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Abstract

Building characteristics, such as number of storeys and type, play a key role across many
domains: interpreting urban form, simulating urban microclimate or modelling building
energy. However, geospatial data on the building stock is often fragmented and incom-
plete. Here, we propose a novel and easily adaptable method to predict building charac-
teristics in diverse cities, which attempts to mitigate such data gaps. Our method exploits
the geospatial connectivity between street-level urban objects and building characteristics
by employing graph neural networks, as they can model spatial relationships and lever-
age them for predictions. We apply this approach in three representative cities (Boston,
Melbourne, and Helsinki) that offer a variety of building features as prediction targets
(storeys, types, construction period and materials) and diverse urban environments as pre-
dictors. Overall, the magnitude of errors is acceptable for a series of use cases. In the
prediction of building storeys, an average of 81.83% buildings in three cities have less
than one-storey prediction error. We also find that the prediction of building type achieves
an average of 88.33% accuracy across three cities. Meanwhile, an average of 70.5% of
buildings are correctly classified by construction period in Melbourne and Helsinki, and
the building material prediction accuracy is 68% in Helsinki. The results confirm that
our approach is adaptable across different urban environments because comparable per-
formance is achieved in the other two cities. Further, we assess the impact of varying
local data availability on model performance. Our findings underscore the feasibility of
the method in scenarios with sparse building data (10%, 30% and 50% availability). Our
graph-based approach advances research on filling in incomplete building semantics from
existing datasets, and showcases the potential to enable 3D city modelling. Given the
broad applicability of the approach to predicting many building characteristics, diverse
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downstream applications exist, such as enhancing contemporary urban studies (e.g. ex-
ploring streetscapes) and facilitating the development of 3D GIS (e.g. maintaining and
updating 3D building settings).

Keywords: Building semantics, Urban digital twins, Data availability, Deep
learning, Urban morphology

1. Introduction

Acquiring key characteristics of buildings is fundamental for supporting city
planning, contributing to various urban research (Hudson et al., 2019; Kitchin,
2014; Nouvel et al., 2017). However, the availability of building characteristics
widely varies across initiatives and regions (as illustrated in Figure 1). Biljecki
et al. (2021) investigated 140 open government geospatial datasets from 28 coun-
tries and found that only half of them contained more than one building feature.
Detailed characteristics, such as building height, number of storeys, type, age, and
status, while crucial for many analyses, are often not available. Beyond 2D urban
studies, a similar situation is observed in 3D GIS where only a few datasets offer
semantic building information, while they mostly inform only the building geom-
etry (Lei et al., 2023). In urban digital twins, where 3D city models play a role in
representing the physical environment, data issues (e.g. scattered building data and
varied accessibility) hinder their implementations (Kolbe and Donaubauer, 2021;
Park and Guldmann, 2019; Chen et al., 2019; Hong et al., 2020; Gil, 2020; Schrot-
ter and Hürzeler, 2020). Nevertheless, a comprehensive-enough set of building
characteristics is fundamental for supporting use cases of 3D city models and ur-
ban digital twins, such as simulating energy consumption and analysing urban
heat island effect (Gröger and Plümer, 2012; Harter et al., 2023; Xia et al., 2022;
Katal et al., 2022; Bansal and Quan, 2022).

The methods to collect information about buildings are diverse, each with pros
and cons. Two streams are found in the research community. Image-based ap-
proaches are commonly used for extracting building attributes, relying on remote
sensing (Liasis and Stavrou, 2016; Wang et al., 2018; Chen et al., 2018), and street
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Figure 1: Geospatial building data can facilitate a diversity of use cases, but its availability varies
across cities. A typical situation is described with two examples: on the left side, a building
attribute (here the number of storeys) is partially available in City A, and on the right side, another
attribute (the building type) is incomplete in City B. Such situations make it impossible to perform
downstream analyses, such as analysing urban climate, simulating energy use and interpreting
urban growth, highlighting the importance of building data completeness and richness for urban
studies.

view imagery (Dimitrov and Golparvar-Fard, 2014; Sun and Gu, 2022; Ning et al.,
2022; Pang and Biljecki, 2022). Other than the direct measurements, approaches
using urban morphology to infer building characteristics with machine learning
have gained attention (Biljecki et al., 2017; Milojevic-Dupont et al., 2020; Nachti-
gall et al., 2023). One methodological limitation of these approaches is that they
typically use standard machine learning algorithms such as XGBoost and only
partially encode spatial aspects through feature engineering. Further, taking into
account spatial heterogeneity, machine learning methods may be failing in rep-
resenting spatial characteristics locally. The lack of explicit representation may
make these studies miss spatial aspects potentially rich in predictive information,
such as spatial patterns and relationships.

Here, we introduce an innovation in methods for inferring building character-
istics by proposing a more spatially explicit representation of urban features as
predictors. In particular, we develop a generic graph-based approach to exploit
the spatial relationships between buildings and street-level urban objects, such as
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nearby amenities and city furniture, thus predicting building characteristics.
Our approach advances the literature in three ways and does so significantly.

First, we adopt graph neural networks (GNNs) for the first time to capture the
geospatial connection between buildings and their surrounding urban entities and
conduct predictions. In contrast to conventional machine learning models (e.g
support vector machine, XGBoost), which merely learn urban features at attribute
space (Nachtigall et al., 2023; Milojevic-Dupont et al., 2020), the graph neural
network-based method can additionally learn the underlying spatial context (i.e.
spatial interactions) of the urban road features; thus, enabling the method to be
geospatially explicit. Further, addressing unique spatial characteristics of various
urban settings, our approach is intended to make predictions locally and across
cities with appropriate adjustments and customisation.

Second, we investigate new predictive features that have not been used pre-
viously in the literature – street-level urban objects. Urban objects surround-
ing buildings at the street level (e.g. amenities and trees) are harnessed as pre-
dictors. When designing this approach, we only exploit the spatial connectiv-
ity between buildings and urban objects from streetscapes, without considering
building-related information (e.g. height and the number of storeys, which can
be hard to obtain in different cities) and local regulations (e.g. population and
housing price). In contrast with the previous literature, we also choose not to
use geometric features from buildings (e.g. footprint area) to specifically focus on
investigating the predictive power of urban objects surrounding buildings. Build-
ing footprints demonstrate the ability to infer building characteristics in current
research (Biljecki et al., 2017; Milojevic-Dupont et al., 2020), but a number of
developing countries or cities remain the challenge of offering building footprints
(e.g. cities in China and South East Asia). However, urban objects can be avail-
able retrieved from, e.g. social media or volunteered geographical information.
Further, our work is distinctive as it is the first to focus on urban objects surround-
ing buildings, exploiting their spatial relationships to perform predictions.

Third, the approach is generic and reproducible, applying to any kind of input
data source that can be used as predictors (e.g. geotagged information from au-
thorities or companies). In this proof-of-concept work, we use OpenStreetMap
(OSM) data, an open and crowdsourced dataset available worldwide (Biljecki
et al., 2023), as a source of street-level urban objects. We retrieve data on points
of interest (POIs), transportation infrastructure, and vegetation objects (e.g. trees
or plant covered areas) in different cities. The selection of OSM ensures that the
approach can be used in a variety of cities around the world if the degree of com-
pleteness of urban objects in the city is sufficient. The method can be further
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developed as an end-to-end pipeline from raw data, making it easier for adoptions
among a variety of use cases.

The paper is structured as follows. Section 2 introduces related work on pre-
dicting building characteristics and discusses current methodologies employed for
predictions. Section 3 outlines our workflow for building the prediction model, de-
tailing the datasets incorporated in this study. In Section 4, we adopt the proposed
approach within diverse urban contexts (i.e. Boston, Melbourne and Helsinki) to
derive a variety of building attributes. Further, we evaluate the impact of avail-
ability by simulating a set of data availability scenarios. The following Section 6
gathers insights from implementation together with contemplating potential av-
enues for future exploration and existing limitations. Section 7 concludes this
work, highlighting the novelty of our graph-based approach to learning multiple
building characteristics.

2. Background and related work

2.1. Geospatial data on buildings
Buildings are fundamental elements of urban landscapes. Building charac-

teristics not only define architectural aesthetics but also offer insights into under-
standing and examining the multifaceted dynamics of cities and associated activ-
ities. A number of studies have highlighted an underlying connection between
urban entities; for example, Wang et al. (2016) investigated how streetscape qual-
ity associated with building design (e.g. levels and usage) influenced human be-
haviours in the cities. When discussing the imageability of a city, Lynch (1964)
underlined the importance of building information as critical urban elements that
mirror the local context. Delving deeper, each building has its symbolism, encap-
sulating various facets — social, political, cultural, or aesthetic function. Such
symbolic interpretations often intertwine with distinct physical attributes of the
building, such as its size, intended use, overall shape, and façade, and subse-
quently influence a range of socio-economic activities, e.g. shaping urban func-
tions (Appleyard, 1969; Chen et al., 2017; Xu et al., 2022a). The dynamic estab-
lishes a symbiotic relationship, highlighting the interaction between urban activ-
ities and constructed surroundings. Furthermore, building characteristics play a
role in environmental studies, serving as foundational information for advanced
semantic analyses. Amidst a growing global focus on sustainability, investiga-
tions into such topics, ranging from energy consumption to vertical farming and
micro-climate, have become increasingly prevalent in contemporary discussions
(Palliwal et al., 2021; Teng et al., 2021; Fathy et al., 2021; Dembski et al., 2020).
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Conducting these studies requires a granular understanding of building features.
For instance, in the realm of energy consumption analysis, Kumar et al. (2018)
incorporated a myriad of building attributes, including roof information, surface
area, and wall area, to explore heating and cooling loads, aiming to elucidate ef-
ficient strategies that could be instrumental for the energy and building sectors.
Likewise, the integration of diverse building characteristics has proven essential
in guiding decisions related to ventilation. Wang et al. (2019) found that vary-
ing building types have distinct requirements for installing heat recovery devices.
When conducting research on urban climate, building features, such as building
height (serving as a primary metric for gauging urban density) and building age
(identifying architectural styles like heritage façade), are identified as pertinent
factors (He et al., 2022; Zhu et al., 2022). Such information is instrumental in
both analysing the phenomenon and devising mitigation strategies, but is often
missing.

In 3D GIS, building characteristics act as the backbone of city models and
urban digital twins, driving the quality and richness of models. For example,
detailed 3D models with abundant semantic information have greater potential
for a variety of applications, such as simulating disaster scenarios, facilitating
advanced indoor analysis (Lei et al., 2023). While building characteristics offer
a valuable lens for diverse urban studies, the accessibility and completeness of
geospatial data on building levels can vary across cities. Prediction of building
information from other data sources, therefore, emerges as a strategy to bridge the
data gap and enable analyses that demand specific semantics.

2.2. Inferring building characteristics
In the realm of predicting building features, there has been a surge in research

targeting the estimation of building heights, which can be used for interpreting
vertical spatial morphology and employed to generate 3D building models when
combined with building footprints (Silva et al., 2017; Tu et al., 2016; Chen et al.,
2022; Usui, 2023b). One popular method involves leveraging the correlation be-
tween building morphology to enable the prediction of height information. By in-
vestigating straightforward building-related indicators, researchers can infer miss-
ing details (Biljecki and Chow, 2022). For example, Biljecki et al. (2017) utilised
a set of ten predictors, categorised across three domains: (1) building attributes,
encompassing information such as usage, construction year, number of storeys,
and floor area; (2) geometry, such as footprint area and shape complexity; and
(3) statistical insights, e.g. population density, household size, and income. In
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another notable study, Milojevic-Dupont et al. (2020) expanded the scope by in-
tegrating urban form, gleaning 152 metrics that span building-specific indicators,
street networks, and block parameters. Such an exhaustive dataset then served as
the foundation for a supervised machine learning model, contributing to predict-
ing building heights.

Meanwhile, a contemporary approach towards height estimation is harness-
ing remote sensing. For example, building height can be measured from high-
resolution synthetic aperture radar (SAR) images by computing the slant range
and distance, necessitating a deep knowledge of photogrammetry (Sun et al.,
2022b; Wang et al., 2015). Another technique capitalises on shadows, in partic-
ular, by assessing their lengths and solar elevation angles, one can deduce height
attributes (Liasis and Stavrou, 2016). However, these modalities come with their
own challenges concerning data accessibility and timeliness relevance (Biljecki
et al., 2017). With the increasing awareness of open science, the paradigm has
shifted to more publicly available data and open sources. A number of studies
have attempted to derive height information by correlating SVIs with building lo-
cations, inferring distance through angular perspectives (Díaz and Arguello, 2016;
Zhao et al., 2019b). Yan and Huang (2022) employed deep neural networks to de-
rive height data by detecting architectural nuances (e.g. vanishing points, line seg-
ments and semantic segmentation) from standalone SVIs. Following suit, Xu et al.
(2022b) integrated the mask region-based convolutional neural network (Mask R-
CNN) to identify buildings, correlating detected buildings with ground truths to
estimate height — achieving a mean height error of 0.78 meters. Related to build-
ing heights, an emergent research domain centres around predicting the number
of building storeys, which can reflect architectural structure in detail and act as
a proxy of building height in some cases (Goetz and Zipf, 2012; Biljecki, 2020).
For example, Roy et al. (2022) explored building morphology to infer storey data,
particularly for residential structures. A key motivation to predict heights is to
create 3D building models from 2D building footprints, significantly broadening
their usability (Biljecki et al., 2017).

In addition to the popularity of inferring height information, other building
characteristics play a role in research across domains, contributing to a variety
of studies. For example, building usage, as a part of shaping urban functions and
forms (Hecht et al., 2015; Henn et al., 2012; Kong et al., 2024), has the potential to
drive applications ranging from various scales, e.g. energy modelling at the build-
ing level, disaster risk assessment in the cities energy modelling to disaster risk
assessment (Fan et al., 2014; Li et al., 2022; Xia et al., 2020; Xu et al., 2019; Kim
et al., 2022). In terms of deducing building types, convolutional neural networks
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(CNNs) have proven instrumental in performing such predictions in the research
landscape. Recent research applies CNN-based image segmentation techniques
to dissect and analyse vast heterogeneity of urban structures from high-resolution
satellite imagery (Huang et al., 2020; Lu et al., 2014; Belgiu et al., 2014). Other
than satellites, Wurm et al. (2015) exploited stereoscopic airborne images com-
bined with building metrics (e.g. footprint, floor area and volume) to capture the
distinct physiognomies of individual buildings. Moreover, Du et al. (2015) in-
tegrated GIS data with very high-resolution imagery and employed the random
forest algorithm to categorise buildings into seven distinct clusters. Taking ad-
vantage of crowdsourced data in urban analytics (Hoffmann et al., 2023), present
research leans on such public accessibility, providing a lens on inferring building
usage in an open manner (Bandam et al., 2022). For instance, Atwal et al. (2022)
adopted a supervised learning paradigm to predict building classifications, filling
the data gap in building stocks. By leveraging OpenStreetMap data, they dis-
tinguished residential and non-residential buildings across three American cities.
More recently, Kong et al. (2024) proposed a graph-based neural network (GNN)
approach for classifying building functions, integrating multiple data sources (e.g.
OSM data and images) and leveraging contextual information between buildings.

In parallel, the predictions of other building characteristics, such as building
age and building material, are explored with growing interest in the research com-
munities. For example, some research uses black-box-based approaches (e.g. neu-
ral networks and machine learning) to infer building age through LiDAR data
(Tooke et al., 2014). In a similar vein, Google Street View images, rich in visual
detail, have been used as a data source for age prediction models (Li et al., 2018).
Notably, such age-prediction efforts make a potential contribution to broader ur-
ban studies, e.g. the construction year of buildings can be an instrumental factor
when estimating energy consumption (Gassar and Cha, 2020). Beyond a single
prediction of particular building features, current research has explored methods
for inferring multiple building attributes. For example, leveraging a deep learning
framework, the extraction of building façade information from street view images
determines both building style and age (Sun et al., 2022a). Furthering this trend,
Meng et al. (2022) designed a CNN architecture that specialises in classifying a
set of building features, particularly in rural landscapes, using oblique aerial pho-
tography. In this regard, artificial intelligence techniques, such as neural networks
and machine learning algorithms, have shown promise in processing vast amounts
of heterogeneous data and conducting predictions of multiple building character-
istics.
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2.3. Urban digital twins and GNNs
Building characteristics play a role in multiple domains, supporting not only

2D urban analysis but also 3D urban realm. Urban digital twins, where 3D build-
ings serve as the backbone, are digital replicas of urban environments that inte-
grate a variety of urban data and techniques, facilitating city planning and de-
cision making by simulating and analysing dynamic urban scenarios. However,
the availability and richness of building characteristics in urban digital twins vary
from initiatives and cities, impeding further operation of urban digital twins. The
increasing adoption of urban digital twins require detailed semantics, support-
ing dynamic simulations in city planning, infrastructure development, and envi-
ronmental sustainability. Therefore, recognising the importance of building-level
geospatial data in 3D modelling tasks, the rapid progression of AI in urban ana-
lytics provides promising tools for inferring missing information and transferring
knowledge across multi-disciplines, enriching semantic information of urban dig-
ital twins (Ye et al., 2023). However, the complex and irregular spatial patterns of
the urban streets and the urban objects (e.g. buildings, trees and other facilities)
often pose obstacles to conventional AI models (Mai et al., 2022). Graph neural
networks (GNNs), due to their capabilities of handling non-euclidean structured
data (Zhu et al., 2021) and encoding the spatial interactions of studied objects in
their computational process, have been increasingly recognised to hold the key in
developing better AI frameworks that can offer high-quality predictions in spa-
tial analytics (Liu and Biljecki, 2022; Yan et al., 2019). GNNs have proven to
be successful in a wide range of street-level prediction tasks (Liang et al., 2023;
De Sabbata and Liu, 2023), such as traffic analysis (Zhao et al., 2022, 2019a) and
human-centred urban planning tasks (Liu et al., 2023b). However, most of the ap-
plications where GNNs are proven to be successful are ‘horizontal’ tasks. That is,
those tasks focus on predictions of certain attributes that do not require 3D mod-
elling; hence, they do not fall into the area of urban digital twins. Therefore, the
capability of GNNs to predict ‘vertical’ information of urban objects remains un-
derexplored. Our study will address such a limitation by developing a GNN-based
framework, aiming to integrate GNNs into the development of urban digital twins,
providing accurate predictions and classifications with the spatial data available at
the urban scale.
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3. Methodology

3.1. Workflow
As outlined in Section 1 and Section 2, our study focuses on predicting build-

ing characteristics by leveraging geospatial relationships between buildings and
their surrounding street contexts (Figure 2). A primary motivation to design
such a method is to exploit spatial connectivity, bridge the geospatial data gap
for buildings, and pursue broad applicability across diverse urban environments.
While several approaches exist for inferring building characteristics, spatial con-
nections are not fully investigated for this purpose. As discussed in the previous
section, recent techniques (e.g. random forest) fall short of capturing the geospa-
tial connectivity between buildings and their surroundings.

In this regard, the GraphSAGE algorithm (Hamilton et al., 2017), a variant
of graph neural networks, aligns well with our objectives, boasting features such
as inductive learning, information aggregation, dynamic spatial representation,
and scalability. The graph-based model constructs spatial networks among build-
ings and determines node embeddings, leveraging context-based similarities for
predictions. It also allows a high degree of customisation, as a number of hyper-
parameters can be tuned to determine the size or the depth of graphs. Therefore,
we employ the GraphSAGE algorithm in a bifurcated manner, addressing both
regression and classification tasks. First, the regression task focuses on learning
continuous target variables, such as building heights and storeys. Second, the
classification task facilitates predicting discrete class labels, e.g. building types,
roof details and construction materials. While a plethora of studies have tack-
led building semantics predictions, our methodology distinguishes itself by using
GraphSAGE to exploit the spatial connectivity between building stocks and street
settings, thus estimating multiple building characteristics.
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Figure 2: A three-step workflow for developing the graph-based method for predicting building
characteristics, taking the prediction of building storeys as an example. Step 1 involves dataset
selection, and combining geospatial building information from open government data and street-
level urban objects from OpenStreetMap. Step 2 delineates the graph construction process, ag-
gregating features, establishing spatial connectivity via edges, and forming an inductive graph
representation. Step 3 consists in predicting building characteristics based on the learned graph
for two possible types of prediction tasks – regression for numeric attributes like building storeys
and heights, and classification for discrete attributes such as building type and age. Source of the
imagery: Google Maps 3D mode and Google Street View.11



3.2. Datasets
We base our dataset on OpenStreetMap (OSM), a globally accessible and ed-

itable geographic database. The dynamic platform offers rich, volunteer-contributed
information on varied geographical features, which can be retrieved using the
overpass-turbo API1. OSM data’s growing completeness and reliability have led
to its extensive use in urban morphology studies, as evident in recent literature
(Biljecki and Chow, 2022). Such wealth of data offers detailed insights into a
wide range of urban objects, such as amenities, which are crucial for understand-
ing spatial information and inferring urban patterns (Chen et al., 2024; Krapu
et al., 2023). Our selection of points of interest (POIs), transportation facilities,
and vegetation objects from OSM data aims to leverage the spatial relationships
between buildings and their immediate surroundings, elucidating how these urban
elements interact with and influence buildings within their spatial contexts. These
elements are chosen for their significant roles in characterising the urban land-
scape from three distinct but complementary perspectives: human activity, urban
mobility, and the natural environment.

First, POIs represent focal points of human activity within an urban area, in-
cluding such as commercial centres, educational institutions, healthcare facilities,
cultural venues, and public spaces. The diversity and density of POIs around a
building can signal its function, the population it serves, and its architectural style
and design. For instance, a building in a neighbourhood with numerous business
POIs may be more likely to serve office workers and therefore may have features
catering to their mixed needs, such as apartment living units and restaurants. The
selection of POIs as a predictor can acknowledge a implicit correlation between
the vibrancy of human activities and the characteristics of nearby buildings. Sec-
ond, the category of transport is a critical component of urban mobility, encom-
passing bus stops, railway stations, biking racks, and parking facilities. The ac-
cessibility and variety of transportation options available around a building reflect
the attractiveness of a building for certain uses, such as residential and commer-
cial purposes, while suggesting its capacity to accommodate population density as
well. Buildings in areas with rich transportation resources may prioritise access
and connectivity, impacting their design and layout. Including transportation facil-
ities as predictors aim to capture the mobility patterns around buildings, reflecting
how buildings integrate into a broader urban transit network. Third, vegetation in
urban areas, from street trees to public parks and natural reserves, contributes to

1https://overpass-turbo.eu
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environmental landscape within urban settings. The presence of vegetation can in-
form about the environmental considerations of a building. Further, the access to
natural resources can represent the ecological sustainability of buildings, varying
from building locations and usage. Selecting vegetation as a predictor, we tend to
understand how green elements impact building design and functionality.

Further, we retrieve open government data, primarily focused on geospatial
building characteristics, as our target data. It enables us to establish a dataset,
integrating urban objects and ground truth labels. The variety of labels we use
depends on the availability and detail of government building data. The data in-
formation is detailed in Figure 3.

Figure 3: Detailed breakdown of datasets. The table highlights the features and subgroups ex-
tracted from ‘Open government data’ and ‘OpenStreetMap data’. Examples are provided for clar-
ity, along with information on counting method for street-level urban objects.

3.3. GraphSAGE
GraphSAGE is a graph neural network algorithm developed for inductive node-

level representation learning in graphs (Hamilton et al., 2017), denoted as G =
(V, E), where V represents vertices (or nodes) and E indicates edges. Graph-
SAGE aggregates information from a node’s local neighbourhood, linking nodes
and their adjacent neighbours to share and propagate information and computing
embeddings to make predictions. One of GraphSAGE’s prevailing functions is
to handle large graphs with a large number of nodes and edges efficiently and
effectively. Given the scale and heterogeneity of urban data, in particular regard-
ing amounts of buildings associated with various street contexts, the GraphSAGE
algorithm delivers strengths in scalability and flexibility, making it suitable in
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our method for expansive urban environments. Meanwhile, GraphSAGE presents
the advantages of facilitating graphs with diverse aggregation techniques, such as
mean aggregator, pooling aggregator, and LSTM aggregator. For our model, we
choose the pooling method, given its efficacy in transmitting neighbours’ embed-
dings:

AGGREGATEpool
k = max

({
σ
(
Wpoolhk

ui + b,∀ui ∈ N(v)

)})
(1)

where max denotes the element-wise max operator and σ is a nonlinear activation
function. Such aggregation architecture balances symmetric and trainable char-
acteristics, ensuring each neighbour’s vector is independently fed through a fully
connected layer. By learning from graph network structures and creating node
embeddings, GraphSAGE enables various downstream tasks, for example, node
classification, node regression, and edge predictions, which can be further applied
to infer multiple building characteristics, such as building levels and usage. In this
regard, GraphSAGE captures the spatial distribution of buildings and learns from
the relationship between buildings and urban objects through an explicit sense
of its surroundings, therefore setting the stage for predictions of various building
characteristics.

3.4. Model design
The architecture of our model, illustrated in Figure 4, comprises two main

phases: graph construction and inference. In the first phase, we construct the
graph structure, where each building is conceptualised as a node. We employ the
principle of kd-trees to efficiently identify and locate street-level objects around
buildings (Bentley, 1979). Each building node is then characterised by its sur-
roundings as features, including the number of POIs, transport elements, and veg-
etation. In our graph, the spatial connectivity between buildings is vital and repre-
sented by edges. Using the k-nearest neighbours (KNNs) algorithm, we identify a
set number of buildings closest to a building of interest, interlinking them within
our graph to create a dense network of spatial connections. For our approach, each
building node is linked to its 10 nearest buildings based on preliminary analysis
comparing different neighbourhood sizes, ensuring a balance between model com-
plexity and computational efficiency. However, the number of nearest buildings
serves as a hyperparameter in our method, allowing customisation to construct
graphs of varying complexity based on specific contexts. We adopt dual embed-
ding techniques in the inference phase: node regression for numerical building
characteristics and node classification for categorical attributes. Hidden layers are
constructed to optimise the network’s depth, ensuring efficient information prop-
agation between layers. We split the dataset into a 70:30 ratio for training and
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testing, a distribution well-regarded for its effectiveness in related work. Next, we
train the model on the pre-processed data, deriving node embeddings that capture
the underlying network features. After certain epochs of training, we assess the
model’s performance using evaluation metrics such as RMSE (root mean squared
error), MAE (mean absolute error), classification accuracy, F1-score, precision
and recall scores (Hyndman and Koehler, 2006). Further, we employ the median
relative error as a complementary metric to evaluate how the method perform in
predicting building storeys. It allows us to take a deeper look at the magnitude
of prediction inaccuracies, and gauge the extent of information loss in our model
performance. In particular, we consider a range of acceptable errors for evaluating
building storey predictions, defined as the percentage of buildings with an predic-
tion error below 0.25 storeys, 0.5 storeys, 0.75 storeys and 1 storey. For example,
a prediction error of 0.5 storeys can be translated into 1.3-1.8 metres (e.g. the av-
erage storey height is around 2.65 m in the Netherlands (Roy et al., 2022) and
around 3.5-3.9 m in Japan (Usui, 2023a)). We believe that having the acceptable
error range can effectively and diversely conclude the evaluation results, as well as
take into account various scenarios in which the model is being used for specific
cases and contexts.

3.5. Implementation
The prediction model is implemented in Python:

• Google Colab2 environment for data processing and model training and
evaluation;

• scikit-learn library (Pedregosa et al., 2011) for matching nearest fea-
tures surrounding buildings and measuring the model performance, mod-
elling the baseline random forest, etc.;

• DGL library (Paszke et al., 2019) and Pytorch (Paszke et al., 2019) for
constructing graph network;

• loss function of MAE and RMSE for regression task (e.g. predicting
numeric building characteristics) and cross-entropy loss for classification
task (e.g. building types), for evaluating the model’s accuracy.

2https://colab.research.google.com

15



Figure 4: Our prediction pipeline: model design, detailing graph construction and evaluation. For
graph construction, urban objects at street scale are aggregated to be building (node) features,
while edges are formed by connecting the nearest k buildings (in this work, k=10). Post construc-
tion, the resultant graph is randomly divided into 70% for training and 30% for testing. Model
evaluation comprises two main tasks: node regression, where numeric target variables like height
and storeys are predicted with associated RMSE and MAE, and node classification, where discrete
class labels such as building types and materials are predicted, evaluated by classification accuracy
and other metrics.

3.6. Experiments
To evaluate our method and assert its wide applicability, we designate our ex-

periments in three illustrative cities, each carefully chosen to encapsulate various
dimensions of our study. The selection process is based on two inclusion criteria.
First, geospatial heterogeneity is considered to ensure the worldwide applicabil-
ity. Each chosen city will then serve as a representative case study, showcas-
ing the method’s adaptability and effectiveness across diverse urban contexts and
geospatial variances. Second, we seek cities with varied levels of data complete-
ness of building characteristics. While some cities offer comprehensive building
attributes, others may possess only a subset of such semantic content. The diver-
sity in data richness allows us to gauge model performance across a spectrum of
data availability. Given these criteria, three cities are selected for their distinctive
geospatial and building attributes: Boston, Melbourne, and Helsinki (as illustrated
in Figure 5). Each city, hailing from a distinct continent, provides a unique urban
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backdrop, making our study both comprehensive and globally relevant.

Experiment 1. We set up our first experiment in Boston (USA) to validate our
method’s applicability. The open government geospatial data on buildings in
Boston3 provides key semantic information. For this experiment, we chose two
building characteristics as prediction targets: building storeys and building type.
Given the quantitative nature of building storeys, we employ regression task for
its predictions. Meanwhile, the classification task is used to learn building types.

Experiment 2. For this trial, our approach is applied in Melbourne (Australia).
Our objectives include evaluating its applicability across cities and exploring its
capability to predict a broader range of building characteristics. Leveraging the
comprehensive open government building data in Melbourne 4, we target build-
ing storeys, type, and additionally construction period for prediction. Besides
storeys and types, introducing construction period as a prediction target provides
insights into the historical context of buildings, a feature with substantial relevance
to downstream applications (e.g. building energy calculation).

Experiment 3. Our method is further extended to Helsinki (Finland), allowing it
to adapt to diverse contexts and geospatial variations. Following the established
workflow, building data is sourced from the local government 5. The exemplary
development of 3D city model in Helsinki, especially with its rich semantic build-
ing attributes (Lei et al., 2023), provides an ideal foundation for our approach.
The diverse building semantics facilitate the provision of multiple ground truth
values, guiding our specific predictions of building characteristics. Hence, for this
experiment, we target a range of building characteristics: storeys, type, construc-
tion period and building materials. A novel aspect of this experiment is our effort
to estimate building materials, further highlighting the versatility of our method.

4. Results

We train and cross-validate the designed method on three cities. Overall, the
graph-based approach performs well in predicting a variety of building charac-
teristics across various urban environments, achieving competitive results through

3https://data.boston.gov/dataset/boston-buildings-inventory
4https://data.melbourne.vic.gov.au/explore/dataset/

buildings-with-name-age-size-accessibility-and-bicycle-facilities/
information/?refine.census_year=2021

5https://hri.fi/data/en_GB/dataset/helsingin-rakennukset

17

https://data.boston.gov/dataset/boston-buildings-inventory
https://data.melbourne.vic.gov.au/explore/dataset/buildings-with-name-age-size-accessibility-and-bicycle-facilities/information/?refine.census_year=2021
https://data.melbourne.vic.gov.au/explore/dataset/buildings-with-name-age-size-accessibility-and-bicycle-facilities/information/?refine.census_year=2021
https://data.melbourne.vic.gov.au/explore/dataset/buildings-with-name-age-size-accessibility-and-bicycle-facilities/information/?refine.census_year=2021
https://hri.fi/data/en_GB/dataset/helsingin-rakennukset


Figure 5: The three cities in focus in this study: Boston, Melbourne and Helsinki. The plots show
the distribution of building storeys to indicate the diversity of settings included in the experiments.
For each city, there is an example of a building showing the data content, illustrating the variation
of building characteristics cross cities.

comparing with the present literature and the baseline model random forest. Across
the prediction of building storeys in three cities, we find that on average 81.83%
of the predictions are of acceptable (below one building storey), with best case be-
ing 91.58% in Boston and worst case being 69.92% in Melbourne. For example,
Figure 6 spatial-explicitly illustrates the distribution of building storeys and type
information in Boston. In this zoomed-in area, most buildings are inferred cor-
rectly in storeys and type, where the prediction error is within a ±1 storey range.
Notably, our method indicates potential to adapt different scenarios, for example,
a city with limited available building data.

4.1. Model comparison
With the cross-validation process, we benchmark the graph-based approach

against a widely accepted method in the literature: the random forest algorithm.
We adopt the same features that used in the GNN framework building the baseline,
with specific parameters, (i.e. max_depth=100, random_state=0). Thus,
it allows us to gauge the relative strengths and weaknesses of our method in com-
parison to conventional techniques. The comparative evaluation is consolidated in
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Figure 6: Geospatial map of predicted building characteristics in Boston. The top plot (a) demon-
strates the actual building storeys, predicted storeys and prediction errors. The bottom one (b)
depicts the actual building types, classified predictions and errors.

Table 1.

19



For the regression task to predict continuous target variables, the evaluation
metrics are the RMSE and MAE, both of which measure the differences between
predicted and actual values. In particular, such metrics are employed to assess
the prediction accuracy of building storeys. Further, for the testing datasets, we
compute the percentage of buildings with a prediction error range deemed accept-
able for downstream studies, defined as less than 0.25, 0.5, 0.75 and 1 building
storey (indicated as ‘acceptable error’ in Table 1). In the task of classification,
our method learns to categorise buildings based on discrete class labels such as
building type, construction period, and material. Performance in this task is eval-
uated using classification accuracy, F1-score, recall, and precision. Each metric
provides insight into the model’s ability to correctly classify buildings based on
the aforementioned criteria.

The results confirm that our graph-based method outperforms the random for-
est baseline. When predicting building storeys, our model delivers an average
RMSE of 1.23 storeys and an MAE of 0.76 storeys with an average median rela-
tive error of 36.5% across all three experiments. For the prediction error below one
storey, our model results reveal that on average of 81.83% of buildings are of ac-
ceptable in three cities. In contrast, the baseline records an RMSE of 2.61 storeys
and an MAE of 1.09 storeys, with 66.99% of buildings predicted within an error
range of one storey. For building classifications, our method boasts an average
accuracy of 88.33% for correctly predicted building types, 70.5% for construc-
tion period, and 68% for building materials. Outperforming the state of the art,
we believe that these results present an advancement in the body of knowledge in
this domain. The subsequent sections dive into more details and present the most
significant results and findings.
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Table 1: Comparative performance evaluation of random forest and GraphSAGE models across
three experiments. Metrics include acceptable error range, median relative error, RMSE and MAE
for building storeys; Accuracy (Acc), F1-score, Precision, and Recall for building type, construc-
tion period and material.

Prediction task Model Evaluation metrics

Experiment 1 – Boston RMSE MAE Median relative error

Storey

Random forest 2.23 1.07 27.0%

GraphSAGE 1.20 0.55 20.9%

Acceptable error (0.25, 0.5, 0.75, 1 storey)

Random forest 17.0% 34.4% 50.2% 74.8%

GraphSAGE 28.4% 45.5% 60.3% 91.6%

Acc F1-score Precision Recall

Type
Random forest 0.79 0.80 0.81 0.79

GraphSAGE 0.90 0.85 0.81 0.89

Experiment 2 – Melbourne RMSE MAE Median relative error

Storey

Random forest 3.47 1.11 114.4%

GraphSAGE 1.26 0.91 55.3%

Acceptable error (0.25, 0.5, 0.75, 1 storey)

Random forest 11.5% 20.2% 27.5% 46.2%

GraphSAGE 33.1% 50.5% 64.3% 69.9%

Acc F1-score Precision Recall

Type
Random forest 0.86 0.86 0.86 0.85

GraphSAGE 0.90 0.86 0.87 0.87

Construction period
Random forest 0.79 0.78 0.79 0.79

GraphSAGE 0.86 0.86 0.86 0.86

Experiment 3 – Helsinki RMSE MAE Median relative error

Storey

Random forest 2.14 1.10 34.2%

GraphSAGE 1.24 0.83 33.3%

Acceptable error (0.25, 0.5, 0.75, 1 storey)

Random forest 16.4% 37.1% 56.3% 80.1%

GraphSAGE 30.6% 46.8% 60.9% 84.0%

Acc F1-score Precision Recall

Type
Random forest 0.81 0.80 0.79 0.81

GraphSAGE 0.85 0.78 0.72 0.85

Construction period
Random forest 0.53 0.52 0.53 0.53

GraphSAGE 0.55 0.54 0.52 0.54

Material
Random forest 0.64 0.62 0.63 0.64

GraphSAGE 0.68 0.67 0.65 0.66
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4.2. GraphSAGE outperforms random forests for storeys, but issues remain with
tall buildings

The GraphSAGE model exhibits comparable performance in Boston and Helsinki,
and notably outperforms the baseline model in Melbourne, when conducting the
prediction of building storeys. Indeed, the RMSE values are 1.20 storeys for
Boston, 1.26 storeys for Melbourne, and 1.24 storeys for Helsinki. Regardless
of nuances, the results from all three experiments indicate that our method can
predict the number of building storeys throughout a city with an average error
margin of approximately one floor, which is sufficient for a number of use cases.
In Melbourne, the RMSE is higher, likely due to unusual buildings and heteroge-
neous distributions of tall buildings.

To get richer insights into model performance for high- and low-rise build-
ings, we divide the datasets into two categories: buildings with 5 storeys or fewer
and taller buildings. The model demonstrates fine precision for low-rise build-
ings, maintaining a prediction error margin within 1 storey, as suggested in Ta-
ble 2. However, the model accuracy tends to decrease as the number of storeys
increases. Across all experiments, the model consistently undervalued high-rise
buildings. For instance, while the results for buildings below 5 storeys in Exper-
iment 1 and Experiment 2 are within half a storey’s margin of error, model per-
formance deteriorates for taller ones, evidenced by a RMSE of 7.67 storeys and
a MAE of 4.32 storeys in Boston. Interestingly, the model showcases superior
accuracy in Helsinki, achieving a MAE of 1.13 storeys for high-rise buildings.
Such performance aligns closely with the findings of Roy et al. (2022), where
their best model recorded an MAE of 1.00 storeys for Dutch cities. Considering
the disparate storey distributions across the three cities, the subset of high-storey
buildings may require more training instances to improve prediction accuracy. It
is inherently complex to estimate the number of storeys in higher buildings. Fur-
ther, the quality and accuracy of official data on building storeys can impact the
predicted results as well. For example, inaccuracies in the storey information pro-
vided by the governments as ground truth can affect the predictions.

4.3. Accuracy is very high for residential and high for non-residential buildings
The characteristic of building types is available for all three cities. Considering

that our work is an illustration, we consolidated the buildings into two primary cat-
egories: residential (R) and non-residential (NR), despite variations in type clas-
sifications. We deem that the binary classification is a foundational step towards
distinguishing between broadly different uses of urban space. It can be tailored to
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Table 2: Model performance on storey prediction, categorised by ‘other’ buildings (with storeys
less than or equal to 5) versus buildings and ‘tall’ buildings (with more than 5 storeys) in the three
experiments.

Experiment 1 — Boston: 98.62% other buildings, 1.38% tall buildings

RMSE MAE Mean value

Storey <= 5 Storey >5 Storey <= 5 Storey >5 Storey <= 5 Storey >5

Random forest 0.89 7.80 0.71 4.95
2.38 9.75

GraphSAGE 0.75 7.67 0.59 4.32

Experiment 2 — Melbourne: 87.64% other buildings, 12.36% tall buildings

RMSE MAE Mean value

Storey <= 5 Storey >5 Storey <= 5 Storey >5 Storey <= 5 Storey >5

Random forest 0.99 13.242 0.81 9.96
2.09 14.73

GraphSAGE 0.75 11.21 0.59 6.65

Experiment 3 — Helsinki: 93.00% other buildings, 7.00% tall buildings

RMSE MAE Mean value

Storey <= 5 Storey >5 Storey <= 5 Storey >5 Storey <= 5 Storey >5

Random forest 1.39 2.31 1.05 1.30
1.91 7.00

GraphSAGE 1.09 2.22 0.81 1.13

specific cases and contexts, e.g. with a need of inferring multiple building func-
tions. In this study, we adopt a binary classification for its universal applications
across three cities where classifying building types in different ways.

The accuracy is the key metric to evaluate prediction performance, defined as
the fraction of buildings correctly classified based on their type. We incorporate
three additional metrics to conduct a more comprehensive assessment. The pre-
cision quantifies the accuracy of positive predictions, while the recall measures
the model’s ability to identify all relevant instances. The F1-score, derived as
the harmonic mean of precision and recall, offers a consolidated measure of the
model’s accuracy and recall capabilities (Goutte and Gaussier, 2005). In this con-
text, the precision represents the portion of buildings accurately labelled as resi-
dential from all buildings predicted as the residential type. Conversely, the recall
refers to the fraction of correctly predicted residential buildings out of the total
number of actual residential buildings. Overall, our model discerns building types
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with an average accuracy of 87.9% across the three geographically disparate areas
(Figure 7). In Experiment 1, considering the extensive dataset of local buildings,
an impressive 89.5% of buildings are correctly categorised. Drawing a compar-
ison with Atwal et al. (2022), our model obtains the highest F1-score of 86.0%
in Melbourne, prevailing over their best model performance with an F1-score of
83.1%.

Figure 7: Comparison of predictions for building types across all three cities. (a) Data distribution
for residential and non-residential buildings. (b) Prediction accuracy of two building types in each
city.

4.4. Promising accuracy for construction period and building materials, with
some heterogeneity across areas

Given the uneven distribution of construction years, we categorised building
ages into five distinct classes: (0-1900], (1901-1950], (1951-1975], (1976-2000],
and (2001-2023]. Such classification not only alleviates the challenges posed by
unevenly distributed labels on model performance but also furnishes categories
that are beneficial for downstream applications, such as estimating building energy
(Aksoezen et al., 2015), in which the exact year of construction is not essential but
rather the approximate era. In both Experiment 2 and Experiment 3, the accuracy
for predicting construction period stands at 85.7% and 55.1%, respectively. Pre-
dictions are more precise for buildings in Melbourne but occasionally misjudged
the age of older buildings, as described in Figure 8. Notably, the outcomes of
Experiment 3 address that prediction performance fluctuates across cities. For in-
stance, in Helsinki, buildings constructed post-1975 are predominantly predicted
accurately, while those between the 1900s and 1950s face frequent misclassifica-
tions. The prediction of construction period may be challenged by several factors.
Alongside the reliability of construction year data, the variation in sample sizes
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(as illustrated in Figure 8) influences prediction accuracy. Moreover, the diver-
sity of historical buildings in terms of their locations and surroundings makes it
more difficult to learn construction periods. For example, heritage buildings in
Melbourne are usually mixed with modern buildings, displaying various patterns
of renewal and reconstruction. Thus, we find that construction period prediction
should be tailored to specific countries or cities.

In Experiment 3, we also venture into predicting building materials. As per
official documentation, we identified five construction materials: concrete, wood,
brick, steel, and others. The model accurately classifies the construction materials
for 68.1% of buildings. In particular, it showcases remarkable accuracy with wood
(93.8%) and concrete (87.9%) buildings. However, the accuracy decreases for
brick (77.5%) and other materials (71.0%). Notably, steel-constructed buildings
exhibit a prediction accuracy of only 68.8%. The challenges encountered here
mirror those in the construction period prediction task, stemming from uneven
sample sizes and vague material classifications, like the ‘other’ category.

Figure 8: Comparison of predictions for construction period and building materials in Melbourne
and Helsinki. (a) Distribution of buildings by construction periods for each city. (b) Prediction
accuracy showcasing the classified construction period in Melbourne and Helsinki. (c) Material
composition of buildings in Helsinki. (d) Prediction accuracy of each building material in Helsinki.
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4.5. Limited impact on results of buffer size and objects included
To gain a deeper understanding of the importance of selected features, we

conducted an ablation study in Boston to evaluate model performance by omitting
certain features, allowing for an assessment of each feature’s contribution. The
ablation study considers two aspects: (i) how different types of street-level urban
objects impact the model; (ii) how different distances of urban objects to buildings
affect the model. In this regard, two groups are designed: (i) a single category of
urban objects is examined at different distances from buildings; (ii) different urban
objects are kept at the same distance. Table 3 summarises the results of the study.

Overall, incorporating a diverse set of urban objects enhances model perfor-
mance, including only one category of urban objects, which is evident when com-
paring two groups. When assessing the impact of feature categories, POIs that
cover multiple distances from buildings are found to prove more effective than the
other two types. It may hint at the significance of services and amenities in char-
acterising the surroundings. Meanwhile, urban objects captured within different
circular buffers of 50, 200 and 500 metres around buildings play a role. Cases
4-6 describe the impact of various scales on our model performance. Indeed, ur-
ban features distributed in a broader neighbourhood (e.g. in a 500-metre buffer)
are more informative than the immediate surroundings (e.g. a 50-metre buffer).
The findings from the ablation study not only examine the importance of features
regarding their categories and distance but also verify our initial selection of 9
predictors. While our selected features provide a solid starting point, researchers
and practitioners can customise it for particular cases as well (e.g. increasing the
categories of urban objects). The ablation study, however, enhances the under-
standing of feature significance in our method and adapts accordingly in future
work. Moreover, the results imply the availability of POIs alone can aid in pre-
dicting building characteristics in a specific city, when the information regarding
surrounding vegetation is missing. It indicates that future users can customise
their selection of urban objects depending on the local data availability.

The ablation study attempts to interpret and explain our models by exploring
the causal links between predictors and targets. However, our primary focus is
on designing and evaluating a predictive framework. Therefore, we do not intend
to delve deeply into model explainability in this work, despite its crucial role in
interpretability (Liu et al., 2023a).

4.6. Modest training data often suffices for acceptable results
Considering the scalability and reproducibility of our method, it is important to

understand its performance under varying data availability across cities. Thus, we
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Table 3: Ablation study of the graph-based approach, evaluating two groups in the impact of
urban object categories and buffer areas, using Boston as a case study.

Impact of features selected Impact of the buffer size
Pipeline

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

POI_50 ✓ ✓ ✓

Transport_50 ✓ ✓ ✓

Vegetation_50 ✓ ✓ ✓

POI_200 ✓ ✓ ✓

Transport_200 ✓ ✓ ✓

Vegetation_200 ✓ ✓ ✓

POI_500 ✓ ✓ ✓

Transport_500 ✓ ✓ ✓

Vegetation_500 ✓ ✓ ✓

Storey
RMSE 1.28 1.30 1.29 1.25 1.27 1.31 1.20

MAE 0.65 0.68 0.69 0.60 0.64 0.73 0.55

Type Accuracy 0.894 0.893 0.893 0.895 0.892 0.893 0.895

simulate three distinct scenarios: cities with 10%, 30%, and 50% data availability,
relative to the total dataset. Such scenarios are designed to mirror real-world con-
ditions where researchers and practitioners may have to work with diverse data
accessibility levels. We perform three random samples, taking care to average
the results over three iterations for each experiment to mitigate any anomalies
caused by sampling or unbalanced label distribution. The scenarios with results
are demonstrated in Figure 9. Such a case is especially important for a VGI in-
stance such as OpenStreetMap because of its partial and varying completeness in
virtually all cities around the world, e.g. from 0% to 100% completeness (Biljecki
et al., 2023). Analysing the performance of our work through this lens would help
understanding whether the existing data in OSM, e.g. when available for 30% of
the buildings, could be used to predict the remaining values.

Overall, the results underscore its stability and applicability amidst fluctua-
tions in data availability; however, more training data indicates better predictions.
For instance, when predicting building storeys in Boston, the disparity in perfor-
mance between the 10% and 50% data availability scenarios is slight, with RMSE
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values peaking at 1.22 and 1.27 storeys and MAE values at 0.56 and 0.71 storeys,
respectively. However, for more intricate tasks like predicting construction period
and materials, the accuracy diminishes as the available building data dwindles, as
evidenced in Experiment 2 and Experiment 3.

The inclusion of scenarios not only sheds light on the potential challenges in
areas with sparse building data but also investigate the feasibility of our method
for broader applications. It is particularly pertinent in areas where building in-
formation may be scarce or inaccessible. By applying the graph-based method to
geographically diverse cities, we intend to provide valuable insights into its poten-
tial in heterogeneous urban contexts and across different levels of data availability.

Figure 9: The impact of data availability on model performance across three cities. Each experi-
ment was conducted three times with random sampling of training data, and the results presented
are the averages over three experiments.

4.7. Spatial autocorrelation sampling enhance model robustness in predicting
building storeys

To enhance the understanding of spatial heterogeneity impacts on our frame-
work, we closely examine spatial cross-validation on a local scale. Consider the
scenario where several identical buildings are present in both training and test-
ing datasets, which could artificially inflate model accuracy due to the model’s
familiarity with these buildings. To address potential bias and evaluate model per-
formance, we move beyond traditional random sampling techniques (as described
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in Section 4.6), implementing a spatial sampling strategy rooted in spatial auto-
correlation. This approach involves spatial-based cross-validation, leveraging the
concept of spatial autocorrelation, a measure that assesses the degree to which a
spatial attribute correlates with itself across neighbouring locations. Spatial auto-
correlation reveals how the occurrence or intensity of a phenomenon at one site
mirrors that in its vicinity, manifesting either as positive (similar values cluster-
ing together) or negative (dissimilar values clustering) autocorrelation. Note that
this experiment also aims to mirror the real-world process of humanitarian map-
ping, where mappers often begin by identifying and mapping buildings clustered
in areas that exhibit shared characteristics.

Using Boston as an example, we employ two spatial analysis techniques: com-
puting Local Moran’s I for the continuous data of building storeys, and performing
join counts for categorical data of building types. The findings are showcased in
Figure 10. For building storeys, we apply terms HH, HL, LL, and LH to delin-
eate distinct spatial associations identified by local Moran’s I index. Here, ‘HH’
denotes a ‘hot spot’ or a clustering of similarly high values; ‘LL’ signifies a ‘cold
spot’ or a clustering of similarly low values; ‘HL’ identifies a spatial outlier char-
acterised by a high value amidst low-value surroundings; and ‘LH’ points to a spa-
tial outlier marked by a low value amidst high-value surroundings. In parallel, for
building types, ‘WW’ highlights clusters predominantly featuring non-Residential
buildings, ‘BB’ denotes clusters primarily composed of residential buildings, and
‘BW’ signifies areas exhibiting a mixed distribution of both building types.

In our investigation of building storey predictions, we conducted three distinct
experiments to assess model performance. By utilising information on building
storeys from areas characterised by ‘HL’, ‘LH’, and ‘HH’ spatial clusters, our
model aims to forecast the number of storeys in buildings situated within ‘LL’
clusters. The outcomes reveals significant enhancements over those presented
in Table 1, underscoring the importance of incorporating geographical proximity
regarding building storeys into our sampling strategy. It is an addition to acknowl-
edging our framework performing regression tasks with notably improved results.
However, when predicting building types, the classification model exhibits lim-
ited generalisation capabilities when trained exclusively on one type of data and
tested on another. Notably, the model exhibits superior predictive capabilities for
categorical outcomes when trained with a mix of data types, as observed in the
’BW’ cluster, illustrated on the right side of the figure. This enhanced perfor-
mance extends to building story prediction, where the model, trained on data from
‘HL’ and ‘LH’ clusters to predict outcomes for the ‘LL’ cluster, showcases excep-
tional accuracy. Such contrast highlights the critical role of diverse training data
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in enhancing the model’s predictive performance across different spatial contexts.

Figure 10: Evaluating local model performance in predicting building characteristics, by applying
spatial autocorrelation in the sampling process.

5. Use cases

5.1. Computing building volume to investigate acceptable predictions for down-
stream modelling

Given that a set of evaluation metrics can provide more than a statistical
overview of our storey predictions, we consider a downstream case to demon-
strate how acceptable our prediction errors can be for specific applications and
contexts. Therefore, we utilise the predicted building storeys to calculate aggre-
gated building volume, which is crucial for facilitating, for example, building en-
ergy simulations and urban growth analysis (Teng et al., 2021; Fathy et al., 2021;
Mahtta et al., 2019; Kong et al., 2012). Employing common methods found in
the literature (Resch et al., 2016; Allegrini and Carmeliet, 2017), we compute the
area of the 2D building footprint, then multiply by the number of storeys and the
average height per storey. Taking Boston as an example, we compare the actual
building volume and predicted volume by using officially documented building
storeys and estimated storeys from the random forest baseline and our designed
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GraphSAGE method, where we assume that one storey is 3 metres high. Further,
we focus on residential buildings at a large scale, which is a topic garnering in-
creasing attentions in recent scholar works, suggesting a profound research need.
Indeed, the potential of volume information for residential buildings is not lim-
ited to enabling environmental simulations at the household level, but also sup-
ports extensive analysis related to social and economic studies (Galimshina et al.,
2024). The results of comparisons are illustrated in Figure 11, representing actual
volume calculation against the predicted values generated by two models. Our
GraphSAGE model exhibits competitive prediction precision, as evidenced by an
R2 value of 0.76, representing that 76% of the actual volume’s variance can be
accounted for by the model’s predictions. This high level of accuracy is further
substantiated by a relatively low MAE of 1124.52 cubic metres and a RMSE of
8527.31 cubic metres, coupled with a median relative error of 19.14%. In contrast,
the random forest baseline demonstrated a more modest level of accuracy with an
R2 of 0.66, indicating a substantial portion of prediction variance remained unex-
plained by the model. It was further corroborated by a higher MAE of 1630.50
cubic metres and a significantly greater RMSE of 10252.21 cubic metres, with a
median relative error rising to 25.33%.

Such a comparison reveals that while both models possess the capability to
predict building storeys in Section 4.2, the estimated storeys from our graph-based
model prove superior in this instance. Further, this use case prompts a deeper in-
vestigation into downstream modelling and thus, asserts the robustness of our pre-
dictions. Such findings underscore the prediction errors of building storeys can
be acceptable in a number of scenarios. However, considering various cases and
contexts in which our predicted building storeys will be used for, we acknowl-
edge that our predictions may have limitations for specific downstream use cases
that require more accurate and precise height-related building information. For
example, when conducting disaster management in the city, such as in case of
flooding and earthquake, accurate building storeys are essential for developing
plans and simulating evacuation. Therefore, our graph-based model may need
improvements in future, supporting diverse downstream applications in specific
contexts with more acceptable prediction errors.

5.2. Using the estimated number of storeys to generate 3D building models
The predicted building characteristics have potential to support a variety of

use cases. For instance, the number of storeys can be used for generating a 3D
city model, which is a common use case as it is often based on combining the
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Figure 11: Comparative analysis of building volume in cubic metre, using predicted building
storeys from the random forest baseline and the GraphSAGE model.

2D geometry of footprints and semantic information on heights, but latter is of-
ten missing (Ledoux et al., 2021). We take Boston as an example to demonstrate
the adoption of height-related information in 3D GIS (see Figure 12). The pre-
dicted building storeys and type are processed in tabular form and associated with
building footprints from OpenStreetMap. Subsequently, the dataset is converted
to CityJSON LoD1 buildings (Ledoux et al., 2019) by extruding footprints accord-
ing to the number of storeys, serving as a proxy for height. These block models
are widely used in practice and serve a variety of purposes, from noise and wind
simulations to urban planning (Pad̄en et al., 2022; Stoter et al., 2020; Ledoux
et al., 2021; Peters et al., 2022). The city model and its building characteristics
are visualised using a web viewer – ninja (Vitalis et al., 2020). This semantic city
model is generated using open-source tools, and the code is publicly available on
GitHub 6.

Further, given the capability of our graph-based method to infer a comprehen-
sive set of characteristics, it can facilitate the creation of a 3D city model enriched
with building semantics. With an integration of other building characteristics such
as construction period and materials, the city model can be further applied for en-
vironmental simulations, e.g. building energy calculation (Teng et al., 2021; Fathy
et al., 2021), serving as use cases of 3D GIS and urban digital twins. Thus, the
graph-based method not only infers a variety of building characteristics but also

6https://github.com/binyulei/gnn-building-characteristics-prediction
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Figure 12: The generated semantic 3D building models for Boston, using predicted building
storeys and type information. Our method can be used to enhance existing building datasets and
increase their usability in downstream analyses.

substantiates the applicability in 3D urban studies.

6. Discussion

6.1. GNNs can model spatial links between building attributes and surrounding
urban objects

Our methodology, built upon the GraphSAGE and entrenched in the geospa-
tial distribution of street-level contexts, brings forth an innovative approach to
inferring building characteristics. It explores the use of a spatially explicit GeoAI
method in tackling ‘vertical’ urban prediction tasks, which complement traditional
3D modelling of urban environment. Given the special nature of spatial data, the
First Law of Geography – ‘everything is related to everything else, but near things
are more related than distant things’ – suggests that valued information can be de-
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rived from spatial patterns and spatial interactions (Anselin, 1989; Tobler, 1979;
Goodchild, 1987; Gould, 1981).

While many studies are indeed adopting random forest algorithm as a useful
method to conduct spatial analysis, but we find such a method is rather difficult
to fully exploit spatial characteristics through a detailed comparison. Indeed, the
random forest baseline has limitations to explicitly incorporate spatial relation-
ships and connectivity due to its inherent design and operational mechanics. By
comprising multiple decision trees to make predictions based on the values of in-
dividual features, this design principle determines that random forest treats data
points as isolated entities without considering their spatial context or the potential
influence of neighbouring data points.

Spatial relationships, which denote how data points are related or influenced
by their physical locations or proximity to one another, require a modelling ap-
proach that can account for such dependencies explicitly. The graph-based method
allows for modelling spatial characteristics of urban objects, encoding such par-
ticularity of spatial information. Depending on the spatial connectivity between
street-level urban objects and building stocks, which are often considered the fab-
ric of the urban environment, our method successfully serves multiple urban tasks
in terms of predicting building characteristics, such as building storey estimation
and building type classification. These results echo the existing findings that ur-
ban fabrics are often the direct reflections of cities’ images (Hull IV et al., 1994).
Therefore, the results of this study show that our graph-based approach offers a
well-suited and effective new approach to fill the data gap in geospatial buildings
(e.g. data omission and inconsistency) by leveraging spatial networks within the
context of urban morphology.

By testing our approach in three cities from three continents, we can demon-
strate across a variety of contexts that our method is superior in terms of predictive
performance for predicting multiple building characteristics, compared to a stan-
dard machine learning approach that does not represent space explicitly, random
forests. Our model yields the most acceptable predictions in building storeys and
types (performing well in all three cities, with an average of 81.83% and 88.83%
respectively), compared to construction period (70.5%) and materials (68%) as
discussed in Section 4.1. Moreover, examining the impact of building data avail-
ability on our method in Section 4.6 and Section 4.7, suggests that prediction
errors are within an acceptable range across availability scenarios, although less
building data leads to slightly worse prediction accuracy. The employment of dif-
ferent sampling methods allows for a confident conclusion that our graph-based
framework represents predictive performance across modest training data ran-
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domly and spatially.

6.2. Limitations
The limitations of our work are discussed from two perspectives. First, the

quality of OpenStreetMap data regarding inaccuracies and incompleteness may
influence method performance in some cases, for example, a lack of sufficient pre-
dictors in a city of interest. The method works well in our experiments; however,
variations in OSM data completeness and accuracy can indeed affect the adoption
of our framework in such settings. Therefore, using OSM data to represent street-
level contexts may be not enough for predicting building characteristics in specific
areas. That is, some cities will be facing challenges to collecting reliable OSM
data in terms of insufficient volunteered mapping activities and human-generated
errors. Hence, integrating multiple types of publicly accessible data will tackle
such cases when adopting our method in specific urban contexts in future. For
example, street view imagery can be considered as a supplementary source to
capture urban information around building stocks, as well as leveraging localised
datasets when tailored our framework in cities where the reliability of OSM data
is a challenge. Indeed, we believe that multiple data integration will enhance the
framework for further reproducibility.

Second, the uneven distribution of target labels has an impact on prediction
accuracy. For example, when gauging building storeys, our graph-based approach
underpins the estimation of storeys; however, it needs more training instances
to learn high-rise buildings. For example, the spatial visualisation of predicted
results in Boston (Figure 6) explicitly indicates that our model tends to underesti-
mate higher buildings with an error above 5 storeys. Meanwhile, given the larger
number of residential buildings in Boston, non-residential ones are more likely
to be inferred as residential buildings. Therefore, a sample size for cases that
are hard to predict correctly is required to trim prediction errors, making it more
digestible for the method.

7. Conclusion

Given the significance of building characteristics in the geospatial research
landscape, their availability and richness are the backbone to facilitate down-
stream studies. However, in practice, there are often data gaps, in both authorita-
tive (government) and crowdsourced (e.g. OpenStreetMap) datasets. In this study,
we introduce a new method to predict building characteristics. We exploit the
spatial connectivity between building stocks and street-level urban objects from
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an urban morphology perspective. Adopting Graph Neural Networks (GNNs), the
GraphSAGE algorithm is used to learn morphology features and enable inductive
representation in spatial connections. Departing from the state of the art, which is
largely focused on predicting a single building characteristic, we design the model
for handling two tasks – regression task for predicting continuous target variables
(e.g. building storeys) and classification task for inferring discrete class labels
(e.g. type, construction period and materials). We train and evaluate the model in
three geographical areas – Boston, Helsinki and Melbourne, which have a subset
of building characteristics or more comprehensive building information. Multiple
cases are included to mirror the reality and validate the applicability, that is, of
10%, 30% and 50% building data available in these three cities. The evaluation
metrics of the experimental studies indicate that our model performs well in vari-
ous scenarios and cross-city generalisation. Meanwhile, through a comprehensive
comparison to the random forest, our model achieves competitive performance in
predicting multiple building characteristics; however, training graphs may require
more computational resources. Nevertheless, given the initial motivation of infer-
ring building characteristics in a spatially explicit perspective, we deem GNNs to
deliver the potential to represent spatial connectivity between buildings and the
surroundings. In this case, our method indicates that there remains room to in-
vestigate urban morphology information to learn building semantics, in particular
from a geospatial dimension. The method, considered as a means to tackle data
challenges, facilitates the completeness of building data and enables downstream
work, such as generating 3D city models and enriching the properties of urban
digital twins. Further, researchers and practitioners can adopt this method in cus-
tomised cases considering its generic features, for example, integrating additional
input datasets and tuning hyperparameters.
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