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Street view imagery (SVI) is instrumental for sensing urban environments,
benefitting numerous domains such as urban morphology, health, greenery, and
accessibility. Billions of images worldwide have been made available by com-
mercial services such as Google Street View and crowdsourcing services such
as Mapillary and KartaView where anyone from anywhere can upload imagery
while moving. However, while the data tend to be plentiful, have high coverage
and quality and are used to derive rich insights, they remain simple and limited
in metadata as characteristics such as weather, quality, and lighting conditions re-
main unknown, making it difficult to evaluate the suitability of the images for spe-
cific analyses. We introduce Global Streetscapes — a dataset of 10 million crowd-
sourced and free-to-use SVIs sampled from 688 cities across 210 countries and
territories, enriched with more than 300 camera, geographical, temporal, contex-
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tual, semantic, and perceptual attributes. The cities included are well balanced and
diverse, and are home to about 10% of the world’s population. Deep learning mod-
els are trained on a subset of manually labelled images for eight visual-contextual
attributes pertaining to the usability of SVI — panoramic status, lighting condi-
tion, view direction, weather, platform, quality, presence of glare and reflections,
achieving accuracy ranging from 68.3% to 99.9%, and used to automatically label
the entire dataset. Thanks to its scale and ready-to-use pre-computed standard se-
mantic information, the data can be readily used to benefit existing use cases and
to unlock new applications, including multi-city comparative studies and longitu-
dinal analyses, as affirmed by a couple of use cases in the paper. Moreover, the
automated processes and open-source code facilitate the expansion of the dataset
and new updates. With the rich manually annotated information, some of which
are provided for the first time, and diverse conditions present in the images, the
dataset also facilitates assessing the properties of crowdsourced SVIs and pro-
vides a benchmark for training and evaluating future computer vision models. We
make the Global Streetscapes dataset and the code to reproduce and use it publicly
available in https://github.com/ualsg/global-streetscapes.

Keywords: Urban analytics, volunteered geographic information, data fusion,
GeoAI, machine learning, spatial data infrastructure

1. Introduction

Street view imagery (SVI) is rapidly emerging as a prominent geospatial data
source for sensing, measuring, and understanding our complex and dynamic ur-
ban environments, rivalling traditional remote sensing sources such as satellite
imagery [1, 2, 3, 4, 5]. Such development is spurred by the increasing cover-
age and ease of access to data and advancements in computer vision (CV) tech-
niques to automatically extract a vast array of information from it. SVI has been
used on its own or in conjunction with other urban data (e.g. street networks,
buildings information, demographic and socioeconomic data, questionnaires and
surveys, etc.) to drive urban research topics including but not limited to spatial
data infrastructures [6, 7, 8], urban mobility (e.g. bikeability [9, 10], walkability
[11, 12], traffic speed [13]), urban infrastructure assessment [14], physical disor-
der [15], 3D building models reconstruction [16], urban greenery [17, 18, 19], ur-
ban health [20], urban perception [21, 22, 23, 24, 25, 26, 27], urban density [28],
real estate prices [29, 30], socioeconomic and cultural activities and behaviours
[31, 32, 5], and urban soundscapes [33]. The availability of historical SVI has
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also enabled understanding changes in urban landscapes [34, 35, 26].
Prominent sources include commercial SVI from Google Street View, Baidu

Maps, and Tencent Street View, as well as crowdsourced SVI managed by two
services—Mapillary and KartaView [36, 37]. Notably, as an emerging form of
Volunteered Geographic Information (VGI), crowdsourced SVI captures the ur-
ban environment from a more diverse range of viewpoints, locations, and ambient
conditions than their commercial counterparts, because they can be collected any-
where, anytime, by anyone, akin to other VGI such as OpenStreetMap [4].

Such diversity enables a variety of applications and may be a cornerstone in
benchmarking certain CV innovations that rely on testing on realistic data, which
is heterogeneous in nature, in contrast with the controlled and standardised acqui-
sition protocols of commercial providers. Some particular advantages of crowd-
sourced imagery are that it can cover informal settlements and less developed
regions, which do not tend to be captured in commercial data [38, 39, 40, 41], it
is released under a liberal license, and in some areas, it may be more dynamic
due to temporally finer granularity [42]. While commercial data continue to reign
supreme [1], the use of crowdsourced imagery has been picking up momentum in
the international scientific literature [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54].

However, each having pros and cons, both commercial and crowdsourced SVI
suffer from a common issue — there is limited information about the characteris-
tics of images, and this limitation prevents selecting only images with the desired
quality and properties, potentially adversely affecting the reliability of studies. For
example, for bikeability or walkability studies, it would be ideal if only images
captured from the right point of view (e.g. by cyclists, pedestrians) or the right
platform (e.g. cycleways, sidewalks) are used [55]; studies on perception could
benefit by controlling the ambient conditions (e.g. filter SVIs by weather, season,
day/night time) to minimise their confounding effects on the study result; urban
morphology studies relying on perspective images (in places with limited avail-
ability for panoramas) to calculate metrics such as building view index and sky
view index could achieve higher accuracy when using images facing the front or
back of the road compared to images facing sideways [36]; while night images
could be considered noise in some applications, they could be potentially useful
in assessing nocturnal urbanscapes (e.g. night-time safety perception) or capturing
diurnal variations in urban activities.

Despite the rapid growth of urban research powered by SVI, disproportion-
ately little attention has been given to the above-mentioned issues beyond merely
acknowledging them. A variety of images have often been used without re-
searchers being adequately informed of the data quality and fitness for use, largely
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due to the absence of automated means to produce such information. This bottle-
neck could limit the accuracy and effectiveness of studies relying on SVIs (espe-
cially crowdsourced SVIs), consequently limiting the usability of such data and its
potential as a remarkably versatile data source. Further, obtaining and processing
imagery, especially for several cities, can be cumbersome and computationally
prohibitive.

We identify two main challenges contributing to this conundrum: 1) the lack of
information (metadata) to describe the contextual characteristics of SVIs to aid in
the assessment of their suitability for use, and 2) the lack of benchmark datasets
to facilitate advancements in algorithms to extract such contextual information
from SVIs automatically. While there exist a variety of SVI datasets to bench-
mark CV prediction tasks related to understanding urban scenes and places (e.g.
Cityscapes [56], Mapillary Vistas [57], Mapillary Street-Level Sequences [58],
BDD100K [59] etc.), they mostly focus on applications and problems concerned
in the CV domains such as autonomous driving, augmented reality, and mobile
robotics, and thus do not provide much information for usage in urban applications
or lack worldwide coverage. Though the urban science fields have also substan-
tially benefitted from the CV advancements powered by these datasets—mainly in
the use of semantic segmentation and object detection techniques to automatically
extract information from SVIs, even greater potentials could be achieved from
SVI datasets tailored for urban research, especially one that could considerably
enhance the usability of SVI by providing comprehensive auxiliary information
of the images to assess their fitness for use.

These recent advancements reaffirm the timeliness, novelty, and potential of
the work introduced in this paper, which focuses on the development of a com-
prehensively enriched and labelled SVI dataset, named Global Streetscapes, to
advance the use of SVI in urban science research. The open data repository we
developed consists of metadata about over 10 million entirely crowdsourced SVIs
obtained from Mapillary and KartaView, sampled from 688 cities worldwide. All
images are enriched with extensive metadata, geographical, temporal, and contex-
tual information (totalling more than 341 attributes) to facilitate their use and to
promote their integration with other data. Specifically, images are merged with
other global geospatial datasets based on their locations and have further temporal
attributes calculated based on their capture timestamps. A subset of the images
has been manually tagged with eight contextual properties that we deem help-
ful to describe the conditions of the images for evaluating their fitness for use
but are not available in their metadata, and are commonly used in research [60].
Using these manual tags, we developed models for the associated classification
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tasks and ran inference for the remaining images to label them with these at-
tributes automatically. These manual tags can also serve as benchmarks for fu-
ture approaches and support their continuous development. To further enhance
the usability of the dataset for urban science and geospatial applications, we also
ran inference from models that have been trained on well-known datasets (e.g.
Mapillary Vistas [57], Places [61], Place Pulse 2.0 [62, 63]) to expedite specific
tasks commonly associated with SVI-driven urban applications, such as semantic
segmentation, instance detection, scene type classification, and human perception
classification [64]. Figure 1 shows the distribution of geographical locations and
quantity of SVIs in Global Streetscapes. Figure 2 shows a mosaic of thousands
of images from Global Streetscapes, demonstrating the diverse locations, scenes,
viewpoints, ambient and camera settings included in the dataset.

Figure 1: Overview of the geographic coverage of the Global Streetscapes dataset across 688
cities, illustrating the amount of SVIs available for each city.

Our key contributions, both scientific and practical, and spanning acquisition,
processing, harmonisation and utilisation of street view image data and analytics,
are summarised as follows, and will be further elaborated in the continuation of
the paper:

• Constructed Global Streetscapes, a worldwide dataset of 10 million crowd-
sourced SVIs sampled from Mapillary and KartaView, covering 688 cities
around the world, which account for about 10% of the world’s population,
enriched with more than 300 camera, geographical, temporal, contextual,
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perceptual, and semantic attributes and has wide geographical, environmen-
tal, and temporal diversity.

• Developed a reproducible framework to 1) sample and synthesise crowd-
sourced SVIs from two different sources, 2) enrich them with rich auxiliary
information to facilitate their usage and integration with external datasets,
and 3) enable future updates by fetching the latest available data from the
aforementioned sources.

• Created the first dataset with curated manual labels and baseline CV models
for benchmarking models for SVIs and urban data science.

• Discussed how Global Streetscapes could potentially answer novel research
questions and drive new applications or enhance existing ones.

• Reduced the entry barrier to SVI research by providing a diverse, vast, off-
the-shelf solution, increasing equity and participation from researchers who
are less experienced with computational methods, and saving time and effort
for seasoned researchers.

2. Existing datasets

In recent years, many open SVI datasets have been constructed to aid the de-
velopment of tools and algorithms to sense the complex urban environments, by
providing rich labels at either the element or the scene level, or both [3].

For element-level sensing, Cityscapes [56] and Mapillary Vistas [57] are among
the most prominent street-level imagery datasets to provide labels for a large num-
ber of street object categories for benchmarking semantic segmentation and in-
stance detection algorithms to extract urban street elements. While both contain
25,000 high-resolution images, the Mapillary Vistas images exhibit a wider range
of ambient conditions (e.g. weather, lighting condition) and geographical cover-
age, hence better approximating real-world scenarios and providing a more ro-
bust benchmark. Some datasets, on the other hand, focus on specific elements
in the street scene. For example, the Mapillary Traffic Sign Dataset (MTSD)
[65] details over 300 traffic sign classes with 100,000 high-resolution images that
come with bounding box annotations. Similar to Mapillary Vistas, these images
were gathered from locations all around the world under diverse ambient condi-
tions. However, for both Mapillary Vistas and MTSD, though they have contextual
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Figure 2: A mosaic of 5,720 SVIs from Global Streetscapes (0.057% of the dataset), demonstrating
the diverse scenes, viewpoints, ambient conditions, and camera settings included in the dataset:
perspective images facing the front of the road taken on a cycleway in Edinburgh (A), a sidewalk
in Toulon (B), a rainy road in Chiang Mai (C), a night road in Berlin (D), a walking trail in a nature
park in Singapore (E), or a snowy road in Sarajevo (F); a perspective image facing the side of the
road taken in a rainy day in Pudong (G); a panorama taken from a cyclist riding along tram tracks in
Orléans (H). The mosaic forms a single SVI featuring the unique streetscape at the Circular Road
in Singapore, with lines of iconic shophouses against a backdrop of modern development. Our
heterogeneous dataset will increase geographical diversity, scene variety, cultural and landscape
mixture, and equity in urban analytics. Source of imagery: Mapillary and KartaView contributors.
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Table 1: Characteristics of existing open SVI datasets constructed for computer vision and urban research applications, and our Global
Streetscape dataset (MSLS: Mapillary Street-Level Sequences; MTSD: Mapillary Traffic Sign Dataset; MPOINSLI: Mapillary POI-
Neighborhood Street-Level Images; OSV-5M: OpenStreetView-5M; CV: computer vision; UR: urban research; ‘-’: information unavail-
able; ‘X’: information available; ‘X*’: information and manual label available). Besides a rich set of metadata, our dataset offers
advantages such as multidisciplinary use and multi-source provenance.

Dimension Description Cityscapes Mapillary
Vistas MTSD MSLS BDD100K Place

Pulse 2.0 MPOINSLI OSV-5M
Global

Streetscapes
(Our work)

Purpose Domain: task
CV:

semantic urban
scene understanding

CV:
traffic signs

detection and
classification

CV:
lifelong

place
recognition

CV:
heterogeneous

multitask
learning

UR:
human

perception

UR:
POI

characteristics

CV:
geolocation

UR+CV:
SVI usability,

scene understanding,
urban analytics

Lineage Image source
Self on-site
collection Mapillary Mapillary Mapillary

On-site
collection
by drivers

Google
Street
View

Mapillary Mapillary
Mapillary,
KartaView

Coverage

No. of images 25,000 25,000 100,000 1.6 million 120 million 110,988 167,743 5.1 million 10 million
No. of cities 50 N/A N/A 30 N/A 56 1 70k 688
No. of continents 1 6 6 6 1 6 1 6 6
No. of years covered 1 N/A N/A 9 N/A 6 7 13 > 13

Metadata
enrichment

Street network - - - - - - - - X
Degree of urbanisation - - - - - - - - X
Administrative area - - - - - - - X X
Spatial index - - - - - - - - X
POI - - - - - - X - -
Land cover - - - - - - - X -
Soil type - - - - - - - X -
Driving side - - - - - - - X -
Distance to sea - - - - - - - X -
Climate - - - - - - - X X
Season - - - - - - - - X
Weather - - - - X* - - - X*
Lighting condition - - - X X* - - - X*
Platform - - - - - - - - X*
View directions - - - X - - - - X*
Panoramic status - - - X - - - - X*
Quality levels - - - - - - X - X*
Presence of glare - - - - - - - - X*
Presence of windshield reflection - - - - - - - - X*
Scene type - - - - X* - - - X
Perception - - - - - X* - - X
Semantic segmentation X* X* - - X* - - - X
Instance detection X* X* X* - X* - - - X
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diversity—which is good for catering to diverse use cases—information describ-
ing the ambient conditions is not included in the accompanying metadata. The
lack of labels to describe the contextual characteristics of SVIs makes it difficult
to develop automated means to efficiently extract such information.

The Mapillary Street-Level Sequences (MSLS) [58] and the BDD100K [59]
datasets provide scene-level labels that partially describe the diverse contextual
characteristics of SVIs. The MSLS is constructed for lifelong place recognition,
containing 1.6 million images that spread over 30 major cities in 6 continents cap-
tured over nine years. The dataset provides auxiliary information describing the
view direction, lighting condition, and panoramic status of the images. This in-
formation was derived from the image’s metadata instead of manual labels, so its
reliability largely depends on the accuracy of the metadata, which could greatly
vary among the wide range of devices used to capture the SVI. The BDD100K
[59] is a driving dataset constructed for heterogeneous multitask learning, pro-
viding labels for weather, lighting conditions, and scene types alongside manual
labels for semantic segmentation and instance detection. While BDD100K to-
tals a massive count of 120 million images, the images were all collected in the
United States, without a worldwide geographical representation. Further, it does
not provide other visual features pertaining to the use of SVIs, such as view di-
rection, platform, and quality. GSV-Cities [66] is another dataset constructed for
place recognition, with 560,000 Google Street View images from more than 40
cities over a 14-year period that have diverse appearance variations, though such
varying ambient conditions are not annotated.

While not primarily focused on SVIs, other well-known datasets that charac-
terise urban places and objects including Places [61] and ADE20K [67] have been
widely utilised in urban analytics as well. Although the above datasets annotate
SVIs with a series of rich semantic features, they are not enriched with additional
metadata such as street networks and a variety of other features that we will de-
scribe later, which could limit their versatility. For example, researchers have used
the Places dataset [61] with OSM information to produce accurate classification
of rural, urban roads, and highways [68].

Multiple SVI datasets have been curated for urban research purposes as well.
One such prominent dataset is the MIT Place Pulse 2.0 dataset [62], which es-
tablished means to quantitatively assess urban scenes for multiple dimensions
of human perception toward the built environments. It contains 110,988 images
and 1,170,000 pairwise comparisons provided by 81,630 online volunteers along
six perceptual attributes: safe, lively, boring, wealthy, depressing, and beautiful.
These images, obtained from Google Street View, cover 56 cities across six conti-
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nents and span a time range of six years. As the images are not crowdsourced, they
are more standardised in terms of data collection, i.e. image quality and conditions
are comparable, and thus do not exhibit much diversity in scene conditions. In-
formation pertaining to the ambient conditions of the images is unavailable. Such
perceptual datasets could be used to reveal changes in urban environments as well
[69]. In addition, datasets have been curated to classify architectural styles [70]
and age [71], identify shop storefronts [72], and detect road damage [73].

There is also an increasing effort to merge SVIs with additional data to sup-
port urban research. Merging points of interest (POIs) data with SVI, The Mapil-
lary POI-Neighborhood Street-Level Images (MPOINSLI) dataset [44] curates
167,743 SVIs from Mapillary that have been filtered to have a view of 6,732
unique POIs and their neighbourhoods, potentially supporting further analyses
such as POI-scene recognition and fine-grained land use classification. On the
other hand, [74] developed a modelling framework, URBAN-i, that detects infor-
mal settlements, pedestrians, and vehicle types from aerial imagery and SVI, and
combines them with spatiotemporal data (location coordinates, date, and time) to
map urban dynamics. These efforts demonstrate the potential and usefulness of
enriching SVIs with other data sources to support diverse urban analytics applica-
tions.

OpenStreetView-5M (OSV-5M) is, at the time of writing, the largest world-
wide, open-access SVI dataset constructed for geolocation using crowdsourced
SVIs from Mapillary [75]. The authors randomly sampled one image per cell
on a 100 ×100m grid across the entire world, to achieve a balanced distribution
worldwide. Each image is further enriched with additional metadata including
the associated administrative area, land cover, soil type, driving side, and distance
to the sea. While such auxiliary information is beneficial for the purpose of ge-
olocation, it may not be sufficient for our purpose of enhancing SVI usability for
urban analytics. Nonetheless, it is yet another dataset that demonstrates the value
of crowdsourced SVI.

Scene diversity also plays an important role in research on the cross-domain
performance of CV algorithms. VALERIE22 is a dataset of synthetic street scenes
generated to study domain-specific factors that influence perception performance
of deep neural networks [76]. The highly diverse 3D scenes are generated by
varying multiple factors including the width of a street or pavement, scene type,
materials for roads and sidewalks, placement and density of cars, vegetation, road
elements and pedestrians, position of camera, time of the day, etc. The dataset
also comes with a rich set of metadata describing the specific scene and semantic
features. However, it is not geographically diverse, hence not fully fulfilling our
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research objectives.
While all these SVI datasets have considerably contributed to CV and urban

research, none could adequately address the two research challenges described in
Section 1. It is observed that enriching SVI with other data sources could fur-
ther enhance its usability and drive novel applications. Additionally, most of the
datasets strive to cover broad geographical regions and diverse conditions to ap-
proximate real-world scenarios to robustly assure the generalisability of models or
approaches derived from the dataset. These findings support our research objec-
tives outlined in Section 1 and underline the importance and need for a dataset that
not only exhibits geographic, temporal, environmental, and viewpoint diversity,
but also comes with comprehensive labels to inform its usage and rich auxiliary
data sources to inspire new applications. Moreover, while most existing datasets
focus only on a single source of data (e.g. GSV), our dataset is one of the first
efforts to synthesise more than one source of crowdsourced SVI. Such harmonisa-
tion can improve data availability as the coverage of one source can complement
that of the other. It is not uncommon that some cities only have data from one
source but not from the other.

Table 1 summarises the characteristics of various datasets related to our re-
search objectives and how our dataset, Global Streetscapes, differentiates itself
and contributes to making the best use of SVI.

3. Methodology

3.1. City selection and data download
Cities were selected from the SimpleMaps World Cities Database [77], a widely

used dataset [78], which contains 42,905 cities across 239 countries, using a com-
bination of methods (Figure 3A). As the initiation of a global-scale dataset, we
first focused on cities with a population greater than 50,000 for a greater chance
of data availability of crowdsourced imagery. This is also following the recom-
mendation by the UN Statistical Commission which delineates a city based on a
total population of at least 50,000 as one of their criteria [79], considering that the
dataset is constructed primarily for use in urban research. This resulted in 8,729
cities across 189 countries for further sampling: For each of the 189 countries,
6% of the available cities from each country were randomly sampled, yielding
501 candidate cities for data download (Figure 3A). This stratified sampling helps
to balance the geographical coverage of the candidate cities and ensure countries
are represented proportionally to the number of cities they have, preventing the
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Figure 3: The methodology framework, from city selection and data download (A) to data enrich-
ment (B), to produce the Global Streetscapes dataset (C).
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cases where a disproportionately large (or small) number of cities are sampled
from a single country.

To ensure all territories are represented in the dataset, we added the capital
cities of all countries and territories to the candidate cities (if they were not already
included). To further balance the geographic distribution of training data, we used
a worldwide 1 × 1 km grid from WorldPop [80] to randomly sample 100 cells
around the world and extract a small number of SVIs from these cells. The nearest
cities to these images were determined from the World Cities Database using a
k-d tree method, and were added to the candidate cities. A number of cities were
also manually added to the candidate cities, following a visual inspection of the
geographical distribution of the candidate cities. The above measures resulted in
392 more cities added to the pool of candidate cities (Figure 3A).

For each of the candidate cities, the city’s point coordinates (latitude and lon-
gitude) were extracted from the World Cities Database. Mapillary and KartaView
SVIs, along with their metadata, were then downloaded from the vector tile (which
measures approximately 2.4 km × 2.4 km at the Equator, at zoom level of 14)
associated with the city’s coordinates, using the Mapillary Python Software De-
velopment Kit (SDK) [81] and the KartaView Application Programming Interface
(API) [82]. Depending on data availability, only the cities with data available from
either Mapillary or KartaView were included in the final dataset.

This entire process resulted in a large collection of SVIs spanning 688 cities
from 210 countries and regions (Figure 1). The cities are of varying sizes, from
having hundreds or thousands of inhabitants to being home to millions of urban
dwellers. Together, these cities cover approximately 10% of the world’s popula-
tion. In total, 10 million SVIs were obtained, with 8.89 million (88.9%) of them
from Mapillary and 1.11 million (11.1%) from KartaView.

3.2. Geospatial enrichment
All SVIs in the dataset are merged with multiple geospatial data sources to

provide the geographical context for each SVI (e.g. the street and the administra-
tive area it is located in, and the degree of urbanisation of the area it is located
in), and to spatially index the image to promote future integration with other data
(Figure 3B).

Street network information. The street networks within the 2.4 × 2.4 km
sample area in each city were extracted from OpenStreetMap (OSM)1 using the

1https://www.openstreetmap.org
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Figure 4: We processed the original temporal and camera metadata of all street view images in our
dataset, further enriched them with multiple sources of spatial data based on location coordinates,
and labelled them with contextual, semantic, and perceptual attributes using computer vision. The
area featured in this illustration is in Helsinki, Finland, and shows the different data sources and
the kind of data it provides. Source: Mapillary, KartaView, OpenStreetMap, Uber, European
Commission, GADM.
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Python package OSMnx [83], and matched with the SVIs based on distance. By
associating SVIs with their surrounding street networks, we can learn about the
street context of where the SVIs locate, e.g. the name, address, and type of the
street, to inform their fitness for use, or analyse the distribution of SVIs at the
street level, to inform data coverage [4]. This data fusion also enables the ag-
gregation of SVI data [4, 84] and further, its fusion with other data types (e.g.
building data, population data, POI data, social sensing data, satellite imagery),
using streets as the spatial unit, to represent urban space more comprehensively
and develop expressive, multimodal machine-learning models [45, 84].

Degree of urbanisation. The degree of urbanisation at the location of each
image was obtained from the Global Human Settlement Layer (GHSL) published
by the European Commission [85], and provides one of the following eight val-
ues: urban centre, dense urban cluster, semi-dense urban cluster, suburban or peri-
urban, rural cluster, low density rural, very low density rural, or water. This infor-
mation provides the settlement context of the images and could help researchers
identify images from areas of interest.

Administrative area. The Database of Global Administrative Areas (GADM)2

is a spatial database of administrative areas around the world, available from the
country level to further subdivisions such as counties and provinces. We spatially
joined our SVIs with the GADM dataset for all administrative levels available (up
to six) at the image’s location. These attributes could enable the integration of our
data with other data types (e.g. demographic and socioeconomic datasets) that are
based on administrative levels.

Spatial index. We spatially indexed our SVIs on the H3 hierarchical indexing
system3, a standardised global grid system that partitions the world into regular
hexagonal cells [86], at all 16 levels of resolution. This transformation could
further support the integration of our data with other H3-indexed global datasets,
such as the Kontur Population dataset4, and facilitate multi-scale H3-based spatial
analysis which is common in urban SVI research [87, 36, 35, 33].

Figure 4 shows an overview of the above-mentioned external sources used for
the geospatial enrichment and the related attributes. Further technical details of
the geospatial enrichment processes are documented in Appendix A.2.

2https://gadm.org/
3https://h3geo.org/
4https://www.kontur.io/portfolio/population-dataset/
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3.3. Temporal enrichment
Local date and time. Mapillary and KartaView provide detailed timestamp

of the image capture, unlike GSV which only provides the year and month of
capture. For Mapillary, the capture date and time of an image was expressed
as a Unix timestamp, while for KartaView, it was given as a date-time string in
Greenwich Mean Time (GMT). We converted the timestamps from both sources to
the local time zone and expressed the local date time in a unified date-time string
format. This provides a more localised temporal context for the image, making it
easier to identify the time of day at which the image was captured. The original
timestamps given by both sources are also kept in the dataset.

Climate and season. For each city, its Köppen climate classification was ob-
tained based on location, using an API5 based on a database run by the Institute
for Veterinary Public Health and the Provincial Government of Carinthia in Aus-
tria6. Images from all tropical climate regions were then labelled as ‘tropical’ for
season. For the remaining images, we estimated the season based on the month it
was taken in and whether it is located in the northern or southern hemisphere. This
information is helpful because the result of some SVI-based studies could be sen-
sitive to seasons, a topic that has recently gained more attention [88, 89, 34]. As a
prime example, changes in vegetation through growing and non-growing seasons
could affect the calculation of the green view index in urban landscape studies [2].

Number of hours relative to sunrise or sunset. Using the Python package
PyEphem [90], we calculated how long an image was taken before or after sunrise
or sunset. This information could be used to infer the lighting condition in the
image.

Average and maximum speed. Crowdsourced SVIs are collected by volun-
teers using various modes of transport (e.g. car, bicycle, and on foot) [91, 4]. We
calculated the average speed of each geotagged sequence as the ratio of the to-
tal sequence length to the time duration between the first and last images of the
sequence to deduce the mode of transport associated with the trajectory. The aver-
age speed across each segment between each pair of consecutive images was also
calculated, and the maximum value across the sequence was used as the maxi-
mum speed for the sequence. The variance among the segment speeds was also
calculated for each sequence. These statistics could help us infer the transporta-
tion mode associated with each sequence, potentially facilitating VGI research on

5https://github.com/sco-tt/Climate-Zone-API
6https://koeppen-geiger.vu-wien.ac.at/
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Table 2: Overview of the eight manually labelled attributes and their characteristics. All attributes
are at image level and (*) attributes are in most cases consistent at the sequence level.

Attribute Data Type No. of classes Possible values

Platform∗ String 6 driving/walking/cycling surface, railway, fields, tunnel
Weather∗ String 5 clear, cloudy, rainy, snowy, foggy
View direction∗ String 2 front/back, side
Lighting condition∗ String 3 day, night, dusk/dawn
Panoramic status∗ Boolean 2 true, false
Quality String 3 good, slightly poor, very poor
Glare Boolean 2 true, false
Reflection Boolean 2 true, false

contributor behaviour [92, 93].
Further technical details of the temporal enrichment processes are documented

in Appendix A.2.

3.4. Contextual enrichment by computer vision
3.4.1. Contextual attributes

Besides geospatial and temporal enrichment, as the core part of our work, we
have considered numerous other attributes that provide essential contextual infor-
mation about the image’s characteristics to facilitate the ‘fitness for use’ evalua-
tion.

Platform. The type of platform (e.g. road, cycleway, sidewalk, etc.) on which
an image is taken could inform the perspective of an image, i.e. whether it is taken
from a car-, cyclist-, or pedestrian-oriented environment. This feature is important
for studies on topics such as human perception, walkability, and bikeability, which
have attracted heightened interest in very recent years, as these are important as-
pects of evaluating urban liveability and sustainability. There is even an effort
to exclusively collect SVIs on walking infrastructure such as footpaths and side-
walks to facilitate pedestrian-related use cases7, which validates the importance of
having pedestrian perspectives featured in the dataset and also the necessary aux-
iliary information to identify them. In addition, it would be more appropriate to
use pedestrian-perspective SVIs to study walkability instead of SVIs taken from
cars, which tend to dominate the data (especially in commercial SVI) and could
be easily misincluded in analysis [55].

Weather. The weather conditions in an image could influence its fitness for
use by affecting the image quality, lighting, and human perception. For example,

7https://footpath.ai/
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a place could look vibrant and lively in sunny weather but depressing and unsafe
in rainy weather, and using a mix of these images without prior selection could
lead to biases in SVI-based urban perception studies. Further, certain weather
conditions such as rain, snow, and fog could potentially cause obstruction and
reduce the overall clarity of the image, and having this label could help studies
that rely on image clarity (e.g. to extract urban features) avoid SVIs taken in these
less desirable weather conditions.

View direction. Among the non-panoramic (or ‘perspective’) SVIs, which
are commonly found in crowdsourced SVI [36], SVIs could be taken with the
camera facing the front, or the side, of the road, as one moves along the road,
producing front-viewing and side-viewing SVIs, respectively. As the two types of
SVIs capture the street scene from two different angles, it is important to know
the view direction of a SVI to determine whether it is suitable for a use case.
For example, for studies that focus on building facades [94, 95], side-viewing
SVIs would likely be more suitable, as they are more closely oriented toward the
building facades located on the side of the road and could capture more details on
these surfaces. On the other hand, studies on urban morphology [96, 97] might
find front-viewing SVIs more fitting, as they are focused along the road and give a
more complete view of the street canyon. It was also found that, when calculating
metrics such as the sky view index or green view index from perspective images,
the results are more accurate when using front-viewing SVIs compared to side-
viewing SVIs [36]. It is thus important to be informed of the view direction of a
perspective SVI before including it in the research data. In some less frequently
observed cases, SVIs could be taken from a rear-facing camera attached to the
back of a car or bicycle. These rear-viewing SVIs are considered equivalent to
front-viewing SVIs for the purpose of labelling and model training in this work,
as the two types are hardly distinguishable at the level of a single still image.

Lighting condition. The lighting condition attribute indicates whether an im-
age is taken during the day, night, or dawn/dusk.

Panoramic status. Panoramas contain more information than perspective
SVIs. It could thus be beneficial to know whether an image is a panorama. Such
information is not always available in the metadata.

Quality. The quality of an image can be affected by a combination of fac-
tors such as obstruction, noises, blurriness, glare, low resolution, etc. [4, 98]. To
simplify the labelling task, we conceived this attribute as the subjective judge-
ment of the annotator about the quality of an image—whether it is acceptable (or
‘good’), ‘slightly poor’, or ‘very poor’. Such characterisation can help filter out
low-quality imagery that is undesirable for use cases, but it may unlock new in-
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sights for the assessment of the quality of crowdsourced SVI and understanding
VGI contributor activity and patterns in relation to the quality of data, which are
perennial topics in VGI [99, 100, 101, 102, 103, 104, 105, 106].

Presence of glare and windshield reflection. The presence of glare and
windshield reflection could indicate the quality conditions of SVIs. In addition,
knowledge of the presence of glare could be useful for examining travel safety
and comfort for drivers, cyclists, and pedestrians.

3.4.2. Training data preparation
These contextual attributes (Section 3.4.1) are challenging to be accurately

computed from the image’s metadata. We thus consider computer vision to be
a viable means to extract such information from SVIs without having to rely on
metadata availability and quality. To facilitate model development, we sampled
a subset (more than 10,000) of our SVIs to be manually annotated with the eight
contextual attributes (Figure 3B). Figure 4 shows an example of the manual labels
gathered. Details of the sampling and annotation processes are documented in
Appendix A.3.

Subsequently, all labels were processed to remove ‘unclear’ or ‘unobservable’
records. For ‘platform’, small or undefined classes such as ‘indoor’ and ‘others’
were excluded from the training data, while some other classes (e.g. ‘sidewalk’,
‘pedestrian zone’, ‘walking trails’) were merged into bigger and more generic
classes (e.g. ‘walking surface’) to simplify the classification task. The detailed
mapping of these classes can be found in Appendix A.3. Additionally, SVIs that
have been labelled as ‘panoramic’ were removed from the training data for ‘view
direction’ because ‘view direction’ is not applicable to panoramas. Table 2 lists
the data type, number of classes, and possible values for each attribute.

Among the processed labels, class imbalance was observed in certain attributes,
including weather, platform, and lighting condition. This is because some classes
(e.g. ‘rainy’, ‘foggy’, ‘snowy’) occur much less frequently than others (e.g. ‘clear’,
‘cloudy’), or in some cases, one class could dominate (e.g. ‘day’ for lighting con-
dition, ‘driving surface’ for platform). As a result, the quantity of training samples
could be insufficient for the smaller classes.

To supplement the training samples for the smaller classes, we manually browsed
through the web applications of both Mapillary and KartaView to specifically seek
additional SVIs that fall under one (or sometimes, two) of the smaller classes. As
such, these supplementary images could have one or two contextual tags, and
would only be used in the training for the one or two contextual attributes they
were tagged for and not used in the training for the other contextual attributes
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(further detail is provided in Appendix A.3). Using this method, we found addi-
tional 26,046, 22,772, and 1,995 images to augment the smaller training classes
for weather (i.e. ‘snowy’, ‘rainy’, ‘foggy’), platform (i.e. ‘walking surface’, ‘cy-
cling surface’, ‘railway’, ‘fields’, ‘tunnel’), and lighting condition (i.e. ‘night’,
‘dusk/dawn’), respectively (Figure 3B). Table 3 shows the exact number of SVIs
used in the training and testing for each contextual attribute. Figure 5 shows the
class distribution among the manual labels available for each contextual attribute,
after class augmentation for platform, weather, and lighting condition.

Figure 5: The class distribution among the manual labels for the eight contextual attributes, with
some arbitrary example images from each class. Note that the classes for platform, weather, and
lighting condition have been augmented with labels from additional manually selected images.
Sources of imagery: Mapillary and KartaView contributors.

20



3.4.3. Model development
To provide a common baseline for benchmarking, we implement state-of-the-

art computer vision models using the labelled data. The labelled images were
divided into train and test sets following a city-wise 80-20 split, where all images
of a city are either on the train set or test set but not both. For the classification
problem, we produce the baseline results by weighting the loss weights uniformly
to account for class imbalances in the training set, and use a stratified hold-out
validation set to qualify our model decisions. The primary metric of interest is the
performance on the test set, measured by the accuracy and the macro-averaged
precision, recall, and F1 score (Table 3), since this presents generalisation perfor-
mance. The test metrics are computed upon model convergence, using the test data
for inference. Each of the ‘Training’ attributes in Table 3 is treated as the depen-
dent variable in a classification task, resulting in eight classification models. We
chose the MaxViT: Multi-Axis Vision Transformer [107] as it achieves competi-
tive performance on image classification, leveraging both local and global spatial
information in the model. For all purposes of training the classification model, we
use the MaxViT-Tiny model of 33M parameters. We utilise the AdamW [108] op-
timiser with learning rate of 3·10−4, weight decay of 1·10−2 and β1,2 = (0.90, 0.99).
Early stopping is applied if the validation loss does not decrease in two epochs.
Cross-entropy loss is used with uniform loss weighting to optimise the model.
Details about the performance of the models are shown in Table 3.

In general, the models achieved moderate to high accuracy for all eight at-
tributes. The models performed the best for panoramic status and lighting con-
dition, producing high accuracy, precision, recall, and F1 scores (Table 3). For
some attributes, such as glare, quality, weather, and platform, greater differences
between the accuracy and macro-averaged F1 scores were observed, largely due to
the classes being imbalanced and difficulty to accurately predict for small classes
(Figure 5). Possible reasons for the model results are discussed in detail in Sec-
tion 5.5.

To the best of our knowledge, there are no existing benchmarks for the classifi-
cation of panoramic status, view direction, reflection, and platform. While several
works have produced various baselines and datasets for classification of weather
[59, 109, 110], lighting conditions [109, 110], and glare [109], achieving accuracy
levels comparable to or even higher than our baselines, the data involved in their
experiment is considerably different from ours, e.g. [109] used web images which
are usually more typical and easily characterised compared to crowdsourced SVIs
that come from diverse settings, and the data from [59] and [110] was collected
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Table 3: Overview of the computer vision models used for labelling contextual, semantic, and
perceptual attributes. For the contextual attributes (platform, weather, view direction, lighting
condition, panoramic status, quality, glare, and reflection). The models were trained with our
manually labelled data; the number of images involved in training and testing, as well as the
accuracy, macro-averaged precision, recall, and F1 score on the test set are reported below.

Attribute Model Number of images Accuracy Precision Recall F1 Score Training / Inference
train test

Panoramic status MaxViT 8,372 2,172 0.999 0.995 0.995 0.995 Training
Lighting condition MaxViT 9,380 3,079 0.962 0.916 0.897 0.905 Training
Glare MaxViT 8,089 2,115 0.941 0.602 0.698 0.631 Training
View direction MaxViT 7,632 2,012 0.874 0.735 0.912 0.780 Training
Quality MaxViT 8,199 2,107 0.799 0.398 0.515 0.410 Training
Reflection MaxViT 8,112 2,119 0.787 0.745 0.788 0.757 Training
Weather MaxViT 27,771 8,068 0.755 0.664 0.608 0.599 Training
Platform MaxViT 25,407 7,311 0.683 0.574 0.582 0.567 Training

Instance detection and
semantic segmentation Mask2Former - - - - - - Inference

Scene type VGG16 - - - - - - Inference
Human perception ViT - - - - - - Inference

from only one country, which may not capture features that could vary across dif-
ferent geographical regions. For quality classification, the work of [111] presented
a deep learning approach to classify images into six quality categories. However,
some of the images in their training data were artificially blurred, which may not
well represent the cases seen in crowdsourced SVIs. Therefore, our work could
be considered a representative baseline for the tasks of classifying the eight con-
textual attributes in a geographically and contextually heterogeneous SVI dataset.

After all training was complete, the resulting best-performing CV models were
used to automatically inference the eight contextual attributes for the remaining
dataset (Figure 3B).

3.5. Semantic and perceptual enrichment by computer vision
We processed our SVIs with several existing, state-of-the-art CV algorithms to

compute semantic segmentation, instance detection, human perception, and scene
classification. Figure 4 shows an example of the inferred labels available. SVI-
based urban studies heavily rely on semantic information extracted from SVI but
the computation process is often resource intensive, or could impose a technical
barrier for researchers who are not well-versed in this aspect. By pre-computing
these important attributes and making them readily available, we substantially
lower the technical and resource threshold to use SVI in urban research, thereby
promoting the use of SVI.

Instance detection and semantic segmentation. We implement a unified im-
age segmentation and detection pipeline, simultaneously producing object counts
and pixel counts. More specifically, we utilise the ‘Mask2Former’ approach [112],
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a universal and lightweight transformer architecture applicable to various image
segmentation tasks. Mask2Former is trained and validated on the Mapillary Vis-
tas version 1.2 dataset [57], which consists of 65 semantic classes, and reports a
mean intersection over union (mIoU) performance of 60.8%.

Adopting Mask2Former offers two key advantages for applying a standard-
ised pipeline to diverse urban contexts: Firstly, it significantly enhances accu-
racy in identifying fine-grained semantic categories within images. Unlike other
models that often overlook small regions in images, Mask2Former excels in this
regard. Secondly, it is lightweight and computationally scalable, making it an
efficient solution. Readers interested in the specific architecture and training of
Mask2Former are referred to [113, 112].

Scene classification. To infer the various scenes featured in the SVIs, we ran
the released VGG16 model [114] trained on the Places dataset [61] for all SVIs
in our dataset. The Places dataset has more than 10 million images labelled with
more than 400 unique scene categories and VGG16 has attained the highest top-1
accuracy on both the validation and test sets. The diverse scene categories contain
many that are relevant to SVI, such as street, highway, residential neighbourhood,
park, etc. The scene label thus provides an overall semantic context of the SVIs
and could help researchers remove outliers that are not of their research interest
[6].

Human perception. We utilised six pre-trained perceptual models by [115],
respectively predicting, for each SVI, the six dimensions of human perception for
the urban built environment, which include ‘safe’, ‘lively’, ‘wealthy’, ‘beautiful’,
‘boring’, and ‘depressing’. Each model outputs for each SVI a numerical score
ranging from 0 to 10 that reflects the magnitude of the perception. The models
were pre-trained on MIT Place Pulse 2.0 [62, 63]. The backbone of the model
implements a vision transformer pre-trained on ImageNet [116], which is known
for its high utility as a dataset for transfer-learning in a broad range of vision tasks.
The models achieve an accuracy of 76.7% for ‘safe’, 77.1% for ‘lively’, 72.9% for
‘wealthy’, 76.9% for ‘beautiful’, 61.6% for ‘boring’, and 67.2% for ‘depressing’.

A summary of the models used for inference is shown in Table 3.

4. Global Streetscapes

The Global Streetscapes dataset, which we release openly at https://github.
com/ualsg/global-streetscapes, consists of:

• The metadata and all enriched geospatial, temporal, contextual, semantic,
and perceptual attributes (described in Section 3) for the entire dataset.
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• The manual labels used in model training and testing for the eight contextual
attributes outlined in Section 3.4.

• The manually labelled images used for model development (the exact num-
ber of images used for each attribute is outlined in Table 3).

The contents of each data file are explained in Appendix A.1. To ensure
the reproducibility and continuation of the project, Python scripts to download
and enrich the images can be found in our GitHub repository, alongside various
Jupyter Notebooks with step-by-step instructions for basic queries and visualisa-
tions of the dataset. The images, except for those used for model development,
are not hosted, as they can be downloaded from their original sources (Mapillary
or Kartaview), using the code in our GitHub repository.

Global Streetscapes contains images sampled from over 688 cities around the
world, and their geographical distribution is shown in Figure 1. Among the six
continents it covers, Europe has the most number of images, accounting for nearly
40% of the dataset, followed by Asia (23.3%), North America (20.17%), South
America (9.83%), Africa (5.49%), and Oceania (1.98%) (Figure 6A). Despite our
effort to include all countries and ensure geographical balance, Europe still ap-
pears overrepresented (by having the highest number of images) in the dataset.
This could be attributed to the high number of countries and cities in Europe, as
well as greater data availability there.

The dataset also covers regions with varying degrees of urbanisation (Figure
6B). As SVIs were sampled around the city areas, where more SVIs are available,
the urban centre group (as classified on GHSL) understandably has the highest
share of images (88.61%). This group is followed by suburban or peri-urban areas
(5.02%), dense urban clusters (3.64%), low-density rural areas (1.39%), very low-
density rural areas (0.65%), etc. At the same time, due to the vast number of
images, even categories with such a low percentage have a large number of images
that are sufficient for a variety of use cases.

At the street level, the dataset features a diverse range of locations and urban
environment settings as indicated by the OSM road type (Figure 6C), including
residential roads (20.07%), secondary roads (16.99%), primary roads (14.68%),
footways (14.58%), tertiary roads (13.7%), trunk roads (5.47%), service roads
(4.95%), motorways (4.91%), and cycleways (2.09%), etc.

The dataset mostly consists of perspective images (71.07%), followed by fish-
eye (20.34%), equirectangular (4.77%), and spherical (3.75%) images (Figure
6D). This image type breakdown shows that perspective images dominate crowd-
sourced SVI, and it is thus essential to develop tools that could better facilitate
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the use of such data, e.g. by providing information on the view direction of the
image [36].

The images are quite evenly distributed across seasons. Apart from 21.94%
of images from the tropical regions, among the remaining images, most (21.42%)
of them were taken in autumn, followed by summer (20.27%), winter (18.76%),
and spring (17.61%) (Figure 6E). While images are mostly taken during the day
hours, a considerable amount is taken at nighttime (Figure 6F).

The average speeds exhibit two peaks at 5 km/h and 15 km/h, with a long tail
toward higher speeds (Figure 6G). Figure 6H shows the density distribution of our
predicted scores for the six dimensions of human perception (‘safe’, ‘beautiful’,
‘lively’, ‘wealthy’, ‘depressing’, and ‘boring’).

To highlight the temporal diversity inherent in the dataset, which may facilitate
longitudinal analyses such as [35, 26], nine cities were selected to visualise their
SVI availability in each year from 2014 to 2022 (Figure 7). Notably, certain areas
exhibit distinct patterns: some possess data for just a single year (e.g. Ait Melloul),
while others span all nine years albeit with a relatively limited number of SVIs (as
seen in Warsaw). Conversely, there are instances of substantial SVI data a few
years ago but a lack of coverage in recent years (like Ottawa). Such temporal
variability much depends on VGI contributor activity and patterns.

Our dataset also exhibits a diverse range of semantic and perceptual charac-
teristics. Figure 8 shows the range and distribution of green view index, sky view
index, and perception scores for all six dimensions (Section 3.5), across the entire
dataset, with example images showing different visual traits found at eight differ-
ent statistical values (minimum, maximum, mean, and the 10th, 25th, 50th, 75th,
and 90th percentiles).

5. Discussion

5.1. Potential benefits to existing urban research topics
Active mobility. Urban active mobility research can benefit from this dataset

and address several previously known hindrances when working with SVI. One
such potential improvement is enhanced accuracy of perspectives when analysing
walkability and bikeability. Studies have utilised SVI (i.e. GSV in most studies)
to examine the relationship between visual features of streets with walkability and
bikeability, and some of them reported potential biases in the results due to the
discrepancies between the perspectives of vehicles in GSV and that of pedestrians
and cyclists [10, 117]. The labels of platforms can enable researchers to build an
image classification model, with which they can potentially obtain only suitable
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Figure 6: Class or value distribution among the 10 million images for (A) continents covered, (B)
settlement typology (degree of urbanisation), (C) OSM road type, (D) camera projection type, (E)
season, (F) hour of the day, (G) average speed, and (H) perception scores.
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Figure 7: The count of street view images in each year from 2014 to 2022 for nine arbitrary
cities, indicating temporal completeness and variation in contributor activity in underlying sources
(Mapillary and KartaView).

SVI from crowdsourced services, leading to a more reliable assessment of walk-
ability and bikeability by accurately reflecting target street users’ perspectives.
Another possible enhancement is a more granular assessment of streets under dif-
ferent conditions. Similar to the issue above, previous studies have not been able
to consider various weather and lighting conditions when assessing streets for
urban mobility due to the unavailability of such diverse SVI in major proprietary
SVI services and the absence of a means to filter SVI from crowdsourced services.
Thus, the new dataset can open up research opportunities to analyse streets under
specific conditions by classifying SVI into different weather or temporal condi-
tions. For example, Figure 9 shows pairs of SVIs taken from the same location
but have contrasting visual characteristics, which could potentially affect down-
stream analyses if they are directly used without processing. Figure 10 shows an
example of selecting images with specific conditions from the dataset.

Perception. SVI remotely senses the urban environment from a uniquely hu-
man perspective, complementing the bird-eye view provided by satellite imagery.
Existing literature suggests human subjective perception of urban spaces is cor-
related with built environment features, and SVI provides a convenient means to
accurately assess both, substantially enhancing the scalability of studies on qual-
ity of urban life [118, 22]. For instance, the ‘safe’ score predicted from SVIs can
be used to quantify the perceived safety in a neighbourhood, which can be further
compared with real crime data to reveal the relationship between perceived and
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Figure 8: The histograms of green view index values, sky view index values, and perception scores
(‘beautiful’, ‘wealthy’, ‘lively’, ‘depressing’, ‘safe’, and ‘boring’) across the entire dataset, with
example images at various statistical values (minimum, mean, maximum, and the 10th, 25th, 50th,
75th, and 90th percentiles).
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Figure 9: Sets of images taken at the same location but with contrasting visual characteristics,
affirming the need for a contextually rich dataset, which will contribute to increasing the fit for
purpose and usability of street-level imagery.

actual safety and provide insights into optimising urban management strategies
[24]. Moreover, the GeoAI-generated perception scores can be compared with
onsite surveys by participants to evaluate the variations in perception bias in differ-
ent regions worldwide and explore the driving force behind them. Further, Global
Streetscapes enhances SVIs by integrating both physical environment features and
subjective human perceptions of cities worldwide. This dataset thus offers consid-
erable potential in assessing, at a global scale, various aspects of human-centric
urban development, such as social, economic, and cultural developments, housing
prices, urban vitality, public mental health, urban crime, etc. These features and
use cases could facilitate the development of human-centred GeoAI applications
and contribute valuable insights into the planning for liveable cities.

Urban complexity. SVI provides a powerful lens to sense the complexity
and dynamics of urban environments at an unprecented scale. Yet, existing SVI
datasets often lack crucial semantic and categorical information, such as weather
conditions or seasonality, pertaining to the image context. Consequently, most
SVI studies tend to treat images statically, neglecting their spatio-temporal con-
text. Global Streetscapes bridges an essential gap by providing comprehensive
support for various urban sensing applications. Additionally, it may facilitate the
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Figure 10: Two example queries from the dataset to select images with desired characteristics.
A semantically enriched dataset such as ours may facilitate identifying street-level imagery that
is suitable for a particular use case, and might contribute to the development of novel computer
vision models and benchmarks.

development of dynamic open-source tools in the field [45].

5.2. Potential research directions
Global-scale applications and comparative studies.
With the expansive coverage and extensive pre-computed attributes, Global

Streetscapes could greatly lower the barrier to conducting multi-city studies. Such
studies could yield insights into how cities differ or are similar in their morphol-
ogy, appearance, or how they are perceived. For example, Figure 11 shows how
the green view index and sky view index, which was calculated from our pre-
computed segmentation values (Section 3.5), aggregated at level-10 H3 grid, vary
both within and across cities. Further questions can include: What made cities
look different from one another? How are the cities perceived by their resi-
dents? How do the residents perceive other cities? As a large-scale, pre-processed
dataset, data from Global Streetscapes can also be readily integrated with other
analytics frameworks, such as the work by [119] to quantify urban greenness us-
ing OSM and SVI data, across multiple scales of analysis.
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Figure 11: Spatial distribution of green view index and sky view index, aggregated at level-10 H3
grid, across eight cities from different continents. These pre-computed metrics lower the barriers
and increase efficiency.
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Longitudinal studies As Global Streetscapes also covers a long temporal pe-
riod, it could potentially support change detections for locations around the world.
Long-term changes in urban physical appearance could be detected from changes
in widely implemented metrics such as the green, sky, building, and road view
indexes [36, 120, 121, 122]. Figure 12 shows an example of tracking changes in
the green view index and sky view index for six different cities.

Moreover, numerous contextual parameters provided in Global Streetscapes,
such as view direction, platform, and quality, could thus be helpful to standardise
conditions and ensure consistency of quality of imagery for a longitudinal analysis
[123], where quality and visual conditions inevitably vary, especially for crowd-
sourced SVI. These conditions could be analysed in conjunction with changes
detected from OSM data, another global crowdsourced geospatial dataset, which
has wide spatial coverage and rich spatial information but lack visual data, and
Global Streetscapes could complement the visual analysis aspect to drive new in-
sights.

Additionally, temporal changes in dynamic aspects of the city (e.g. traffic flow,
pedestrian flow) could be investigated as well for cities around the world to study
how urban life has evolved. These analyses could be strengthened by incorpo-
rating socioeconomic, demographic, and Point-of-interest (POI) data. Optical
Character Recognition (OCR) could be run with each image to extract texts on
signboards to reflect changes in business activities. The vast spatiotemporal di-
mensions could give us a fuller picture of how cities have changed over time or
when compared to others across the world, identifying urban growth and/or decay.

Data quality. Another promising potential research direction to examine is
data quality and contributor analysis of such volunteered SVI data. Some exam-
ples of possible dimensions include image quality, spatial coverage, availability
of panoramas, update frequency, etc. For example, Figure 13 shows the share
of panoramas in 35 cities with more than 10,000 SVIs and more than 5% share
of panoramas, which exhibits a substantial variation among cities. As Global
Streetscapes contains data for most of the capitals in the world, specific data char-
acteristics could be examined alongside socioeconomic factors such as the Gross
Domestic Product (GDP) to assess data equity.

Data generation. Apart from conducting analyses based on existing data, the
dataset could also be used to generate new data. As images in Global Streetscapes
are spatially indexed at various resolution levels, it also makes it easy to integrate
the images with multiple types of external data, such as the Kontur global popula-
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Figure 12: Change in green view index and sky view index, aggregated at level-10 H3 grid, across
six cities.
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Figure 13: Share of panorama images in 35 cities with more than 10,000 street view images in the
dataset.

tion dataset8. By associating SVI with population data, machine learning methods
could be applied to model the relationship between these two types of data, and it
could be potentially possible to predict population density at fine scales by using
just SVIs. Population density estimates could be helpful for areas where fine-scale
population data is not available. In addition, utilising the technique by [16] to re-
construct 3D building models from single street view images, Global Streetscapes
could potentially supply suitable images to construct 3D building models for lo-
cations covered in the dataset.

Computer vision. This dataset has captured and labelled diverse scenes and
environmental settings for places around the world across multiple years. The
same place could have been captured multiple times under different ambient con-
ditions across the years. This dataset could thus potentially be further developed
to supply essential data for studying place recognition and geolocalisation. Ad-
vancements in such technologies could help build better analytics tools and in turn
benefit urban research and analytics, in topics such as tracking changes in the built

8https://www.kontur.io/portfolio/population-dataset/
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environment and understanding how people interact with different urban spaces.
If further supplemented with manual labels for semantic segmentation and ob-
ject detection, this dataset could potentially help advance existing algorithms by
allowing researchers to study the domain discrepancy that arises from different vi-
sual conditions, e.g. semantic segmentation in daytime versus nighttime images,
as experimented in BDD100K [59].

5.3. Equity
Street view images have propelled urban science and analytics, but many re-

gions such as African countries are largely excluded from the developments re-
lying on street view imagery, with only 20% having partial coverage in mostly
large cities [124]. Owing to the presence of Mapillary and KartaView volunteers
and their worldwide contributions, our dataset gathers SVIs crowdsourced from
not only major and frequently studied cities such as Tokyo, Jakarta, New York
City, and Beijing, but also smaller ones and those given less attention such as
Kasempa, Caldera, Lobamba, and even small island cities such as Tarawa—some
of which are not yet covered by commercial SVI sources such as Google Street
View. This dataset’s global coverage and ready-to-use methodology thus aim to
promote diverse and equitable research. By downloading, managing, cleaning,
and processing the data, our effort lowers the entry barriers to researchers and
saves efforts, both in time and computational resources, especially for analyses
that include multiple cities and vast amounts of data. Further, as it presents an off-
the-shelf solution, researchers without experience in SVI can, for the first time,
take advantage of such data. Finally, our dataset contains imagery from more
than one source (which is uncommon, see Table 1), further facilitating down-
stream analyses. It increases equity and participation and may bring this novel
and emerging urban data source closer to all researchers regardless of their level
of expertise with computational methods.

5.4. Dataset longevity and crowd intelligence
To facilitate the continuous growth of the dataset, the entire workflow, from

data download to enrichment, has been automated and is reproducible with scripts
from our GitHub repository. These scripts can be run on a schedule to continu-
ously refresh data once in a while as new images are continuously being collected
and uploaded in Mapillary and KartaView. In case of adding new cities to the
dataset, the scripts can be run with the new cities to update the dataset. In addi-
tion, when more advanced models for predicting the eight contextual labels are
available, we will update labels in the dataset using those models. All version
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updates will be documented in the same GitHub repository stated above, and new
versions of the dataset will be maintained in the data repository.

Further, dataset users can become dataset creators as well. Interested users can
follow our methodology and run our open-access scripts to create and maintain
datasets for their own cities. For example, users can collect SVIs for their city
and contribute them to Mapillary or KartaView, download the data (which could
include contributions from others) with our download scripts, and enrich it with
geospatial, temporal, contextual, semantic, and perceptual information by running
the data with our enrichment scripts. The processed and enriched SVIs can in turn
be used to analyse their own city.

In addition, channels and platforms can be set up for interested volunteers
to continuously contribute to Global Streetscapes by adding new labels, verify-
ing existing labels, proposing new attributes to be labelled, or suggesting new
open-source data to be integrated. The set of images we have currently manually
labelled is only a small fraction of the entire dataset. The model and inference
accuracy could thus benefit from having more manual labels. The label accuracy
could also be improved by having the same image labelled by more people. This
could be potentially implemented in the form of a survey linked in the data and
GitHub repositories, where dataset users can volunteer to contribute back to the
project by participating in the survey in which they would either add some new la-
bels or verify some existing labels. More accurate labels could also help improve
our CV algorithms which would in turn allow us to generate a more accurate and
updated dataset for the users. For this reason, interested and savvy users are also
encouraged to use the manual labels provided to further advance the related CV
models.

By leveraging on crowd intelligence from a large community, we can contin-
uously improve the accuracy and completeness of the dataset, which was itself
built from crowdsourced data. With Global Streetscapes, we hope to promote
awareness and interest in data sources that comply with open data [125] and the
Findability, Accessibility, Interoperability and Reusability (FAIR) principles for
scientific data management [126].

5.5. Limitations and future work
While we tried to make geographical coverage as balanced as possible, it is

inevitably and ultimately based on the data sources—Mapillary and KartaView.
Data availability is subject to user contribution patterns [127, 128, 129], which
could depend on various factors, e.g. socioeconomic backgrounds, access to the
Internet infrastructure, data policies in different administrations, corporate actors,
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etc. Data equality is also an essential topic of discussion, especially in the realm
of Volunteered Geographic Information (VGI) [92, 130, 131], and is worth further
investigation in the future, as described in Section 5.2. In future dataset updates,
settlements with smaller populations (< 50,000) should be systematically included
to check for data availability as well for a more inclusive and diverse representa-
tion of the world’s cities (and settlements) [132].

Figure 14: Example images taken from different walking or driving surfaces to illustrate the diffi-
culties present in platform classification: (A) motorised and non-motorised roads may look similar
to each other, and sometimes there is no clear separation between a sidewalk and a road; (B) the
design and pavements of sidewalks often look very different even within the same country (the
three images are all from Japan); (C) such variation in appearance can become more prominent
across different sub-types of platforms (e.g. sidewalk v.s. footpath in a park) and across regions,
hindering the development of classification approaches at the global scale.

In addition, to standardise data sampling and simplify processes, we only col-
lected images around the city’s coordinates as given by the SimpleMaps World
Cities Database [77], in a 2.4 × 2.4 km tile (measured at the Equator), which
could be insufficient to represent variations across the entire city and could hinder
some applications. In future work, tiles at both the urban core and urban periph-
erals (at various radii from the centre) could be sampled for image collection so
as to give a more representative sample of each city. Further, the city coordinates
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provided in the World Cities database could deviate from the real-life downtown
areas for some cities, by various extents from hundreds of metres to several kilo-
metres, hence do not necessarily represent the city centre, which on its own is a
location that is often subjective.

Another limitation is the class imbalance among the manually labelled data,
which is inevitable and part of real-world data. While we augmented the small
classes for certain attributes with manually selected images, as described in Sec-
tion 3.4.2, many of the additional images were from the same sequences. The
similarities among images that come from the same sequence could potentially
introduce biases to the models. However, as we used a city-wise split for the
train-test split, sequences used in training were unlikely to be used again in test-
ing. Hence, any possible biases introduced by the supplementary images should
not have overstated the generalisability of the models. In future works, synthetic
data, which could be generated with diverse and varying characteristics [76, 133],
could potentially be used to supplement the training data instead.

Some ambiguous situations might give rise to ambiguous labels as well. For
example, it is difficult to determine how much cloud cover is appropriate for the
weather to be considered ‘cloudy’, which can be difficult even for human judge-
ment. The model could thus potentially confuse between the two classes (‘cloudy’
and ‘clear’). For platform classification, difficulties could arise from the similari-
ties in appearance between different types (Figure 14A) or sub-types (Figure 14C)
of platform, as well as the variations in appearance between the same type of plat-
form within (Figure 14B) and across different geographies (Figure 14C).

Notably, our model for quality classification appears to be rather stringent,
misclassifying more good-quality images than poor-quality images. This implies
that using this model as a filter for image quality could likely result in a pool
consisting of mostly good-quality images instead of a pool that is mixed with
many poor-quality images.

Some images that are not considered SVI (e.g. aerial photos, imagery from
boats) could have been mixed in the sources [4, 134]. However, due to limited
computing resources, we were unable to implement checks for all of the 10 mil-
lion images, for both duplicates and validity. Nevertheless, users who intend to
use a smaller subset of the images are encouraged to perform these checks. For
image validity checking, users could refer to methods such as computing visual
complexity, as implemented in some previous works [135, 45].

Though we have done extensive work to enhance the usability of SVI, espe-
cially crowdsrouced SVI, users are advised to exert caution when applying the
dataset or the associated CV models. This is because, while exhibiting a range
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of advantages, the heterogeneity inherent in the characteristics, quality, and cov-
erage of crowdsourced SVI (which stems from unstandardised and unorganised
data collection) could pose challenges to the generalisability and transferability of
the models.

6. Conclusion

Benefiting from contributions of myriads of volunteers from all over the world
and developing a reproducible framework, we constructed a large open, labelled,
processed, and worldwide street-level imagery dataset—Global Streetscapes, the
first of its kind.

It consists of more than 10 million images from over 688 cities around the
world and is enriched with a comprehensive range of spatial, temporal, seman-
tic, perceptual, and contextual attributes that we believe will be relevant for a
variety of downstream analyses and computer vision modelling benchmarking ef-
forts. Because it is derived from crowdsourcing (VGI) services (i.e. Mapillary and
KartaView), the dataset has high spatial, temporal, environmental, and viewpoint
diversity. These variations are also extensively described in its rich auxiliary in-
formation, benefiting an array of use cases that require both a variety of disparate
settings and specific scenarios for particular studies, and the production of deriva-
tive open datasets [136].

This contribution tackles the main bottleneck of usability of SVI (especially
crowdsourced instances), which exhibits heterogeneous conditions and character-
istics, hence allowing the development of new global-scale applications. As such,
our work provides support for many research lines that could be difficult or er-
roneous to implement otherwise, including various topics of longitudinal studies
and global-scale analysis. To drive the continuous development of this work and
beyond, we also provided, for the first time, comprehensive ground-truth contex-
tual labels, and trained state-of-the-art computer vision models for benchmarking.
We look forward to following the uses of the dataset and welcome collaborations.

Code availability

The custom code used for the creation, pre-processing, enrichment, and model
development of Global Streetscapes is hosted on a public GitHub repository https:
//github.com/ualsg/global-streetscapes. This codebase includes scripts
to reproduce the workflow in Figure 3, multiple Python Jupyter notebooks with
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data analysis, and thorough documentation in the repository’s wiki. The v1.0 re-
lease of the Global Streetscapes dataset can be accessed through the above-stated
GitHub repository as well.
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Appendix A. Supplementary information

Appendix A.1. Dataset file breakdown
Each SVI record can be identified based on their uuid, source, orig id

value, representing the Universally Unique Identifier we assigned to it, the source
from which it was obtained (Mapillary or KartaView), and its original identifier
given by its source, respectively. These three columns are present in all files
of the dataset. The files below, which we host on a public repository acces-
sible through https://github.com/ualsg/global-streetscapes, are pro-
duced by the workflow depicted in Figure 3A (metadata) and B (geospatial, tem-
poral, contextual, and semantic and perception attributes). Within the dataset, we
also include a summary of the contents of each file, in info.csv.

City information. The city information associated with each SVI, obtained
from the SimpleMaps World Cities Database [77], as well as which continent it
belongs to, can be found in simplemaps.csv.

Metadata. The metadata obtained from the two image sources is broken down
into multiple files named metadata kv.csv for Kartaview data, and metadata mly1.csv,
metadata mly2.csv, metadata mly3.csv, and metadata mly4.csv for Map-
illary data. The file metadata common attributes.csv contains attributes found
in both Kartaview and Mapillary that we have standardised, including the image’s
location coordinates, capture date and time (in local timezone), width and height,
heading, projection type, horizontal and vertical field of view, identifier of the se-
quence it belongs to, its order index in the sequence, and the number of available
images in its sequence.

Geospatial attributes. Attributes obtained from joining the dataset with data
from OSM, GHSL, GADM, and H3 are stored in the files named osm.csv, ghsl.csv,
gadm.csv, and h3.csv, respectively. The Köppen climate classification associ-
ated with each image’s location can be found in climate.csv.

Temporal attributes. Attributes pertaining to season, the number of hours
relative to sunrise / sunset, and the average and maximum speed are stored in the
files named season.csv, ephem.csv, and speed.csv, respectively.

41



Contextual attributes. All contextual attributes of platform, weather, view
direction, lighting condition, panorama status, quality, presence of glare, and pres-
ence of windshield reflected can be found in contextual.csv.

Semantic attributes. The pixel and instance counts from semantic segmenta-
tion and instance detection are stored in segmentation.csv and instances.csv,
respectively.

Perception attributes. Attributes related to human perception are stored in
perception.csv.

Scene classification. The scene recognised in each SVI is stored in places365.csv.
Train and test split. The manual labels used for training and testing the con-

textual models described in Section 3.4.3 can be found in glare.csv, lightning condition.csv,
pano status.csv, platform.csv, quality.csv, reflection.csv, view direction.csv,
and weather.csv. The files are located in the folders train/ and test/ accord-
ingly.

Appendix A.2. Geospatial and temporal enrichment
Street network information. For each image, the OSM street segment near-

est to the image location, within a maximum radius of 10 m, was considered to be
associated or matched with that image, and all of its attributes available on OSM
were appended to the image. These attributes include the name, ID (on OSM),
type, number of lanes, speed limit, length, end nodes of that street, and the dis-
tance between it and the image. Even if an image has no associated street found
within its 10 m radius, this could indicate a couple of possibilities: the location of
the image might involve some positional error, or the image could be taken from
off-road locations.

Degree of urbanisation. GHSL is a raster dataset with a resolution of 1 km2.
The settlement typology classification is based on multiple criteria including pop-
ulation density, built-up area size, and contiguity.

Spatial index. Using the Python package h3-py [86], we converted the latitude
and longitude coordinates of each image to the index of the hexagonal cell that
contains it, for all 16 levels of resolution (with the hexagon edge length ranging
from 0.000584 km to 1281 km), supporting spatial analysis across various scales.

Local date and time. To convert the original capture timestamps to their re-
spective local time zone, we first utilised the Python package pytzwhere to identify
the timezone corresponding to the image’s latitude and longitude coordinates, and
then converted the original timestamps from GMT to the identified local time zone
using the Python packages pytz and datetime.
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Season. For non-tropical images located in the northern hemisphere, those
taken from March to May were mapped as Spring, June to August as Summer,
September to November as Autumn, and December to February as Winter. For
non-tropical images located in the southern hemisphere, those taken from March
to May were mapped as Autumn, June to August as Winter, September to Novem-
ber as Spring, and December to February as Summer.

Number of hours relative to sunrise or sunset. Using the Python package
PyEphem [90], we calculated the sunrise and sunset times at each image’s location
on the image’s capture date. The image’s capture time was then compared against
the sunrise and sunset timings to determine how long it was taken before or after
sunrise or sunset. If the image was taken within ±12 hours relative to the sunrise
(or sunset) time, the number of hours between the image’s capture time and the
sunrise (or sunset) time was calculated; a positive number indicates ‘number of
hours after sunrise (or sunset)’, whereas a negative number indicates ‘number of
hours before sunrise (or sunset)’. This gives further information about the lighting
condition of the image. If the calculation of the sunrise and sunset times yields
null, it indicates that it could be either a polar day or polar night, depending on
whether it is in spring/summer or autumn/winter, respectively.

Average and maximum speed. We considered the values for average speed
invalid, if they were infinite, negative, or beyond 250 km/h (we deemed 250 km/h
as a reasonable upper limit for average speed). Sequences with these invalid av-
erage speed values were given null for all speed metrics. Though some metrics,
including the distance of the sequence, time duration of the sequence, sequence
average speed (calculated as the ratio of sequence distance to sequence time du-
ration), average segment speed (calculated as the mean of all segment speeds cal-
culated between every two consecutive points in a sequence), maximum segment
speed, and segment speed variance, were calculated at the sequence level (i.e. each
sequence has one value), they have been appended to each image according to its
sequence ID.

Appendix A.3. Contextual enrichment by computer vision: Training data prepa-
ration

Greedy sampling. Class imbalance was foreseeable as certain conditions
were expected to occur less frequently than others, especially for ‘time of day’,
‘platform’, and ‘weather’ (e.g. night time, cycling path, snowy weather). Thus,
we greedily sampled images to make certain smaller classes more available in the
training data compared to a completely random sample. Using the calculated time
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of day, we grouped all candidate SVIs into ‘day’ and ‘night’ categories and sam-
pled 2,700 SVIs from the ‘night’ category and 8,000 SVIs from the ‘day’ category.
Further, based on the OSM street type associated with each image, we grouped
the images according to whether they were likely taken from a ‘driving surface’,
‘walking surface’, or ‘cycling surface’, and sampled similar numbers of SVIs from
each category respectively. For the remaining attributes, it was difficult to infer
them from the existing non-visual information, so they were not considered in the
greedy sampling scheme.

Manual annotation. The 10,000 images used for model development was
labelled by two trained annotators independently. To ensure that the annotators
obtain a holistic understanding of their task, training was provided by the First
Author to the annotators prior to the start of the labelling task. The training in-
cluded an overview of the research background and objectives, detailed explana-
tion on the meaning of each contextual attribute, and example images illustrating
the differences between each class. For instance, for ‘quality’, example images
that have high clarity and little obstruction were shown as ‘good quality’, while
those that suffer from slight obstruction (e.g. by fog or raindrops on the wind-
shield) or slight blurriness, i.e. are clear enough to show the overall scene but not
clear enough to show granular details, were shown as ‘slightly poor quality’, and
images that suffer from high blurriness or very poor lighting were shown as ‘very
poor quality’ (note that nighttime images of high or acceptable clarity were not
considered as having poor quality, even though they were taken under low-light
conditions).

At the start of the labelling process, 50 images were set to be labelled by
both annotators as well as the First Author. The labels from both annotators were
compared against each other and against the labels from the First Author, and con-
sistent agreement was observed for most of the images, indicating good quality of
the labels. Throughout the labelling process, active communication was main-
tained between the annotators and the First Author to ensure that immediate and
careful attention was given to any question raised by the annotators regarding any
aspect of the labelling task.

While most of the 10,000 images were labelled only once by either annota-
tor to ensure consistency, 1,600 of them were cross-labelled by both annotators
to asses the level of agreement between them. The level of agreement was ex-
pressed as the ratio between the number of images with manually agreeable labels
and the total number of images, and was evaluated for each contextual attributes.
The levels of agreement for ‘platform’, ‘weather’, ‘view direction’, ‘time of day’,
‘presence of glare’, ‘quality’, and ‘presence of windshield reflection’ were 80.3%,
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Table A.4: The mapping between the original and final values for ‘platform’.

Mapped Original

Driving surface Paved road for vehicular traffic
Unpaved road for vehicular traffic
Tunnel

Cycling surface Cycleway
Walking surface Sidewalk

Pedestrian zone/ living street
Walking trails (e.g. hiking trails/ forest trails/ footpaths in parks etc.)
Open fields

66.5%, 88.5%, 97.1%, 78.3%, 84.8%, and 80.0%, respectively, which were con-
sidered fair and acceptable levels of agreement. Disagreement in the labels for
‘weather’ largely stemmed from the difficulty to determine the level of cloud
cover appropriate for the weather to be considered ‘cloudy’ or ‘clear’. Among
these 1,600 cross-labelled images, only images with mutually agreeable labels
were used in the subsequent model development for each attribute.

For ‘panoramic status’, the manual annotation was done solely by the First
Author, with the aid of a computer vision model developed at the initial stage of
the project based on labels from the Mapillary Street-level Sequences dataset [58].

Class augmentation. For instance, when a sequence of images taken in the
nighttime were found on the web application, the entire sequence of images would
be downloaded and annotated with one tag, ‘night’, and if they were also taken
from a cycling path, they would be annotated with one more tag, ‘cycling surface’,
and these images would be used to augment both the ‘night’ images used in the
training for lighting condition, and also the ‘cycling surface’ images used in the
training for platform; but if they were taken from a road (which was already a
major class) instead, they would be tagged with ‘night’ only, and used to augment
only the ‘night’ images for lighting condition. We selected a total of more than
50,000 images from 143 different sequences across different continents for the
purpose of class augmentation.

Values mapping. The original labels for ‘platform’, after removing ‘unclear’,
‘indoor’, and ‘others’, consisted of 8 possible values, which were then mapped as
‘driving surface’, ‘cycling surface’, or ‘walking surface’. The mapping relation-
ship can be found in Table A.4.
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