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Abstract

Geospatial artificial intelligence (GeoAl) is proliferating in urban analytics,
where graph neural networks (GNNs) have become one of the most popular
methods in recent years. However, along with the success of GNNs, the black
box nature of Al models has led to various concerns (e.g., algorithmic bias and
model misuse) regarding their adoption in urban analytics, particularly when
studying socio-economics where high transparency is a crucial component of
social justice. Therefore, the desire for increased model explainability and
interpretability has attracted increasing research interest. This article pro-
poses an explainable spatially-explicit GeoAl-based analytical method that
combines a graph convolutional network (GCN) and a graph-based explain-
able Al (XAI) method, called GNNExplainer. Here we showcase the ability
of our proposed method in two studies within urban analytics: traffic vol-
ume prediction and population estimation in the tasks of a node classification
and a graph classification, respectively. For these tasks, we used Street View
Imagery (SVI), a trending data source in urban analytics. We extracted se-
mantic information from the images and assigned them as features of urban
roads. The GCN first provided reasonable predictions related to these tasks
by encoding roads as nodes and their connectivities and networks as graphs.
The GNNExplainer then offered insights into how certain predictions are
made. Through such a process, practical insights and conclusions can be
derived from the urban phenomena studied here. In this paper we also set
out a path for developing XAl in future urban studies.
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1. Introduction

The increasing awareness of open data initiatives for building smarter
cities (Neves et al., 2020) has brought about a “digital turn” into urban
studies (Ash et al., 2018). Thanks to the abundant data now available,
modern urban analytics seeks advanced technologies, and dedicated models
and algorithms, to support better city governance with detailed analysis to
aid urban planning processes that tackle socio-economic and environmental
problems (Lei et al., 2023b; Wang and Biljecki, 2022; Liu and Biljecki, 2022;
Song et al.; 2022; Yossef Ravid and Aharon-Gutman, 2022; Kang et al., 2019;
Carra and Barthelemy, 2019; Yeh, 1988).

Graph neural networks (GNNs) are an example of a type of geospatial ar-
tificial intelligence (GeoAlI) method that has proliferated in urban analytics
(Zhu et al., 2018; Li, 2020; Janowicz et al., 2020; Liu and Biljecki, 2022; Mai
et al., 2022b,a). Given their ability to intuitively encode spatial locations,
dependence and heterogeneity from spatial and spatio-temporal data, GNNs
are often interpreted and employed as a spatially-explicit GeoAl approach to
address the question of “what is special in spatial?” (Mai et al., 2022b; Liu
and Biljecki, 2022). In urban studies, GNNs have been shown to outperform
conventional models in many tasks, for example, in urban place understand-
ing (Zhu et al., 2020), urban social sensing (Liu and De Sabbata, 2021),
traffic analysis (Zhao et al., 2022; Xiao et al., 2021), and urban dynamics
(Zhang and Cheng, 2020; Pagani et al., 2021).

However, along with the success of developing advanced spatially-explicit
GeoAl methods, the interpretability and explainability of deep learning meth-
ods in general, and GNNs for urban studies in particular, have become im-
perative issues that need to be addressed (Krishnan, 2020; Liu and Biljecki,
2022). Why does the model deliver spatial analysis results in a specific man-
ner? If the model produces expected and good results, do we know why and
how to leverage them further? In the context of urban studies, the spatial
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process of socio-economic activities, for example, gentrification, urban growth
or even everyday urban population flows, is often a result of joint actions.
Whereby one area may go through specific changes or dynamics, neighbour-
ing areas can be affected by that process independently or in conjunction
with other factors (Reades et al., 2019). While GNNs have proven to be
useful by leveraging the interactive nature of spatial processes, the internal
mechanism of how a spatial process has impacted the model performance, as
well as how to utilise the model interpretability to gain further insights into
urban phenomena, remain underexplored.

This paper aims to exploit the explainability of AI models to better sup-
port urban analytics. Explainable Al (XAI) is a set of methods that seeks
to enable humans to understand the decisions or predictions conducted by
the AI, which serves as a potential tool to address the questions mentioned
above (Liu and Biljecki, 2022; Shi et al., 2022). However, there are only a
handful of urban research studies that are working in this direction. Many
of them fall in the domain of Transportation for traffic management and
engineering-oriented purposes (Li, 2023; Wagner et al., 2022; Nascita et al.,
2021a,b), or there are other studies that have conducted XAI research with
street view images (SVI) to study the street environment (Liu et al., 2023;
Xie et al., 2022; Lee et al., 2022; Thakker et al., 2020) or worked with satellite
images to improve the understanding of urban environments (Abdollahi and
Pradhan, 2021; Vinuesa and Sirmacek, 2021) but the methods adopted have
been non-spatial. To the best of our knowledge, despite the recent trends in
spatially-explicit GeoAl development, no research has been conducted using
XAI that can encode spatial information in its computation process to un-
derstand urban phenomena better. This may be because the development of
spatially-explicit GeoAl in urban analytics is still in an early phase (Liu and
Biljecki, 2022); thus, previous research has focused more on the usability of
the models rather than the explainability. Moreover, XAl is regarded as a
new research theme that is still underdeveloped. For example, much of the
current XAl development has contributed to the field of computer vision,
where convolutional neural networks have played a vital role (Ahmed et al.,
2022) while very few efforts have been devoted to GNNs.

The need for studies of XAl in urban analytics represents both a challenge
and an opportunity for investigating such a line of research. Here, we propose
an urban analytical method using a well-developed GNN-based XAI method
called GNNExplainer (for a detailed explanation, see Section 2) (Ying et al.,
2019) to understand urban geographical phenomena better. Given the nature



of GNN-based methods that explicitly encode spatial locations as graphs for
their computational process, we consider GNNExplainer to be a spatially-
explicit XAI. We propose two case studies that focus on urban traffic analysis
and population research combining SVI, a trending data source in urban
analytics (Biljecki and Tto, 2021), and GNNs to exploit the potential of the
XAL

In this paper

e we propose an analytical method that combines GCNs and GNNEx-
plainer, offering both predictive power and explainability regarding the
urban questions under investigation;

e we explore the use of GNNExplainer in urban analytics, and we open
up a new path of employing spatially-explicit XAI methods to study
urban-related questions;

e we discovered that XAI methods can provide not only explanations
of the GeoAl models adopted but also help to gain insights into how
certain urban phenomena occur.

We hope this paper will promote the use of XAl in urban analytics and
inspire further studies and innovations in this field.

2. Background

2.1. Graph Neural Networks in Urban Analytics

GNNs are a genre of deep learning methods that infer graph-structured
data in the form of an adjacency matrix (where 1 denotes a connection and 0
represents non-adjacency). The key idea behind GNNs is the local convolu-
tion process that leverages information from the neighbourhood of each node
in the graph to update its own representation. As such, information can flow
across the graph, enabling nodes to learn from their local connectivity pat-
terns and the overall graph structure. This creates a solid connection to ge-
ography because the use of various measures to define the geographical units
(e.g., neighbourhood, points/areas of interest) and its conceptualisation as a
graph network (i.e., using spatial weights) has long been one of the core ap-
proaches in geographical information analysis (O’Sullivan and Unwin, 2010).
Therefore, the use of GNNs is proliferating in spatial data analysis. Given
their ability to encode locations as graphs, GNNs and many of their variants
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Figure 1: An example of a Graph Neural Network (GNN) in urban analytics, adapted from
Liu and Biljecki (2022). The urban spatial objects, events or phenomena under study need
to be conceptualised as a graph structure. The GNN model will take advantage of the
constructed graph by using a convolution approach (different ways can be adopted subject
to the model architecture) to pass, aggregate and adapt information among nodes based on
their adjacency to other neighbouring nodes. Hence, each node in the graph learns locally.
Through such a learning process, the GNN learns meaningful vector representations (i.e.,
embeddings) via the nodes, which can be used for downstream tasks, such as classification
and regression.

have been widely considered as one of the most successful spatially-explicit
GeoAl applications used for spatial analysis (Mai et al., 2022a; Liu and Bil-
jecki, 2022; Mai et al., 2022b; Li, 2020; Janowicz et al., 2020). Among GNNs,
Graph Convolutional neural Networks (GCNs) (Welling and Kipf, 2016) are
widely adopted for urban analytics (Liu and Biljecki, 2022). As shown in Fig-
ure 1, GCNs contain filters that perform graph-level convolutions over the
graph to aggregate node information and produce meaningful embeddings
(i.e., numerical representations of the data) through the learning process,
which can be employed for downstream tasks, such as classification, regres-
sion, etc. In our study, the GCN node-level and graph-level classification
abilities are the main focus.

GCNs have been used for a wide range of applications in urban analytics,
from socio-economic studies to urban sustainability (Zhang et al., 2022; Liu



and Biljecki, 2022; Zhu et al., 2022; Gao, 2021). This article is not intended
to provide a detailed literature review of GCN-based applications in urban
studies. Instead, we highlight only a few studies to present the broad usability
of GCNs and thereby lay down the foundation for our showcase studies (see
Section 4).

Studies of traffic forecasting may be among the first beneficiaries of ad-
vanced GCN development in urban studies. The intricate nature of urban
road networks can be easily modelled through graph structures and fed into
a GCN model. Fan et al. (2020) and Jiang and Luo (2022) surveyed an ex-
haustive list of literature for recent traffic-related research and identified that
GCNs are at the frontier of deep learning-based traffic prediction research.
Most of the literature in this domain has focused on analysing road-level traf-
fic flow, primarily traffic volumes (e.g., Chen et al. (2020); Cao et al. (2020);
Xu et al. (2020); Zhao et al. (2022)). GCNs and their variants have been
shown to provide accurate predictions by capturing the spatial and spatio-
temporal dependency of the road networks; however, as mentioned in Section
1, studies are currently focused more on the usability of the model instead
of offering interpretability and explainability regarding how the GCN made
the prediction.

Another interesting topic yet one with less involvement of GNNs is urban
population studies. Unlike traffic analysis, which is often conducted at the
road level, urban population focuses on the region or neighbourhood level.
Existing research has identified a strong correlation between the urban pop-
ulation distribution and various road networks (Wang, 1998). A high density
of urban road networks correlates with higher urban population density and
vice versa. However, as the use of spatially-explicit GeoAl for such a socio-
economic-oriented research objective is still in an early research phase (Liu
and Biljecki, 2022), only a few studies have estimated urban population using
GCNs (Xu et al., 2021; Yang et al., 2021). In this study, although we are not
thoroughly investigating the use of, or developing specific, GCNs in urban
population estimation, we aim to shed light on this topic (see Section 5.2).

2.2. Road Networks and Street View Images

To explore the use of spatially-explicit XAI in urban analytics, we define
the unit in this study to be road networks in the city area. We conceptualised
the road networks as a graph representation, fed the data into a GCN, and
used GNNExplainer (see Section 3.2) to interpret the model performance and
the results.



Thanks to the rapid development of computer vision techniques, image
segmentation using SVI is now one of the predominant applications used to
gather visual understanding of the urban environment, solve urban issues and
support quantitative computational analysis of urban phenomena (Hou and
Biljecki, 2022). Image segmentation aims to locate objects (buildings, roads,
greenery, etc.) and detect their boundaries (lines, curves, etc.) to provide a
semantic understanding of all objects included in an image. Such an objec-
tive is crucial in the quantitative characterization of the urban environment,
particularly where traditional qualitative observation is not feasible. Image
segmentation has been extensively used to support a wide range of analyses,
such as urban traffic forecasting (Yin et al., 2015; Den Braver et al., 2020;
Yao et al., 2018) and socio-demographic analyses (e.g., of population) (Goel
et al., 2018; Deng et al., 2020). A typical example of image segmentation
used in urban analytics is Cityscapes (Cordts et al., 2016), which is a bench-
mark data set that provides 30 categories of road objects (e.g., trees, roads,
buildings, pedestrians, etc.) captured in the SVI. In our study, a deep learn-
ing model trained on the Cityscapes data set plays a vital role in supporting
the comprehensive understanding of road networks; a detailed introduction
is elaborated in Section 4.

3. Methodology

Figure 2 shows the proposed analytical method, which contains two com-
ponents: a GCN for inference and GNNExplainer for the interpretation of
the model and the results. Note that in this paper, our aim is not to deliver
novel methods for urban studies. Instead, we combined two state-of-the-art
methods to investigate how to semantically interpret the machine-oriented
explanations provided by GNNExplainer on the predictive model GCN in an
urban context. More details are provided in the following subsections.

3.1. Graph Convolutional Neural Network

Our method employs the two-layer GCN model developed by Kipf and
Welling (2016) for the traffic and population (see Section 4) inference tasks.
This GCN is also one of the most successful AI models, and has been adopted
in a wide range of tasks solving urban issues, such as urban social sensing (Liu
and De Sabbata, 2021; Zhu et al., 2020), travel demand forecasting (Zhao
et al., 2022; Xu et al., 2020), and urban population flow studies (Li et al.,
2021). The primary objective of the GCN is to generate a node representation
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Figure 2: Proposed analytical method. The urban map has been downloaded from
https://free-vectors.net/ (creator: Ilya Sedykh), under license CC BY 4.0.



by aggregating information from its own features and the features of its
neighbours. Such a process is conducted through spectral-based convolutions
over nodes in a graph that is defined as:

goxx =UgeU'x (1)

where ge represents the convolution kernel parameterised by © € RV*¥V
in the Fourier domain. The kernel is randomly initialised from a Gaussian
distribution and is then adjusted through the process of forward-and-back
propagation in the GCN’s training phase. In other words, a kernel is a
matrix that goes through the nodes in the graph (i.e., street networks in our
paper), and extracts and aggregates information from the SVI-based urban
features x. U is the eigenvector matrix of the normalized Laplacian matrix
L =1y — D_%AD_%, where A denotes the adjacent matrix of the graph
(i.e., street network), I is the identity matrix and D is a diagonal matrix
composed of node degrees.

The node representation generated through the graph convolution process
can be used for both node- and graph-level classification. Node classification
is defined as a set of tasks that predict the classes of unlabeled nodes based
on other nodes, which are widely used in urban studies (Liu and Biljecki,
2022; Mai et al., 2022b; Janowicz et al., 2020). Graph classification as a task
to predict graph labels based on graph structures and node features is less
commonly seen in the existing urban analytics literature. While classification
is not necessarily the primary focus of this paper, our study will explore the
use of graph classification in urban population estimation (see Section 4).

3.2. GNNEzplainer

GNNExplainer was developed by Ying et al. (2019) as the first XAI
method for GNNs. It is a perturbation-based method that studies the output
variations of different input perturbations on the model (Yuan et al., 2022).
An intuitive understanding of the GNNExplainer is a network that explains
a GNN by reducing redundant information in a graph without direct impact
on its decisions. To achieve such a goal, using node classification as an exam-
ple, the GNNExplainer generates a minimal graph that explains the decision
for a node v and minimises the difference in the prediction using the entire
graph and the minimal graph by maximising the mutual information (M)
through:

MazMI(Y, (G, X.) = HY) — HY|G =G, X = X,) (2



where G is the subgraph of graph G igina With associated features X,. M1 is

the quantified changes in the prediction probabilities § = GN N (Goriginat, Xoriginal),
and H(Y') is the entropy term for the GNN predicted label distribution Y.
Thus, to maximise equation (1), the network of GNNExplainer seeks to min-
imise the conditional entropy H(Y|G = G5, X = Xj).

Figure 2 shows a simple example of how the GNNExplainer works. A
GNN will first make predictions over the nodes of a given graph. GNNEx-
plainer will then be applied to the GNN, seeking to explain why certain
predictions were made. As shown in the figure, for a given node v; with a
predicted label y by the GNN, GNNExplainer will produce counterfactual
explanations, i.e., perturbations on the graph by removing other nodes or
edges and generate subgraphs accordingly. Then, the GNNExplainer com-
pares the new prediction y produced using the new subgraph with the original
prediction y. If the changes in the nodes or edges significantly impact the
original prediction, the counterfactual explanations are then valid and useful.
Thus, the nodes or edges removed are essential for explaining the prediction
of the targeted node. Through an iterative process, the GNNExplainer finds
meaningful explanations for all nodes in the graph. Such explanations are
different from conventional statistical approaches, which seek to investigate
patterns (usually linear relationships). The explanation offered by GNNEx-
plainer focuses specifically on the predictive model of the GCN used in this
paper. In the rest of the paper, we will demonstrate that as long as the
predictive model is robust, feature importance, together with other spatial
interactions on the road network, can provide meaningful and interpretable
insights into urban phenomena. It is also worth noting that the explanations
offered by the GNNExplainer are the explanations of the GCN predictions,
i.e., machine-oriented outputs, rather than explanations coming from under-
lying urban theories. In Section 5, we will demonstrate how such explana-
tions can be used for understanding urban contexts in a meaningful way with
semantic-rich interpretations.

4. Study Area

Our case study area is Wuhan, a metropolitan city in central China with
a population of over 11 million. We collected four types of data that are used
in this study: road networks derived from OpenStreetMap (OSM), one-day
taxi travel data (collected on 3 July 2021), 2021 population statistics from the
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Figure 3: The road network and its conversion to a graph representation. Map sources:
Esri, HERE, Garmin, INCREMENT P, (©) OpenStreetMap contributors, and the GIS user

community.

Wuhan Municipal Public Security Bureau, and panoramic SVI from Tencent
Maps.

4.1. Data Preparation

Figure 3 (left) shows 5,075 roads collected from OSM. The GCN requires
a graph representation of the data as input; thus, the road network in Wuhan
was converted into a graph structure. Each road was considered a node, and
its interconnection with other roads was formalised as the adjacency of the
nodes in the graph. For example, if road A and B are connected in the road
network, the nodes in the graph A" and B’ will have an edge connecting each
other. Figure 3 (right) illustrates the conceptualised graph, where such a
graph is undirected (where all the edges are bidirectional).

As indicated in Section 2.2, SVI is now a vital data source for studying
road networks and addressing urban issues. We collected 56,560 panoramic
SVI taken from these roads in Wuhan from Tencent Maps. To study the road
features, we used a pre-trained (with the Cityscapes data set as mentioned in
Section 2.2) convolutional neural network (CNN) model DeepLabV3 (Chen
et al., 2017) to semantically segment objects in each image into the following
categories: Road, Sidewalk, Building, Wall, Fence, Pole, Lights, Traffic Signs,
Trees, Grass, Sky Pedestrians, Cyclist, Cars, Trucks, Bus, Trains, Motocycle
and Bikes. The segmented results contained the proportions of each object
in an image. Note that one road may have multiple SVI taken; therefore, we
then aggregated the results by taking average values of each road object in
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all the SVI collected for a given road. Such aggregated results were used as
node features in the conceptualised graph for further analysis.

4.2. Labelling

Correlogram of traffic volume and road features
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Figure 4: Road traffic volume shown on the left and the correlation between traffic volume
and different road features on the right. Map sources: Esri, HERE, Garmin, INCREMENT
P, (© OpenStreetMap contributors, and the GIS user community.

To demonstrate the use of XAI in urban analytics, we first employ a
GCN on two widely studied areas of research. That is, we apply a GCN as
a spatially-explicit GeoAl to predict urban traffic volume (as a node classi-
fication task) and to estimate regional population (as a graph classification
task) in Wuhan.

We added the volume of taxi travel data to the road networks, as shown
in Figure 4 (left). We used Jenks Natural Breaks (Jenks, 1967) to classify
the data into 5 categories (ranging from 0-4 in the maps), where these cate-
gories were employed as labels for the GCN to classify the nodes. Figure 4
(right) shows the Spearman rank correlation between the road features and
the taxi traffic volume in Wuhan. The proportion of the roads and the broad
field of view contributed by the proportion of sky in the SVI correlates the
most with high urban traffic volumes. However, as an exploratory method,
correlation gives an overall but limited insight to understanding such rela-
tionships further. In Section 5.1, we will demonstrate how XAI will enhance
our understanding of how road features are linked to road traffic at a much
higher resolution, allowing road-level inspection of the results. It is worth
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Figure 5: Population distribution in the study area on the left and the graph structure
shown on the right. Map sources: Esri, HERE, Garmin, INCREMENT P, (© Open-
StreetMap contributors, and the GIS user community.

highlighting that the correlation analysis does not explain the GNN predic-
tions nor interpret the results given by the GNNExplainer (i.e., importance
scores, see Section 5). The statistical correlation between variables provided
in this section is only a preliminary exploration of the variables, while GN-
NExplainer will be used calculate interpretability scores (i.e., importance
scores) to measure the degree of feature influence on the predicted outcome
of the model. We argue that such importance scores given by GNNExplainer
have meaningful semantic information that helps us to quantitatively under-
stand urban features and their potential impacts on urban phenomena (e.g.,
traffic and population volumes in this paper).

Figure 5 (left) shows population data collected from the census in 2019
for 881 neighbourhood-level sub-districts (so-called Jiedao, #ii& in Chinese,
which is one of the smaller administrative divisions of urban areas in China)
in Wuhan. Data for this task were collected from local authorities in Wuhan,
China. The geographical boundaries of these local communities are then
overlayed onto the road network to produce a set of graphs. Each graph
has its own graph structure based on the connections of the roads inside
each boundary, as shown in Figure 5 (right). The population in these local
communities was also classified into 5 classes using the same Jenks Natural
Breaks method and adopted as labels for the graph classification task.

4.8. Understanding Urban Context
Gong et al. (2020) released a Chinese Essential Urban Land Use Cate-
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Figure 6: EULUC 2018, Wuhan (same colour palette used in Gong et al. (2020)) on the
left and the ten most important and dominant OSM road types in Wuhan on the right.
Map sources: Esri, HERE, Garmin, INCREMENT P, (©) OpenStreetMap contributors,
and the GIS user community. SVI extracted from Tencent Maps.

gories (EULUC) data set that can be used to understand urban land use and
human activities (Zhang et al., 2023). Figure 6 (left) shows the EULUC in
Wuhan, which demonstrates identifiable patterns of where commercial and
business, educational, industrial and residential land use is clustered and dis-
tributed. For example, commercial land use is largely clustered in the city
centre next to the Yangzi River. In Section 5.1, we will use this as a base
map to semantically understand the insights offered by using GNNExplainer
on the road network.

Figure 6 (right) summarises the dominant road types derived from OSM
for Wuhan. These road types are defined by the OSM community (Open-
StreetMap Wiki, 2022). The most important roads in the city that play a
role in connecting inner-urban regions in the city are Motorway, Trunk, Pri-
mary, Secondary, Tertiary, Unclassified and Residential. Other road types
are named given their functions in the urban areas; for example, link roads
connect roads and streets to the primary roads mentioned above, and Cy-
cleway is for cycling activities. In Section 5.2, we will use such data to
investigate how road types impact the population estimates of the local com-
munities.

5. Experiments and Results

The source code of this study was implemented using the Deep Graph
Library (DGL) (Wang, 2019; Wang et al., 2019) with PyTorch (Paszke et al.,
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2019) as the back-end. We have provided our code on GitHub?.

5.1. Explaining Traffic Volume

We formalised the traffic volume prediction as a semi-supervised node
classification task. For the data prepared in Section 4, we randomly split
20% of the nodes from the data collected and processed as a training data
set for the GCN model, while 10% were used for the model validation. The
remaining 70% comprised the test data set for evaluating the model perfor-
mance.

The GCN achieved an accuracy of 77.54% (averaged accuracy after run-
ning the model 10 times), which is in line with existing research that GCNs
are helpful tools for studying urban traffic (Jiang and Luo, 2022). We then
applied GNNExplainer on the GCN, using the model that achieved the best
accuracy (78.9%). To explain such a process intuitively, we chose one road
in Wuhan as an example. The selected road is part of Jiefang Avenue, one of
the city’s primary and busiest roads, as shown in Figure 7 (left). The chosen
road has 15 connections with other roads and was labelled by the GCN as
4 for traffic volume, representing the city’s highest taxi traffic volume level.
Such a prediction is marked as correct because it is the same as the assigned
label using Jenks Natural Breaks (see Section 4).

After making a valid prediction, GNNExplainer offered insights into why
the chosen road was labelled as 4. GNNExplainer can explain a specific
node prediction from two perspectives: first, how a node is impacted by
its adjacent nodes (i.e., connected roads) through hops by giving scores to
the connections (i.e., edges). Hops for a node are defined as its adjacency
to other nodes in a graph; for example, one-hop neighbourhoods mean the
direct adjacent nodes to the targeted node, and two-hop neighbourhoods are
the nodes that are one hop away from the target node. In this article, we
focused on the one-hop explanation of the target nodes. The second is to give
importance scores to the node’s features (i.e., SVI-provided road features) to
interpret which contributed the most to the prediction.

Figure 7 shows the results from GNNExplainer. The prediction of the se-
lected road can be explained through the two perspectives mentioned above.
From the road feature perspective, the Top-5 feature importance shows that
the road objects Bus, Truck, Car, Building and Road contribute the most

Thttps://github.com/PengyuanLiu1993 /X AIl-Urban- Analytics
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Figure 7: Showcase of the results delivered by GNNExplainer. The road marked red is
the selected road to be studied, and roads numbered from 1 to 14 are the interconnected
roads. Our study seeks to explain why the selected road has the highest traffic volume by
investigating which urban objects contribute to the traffic and how the road is impacted
by the interconnected roads. Map sources: Esri, HERE, Garmin, INCREMENT P, (©
OpenStreetMap contributors, and the GIS user community. SVI extracted from Tencent
Maps.

to why the chosen road has the highest taxi traffic volume. Such a finding
echoes existing literature and indicates that road traffic volumes positively
correlate to the width of the roads (e.g., number of lanes), dense areas of
buildings and easy accessibility to public transportation (Meng et al., 2017;
Veloso et al., 2011; Phithakkitnukoon et al., 2010). From the road connection
perspective, roads with numbers 13, 8, 14 and 9 contribute the most to the
prediction. Mapping these roads onto the EULUC dataset, we can identify
that the four roads connect diverse land uses where the residential areas that
roads 13 and 8 traverse contribute the most to the high traffic volume of the
selected road.

After a qualitative understanding of how GNNExplainer explains one
road (i.e., node) in the road network, the next step is to quantify the in-
terpretations of all the nodes in the conceptualised graph to understand the
city’s traffic volume holistically. Table 1 summarises the results. The Awv-
erage Top-5 Feature Importance Scores were calculated using the average
scores of road features in each GCN predicted category (i.e., traffic volume).
It shows the five features that have the largest impact on the predictions,
which vary as the traffic volumes increase. For example, for the roads with the
least taxi traffic, features such as pedestrians, cyclists, and walls have higher
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Table 1: Quantitative insights provided by GNNExplainer applied to a model of traffic
volume.
Traffic Volume Label

Average Top-5 Top-3 EULUC land Uses
Feature Importance Scores for Interconnected Roads
Pedestrians (0.7331), Cyclists (0.7143), Wall (0.6921),
Pole (0.6131), Bike (0. 5968)

Building (0.7892), Fence (0.7123), Pedestrians (0.6499)
Tree (0.6301), Wall (0.5797)

Grass (0.7481), Motorcycle (0.7072), Car (0. 0.6626),
Light (0.6343), Sidewalk (0.5551)

Car (0.7234), Fence (0.6901), Tree (0.6765),

Cyclist (0.6289), Bus (0.5901)

Bus (0.7742), Car (0.7029), Road (0.6967),

Building (0.6813), Sky (0.6026)

0 Residential, Educational, Sport and Cultural

1 Residential, Medical, Administrative

2

Residential, Park and Greenspace, Commercial Service

3

Residential, Unclassified, Educational

4 Residential, Commercial Service, Industrial

scores contributing to the predictions. Such a result aligns with the literature
that those features commonly pose challenges to car driving (Morency et al.,
2012). Meanwhile, wider roads (indicated by the score of Roads) and fields of
vision (indicated by the score of Sky), and the appearance of other types of
transportation (e.g., buses, trucks) contribute to the model’s understanding
of high-traffic volume roads.

The Top-8 EULUC land Uses for Interconnected Roads helps us to un-
derstand how the roads with certain traffic volumes are impacted by their
connection with other roads by overlaying them on the EULUC map. The
table shows that Residential areas contribute to all traffic volume categories.
This is mostly because, as shown in Figure 6, residential areas occupy the
largest proportion of the land use in Wuhan, considering it is the most pop-
ulous city in central China. Industrial and Commercial Services contribute
to the highest traffic volume, indicating that urban commercial areas attract
high traffic demand. At the same time, industries seek roads that can carry
high traffic volume to deliver products and raw materials. In contrast, due to
the traffic control policies (Huang et al., 2012), roads that connect through
educational, sports and cultural, medical and administrative areas contribute
to lower traffic volumes. Note that in the cell for category 3, which repre-
sents relatively high traffic volume roads in the city, a type of road named
Unclassified is shown in the table. Such roads are distributed in the areas
that are not covered by EULUC, which contributes to a high traffic volume
mostly because they are bridges and tunnels with high traffic volumes.

Through the study of traffic volume prediction, which was formalised as a
node classification task, the GNNExplainer provides insights into how a road
has a specific labelled traffic volume. We can derive a semantic understanding
of traffic conditions by explaining and interpreting the results.
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5.2. FExplaining Population in the Urban Environment

The population estimation was a graph classification task. As introduced
in Section 4.1 and Figure 5, the graphs were created based on the 881 local
communities and the road networks, resulting in 881 conceptualised graphs.
During graph classification, 70% of the graphs were used for training the
GCN, and the remaining 30% were used to test the performance. Similar to
Section 5.1, we used Accuracy as the evaluation metric.

In such a graph classification task, the GCN achieved 59.2% accuracy
(averaged accuracy after running the model 10 times) using the SVI seg-
mented road features with the conceptualised graphs as inputs. Although
the accuracy compared to the traffic volume prediction is much lower, we
still consider such a model to be valid. Population estimation is a compli-
cated task involving a wide range of factors (Wu et al., 2005), so using SVI
features as inputs may only be proxies for some of these factors. However, to
demonstrate the use of GNNExplainer, we simplified the task by only taking
segmented features from SVI and road networks into account.

Like the node classification, we used the model that achieved the best
accuracy (59.66%). GNNExplainer explains the graph classification from
two perspectives: node features and graph structures. GNNExplainer gives
importance scores for the node features by summarising all node features in
one graph, aggregating the scores, and revealing which features contribute
to a prediction for a graph. As in Section 5.1, we used the Top-5 Feature
Importance scores to explore which features in SVI contribute the most to the
population estimation. GNNExplainer gives importance scores for the graph
structure to show which nodes (i.e., roads) contribute to the classification
results. As introduced in Section 4.3, OSM organises roads into a hierarchical
level of types. We investigated each graph to understand how road types for
these dominating nodes contribute to the population estimation.

Table 2 summarises the results produced by GNNExplainer, and it is ev-
ident that with an increase in the population, which varies across the local
communities, road features that play roles in the GCN estimation are dif-
ferent. For example, in less populated areas, which are located on the city’s
outskirts (see Figure 5), roads that carry many cars are more important for
the population estimation. At the same time, for comparably populated ar-
eas, the appearance of buildings, pedestrians and bus services become the
decisive features for the corresponding labelling. Meanwhile, from the per-
spective of the Top-3 OSM road types, city trunk and primary roads, which
function as connections through urban regions ( Trunk, Primary, Secondary

18



Table 2: Insights provided by GNNExplainer applied to the model of population estimates.
Average Top-5

Feature Importance Scores

Road (0.7532), Sky (0.7364), Car (0.7149)

Truck (0.6895), Pole (0.5567)

Road (0.7916), Car (0.7690), Fence (0.6854),

Sky (0.6511), Building (0.5914)

Building (0.8027), Car (0.7366), Motorcycle (0.6821),
Light (0.6532), Traffic Sign (0.5933)

Building (0.7792), Car (0.7543), Bus (0.7071),
Cyclist (0.6934), Tree (0.5389)

Bus (0.7856), Building (0.7214), Pedestrian (0.7081),
Sidewalk (0.6823), Wall (0.6119)

Population Volume Label Top-3 OSM Road Types

0 Truck, Primary, Secondary

1 Truck, Primary, Unclassified

2 Primary, Secondary, Tertiary

3

Secondary, Residential, Tertiary

4 Residential, Living Street, Tertiary

and Unclassified), are more commonly present in the less populated areas.
Moreover, residential paths and urban roads are in densely populated regions.
Figure 8 shows two local communities that have the highest (Hubei University
Community) and lowest (Zhuyehai Community) levels of population volume
in the city, respectively. It is clear that Hubei University Community, as
a populated area, has different road features and road types compared to
Zhuyehai Community, which is less populated. It is particularly interesting
that for the Hubei University Community, the predominant roads that help
the GCN to learn the population level are those categorised as Residential
in OSM. Such road types, together with road features of Pedestrian, Car,
Sidewalk and Cyclist in the Top-5 most important road features, help us to
better understand the populated nature of such a community. Meanwhile,
this qualitative inspection of the results echoes the findings in Table 2 that
areas seem to share similar characteristics in each labelled population volume
level.

6. Bringing XAI into Urban Analytics

We have demonstrated that the interpretation and explanation offered by
GNNExplainer can help us gain further insights into the urban environment.
Here we discuss how to further use the explanation offered by GNNExplainer
and its potential use in urban analytics to support planning practices.

As introduced in Section 3.2, GNNExplainer is a perturbation-based XAI
approach that learns which nodes and edges are essential for the predictions.
The idea of perturbation is crucial as it facilitates an interactive process
between a researcher and the urban phenomena being studied (Yap et al.,
2022). Taking the Zhuyehai Community in Figure 8 as a naive example, we
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Figure 8: Showcase of the insights provided by the GNNExplainer in the population esti-
mation task. The roads marked red represent the most dominating roads that contributed
to the population volume. We use the Top-5 feature importance of the roads to investi-
gate which urban objects may have a higher influence on the population volume and OSM
dominating road types to understand the primary functions of the roads. Map sources:
Esri, HERE, Garmin, INCREMENT P, (C) OpenStreetMap contributors, and the GIS user
community. SVI extracted from Tencent Maps.

assume that the local government has a new agenda to attract more people
to reside in this area. Based on our analysis in Section 5.2, two changes to
the planning process could be recommended. Based on the results in Table
2, road objects that appeared more frequently in populated areas are Bus,
Building, Pedestrian, Sidewalk and Wall. Hence, we can increase the propor-
tion of these road features within the community by 20% as well as decreasing
other dominant features (Road, Sky, Car, Truck and Light) by 10% as shown
in Figure 8. The next step is to adjust the road networks so that they are
more residential-friendly. Existing research has identified the importance of
connectivity in the urban area to increase the population capacity (Koohsari
et al., 2014; Stangl and Guinn, 2011). Thus, we added roads that purpose-
fully connect trunk roads in the community with other roads, as shown in
Figure 9. To add road features to these newly added roads, we synthesised
the values by assigning the average road feature values of the existing roads
(after the first step). Figure 9 demonstrates the process and the correspond-
ing result. By implementing the two recommendations mentioned above, the
population volume of Zhuyehai Community can be increased significantly as
estimated by the GCN. Also, by using GNNExplainer on the result, we can
identify that the newly added roads, which increased the connectivity of the
area, contribute the most to the increased population.
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Figure 9: Showcase of the urban planning process using the proposed method.

However, it is essential to note that such an example is naive, and is
an oversimplified scenario compared to planning practice in real life. Nev-
ertheless, our proposed method offers a preliminary exploration of the tar-
geted planning objective. By leveraging the AI model that is now widely
used in urban studies (As et al., 2022; Liu and Biljecki, 2022; Wang and
Biljecki, 2022; Grekousis, 2019) and the XAI technology, our method offers
both predictive power as well as interpretability of the model to understand
the neighbourhood-level urban environment. As such, urban planners can
use our method to adjust the features interactively and investigate the cor-
responding changes in urban phenomena quantitatively. Our model has the
potential to be integrated with urban digital twins (Lei et al., 2023a,b), where
urban planners have the freedom to alter and simulate 3D-modelled urban
objects based on the suggestions provided by our method.

7. Conclusion

Embracing the current “digital turn” in urban geography, GeoAl-based
models are increasingly being used to support a better understanding of the
urban environment and aid planning processes. Most studies use the predic-
tive ability of GeoAl models, but the desire to understand the model opens up
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a research agenda to develop explainable AI (XAI) models (Liu and Biljecki,
2022). Here we proposed an explainable spatially-explicit GeoAl method
that offers both predictive power and the explanability of the results to gain
further insights into the urban environment. Our method used a GCN to
explicitly encode location information as a graph structure, contributing to
its powerful predictive ability. Then in combination with the XAI model GN-
NExplainer to interpret the model’s predictions, we provided a road network
and region-level understanding of the environment.

We demonstrated our proposed method in two examples of urban ana-
lytics: traffic volume prediction and population estimation in the tasks of a
node classification and a graph classification, respectively, supported by SVI
and the semantic segmentation of the images. The GCN first provided rea-
sonable predictions by encoding the roads as nodes with segmented SVI as
the features and their structures and connectivity as graphs. Such a finding
supports the finding that SVI is an increasingly important data source for
urban analytics (e.g., traffic and socio-economics) (Biljecki and Ito, 2021).
Then, GNNExplainer offered insights into how certain predictions are made.
For example, road features such as Road, Sky, and Car mostly dominate in
high-traffic roads but less populated communities. Other features such as
Pedestrian, Cyclist and Buwildings are primarily found in highly populated
communities but in areas with low traffic roads. Furthermore, we provided
an example of integrating our XAI method into an interactive urban plan-
ning process, demonstrating the potential use of our method in a real-world
application.

However, we would like to highlight that GNNExplainer is considered a
machine-oriented XAI model like the vast majority of existing XAI methods
(Agarwal et al., 2023; Hsu and Li, 2023; Antoniadi et al., 2021). That is,
the explanations (i.e., importance scores) given by the model only focus on
the model-level predictions. Here we attempted to give semantic meaning to
the importance scores in explaining two urban phenomena. Although this
enables the machine-oriented explanation to be human-oriented to a certain
extent, it still keeps humans out of the loop in the automated explanation
process. Plausible XAI methods, which are now commonly seen in Computer
Vision (Kenny and Keane, 2021; Linardatos et al., 2020) where the generated
counterfactual can be manipulated by humans, could be a solution towards
solving this dilemma; however, it is rare to see such developments in graph-
based deep learning methods. In the future, we will extend GNNExplainer to
convert the model from a fully model-driven automated explanation process
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into a plausible human-oriented, interactive XAI model.

In the future, we plan to pursue this research as follows. First, because
of the dynamic nature of urban phenomena, an increasing number of studies
are adopting modified GNN models to capture the spatial and temporal de-
pendency of the spatial objects (Zhao et al., 2023, 2022; Bui et al., 2021). In
the future, we aim to extend the GNNExplainer to interpret spatio-temporal
GNN models. Secondly, the road features and graph structure modifications
were design choices, overlooking the spatial dependencies among the features
and road networks. In the future, we will integrate geographically-weighted
regression to holistically adjust the road features and road networks by con-
sidering the spatial dependencies of the roads. Thirdly, the current graph
structures were constructed based on the road connections in the form of
undirected graphs. Such graphs neglect many other functional road charac-
teristics that can be encoded in the conceptualised graphs, for example, road
types and width, the direction of the roads (one-way or two-way), road con-
ditions (e.g., age) etc. In the future, we will integrate and utilise these types
of road characteristics to enrich the semantic information of the graphs.
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