed the health effects of microclimate indices on workers and finds that these conditions have a greater
impact on male workers than on female workers. Moreover, adverse microclimate conditions have varying degrees of
influence on the cardiovascular, respiratory, and urinary systems of both genders.

Therefore, having accurate knowledge and predicting various indicators of local microclimate is beneficial for
extensive research on microclimate. From the references above, we can also observe that wind speed, mean radiant
temperature, air temperature and humidity are widely employed indicators in microclimate analysis. This study will
focus on two of them, which are air temperature and relative humidity.
2.2. Microclimate prediction methods

In macroscopic terms, microclimate prediction methods can be categorized into three main types: methods that
utilize historical data for temporal prediction, methods that use neighboring spatial data for prediction, and hybrid
methods that combine both temporal and spatial data for prediction.
2.2.1. Temporal prediction methods

The majority of microclimate prediction methods are based on historical data. To anticipate the characteristics
of the urban microclimate, the prevailing approach often involves two categories: mathematical modeling, including
Numerical Weather Prediction (NWP) models, and artificial neural network approaches. Employing mathematical
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modeling techniques often encompasses mass and energy balances. Quemada-Villagómez, Miranda-López, Calderón-
Ramírez, Navarrete-Bolaños, Martínez-González and Jiménez-Islas (2021) put forward a straightforward mathematical
model aimed at estimating the annual maximum and minimum daily environmental temperatures. Such generalized
mathematical models often have limitations in their ability to predict within larger spatial scales, and their predictions
typically represent characteristic values, such as maximum or minimum values, over a given period. NWP models are
built upon the fundamental principles of weather physics and account for the boundaries and environmental conditions
associated with weather phenomena (Mathiesen and Kleissl, 2011). NWP is capable of providing more accurate and
detailed predictions, but it comes with the trade-off of higher computational costs to model the atmospheric system
(Aggarwal and Kumar, 2013). Di Napoli, Hogan and Pappenberger (2020) used NWP to predict global-scale mean
radiation temperature (MRT). Within the scope of microclimate, their study obtained weather data predictions with a
spatial resolution of 2.5 × 2.5 km using NWP. However, for more detailed investigations into building performance or
outdoor thermal comfort, the spatial resolution is insufficient.

Alternatively, with the rapid development of artificial intelligence technology, machine learning methods are
increasingly being applied in microclimate prediction. These methods commonly used can be broadly categorized
into two types: Feed-forward Neural Networks (FFNN) and Recurrent Neural Networks (RNN). FFNN are data-
driven predictive models that rely on data to capture and represent complex, non-linear patterns in large-scale weather
datasets. Bile, Tari, Grinde, Frasca, Siani and Fazio (2022) utilized FFNN to predict the short-term temperature trends
inside museums, aiming to provide preventive measures for the protection of cultural artifacts. Xie, Ishida, Hu and
Mochida (2022) applied an FFNN model to predict the mean radiant temperature surrounding buildings. FFNNs offer
benefits such as reproducibility, time-efficiency, and scalability, allowing them to be easily adapted to different temporal
resolutions (Mocanu, Mocanu, Stone, Nguyen, Gibescu and Liotta, 2018). RNNs are designed for time series data,
and they have the ability to capture temporal dependencies and retain information from historical data. In addition
to the basic RNN architecture, LSTM (Long Short-Term Memory) is another type of network developed based on
RNN, and GRU (Gated Recurrent Unit) is a further simplified network based on LSTM (Zargar, 2021). Zhang, Zhang,
Guo, Xu, Chen and Wang (2021) used Long Short-Term Memory (LSTM) models for microclimate prediction and
investigated their influence on buildings with different geometric configurations. Koc and Acar (2021) used LSTM
to predict temperature, showcasing the effectiveness of LSTM for climate prediction. However, research on utilizing
RNNs for climate prediction studies is still relatively nascent in the built environment-related domains (Han et al.,
2021).
2.2.2. Spatial prediction methods

There are various methods for spatial microclimate prediction. In general, researchers typically use standard
weather file data as a baseline and employ different methods for downscaling calculations. There are two main
approaches to downscaling weather data files: dynamical and statistical downscaling. The dynamical downscaling
approach involves the utilization of physical models to simulate future weather, yielding data with higher resolution
and enhanced reliability. Computational Fluid Dynamics (CFD) models are commonly used to simulate wind flow in
urban areas, which can resolve the transfer of heat and mass and their interaction with individual obstacles, such as
buildings (Toparlar, Blocken, Maiheu and Van Heijst, 2017). With the development of CFD and other physical-based
microclimate models, an increasing number of studies have employed these models as predictive methodologies. Crank,
Sailor, Ban-Weiss and Taleghani (2018) tested the air temperature perturbations using ENVI-met (a high-resolution
3D microclimate simulation software) with different vertical grid resolutions (0.75 to 2.0 m) and found that ENVI-
net performs robustness when changing vertical resolution. Maronga, Gryschka, Heinze, Hoffmann, Kanani-Sühring,
Keck, Ketelsen, Letzel, Sühring and Raasch (2015) algorithmically optimized the Parallelized Large-Eddy Simulation
Model (PALM), enabling it to perform computationally intensive simulations of meteorological data at large spatial
scales and very high grid resolutions. Moradi, Dyer, Nazem, Nambiar, Nahian, Bueno, Mackey, Vasanthakumar,
Nazarian, Krayenhoff et al. (2021) adopted and validated the Vertical City Weather Generator (VCWG) model (an
efficient urban microclimate physics model) to assess its predictive performance within urban area, they found that
the model is capable of accurately forecasting temperature, humidity, wind speed, and other variables in a three-
dimensional space. We can observe that such physics-based models generally exhibit higher accuracy and a denser
spatial resolution. However, it is equally true that, being based on physics-based meteorological models, they often
require higher computational costs and a more accurate representation of topographical conditions within the specific
scope (P. Tootkaboni, Ballarini, Zinzi and Corrado, 2021).
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On the other hand, the statistical downscaling is a simpler approach that establishes statistical connections between
observed local climate variables and large-scale climate variables Bamdad, Cholette, Omrani and Bell (2021). Although
statistical downscaling has the advantage of computational speed, its accuracy may be inferior compared to the
computationally intensive dynamical downscaling method. Aliabadi and McLeod (2023) introduced the Vatic Weather
File Generator (VWFG), a model capable of predicting weather conditions for the next 80 years based on records from
the past 20 years. The ability to generate long-term future weather files aids in forecasting the energy consumption
demands for heating and cooling in urban buildings. As illustrated in their study, such statistical downscaling methods
typically rely on archives of TMY data, which are then adjusted based on commonly used regional or global climate
models. These methods are more commonly employed for long-term climate trend predictions, lacking a perspective
on shorter time intervals, and exhibiting a higher dependency on climate models and weather files. Meanwhile, we
observe that interpolation methods are seldom mentioned in downscaling approaches, despite their ability to utilize
localized meteorological station data for more direct and targeted downscaling computations.

Traditional spatial interpolation techniques can generally be categorized into deterministic methods (such as
Triangular-based interpolation (Watson and Philip, 1984), Inverse Distance Weighted (IDW) (Bartier and Keller,
1996), and Trend Surface Analysis (TSA) (Agterberg, 1984), Spline interpolation (Schoenberg, 1973)), geostatistical
methods (such as Kriging), and hybrid methods (such as Regression Kriging) (Granville, Woolford, Dean, Boychuk
and McFayden, 2023). In traditional interpolation methods, the most commonly used ones are IDW, Kriging, and
Regression Kriging (RK) (Li and Heap, 2011). Among them, Regression Kriging is the combination of multivariate
regression and Kriging and has been proven to have better interpolation performance in numerous instances. Meng,
Liu and Borders (2013) compared seven GIS interpolation methods and demonstrated that RK has the potential to
significantly improve spatial prediction accuracy even when using a weakly correlated auxiliary variable. Gia Pham,
Kappas, Van Huynh and Hoang Khanh Nguyen (2019) used different interpolation methods to estimate soil soil
properties and observed that RK and Kriging exhibited respective advantages in various components, yet RK
demonstrated superior performance in a majority of scenarios. Azawi and Saleh (2021) used different interpolation
methods to estimate groundwater quality and found that RK yields higher accuracy.

Some other studies also applied machine learning methods to interpolation models. Kartal (2022) designed a
hybrid method that combines the spatial interpolation approach with artificial neural networks, achieving MAE of
2.85 °C using their NN-ConcLSTM model. Imanian, Shirkhani, Mohammadian, Hiedra Cobo and Payeur (2023) used
deep learning approaches to overcome the weakness of the spline method when predicting the land-water interface
temperature, reducing the RMSE by 16.2%.

We can observe that in addition to traditional interpolation methods, most recent studies choose to combine spatial
interpolation with machine learning models to address the demand for higher spatial resolution. In this study, we
combine spatial interpolation with time-series prediction and also utilize the assistance of RNN models to achieve the
same goal. The classic and broadly applied interpolation methods mentioned above will serve as baselines in this study.
In summary, we utilized the machine learning methods with the incorporation of both temporal and spatial information.
2.2.3. Incorporating land use/land cover (LULC)

Land use/land cover (LULC) has been of great importance worldwide for many years. Land use encompasses
the themes, purposes, duration, and spatial aspects of land utilization, while land cover primarily includes the types
and properties of surface features on land (Nedd, Light, Owens, James, Johnson and Anandhi, 2021). Many studies
have demonstrated the significant impact of LULC on urban microclimate indicators. With the rapid development
of human society, the influence of LULC on microclimate is increasing and shows no signs of diminishing due to
the incrementally active, diverse, and internationalized human activities (Caballero, Ruhoff and Biggs, 2022; Naikoo,
Islam, Mallick, Rahman et al., 2022; Abdullah, Barua, Abdullah and Rabby, 2022). Zhang et al. (2022a) investigated
the impact of LULC on microclimate and found a strong correlation between temperature, humidity, and specific
building morphology parameters such as sky view factor, floor area ratio, site coverage ratio, and building storeys
(Wei, Song, Wong and Martin, 2016). Erell and Zhou (2022) found using microclimate simulations that increasing
vegetation coverage can lead to a decrease of 0.3 °C in annual average temperature. Consequently, incorporating
LULC data in microclimate predictions could improve prediction performance. Chang, Lam, Lau and Wong (2021)
employed data-driven machine learning techniques in conjunction with LULC data to develop a 50 × 50 m grid-
based temperature forecast for extreme events on the Kowloon Peninsula in Hong Kong, their results show that the
statistical downscaling process reduced the model MAE by 1.03 °C to 0.3 °C for the maximum and minimum local
temperature prediction. Ma, Ding, Cheng, Jiang and Wan (2019) introduced a novel spatial interpolation/extrapolation
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methodology, called Geo-LSTM, to produce the spatial distribution of air pollutant concentrations, which integrates
the spatial-temporal correlation from other monitoring stations. However, there is still a scarcity of studies integrating
LULC for microclimate prediction, especially for studies requiring high spatial resolution microclimate data, which
necessitates further research.

3. Methodology
The method employed in this study consists of four main steps, which we elaborate on in the subsequent subsections.

1. Data preparation and verification (Section 3.1).
2. Model construction: Establishing the model structure based on representative RNN networks and interpolation

methods. The proposed algorithm will be described in Section 3.2 and 3.3.
3. Performance evaluation: Performance comparisons with baselines (classical RNNs and interpolation methods).

The detailed exposition of these comparisons will be presented in the first two subsections of Section 4.
4. Incorporation of LULC data and its impacts: Having confirmed and selected the most promising machine

learning models, we proceeded to incorporate the LULC data and conducted a comprehensive analysis of its
impact on the model outcomes. A detailed exposition of this investigation will be provided in the last two
subsections of Section 4.

3.1. Data preparation and verification
The dataset utilized for training and testing in this study comprises 14 weather stations on the ground, which are

located at the National University of Singapore (1.2955 N, 103.777 E). The geographical distribution of these stations
is depicted in Figure 2, spanning an area of approximately 1.9 km × 1.6 km.

This study uses data collected over a month (July 2019) with a sampling interval of 1 minute, including 44,640
records for each station. As shown in Figure 4, the measurement of temperature and RH was conducted using the
ONSET S-THB-M00x temperature/RH smart sensors installed at a 2.4 m height, restricted by NUS campus safety
regulations. Specifications for the sensors are listed in Table 1. The computational results presented in this article are
all based on the resolution of sensor readings, which are retained to two decimal places. Each temperature sensor was
positioned consistently, ensuring a distance of more than 20 cm from the solar panel to prevent overheating. A cloud-
based platform was established to facilitate remote data collection and monitoring via a 3G wireless connection. We
also compiled the overall humidity and temperature data for the month of July 2019 from these 14 weather stations. The
average temperature for the entire month is 28.0 °C, with a standard deviation of 2.06 °C, and the average RH is 83.2%,
with a standard deviation of 9.76%. The time series statistics of the raw data for temperature and humidity for the given
month are shown in Figure 3. The horizontal axis represents the hours of the day, and the vertical axis represents the
humidity and temperature measured by the weather stations. A general observation indicates significant fluctuations in
the measurement values during the daytime, with higher temperatures and lower humidity. In the subsequent analysis
of the prediction results, we will provide a more detailed examination in conjunction with the actual data performance.

Table 1
Specifications of environmental sensors.

Parameter Range Accuracy Resolution

Temperature −40 °C-75 °C ±0.21 °C 0.01 °C
Solar Radiation 0-1280 W/m2 ±10 W/m2 1.25 W/m2

One month of data is deemed to be sufficient for this research because many of the climate variables in Singapore,
such as temperature and relative humidity, do not show significant month-to-month variation. To illustrate this, we
compute the Kullback–Leibler (KL) divergence between the distribution of one-month data and the entire year. KL-
divergence, as defined by Kullback and Leibler (1951), is a statistical measurement from information theory that
measures differences in information represented by two distributions. The results are summarized in Table 2.

When we attempt to fit a relatively complex distribution that we have observed with a simpler and common
distribution (e.g. uniform distribution, binomial distribution), there may be a loss of information due to the discrepancy
between the fitted distribution and the observed distribution. Kullback-Leibler (KL) divergence is introduced to
measure the information loss and quantify the discrepancy between two probability distributions. The formula of
Han et al.: Preprint submitted to Elsevier Page 7 of 27
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Figure 3: The time series distribution of measures RH and Temperature.

Table 2
KL divergence. 𝑃 denotes the distribution over the whole year. 𝑄 denotes the distribution of data collected
in July 2019. 𝑄 denotes the uniform distribution. 𝑁 denotes the normal distribution with the same mean and
standard deviation as the whole year data.

Weather feature 𝐾𝐿(𝑃 ||𝑄) 𝐾𝐿(𝑄||𝑃 ) 𝐾𝐿(𝑃 ||𝑈 ) 𝐾𝐿(𝑃 ||𝑁)

RH 0.1734 0.1443 0.4406 0.1571
Temperature 0.1679 0.1489 0.3616 0.1280

computing the 𝐾𝐿(𝑃 ||𝑄) is shown as Equation 1. From Table 2, it is evident from Table 2 that the 𝐾𝐿(𝑃 ||𝑁) is
minimal, which shows that the data from July 2019 have a distribution similar to that of the whole year.

𝐾𝐿(𝑃 ||𝑄) =
∑

𝑥
𝑃 (𝑥) log

(

𝑃 (𝑥)
𝑄(𝑥)

)

(1)
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LULC classification is a systematic and complex study area. In traditional research, such data are often used
for purposes like urban planning and construction over larger areas. The classification of LULC generally includes
forests, farmlands (of different crops), lands, buildings, roads, water sources, and so on (Hütt, Koppe, Miao and Bareth,
2016; Vivekananda, Swathi and Sujith, 2021). The classification of LULC can also be flexibly adjusted based on the
research field and objectives (Gaur and Singh, 2023). In this small-scale microclimate study paper, considering the
actual conditions of the research site, we primarily categorized LULC into the following types: distance to buildings,
percentage covered by buildings, terrain (the height above sea level in meters), vegetated area, temporary area, urban
canyon, distance to trees, distance to walkways, distance to roads, distance to paths, distance to court tracks, distance to
car parks, percentage of road, percentage of paths, percentage of walkway, percentage of court tracks, percentage of car
park, and number of trees. After applying a random forest regressor sensitivity analysis on a trial dataset, we select the
8 most important features, which are distance to buildings, distance to trees, distance to walkways, distance to roads,
distance to paths, distance to court tracks, distance to car parks, and terrain. The values of the 8 features of LULC are
derived from urban morphology data collected on the GIS map and buildings’ 3D models of the NUS campus. The
urban morphology data used in our study are in vector format, allowing us to choose an appropriate resolution based on
our needs for high spatial resolution. The LULC data used in this study is collected on resolution grid of 1 m, ensuring
high spatial density and providing more detailed geographical information.

Figure 4: Example weather stations used in this study.

3.2. Variable notations
Before delving into the detailed description of the model network structure, we will first introduce the relevant

variables and their abbreviations in this section.
Given a time sequence of weather data after processing 𝐗 = [𝑥1, 𝑥2,⋯ , 𝑥𝑇−1, 𝑥𝑇 ] with the time length 𝑇 , where

𝑥𝑡 denotes the weather data information at time 𝑡. This model is used to estimate the weather data at time 𝑡 of the target
position 𝐒𝟎, where 𝑥𝑡 ∈ R𝑁×𝑀 represents the observed value of 𝑀 weather features of 𝑁 weather stations, as shown
in Equation (2).

𝑥𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1,1𝑡 𝑥1,2𝑡 ⋯ 𝑥1,𝑀𝑡
𝑥2,1𝑡 𝑥2,2𝑡 ⋯ 𝑥2,𝑀𝑡
⋮ ⋮ ⋱ ⋮

𝑥𝑁,1
𝑡 𝑥𝑁,2

𝑡 ⋯ 𝑥𝑁,𝑀
𝑡

⎤

⎥

⎥

⎥

⎥

⎦

(2)

In the case here, there are 2 features, i.e. 𝑀 = 2. For convenience, we use 𝑡𝑒𝑚 to denote the temperature and 𝑟ℎ to
denote the relative humidity respectively.

To take the spatial information into concern, Equations (3) and (4) show the coordinates of the stations in the local
coordinate system.

𝐬 = [𝑠1, 𝑠2, ..., 𝑠𝑁 ] (3)
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𝑠𝑖 = [𝐶𝑜𝑜𝑟𝑑𝑋𝑖, 𝐶𝑜𝑜𝑟𝑑𝑌 𝑖] (4)
The LULC data input is given for training use as the following Equation (5)
𝐠 = [𝑔1, 𝑔2,⋯ , 𝑔𝑁 ] (5)

Here 𝑔𝑖 is an 8-dimensional vector that contains the 8 LULC features used in the Regression Kriging model, these
features are ‘terrain’, ‘distance to building’, ‘distance to tree’, ‘distance to walkway’, ‘distance to road’, ‘distance to
path’, ‘distance to court track’, and ‘distance to car park’.

Combining the above equations, there are three parts of inputs in our model. Except for the LULC information
𝑔0, we also need the target position 𝑠0 = [𝐶𝑜𝑜𝑟𝑑𝑋0, 𝐶𝑜𝑜𝑟𝑑𝑌 0] and time series weather data of the stations,
[𝑥𝑡−𝑟+1, 𝑥𝑡−𝑟+2,⋯ , 𝑥𝑡], where 𝑡 is the target time, 𝑟 is a hyperparameter representing the length of the time window.
Our target output is [𝑡𝑒𝑚0

𝑡 , 𝑟ℎ
0
𝑡 , 𝑣𝑥

0
𝑡 , 𝑣𝑦

0
𝑡 ], which represents the weather features of the target position.

3.3. Model architecture design
The proposed model architecture is founded upon the fusion of using Long Short Term Memory (LSTM) to model

temporal correlations and the Kriging model to model spatial correlations.
The proposed network architecture comprises three primary components: the geographical layer, the Kriging layer,

and the LSTM layer. The geographical layer integrates geographic information with observed station data, while the
Kriging layer estimates time series data for the target location. The LSTM layer processes the temporal information of
the time series data. The interconnections between the three layers are illustrated in Figure 5.
3.3.1. Geographical layer

The geographical layers serve as filters for weather data processing. In particular, they take the time series data
𝐗 and the LULC information represented in percentage form 𝐠 as inputs. These layers then utilize a set of weights
𝐜 = [𝑐1, 𝑐2,⋯ , 𝑐𝑀 ] to adjust the weather features accordingly. The output of the geographical layer is computed using
the following formula:

𝑜𝑢𝑡_𝑔𝑒𝑜 = 𝐗 ∗ [𝐠𝐜𝑇 + (1 − 𝐠)𝟏𝑇 ] (6)
where 𝟏 = [1, 1,⋯ , 1] ∈ ℝ𝑀×1. The output of the geographical layer is used as input data for the remaining part

of the neural network. o maintain notation simplicity, we will continue to denote this output as 𝑋. Considering that the
input 𝐠 represents the average value of the LULC information within the neighborhood, the geographical layer can be
likened to a convolutional layer.
3.3.2. Regression Kriging layer

In Section 3.2, a sensitivity analysis and screening were conducted on the available LULC data, resulting in the
identification of 8 significant features. This subsection will elaborate on the detailed application of these features in
the model.

The Regression Kriging layer generates the weather feature data in the whole computing area. At each time, the
weather feature 𝑥0𝑡 is interpolated by the weather station data predicted by the LSTM layer, 𝑥1𝑡 , 𝑥2𝑡 ,⋯ , 𝑥𝑀𝑡 . Using
Regression Kriging, we obtain:

𝑥0𝑡 (𝑠
0) =

𝑁
∑

𝑖=1
𝐰𝑖 ⋅ 𝑞𝑖(𝑠0) +

𝑀
∑

𝑖=1
𝜆𝑖 ⋅ 𝑒(𝑠𝑖) (7)

where 𝐰𝑖 = [𝑤𝑖,1, 𝑤𝑖,2,⋯ , 𝑤𝑖,𝑀 ]𝑇 ∈ ℝ1×𝑀 , representing the weights of the 𝑖th LULC features. The first term
denotes the deterministic part of the model. 𝜆𝑖 are Kriging weights determined by the spatial dependence structure of
the residual, and the second term interpolates the residual. These weights are the results generated from the Kriging
layer.

In the Kriging method, we assume that the same type of weather data from all the weather stations has an identical
distribution. In order to estimate the weights, we need to know the covariance between the weather data of two positions.
Since LULC information has been considered in the geographical layer, a simpler model is used in the Kriging layer.
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Figure 5: Diagram of Geo-Kriging-LSTM network structure.

We assume that the covariance is only dependent on the distance between two positions. In equal, we use the following
equality to estimate covariance:

𝐶𝑜𝑣(𝑥𝑖,𝑘𝑡 , 𝑥𝑗,𝑘𝑡 ) = 𝛾𝑘(𝑑𝑖𝑗) 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ; 1 ≤ 𝑘 ≤ 𝑀 (8)
where 𝛾𝑘 (for 1 ≤ 𝑘 ≤ 𝑀) are 𝑀 functions to estimate the covariance of variables, and 𝑑𝑖𝑗 denotes the distance
between station 𝑖 and station 𝑗. There are several parameters in each function, and the parameters in 𝛾𝑘 will be learned
in the network. In detail, we use the following ball correlation function: 𝛾𝑘:

𝛾𝑘(𝑑) =

⎧

⎪

⎨

⎪

⎩

𝑏𝑘
(

1 − 3
2

𝑑
𝑎𝑘 + 1

2

(

𝑑
𝑎𝑘

)3
)

𝑑 ≤ 𝑎𝑘

0 𝑑 > 𝑎𝑘
(9)

where 𝑎𝑘 and 𝑏𝑘 are the parameters that represent the maximal correlation distance and variance of the type of weather
data respectively.
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Figure 6: Mechanism of each LSTM unit.

Once the covariance is given, we can use the stochastic method to analyze that the optimal weights can be solved
from the following linear equation system (10):

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛾𝑘(𝑑11) 𝛾𝑘(𝑑12) ⋯ 𝛾𝑘(𝑑1𝑁 ) 1
𝛾𝑘(𝑑21) 𝛾𝑘(𝑑22) ⋯ 𝛾𝑘(𝑑2𝑁 ) 1

⋮ ⋮ ⋱ ⋮ ⋮
𝛾𝑘(𝑑𝑁1) 𝛾𝑘(𝑑𝑁2) ⋯ 𝛾𝑘(𝑑𝑁𝑁 ) 1

1 1 ⋯ 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1,𝑘

𝑤2,𝑘

⋮
𝑤𝑁,𝑘

𝜂

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛾𝑘(𝑑01)
𝛾𝑘(𝑑02)

⋮
𝛾𝑘(𝑑0𝑁 )

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(10)

where 𝑑0𝑖 denotes the distance between target position and the station 𝑖, which is similar to the definition of 𝑑𝑖𝑗 . 𝜂 is a
Lagrange parameter used as an intermediate variable.

Once we know the value of Kriging weights, we can sum-product the weights and weather data together and get
an estimation of the time series data for the target position. These time-series data will be the input of the LSTM layer.
The mechanism of the Geo-Kriging layer could be found in the logical diagram of Geo-Kriging unit in Figure 5.
3.3.3. LSTM layer

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is derived from the Recurrent Neural
Network (RNN), which can process sequential data. LSTM controls the transmission states by four gates to the memory
of important knowledge and releases the memory of unimportant information, to achieve a balance of learning speed
and accuracy for time series data prediction. It has been broadly applied in various areas including speed recognition,
translation, prediction, etc. (Van Houdt, Mosquera and Nápoles, 2020). Built environment data is a representative time
series kind of data, especially weather data, which is highly correlated with changes in the time of day. Therefore, the
LSTM is a good basic model for the weather interpolation task. However, the existing methods combined with LSTM
can only predict the features with historical data. The model proposed in this paper combines the strength of LSTM
and Kriging interpolation, to calculate the weather features for the locations without historical data.

As shown in Fig. 5, the data processed by the Geo-layer and Kriging layer will continue to pass through the LSTM
layer, where the historical knowledge could be memorized by each LSTM unit. Fig. 6 shows the internal mechanism
of each LSTM unit at time 𝑡. The hidden state of the last unit ℎ𝑡−1, the cell state of the last unit 𝑐𝑡−1, together with the
input data 𝑥𝑡 form the inputs of each LSTM unit, processed by four different gates in LSTM. The 𝑓𝑡 is the forgetting
gate, represents the information of 𝐶𝑡−1 after oblivion to calculate 𝐶𝑡, the 𝐶𝑡 denotes the updated value of the unit state,
calculated by the input data 𝑥𝑡 and the hidden state ℎ𝑡−1. The 𝑖𝑡 is the input gate and the 𝑜𝑡 is the output gate. The final
𝑜𝑇 represents the output of the entire LSTM layer. In our model, T is set to 144, indicating the utilization of 24 hours
of data for predicting data at 10-minute intervals within the next hour. These components work together to proceed to
the LSTM layer. The detailed mathematical formula is listed in equations 11.
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𝑓𝑡 = 𝜎 (𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 )

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶𝑡

𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 )

𝐶𝑡 = tanh (𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 )

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶𝑡

𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)
ℎ𝑡 = 𝑜𝑡 × tanh (𝐶𝑡) (11)

3.4. Clustering methods for time series data
As the predicted results are all time series data, for a comprehensive analysis of time series results later in the

text, common time series classification methods were employed in this study. There are many existing methods.
Abanda, Mori and Lozano (2019) broadly categorized into three types: feature-based, model-based, and distance-based
methods. Complex classification methods are suitable for higher-dimensional time series data. Therefore, for the task
of classifying time series data in this paper, we adopted the classic dynamic Time Warping (DTW) algorithm. It is
widely appreciated for its efficiency in measuring similarity between time series, effectively mitigating the impacts of
time shifts and distortions. It achieves this by enabling a flexible transformation of time series, allowing the detection
of similar shapes even with different phases (Senin, 2008).

Simultaneously, for the purpose of correlating the complex temporal classification results with their diverse
features, we employed the Principal Component Analysis (PCA) (Maćkiewicz and Ratajczak, 1993) to reduce the
dimensionality of the data. This method is commonly used in handling high-dimensional large datasets, as it can
reduce data dimensionality, thereby enhancing data interpretability while minimizing information loss (Jolliffe and
Cadima, 2016). Similarly, in this paper, we applied a similar approach to the high-dimensional temporal classification
results, aiding us in analyzing the impact of various LULC features on prediction results.
3.4.1. Dynamic Time Warping (DTW)

In general, DTW is a method that calculates an optimal match between two given time series with certain
restrictions and rules:

• Every index from the first sequence must be matched with one or more indices from the other sequence and vice
versa.

• The first index from the first sequence must be matched with the first index from the other sequence (but it does
not have to be its only match).

• The last index from the first sequence must be matched with the last index from the other sequence (but it does
not have to be its only match).

• The mapping of the indices from the first sequence to indices from the other sequence must be monotonically
increasing, and vice versa.

We can plot each match between the sequences 1 ∶ 𝑀 and 1 ∶ 𝑁 as a path in a 𝑀 × 𝑁 matrix from (1, 1) to
(𝑀,𝑁), such that each step is one of (1, 0), (0, 1), (1, 1). In this formulation, we see that the number of possible matches
is the Delannoy number. The optimal match is the match that satisfies all the restrictions and the rules and that has the
minimal cost, where the cost is computed as the sum of absolute differences for each matched pair of indices between
their values. The sequences are ‘warped’ non-linearly in the time dimension to determine a measure of their similarity
independent of certain non-linear variations in the time dimension. This sequence alignment method is often used in
time series classification.
3.4.2. Principal Component Analysis (PCA)

PCA can be thought of as fitting a p-dimensional ellipsoid to the data, where each axis of the ellipsoid represents
a principal component. For a column-wise zero empirical mean data matrix 𝐗, the first component weight vector 𝑤(1)
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maximizes the data variance, so it must satisfies:

𝑤(1) = arg max
||𝑤||=1

{

∑

𝑖
(𝑥(𝑖) ⋅𝑤)2

}

= argmax
𝑤

{𝑤⊺𝐗⊺𝐗𝑤
𝑤⊺𝑤

}

(12)

Other weight vectors can be obtained by continuing this progress after subtracting 𝐗𝑤𝑤⊺ from 𝐗. For example,

𝑤(2) = argmax
𝑤

{𝑤⊺𝐗(𝟏)
⊺𝐗(𝟏)𝑤

𝑤⊺𝑤

}

, where𝐗(𝟏) = 𝐗 − 𝐗𝑤(1)𝑤
⊺
(1) (13)

where the component of 𝐗 on 𝑤(𝑖) direction is the 𝑖th principle component of 𝐗, which is called 𝑝[𝑖] in Figure 11.

4. Results
As indicated in Section 3, the weather data utilized in the experiments were sourced from weather stations and

LULC data of the study area. To evaluate the performance of our model against existing microclimate prediction
methods, we conducted a comparative study. When evaluating the model performance, considering that the target
locations for prediction do not have weather stations, the historical weather data for the current prediction location is
unavailable. To simulate such practical situations, it is crucial to avoid the direct inclusion of historical weather data
for the target locations in the input dataset. Therefore, we adopted the commonly used method of cross-validation in
machine learning: when predicting the weather data for each weather station, we excluded its own historical weather
data and utilized only the historical weather data from other weather stations.
4.1. Evaluation Approach

In order to evaluate the model performance, the subsequent analysis of the results involves two types of baselines
and commonly used error metrics. This section provides a detailed description of them.
4.1.1. Baselines

In existing studies, researchers often use urban weather files data or data from representative weather stations near
the research target to access microclimate data for multiple types of studies. Therefore, to comprehensively validate
the actual performance of the model proposed in this paper, we designed two levels of baselines. These baselines
are compared with the experimental results of the model from the perspectives of machine learning algorithms and
practical application scenarios. Our baselines consist of the following:

• Comparing the model with classical types of machine learning models to select the optimal algorithm that
combines spatial and temporal data. The selected temporal baselines include LSTM and GRU, which are
representative algorithms to process historical data; the selected spatial baselines include Ordinary Kriging and
Regression Kriging interpolation. These are the level 1 baselines.

• Comparing the experimental results of the optimal ML algorithm with traditional microclimate data accessing
methods, including directly using data from neighboring weather stations, representative urban weather stations
(Weather station in Changi Airport), and International Weather for Energy Calculations (IWEC) data. The
comparison could demonstrate the accuracy of our microclimate prediction method, also showing the practical
implications. These are the level 2 baselines.

In order to conduct these studies, we compare the performance of the proposed Geo-LSTM-Kriging model.
4.1.2. Metrics

Mean Square Error (MSE), Rooted Mean Square Error (RMSE), and R2 are computed as evaluation metrics.
Equations (14) show the definition of these metrics. The error plotted in this paper is 𝑒𝑖 in the equations.

𝑂𝑖 ∶ observed values, 𝑆𝑖 ∶ simulated values 𝑒𝑖 = 𝑆𝑖 − 𝑂𝑖 ∶ error

MSE = 1
𝑁

𝑁
∑

𝑖=1
(𝑒𝑖)2 =

1
𝑁

𝑁
∑

𝑖=1
(𝑂𝑖 − 𝑆𝑖)2
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RMSE =
√

MSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑂𝑖 − 𝑆𝑖)2

R2 = 1 −
∑𝑁

𝑖=1(𝑂𝑖 − 𝑆𝑖)2
∑𝑁

𝑖=1(𝑂𝑖 − �̄�)2
(14)

4.2. Baseline comparison
In this section, we will elaborate on the comparison between the model proposed in this paper and the two-level

baselines mentioned in Section 4.1.1. We can discover the spatial and temporal trends of the local microclimate, as
well as identify the environmental factors that influence the microclimate through the comparison of these experimental
results.
4.2.1. Comparison with ML baselines

Due to the temporal nature of microclimates, in this paper, we conducted an hourly statistical analysis of the
prediction results for all the weather stations, as shown in Figure 7. The horizontal axis represents the sequential
time from 0 to 24 hours each day, while the vertical axis represents the absolute error between predicted values and
actual values. The upper chart represents humidity, and the lower chart represents temperature. The box plots in the
figure illustrate the trends of errors for each day and at each weather station location. The different colors represent
the following different models: the Geo-LSTM-Kriging model, LSTM-Kriging model, GRU-Kriging model, Kriging
model, and the IDW model respectively. It can be observed that for the humidity prediction results, we can see that
traditional interpolation methods exhibit significant fluctuation in model prediction errors during the daytime from 11
a.m. to 6 p.m. In contrast, machine learning models reduce this error fluctuation, maintaining stable prediction errors
throughout. However, both the LSTM-K and GRU-K machine learning models show a larger range of error fluctuations
from around 0 a.m. to 8 a.m. Our GEO-LSTM-K model, on the other hand, maintains stable performance throughout
the entire 24 hours. On the other hand, concerning the temperature prediction results, various methods show higher
errors and greater variability during the daytime from 10 a.m. to 6 p.m.

For the fluctuation of prediction errors, it is evident that one reason is the significant variability in actual
observational data during the corresponding time intervals, as depicted in Figure 3. The characteristics of these raw data
naturally influence the prediction results, and a larger range of data fluctuations increases the difficulty of prediction,
thus introducing greater variance in prediction errors. However, at the same time, we can observe that machine learning
methods, especially the Geo-LSTM-Kriging model incorporating the Geo-layer, outperform traditional interpolation
models significantly (RMSE of Geo-LSTM-Kriging reduces from 1.602 / 0.701 to 0.637 compared to IDW / LSTM-
Kriging respectively, shown in Table 3). This indicates that machine learning, along with the introduction of the Geo-
layer, contributes to the model capturing new knowledge. This kind of fluctuation is reasonable in urban meteorology,
as various factors such as local natural conditions such as solar radiation, shading, rainfall, the surrounding built
environment related to the UHI effect, urban heat exchange, and more contribute to increased instability in microclimate
data during the day.

To further analyze the optimization effect and explore the knowledge acquired by the models through the Geo-
layer, we summarize the variance and fluctuation range of the prediction errors of these two models in Figure 8. This
figure contrasts the Geo-LSTM-Kriging and LSTM-Kriging models extracted separately from the previous figure.
Differing from Figure 3, the blue numbers in this figure represent the standard deviation of the prediction errors for
the Geo-LSTM-Kriging model during each hour, while the orange numbers represent the standard deviation for the
LSTM-Kriging model. Upon closer inspection, it can be observed that during periods of significant fluctuations in the
original data, particularly during periods of early morning humidity and afternoon temperature (as shown in Figure
3), the addition of the Geo-layer results in more stable predictions, with a noticeably larger reduction in variance. For
example, the standard deviation of temperature prediction errors decreased from 0.96 to 0.57 at 13:00 in the afternoon,
while it only decreased from 0.67 to 0.41 at 23:00 at night. The overall statistical results (RMSE) and R2 will be
summarized after comparing with the level-2 baselines, as shown in Table 3.

This suggests that the Geo-layer, to some extent, has learned the varying impact of environmental factors such as
UHI on temperature and humidity during different time periods. Our model aims to uncover the underlying reasons
for how geographical environmental factors influence the performance of meteorological data, providing more stable
predictive results. In the above figure, we have depicted the model prediction errors at all weather station locations in
boxes. Apart from time series analysis, different LULC features among various weather stations can also have varying
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effects on prediction performance. Detailed analysis of how these LULC features specifically affect model performance
will be presented in the subsequent spatial analysis, after the comparison with level-2 baselines.

Figure 7: Temporal comparison between LSTM-Kriging and ML (level 1) baselines.

4.2.2. Comparison with practical baselines
In practical applications, as mentioned in Section 4.1, many studies often directly use weather file data or data

from representative urban weather stations when requiring microclimate data. Therefore, in this section, we compare
the prediction results with several commonly used data acquisition methods, marked as different colors in Figure
9. In the various models mentioned below, we assume that the target location for prediction does not have any
weather station with measured data. Instead, we perform interpolation prediction using data from the other 13 weather
stations. Subsequently, we compare the predicted results with the actual ground truth at the target point to obtain the
corresponding error. The error at each hour is the aggregated distribution of errors at all the 14 weather stations’
locations. The orange one represents the method of using data from the nearest meteorological station to the target
location, which is a commonly used approach in microclimate-related studies. The green one represents the use of
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Figure 8: Temporal comparison between Geo-LSTM-Kriging and LSTM-Kriging.

local International Weather for Energy Calculations (IWEC) data in Singapore, obtained on EnergyPlus, which is a
standard weather file commonly used directly in energy simulations. The red one represents the weather data measured
by the weather station at Changi Airport in Singapore.

From the above figure, we can observe several intriguing phenomena. The most evident difference lies in the higher
humidity and lower temperature observed in the IWEC data compared to the local NUS campus data. We can reasonably
speculate that this discrepancy is related to the historical lag in IWEC data. With the intensification of the greenhouse
effect, the global warming phenomenon has become increasingly pronounced in recent years. Clearly, conventional
meteorological data has become outdated. In studies utilizing typical weather files, researchers should be attentive
to this aspect. Existing research indicates that updated typical weather files, compared to outdated ones, can have a
significant impact of up to 50-65% on building energy simulations. (Costanzo, Evola, Infantone and Marletta, 2020),
the issue of weather file outdatedness has become increasingly imperative in studies pertaining to microclimate. On the
other hand, a stark contrast in the deviation patterns is discernible when comparing the data from Changi Airport with
that of the NUS campus. Changi Airport exhibits a conspicuous disparity, with consistently lower average humidity
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Figure 9: Temporal comparison between Geo-LSTM-Kriging and practical (level-2) baselines.

and higher temperatures. It is noteworthy that temporal consistency between the two datasets was ensured during the
plotting process. Therefore, a reasonable inference can be made that such data discrepancies stem from divergent local
environmental conditions. In comparison to the open and flat geographical environment of the airport, the NUS campus
boasts a higher vegetation coverage. Such geographical conditions have the potential to mitigate issues such as the UHI
effect, thereby reducing surface temperatures. In order to rigorously investigate the influence of various features within
the Land Use and Land Cover (LULC) data on the environment and model performance, we will conduct spatial
analysis on 14 weather stations in the subsequent section, providing a more quantified theoretical basis.

Additionally, as mentioned in the preceding section, we summarized the overall comparative results of our model
and the two-level baseline in Table 3. The RMSE and variance in the table represent the overall performance across
all 14 weather stations for the entire month. Upon observing the table, it is evident that machine learning models
exhibit a significant improvement compared to conventional interpolation models (e.g., the RMSE for temperature
decreased from 1.59 in Kriging to 0.70 in LSTM-Kriging, and the R2 for RH increased from 0.673 in Kriging to 0.931
in LSTM-Kriging). We selected a machine learning model with outstanding performance and introduced a Geo-layer.
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With the addition of the Geo-layer, there was an improvement in the RMSE for temperature, decreasing from 0.70
to 0.64, while other indicators showed less pronounced changes. Among the level-2 baselines, the data from Changi
Airport performed relatively better but still exhibited a noticeable gap compared to the LSTM-Kriging model. The
specific performance of the model at different weather stations and its correlation with their respective LULC features
will be detailed in the next section on spatial analysis.

Table 3
RMSE and R2 of the prediction error of different methods.

Level 1 baselines Level 2 baselines
Geo-LSTM-K LSTM-K GRU-K Kriging IDW Nearest IWEC Changi Airport

RMSE (Temp.)/°C 0.64 0.70 0.70 1.60 1.60 1.72 2.37 1.09
RMSE (RH)/% 3.23 3.43 3.44 7.70 7.74 8.19 9.50 6.73

R2 (Temp.) 0.9975 0.9950 0.9945 0.9850 0.9848 0.9640 0.9823 0.9930
R2 (RH) 0.9385 0.9309 0.9306 0.6727 0.6752 0.6362 0.6106 0.6899

4.3. Model spatial performance analysis
After analyzing the temporal aspects of the prediction results, we proceeded with a comprehensive spatial analysis

based on the different geographical conditions. We calculated the prediction errors for all 14 stations and found that
their trends over time vary among different weather stations. Therefore, we categorized these weather stations according
to the temporal prediction error at their spatial locations’ performance including both temperature and RH prediction
errors. Such classification results are further analyzed combined with their LULC features, to explore the potential
pattern of the environmental effects.

In the actual classification process, we treated the prediction errors of temperature and humidity for each hour of
every day within a month at each weather station as a time series data point. We aggregated these data points and
performed clustering. Specifically, for instance, if, among the 30 data points for Weather Station 1, 20 belong to cluster
0 and 10 belong to category 1, then we conclude that Weather Station 1 has 1/3 of its attributes belonging to category 1
and 2/3 belonging to category 0 (this is a simplified example for illustration purposes and is not related to actual results).
Figure 10 illustrates the clustering results obtained using the DTW algorithm, as mentioned in Section 3.4.1. Different
colors represent the temporal performance of prediction errors for different clusters of weather stations. The left panel
represents humidity prediction errors, while the right panel represents temperature prediction errors. It is noteworthy
that only Weather Station 8 is in cluster 0, and it exhibits higher errors in all the models, including baselines, compared
to other weather stations. In Figure 2, a comparison is made between the actual measurements of Weather Station 8
and those of other weather stations. It is evident that the actual data for Weather Station 8 significantly differs from the
data of other weather stations across the campus. Its temperature is consistently lower throughout the 24 hours, and
the humidity is higher. Hence, the higher prediction errors when using other weather stations for interpolation can be
explained.

Figure 12 shows the overall classification results, where PCA was employed to reduce data dimensionality,
transforming the 24-dimensional time series data into two dimensions (x and y) for better observation of the clustering
results. Here, we observe that cluster 0 (depicted in blue), representing Weather Station 8, is distant from the other
weather stations, while the other three clusters exhibit certain degrees of cohesion, which indicates the classification
results are deemed reasonable.

Upon closer examination of Figure 10, it becomes evident that, apart from the isolated Weather Station 8, the other
three categories of weather stations also exhibit distinct trends in prediction errors. In cluster 1 (depicted in orange),
the prediction error for RH is lower during the midday period (10:00-14:00), while the prediction error for temperature
is higher during this interval. Cluster 2 (depicted in green) demonstrates relatively stable prediction errors throughout
the entire period. Conversely, cluster 3 (depicted in red) exhibits trends opposite to those in cluster 1. To delve deeper
into the correlation between prediction errors across different clusters and the corresponding LULC features of various
weather stations, we further employed PCA to reduce data dimensionality and generated Figure 13. In this figure,
the x-axis represents the values of the principal components obtained through PCA for the reduced dimensionality
of time series prediction errors at all the weather stations, while the y-axis in each subfigure represents the values
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of different LULC features. In general, the relationship between prediction errors and LULC features is intricate,
making simple correlation assessments unfeasible. However, certain features manifest more pronounced influences in
specific instances. In Table 4, we summarize several features that exhibit differences in performance among weather
stations in different clusters. We can observe differences in these features among different categories (excluding the
standalone cluster 0). The varying distances to buildings and walkways imply differences in shading conditions at
different times of the day. For instance, Cluster 1 has an average distance to buildings of approximately 9.7 meters,
while Cluster 3 has an average distance of about 23.09 meters. This suggests that buildings may provide more shading
for Cluster 1, causing weather stations in Cluster 1 to exhibit larger fluctuations during the noon period. The observed
discrepancies between the model predictions and the actual conditions, with lower humidity and higher temperature
in our predictions, might be attributed to the incomplete learning of the impact of building shadows. However, due to
the limited number of weather stations, a more systematic quantitative analysis is not feasible and we can only provide
a qualitative and reasonable inference. We can infer that these features likely have varying degrees of influence on
predictions for different weather stations and different time periods.

Due to the limited number of weather stations in this study, there are notable constraints on the correlation analysis
between clustering results and LULC features. Nevertheless, within the restricted dataset of 14 weather stations, we
have identified certain patterns, indicating that different LULC features exert varying degrees of influence on model
performance. These features provide distinct environmental conditions for the target locations, leading to diverse
manifestations of urban heat island effects, urban heat exchange, urban surface characteristics, and other related factors.
Consequently, these impacts are reflected in the model prediction performances, resulting in diverse levels of errors
and stability. The associated effects merit further investigation in future studies involving a more extensive array of
weather stations.

Figure 10: Clustering of weather stations based on the prediction errors.

Table 4
LULC feature data.

Cluster id 0 1 2 3

Terrain Std Dev 10.4 10.6 8.9 7.5
Terrain mean 35.1 30.9 38.2 25.4

DistToBuilding Std Dev 6.5 6.7 7.7 11.9
DistToBuilding mean 9.08 9.70 5.94 23.09

DistToWalkway Std Dev 81.74 69.00 161.40 87.85
DistToWalkway mean 173.96 130.48 194.34 145.03
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Figure 11: Comparison of the temperature data of station 8 with all the other stations

5. Discussion
In this section, we will provide a typical application scenario for the model and some general model performance

discussions.
A commonly used application scenario is to provide high-precision, high-resolution visualized prediction results

for the impact of changes in building and environmental conditions on microclimates within a small area. For instance,
Figure 14 displays the model predictions for humidity and temperature at three different time points, from top to
bottom: the predictions for 04:00 on July 5th, 20:00 on July 9th, and 12:00 on July 22nd. Our model initially learns
geographical information through the Geo-Kriging layer. Subsequently, the model downscales the historical data from
the original weather stations to a finer grid. After that, the LSTM layer is employed to predict and generate this map
based on the downscaled data. In this figure, we did not depict any actual buildings or road objects, but the high-density
predictions at different time intervals partially reflect the outlines of roads and buildings, especially noticeable during
the midday period, where the temperature predictions essentially outline the distribution of roads within the area. In
the ever-changing built environment, such as when urban planners are considering increasing vegetation coverage in a
specific area or when certain buildings require renovation, expansion, or demolition, this model can proactively offer
detailed temporal results of microclimate data, providing valuable insights for related decision-making.
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Figure 12: Station clustering result based on DTW analysis over the error series at each station location.

Figure 13: The distribution of LULC features and PCA values of stations in each cluster.

In addition to the discussed applications, our predictions of microclimates can assist various research problems.
Besides the traditional studies mentioned in the related work section, such as high-precision BPS, thermal comfort,
residents’ health, and building material lifespan, the predictions in high-spatial and high-temporal dimensions can aid
in establishing urban or district digital twins. Namely, these predictions provide real-time and high-resolution input to
support digital twins, enabling simulations and achieving a feedback loop with the real-world, which is currently often
missing (Lei, Janssen, Stoter and Biljecki, 2023; Liu, Zhao, Luo, Lei, Frei, Miller and Biljecki, 2023).
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Figure 14: Prediction result samples of Geo-LSTM-Kriging model. The units in the maps are in metres (based on the local
coordinate system SVY21), while the legend units for Temperature and RH are in °C and %, respectively.

This study proposes a novel microclimate prediction model, the LSTM-Kriging model, which combines both
temporal and spatial knowledge. Furthermore, this model incorporates LULC through the Geo-LSTM-Kriging model
to adapt to the influences of urban environmental obstacles. Our experiment results demonstrate the effectiveness of
this methodology in a range of actual cases, particularly in moments with dramatic environmental changes.

Compared to past research, the model proposed in this paper has several innovative aspects. Firstly, our predictions
achieve a spatial resolution of 1 meter grid, whereas Di Napoli et al. (2020) using NWP to obtain prediction results with
a spatial resolution of 2.5 x 2.5 km, Chang et al. (2021) developing a UMTF model to predict the microclimate with
a spatial resolution of 50 x 50 m. This significant improvement in spatial resolution holds considerable importance
for studies that require higher microclimate spatial density. Besides, our approach provides a fresh perspective on
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weather prediction models, particularly in scenarios with environmental variations. Erell and Zhou (2022) indicated
that achieving a green surface proportion of 0.5 would result in a decrease of approximately 0.3 °C in the annual average
temperature. Our analysis of the impact of LULC data shows that considering LULC data reduces the MAE from 0.61
°C to 0.12 °C, thereby further confirming the significance of considering environmental conditions on microclimate.
Our model’s capacity to adapt to urban environmental obstacles renders it a valuable tool for weather prediction in urban
environments. Additionally, traditional research often relies on directly using data from neighboring weather stations or
classic weather files (Krüger, Drach, Emmanuel and Corbella, 2013; Kruger and Drach, 2017; Li and Liu, 2020), which
can be insufficiently accurate in certain microclimate studies. The model proposed in this study offers temperature and
humidity predictions for microclimates with spatial resolution and achieves better performance compared with weather
stations and weather files. At the same time, the data required for this method is widely and freely available at a sufficient
level of quality, e.g. from volunteered geographic information platforms such as OpenStreetMap (Biljecki, Chow and
Lee, 2023a; Herfort, Lautenbach, Albuquerque, Anderson and Zipf, 2023), allowing wide applicability.

6. Conclusion
This study proposes the LSTM-Kriging model, which combines both temporal and spatial knowledge to develop

a novel weather interpolation model, enabling the prediction of microclimate conditions at high resolution in the
built environment. Our Geo-LSTM-Kriging model further incorporates LULC data to adapt to the influences of urban
environmental obstacles. Our experiment results demonstrate the effectiveness of this methodology in a range of actual
cases, particularly in moments with dramatic environmental fluctuations.

The study introduces several key findings:
• Our approach provides an improvement over traditional microclimate prediction baselines, demonstrating the

importance of incorporating spatial, temporal, and geographical knowledge (LULC) in the model. Compared
to the direct use of urban weather station (Changi Airport) data, the temperature prediction RMSE of our high
spatial-resolution model has reduced from 1.09 °C to 0.64 °C, the RH prediction RMSE has decreased from
6.73 to 3.23. While the traditional interpolation method (Kriging interpolation) yielded a temperature prediction
RMSE of 1.59 °C and an RH RMSE of 7.70. The addition of the Geo-layer helped reduce the prediction error
of temperature from 0.70 °C to 0.64 °C and of humidity from 3.43 to 3.23.

• The analysis in the paper regarding the influence of different LULC data from various weather stations on the
prediction results indicates that the extent of building and vegetation coverage in the environment can lead to
varying degrees of impact on microclimate prediction during different time periods. The addition of Geo-layer
allows for learning the impact of LULC features to some extent, enhancing the stability of the model predictions,
especially during periods of significant fluctuations in the original data. For instance, the standard deviation of
the temperature prediction error at 13:00 reduced from 0.96 to 0.57.

• This study also conducted a temporal analysis of model errors for weather station clustering. It was observed
that among various LULC features, terrain, distance to buildings, and distance to walkways might have a greater
influence on the model performance.

However, the study also identified some limitations and a few open questions remain unanswered. Our experiments
implemented for the Geo-LSTM-Kriging model are restricted to a small area with only 14 weather stations, and
hence, the analysis and conclusions drawn from the clustering results are highly limited. Furthermore, the model
does not consider the effect of vertical dimension, which may not be a negligible factor when considering geographical
information. Additionally, there are some typical features that are also crucial for microclimate research, such as wind
speed, solar radiation, etc. This paper primarily focuses on discussing temperature and RH, with the expansion to
other features expected to be explored in future research. Despite these limitations, due to notable advancements in
performance, we believe that our study provides a contribution to the field of weather forecasting in urban environments,
which could be further improved and applied to specific tasks.

Future research should focus on expanding the model’s applicability to other geographical locations and scaling it
to larger areas, and incorporating more comprehensive data, such as classified point cloud data and street-level imagery,
which may add further value to the predictions thanks to their high resolution and additional information (Megahed,
Shaker and Yan, 2021; Biljecki, Zhao, Liang and Hou, 2023b). Moreover, the form of the employment of geographical
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information could be explored beyond the convolution-like layer structure proposed in this study. With these
improvements, the proposed model could be a valuable tool for weather forecasting and urban planning.

Data availability
The research compendium for this article can be found at:
https://github.com/ideas-lab-nus/microclimate-dl-predict
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