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ABSTRACT
Street view imagery (SVI), an emerging geospatial dataset, is useful for evaluating
active transportation infrastructure, but it faces potential biases from its vehicle-
based capture method, diverging from pedestrians’ and cyclists’ perspectives. Exist-
ing literature lacks both an examination of these biases and a solution. This study
identifies and quantifies these biases by comparing conventional SVI with views
from the road shoulder/sidewalk. To mitigate such perspective biases, we introduce
a novel framework with generative adversarial network (GAN)-based image genera-
tion models (Pix2Pix and CycleGAN), an image regression model (ResNet-50), and
a tabular model (LightGBM). Experiments assessed model effectiveness in trans-
lating car-centric views to those from pedestrian and cyclist perspectives. Results
show significant differences in semantic indicators (e.g., green view index) between
road center and road shoulder/sidewalk SVI, with low Pearson’s correlation coeffi-
cients r (0.35-0.55 for road shoulders and 0.45-0.47 for sidewalks) indicating bias.
The framework succeeded in creating realistic images and aligning pixel ratios be-
tween perspectives, achieving strong correlation coefficients (0.81 for road shoulders
and 0.83 for sidewalks), thus reducing bias. This work contributes by providing a
scalable and model-agnostic approach to produce accurate SVIs for urban planning
and sustainability, setting a foundation for improving bikeability and walkability
assessments and promoting active transportation.
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1. Introduction

Active transportation (e.g., walking and cycling) plays an important role in improv-
ing sustainability and people’s health in cities (Neves and Brand 2019, Cao and Shen
2019, Yap et al. 2023). Assessment of walkability and bikeability at a high resolution
is beneficial for promoting such sustainable modes of transport for people in cities,
and many studies have proposed various methods to assess them, such as on-site field
observations/surveys (Clifton et al. 2007, Hoedl et al. 2010, Wahlgren et al. 2010,
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Horacek et al. 2012, Koh and Wong 2013), Geographic Information System-based ap-
proaches (Titze et al. 2012, Manton et al. 2016, Cain et al. 2018, Porter et al. 2020),
and virtual audits (Gullón et al. 2015, Arellana et al. 2020). Recently, developments in
machine learning have enabled researchers to propose scalable assessment methods by
using street view imagery (SVI) and computer vision models (e.g., semantic segmen-
tation), which allowed detailed evaluation of streets at a large scale without involving
human labor (Ito and Biljecki 2021, Li et al. 2022a, Kang et al. 2023). However, these
methods have limitations, such as variable perspectives. Google Street View, one of
the primary data sources, provides images typically taken from a camera mounted
on top of a car and, thus, rarely captures the perspectives of pedestrians or cyclists
(Anguelov et al. 2010). Although some crowdsourced SVI platforms have images from
cyclists and pedestrians, it is not viable to acquire them on a large scale due to the
limited number of SVI from such perspectives (Biljecki et al. 2023, Hou et al. 2024).
Studies on bikeability and walkability assessment using road center SVI have faced
this issue and pointed it out as a potential major limitation that might create biases
when analyzing data (Steinmetz-Wood et al. 2019, Ito and Biljecki 2021). For exam-
ple, semantic segmentation is a popular technique adopted by such studies and used to
calculate pixel ratios for different semantic classes (e.g., greenery, sky, and buildings),
and the bias in this context refers to the difference in the pixel ratios between differ-
ent perspectives. Although the bias can potentially cause inaccuracies in SVI-based
assessments for active mobility, it is still unclear how large the bias is when using SVI
with conventional perspectives (i.e., vehicular perspectives) due to a lack of research
on this matter (Rui 2023).

Previous studies have also utilized SVI and machine learning models to predict
and supplement urban features that are not widely available. For example, urban
soundscape (Zhao et al. 2023, Zhuang et al. 2024), urban morphology (Zhang et al.
2021b), and building characteristics (Hu et al. 2020). Generative Adversarial Networks
(GAN) have also demonstrated their capability to flexibly translate perspectives of
images for cases where deterministic approaches cannot fully translate perspectives
due to the absence of all the necessary information (i.e., camera parameters and visible
areas in the image) in the input images to create views from other points of view. For
example, GAN models have been used to translate aerial imagery to SVI (Toker et al.
2021, Regmi and Borji 2019, Wu et al. 2022a). However, no study has leveraged such
machine/deep learning and GAN models to investigate the possibility of translating
the perspective of SVI taken from highly positioned cameras on cars plying centers
of motor lanes of roads to cyclists’ views, which may be substantially different from
existing works.

This study aims to fill this research gap by investigating the magnitude of biases
when using road center SVI perspectives to assess active transportation modes’ per-
spectives and examining whether GAN could be a suitable tool to translate such
conventional perspectives into ones tailored to cyclists’ and pedestrians’ perspectives.
To study these issues, we collected a training dataset of images taken from road shoul-
ders and sidewalks. We aimed to quantify how large the biases are between road center
SVI (i.e., conventional SVI perspectives) and road shoulder/sidewalk SVI (i.e., active
mobility users’ perspectives). Confirming the existence of biases, we created a new
framework to overcome this bias by synthesizing Generative Adversarial Networks
(GANs)-based image generation models (Pix2Pix and CycleGAN), an image regres-
sion model (ResNet-50), and a tabular model (LightGBM), thereby mitigating the
aforementioned perspective bias.

This research contributes to the field by:
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• understanding the bias introduced by road center SVI perspectives, particularly
the lack of pedestrian and cyclist viewpoints in urban planning assessments, and
raising awareness about it;

• developing a model-agnostic framework with generative/deep/machine learning
models to mitigate the perspective bias in SVI, showcasing the potential of such
an approach in urban planning and sustainability studies;

• contributing to urban planning and research by providing a framework to gener-
ate more accurate and reliable data for the assessment of bikeability and walka-
bility, enhancing the sustainability and health aspects of city planning.

2. Literature review

2.1. Applications of street view imagery

Recent development of computer vision techniques and the proliferation of SVI data
have enabled urban studies to map street-level features at large scales and high res-
olutions for various applications (Biljecki and Ito 2021, Wang et al. 2024a, Ito et al.
2024). For example, early studies used semantic segmentation to quantify urban green-
ery by analyzing the pixel ratio of greenery in SVI (Yang et al. 2009, Stubbings et al.
2019). Additionally, research has spanned multiple domains including spatial data
infrastructure, urban health, urban perception, land use, building design, and trans-
portation (Ogawa and Aizawa 2019, Keralis et al. 2020, Zhang et al. 2018, Cicchino
et al. 2020, Wang et al. 2024b, Hu et al. 2023, Srivastava et al. 2018, Yao et al. 2019,
Law et al. 2020, Fang et al. 2020, Qiao and Yuan 2021). SVI has also been used to
evaluate active transportation infrastructures such as walkability and bikeability on
urban scales. However, a significant limitation is the lack of perspectives from active
transportation users due to the fact that the collection of SVI data is usually carried
out using vehicle-mounted cameras, with limited data from road shoulders and side-
walks (Steinmetz-Wood et al. 2019, Ito and Biljecki 2021). This has resulted in biases
that few studies have addressed or mitigated (Ki et al. 2023, Yin and Wang 2016, Li
et al. 2018, Steinmetz-Wood et al. 2019, Ito and Biljecki 2021). Although some studies
have collected their own images from the perspectives of active mobility users, it is
still resource-intensive; therefore, there needs to be a more scalable solution (Chen
et al. 2024).

2.2. Synthetic data generation in urban science

Numerous works have taken advantage of machine/deep learning models to mitigate
the scarcity of data in urban science fields. Zhao et al. (2023), for example, used
SVI, computer vision models, and tree-based machine learning models to predict and
supplement soundscape characteristics on an urban scale, while Huang et al. (2024)
estimated urban noise from SVI by combining a deep convolutional neural network
model and machine learning models. Other studies have applied SVI and computer
vision models for urban canyon classification (Hu et al. 2020) and building function
and facade color classification (Zhang et al. 2021b).

Generative Adversarial Networks (GANs), a deep generative model, have also been
developed to create synthetic data that mimic training data (Goodfellow et al. 2014).
GANs have been used in fields such as medical science and geography to predict un-
observed data and augment scarce data (Aggarwal et al. 2021, Zhao et al. 2021, Kang
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et al. 2019, Abady et al. 2020, Isola et al. 2018, Li et al. 2020, Baier et al. 2022). In ur-
ban science, GANs have been applied to traffic volume and speed estimation (Xu et al.
2020, Zhang et al. 2019, Yu and Gu 2019, Lin et al. 2019), air/land traffic trajectory
prediction (Wu et al. 2022b), enriching mobility data with socioeconomic attributes
(Kim et al. 2022), predicting car accidents (Cai et al. 2020), master plan rendering
from sketches (Ye et al. 2022, Choi et al. 2021), and creating synthetic population
data (Garrido et al. 2020, Kim and Bansal 2023). In geographical information science,
GANs have also been used for building footprint generation (Wu and Biljecki 2022),
spatial interpolation (Zhu et al. 2020a), map image generation (Courtial et al. 2023),
and creating privacy-preserving synthetic trajectory data (Rao et al. 2023).

A more relevant research area is the translation of views using GANs, such as the
conversion of aerial images to SVI (Toker et al. 2021, Regmi and Borji 2019). Bajbaa
et al. (2024) reviewed this topic, noting that GAN models are commonly used de-
spite the availability of diffusion models (Ho et al. 2020, Dhariwal and Nichol 2021,
Rombach et al. 2022). Diffusion models have been applied in remote sensing image
fusion/generation (Sebaq and ElHelw 2023, Cao et al. 2023), floor plan generation
(Ploennigs and Berger 2023), and interior design generation (Chen et al. 2023). While
diffusion models produce photo-realistic images from text prompts and alter input im-
age styles, GANs excel in generating images from input images, making them suitable
for perspective-shifting tasks (Bajbaa et al. 2024). GANs have also been explored for
image in-painting to remove occlusion in SVI (Zhang et al. 2021a), and a recent study
proposed a pipeline to generate images with varying semantic features using a GAN
model (Law et al. 2023).

As discussed so far, GAN models’ flexibility to generate images from various points
of view suggests its better suitability for perspective-shifting tasks than more determin-
istic approaches that reproject pixels in the input images based on a set of parameters.
It is often the case that input images do not come with the parameters necessary for
accurate reprojection of pixels, such as intrinsic (i.e., focal length, principal point, skew
coefficient, and distortion coefficients) and extrinsic camera parameters (i.e., rotation
matrix and translation vector). A naive solution for this issue is a simple projection of
pixels onto a sphere around the camera position; however, this causes other issues, such
as difficulty in determining the shift in X, Y, and Z coordinates, absence of pixels in
some areas when shifting the camera position, and inaccurate distance to objects due
to a lack of a precise depth map. We demonstrated these issues in Figure 1, where one
can observe that this naive approach suffers from sensitivity to different parameters,
voids, and distortion.

These existing studies show the usefulness of using image generation models to
overcome issues in image-based analysis in various domains. However, no studies have
explored the possibility of translating road center SVI taken by vehicles into the per-
spectives of active transportation users, despite the importance of overcoming the
perspective gaps in achieving a more accurate and reliable assessment of the urban
environment. This research seeks to bridge existing knowledge gaps through a detailed
case study that examines the bias resulting from varying perspectives. Central to our
approach is the exploration of a novel, model-agnostic framework that leverages the
capabilities of Generative Adversarial Networks (GANs) to address and reduce this
bias. Our focus on a model-agnostic strategy underscores the innovative aspect of our
methodology, emphasizing its adaptability and potential applicability across a diverse
range of models and contexts.
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Figure 1.: Examples of different shifts in the Y-axis for three different street view
images with varying road width.

3. Data and methods

Singapore was selected as a study site because it has sidewalks for most streets and
is moderately safe to cycle, and three types of SVI have been collected: road center
SVI from Google Street View (GSV), road shoulder SVI taken on road shoulders,
and sidewalk SVI taken on sidewalks. These three types of SVI were used to train
machine/deep learning and GAN models to translate pixel ratios of road center SVI
data (i.e., building, vegetation, and sky) to those of the other two. Figure 2 shows
the overall flow chart of the data and methodology used in this study, and Figure 3
and Figure 4 illustrate the models and approaches used in the experiments, respec-
tively. Each approach uses a different combination of models, and we refer to the five
approaches as A1, A2, A3, A4, and A5 hereafter as shown in Figure 4. We further
elaborate on each component in the following subsections.

3.1. Data collection

The collection of images on road shoulders and sidewalks was conducted by cycling
on public roads in Singapore with a smartphone camera installed onto a bicycle. The
data collection took place during the daytime to ensure good lighting for the images,
and the process was facilitated with the use of Mapillary to automatically capture SVI
every five meters when cycling and record the locations of images (see Figure 5).

The total number of images collected on the road shoulder was 7,514, and 3,057 on
the sidewalk. We downloaded them via Mapillary’s Python SDK (Mapillary 2022).

3.2. Preprocessing and semantic segmentation

Once the image data were downloaded, images with too many occlusions were filtered
out as part of preprocessing. This filtering procedure was performed with a semantic
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Figure 2.: The workflow of this study and the introduced methodology: data collection,
processing and dataset construction, and semantic segmentation. We conducted data
collection by downloading road center SVI and collecting road shoulder and sidewalk
SVI and implemented processing and dataset construction by matching them and
manually collecting images with spatial operations after filtering out images based on
their quality. We ran semantic segmentation to quantify both datasets, which were
used in model building as training data and approach evaluation as test data.

Figure 3.: The four machine/deep learning and GAN models used in this study are
illustrated in this figure. GAN models are Pix2Pix and CycleGAN, consisting of gen-
erators and discriminators. As for machine/deep learning models, we used ResNet-50
and LightGBM.
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Figure 4.: This figure shows five approaches (i.e., A1-A5) used in this study and their
evaluation. A1 generates road shoulder/sidewalk SVI using GAN models (i.e., Pix2Pix
and CycleGAN) and obtains target pixel ratios through segmentation. A2 employs
ResNet-50 to predict the target pixel ratios. A3 utilizes LightGBM with road center
SVI pixel ratios as input to forecast the target pixel ratios. A4 inputs both road center
SVI and pixel ratios from the GAN output into ResNet-50 to predict the target pixel
ratios. A5 uses LightGBM with pixel ratios from both the road center SVI and the
GAN output to predict the target pixel ratios.

Figure 5.: The left image is the user interface of the Mapillary app for iOS devices,
and the right image is how we installed a phone holder onto the bicycle.
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segmentation model called Mask2Former pretrained on the CityScapes dataset with
84.5% mIoU and 19 categories (Cheng et al. 2022). We also used this segmentation
model for all parts of this study that require semantic segmentation. This model was
selected for its high accuracy. Subsequently, based on the locations of road shoul-
der and sidewalk SVI, road center SVI data were downloaded from GSV. To ensure
high-quality alignment between different perspectives, road center SVI data were also
filtered based on the spatiotemporal criteria and image classification model to remove
any images taken in places that do not match the counterpart (e.g., images of high-
ways). After filtering and matching, the resulting dataset consisted of 6,503 pairs of
road shoulders images and 1,547 images of sidewalks. These were then split into train
and test data sets by a 9:1 ratio. This high number of train data was chosen due to
GAN’s data-hungry training requirements to avoid overfitting (Karras et al. 2020).
The pairs of road center SVI and road shoulder/sidewalk SVI were then quantified
with a pre-trained Mask2Former model (Cheng et al. 2022), and the results were used
for model training and evaluation. Among a few approaches to quantifying images
(e.g., object detection), we decided to quantify semantic information of images with
semantic segmentation because it has been widely used by previous works due to
its capability to distinguish between different entities in the images, such as roads,
sidewalks, vehicles, and pedestrians (Ito and Biljecki 2021).

3.3. Models

With the preprocessed dataset, we trained two GANmodels — CycleGAN and Pix2Pix
— to generate road shoulder/sidewalk SVI and two other models — ResNet-50 and
LightGBM — as illustrated in Figure 3. As shown in Figure 4, we employed these
different models and constructed five approaches shown below to predict the ground-
truth pixel ratios of selected semantic classes from road shoulder/sidewalk SVI (i.e.,
building, vegetation, and sky) and only used road center SVI as input throughout the
process. They are named as A1, A2, A3, A4, and A5.

A1 Use GAN models (i.e., Pix2Pix and CycleGAN) to generate road shoul-
der/sidewalk SVI, from which we obtained the target pixel ratios with segmen-
tation.

A2 Use ResNet-50 to predict the target pixel ratios.
A3 Use LightGBM with pixel ratios of the road center SVI as input to predict the

target pixel ratios.
A4 Use road center SVI and the pixel ratios from the GAN output (i.e., the output

of A1 above) as input for ResNet-50 to predict the target pixel ratios.
A5 Use LightGBM with pixel ratios of the road center SVI and pixel ratios from the

GAN output (i.e., the output of A1 above) as input to predict the target pixel
ratios.

We further provided details of each model used in this study in the following subsec-
tions.

3.3.1. GAN models

After the data cleaning, we utilized two types of GAN models to generate road shoul-
der and sidewalk views. The first model is the Pix2Pix model proposed by Isola
et al. (2018), which achieved high flexibility of applications without engineering hyper-
parameters for different uses by adopting a U-Net architecture and a new discriminator
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architecture called PatchGAN that judges whether N × N patch is real or fake. It re-
places Gaussian noise z with dropout for diversified outputs. The Pix2Pix model’s loss
function is defined as:

LcGAN(G,D) = Ex, y[logD(x, y)] (1)

+ Ex[log(1−D(x,G(x)))], (2)

where x is the input image and y the target image. The generator G aims to minimize
this loss, and the discriminator D to maximize it. The final loss function for generator
G∗ is:

G∗ = argmin
G

max
D

LcGAN(G,D) + λLL1(G), (3)

with L1 distance defined as LL1(G) = Ex,y[∥y −G(x)∥1]. This architecture enabled
the model to learn the overall structure of the images while producing relatively sharp
output images, and such improvement allowed a wide range of studies to apply it in
their fields (Wu and Biljecki 2022).

The second model is CycleGAN, developed by Zhu et al. (2020b). It introduces two
domains, X and Y , and two generators, G : X → Y and F : Y → X. CycleGAN uses
a cycle-consistency loss for image fidelity. Its loss functions are:

LGAN(G,DY , X, Y ) = Ey ∼ pdata(y)[logDY (y)]

+ Ex ∼ pdata(x)[log(1−DY (G(x)))], (4)

for generator G, and similarly for F . The cycle-consistency loss is:

Lcyc(G,F ) = Ex ∼ pdata(x)[|F (G(x))− x|1]
+ Ey ∼ pdata(y)[|G(F (y))− y|1]. (5)

The full objective combines these functions:

L(G,F,DX , DY ) = LGAN(G,DY , X, Y )

+ LGAN(F,DX , Y,X)

+ λLcyc(G,F ), (6)

with λ controlling the significance of the first two objectives. The optimal generators
are found by:

G∗, F ∗ = argmin
G,F

max
Dx,DY

L(G,F,DX , DY ). (7)

The models were implemented using the PyTorch implementation written by Isola
et al. (2018) and Zhu et al. (2020b). These two models were selected because of their
extensive use in different domains, customizability for various contexts, and relatively
low cost of computational resources. The values and descriptions of the basic parame-
ters used in this study are displayed in Table 4, and a list of parameters experimented
in this study is shown in Table 1. We experimented with two GAN models (i.e., Cycle-
GAN and Pix2Pix), two input data formats (i.e., panorama and perspective images),
and two types of losses (i.e., default and default + mIoU). As for the calculation of
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the mean intersection over union (mIoU), we used the aforementioned Mask2Former
model. This metric provides a single performance figure that balances both the de-
tection of the object (whether the pixels are identified as belonging to a particular
class) and the delineation of the object (how accurately the segmentation outlines
the object). A higher mIoU score indicates better segmentation performance, with a
maximum value of 1 indicating perfect segmentation. It was added to test whether
minimizing the discrepancy between semantically segmented ground-truth images and
generated images at the pixel level can lead to a better overall composition of semantic
information in the generated images.

Table 1.: Model parameters with their default values.

Parameter
names

Tested values Descriptions

GAN models CycleGAN, Pix2Pix Different types of GAN models

Input data for-
mat

Panorama (360 degrees), Per-
spective (90 degrees of front
view)

Field of view for road center SVI used
in the training.

Loss Default, Default + mIoU from
segmentation

mIoU was calculated between the tar-
get image and the generated images.
λ for it was set at 10 for CycleGAN
(i.e., the same value as its default λ A
and λ B) and 100 for Pix2Pix (i.e., the
same value as its default λ L1).

3.3.2. LightGBM and ResNet-50

We also experimented using two types of deep learning to investigate which type of
approach can yield the highest accuracy in predicting the ground-truth segmentation
results, namely (1) image-to-table approach (i.e., A2 in Figure 2) and (2) table-to-table
approach (i.e., A3 in Figure 2)

In the first approach, we conducted the image-to-table approach by inputting road
center SVI and predicting the pixel ratios of the target semantic classes and imple-
mented this approach with ResNet-50 (He et al. 2016), which uses 50 layers of a
residual block. ResNet models have also been widely used by many urban studies
for their simple architecture and readily available high-performing pre-trained models
(Wei et al. 2022, Thackway et al. 2023, Quang et al. 2022, Chen et al. 2021). Specif-
ically, ResNet-50 has been favored for its balance of depth and efficiency, making it
suitable for complex tasks while maintaining manageable computational demands (He
et al. 2016, Szegedy et al. 2016).

In the second approach, we input pixel ratios of different semantic classes calculated
from segmented road center SVI in a tabular format and predict the pixel ratios of
the target categories. We selected LightGBM for this approach due to its numerous
advantages, including high accuracy, efficiency, and built-in regularization (Ke et al.
2017). LightGBM is recognized for its exceptional accuracy while maintaining a low
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computational cost compared to similar gradient boosting algorithms, which are also
known for their high accuracy (Florek and Zagdański 2023). Consequently, LightGBM
has been widely adopted in urban studies for these reasons (Cui et al. 2021, Zhong et al.
2021, Xu et al. 2023). These two models — ResNet-50 and LightGBM — were chosen
for this specific task for their balanced efficiency and accuracy, which is important as
this study is the first study to explore this topic and it had been unclear how much
computational complexity it requires to effectively and efficiently address the issue.

In addition to these two approaches, we also experimented with using GAN outputs
to augment the accuracies of these two approaches to examine the potential supple-
mentary value of GAN models. More specifically, we added the pixel ratios of the
semantic classes calculated from segmenting the GAN-generated images and inputted
them into the two models as additional features (i.e., A4 and 5 in Figure 2). For the
ResNet-50 model, we concatenated these additional features to the main feature vector
at the last fully connected layer.

3.4. Approach evaluation and bias analysis

We assessed the bias of road center SVI (i.e., differences in segmentation results be-
tween road center SVI and road shoulder/sidewalk SVI) as well as the values predicted
by our models against ground truth views from pedestrians and cyclists using pixel
ratios from semantic segmentation with these metrics:

• Mean Squared Error (MSE): Reflects the average of the squared differences
between estimated and actual values, providing a clear picture of the overall
deviation from the ground truth.

• Mean Absolute Error (MAE): Indicates the average absolute difference be-
tween estimated values and actual observations, providing an intuitive under-
standing of the average size of the errors.

• R-squared: Shows the proportion of variance in the dependent variable that is
predictable from the independent variable(s), revealing how well the pixel ratios
from road center SVI and predicted values align with the ground truth data in
terms of variability.

• Pearson’s r: Measures the strength and direction of the linear relationship
between two variables, indicating the strength of the linear agreement.

For this study, we focused on three major semantic classes — building, sky, and veg-
etation — commonly used in assessing walkability and bikeability (Kang et al. 2023, Li
et al. 2022b, Ito and Biljecki 2021, Ki et al. 2022) and predicting walking and cycling
activities (Doiron et al. 2022, Koo et al. 2022, Huang et al. 2023). While other features
like road conditions are also important, these three classes are critical in current liter-
ature. We measured the biases between road center SVI and road shoulder/sidewalk
SVI in these classes using a consistent evaluation procedure across all models.

We assessed GAN model performance using three methods: train loss, Fréchet In-
ception Distance (FID), and qualitative evaluation. Evaluating GAN models solely on
train loss is challenging, hence the need for these methods. For Pix2Pix, four losses
are considered at training end: generator’s GAN model loss, L1 loss, discriminator’s
loss on real images, and discriminator’s loss on fake images. For CycleGAN, the losses
include discriminator’s loss, generator’s loss, cycle-consistency loss, and identity loss.

FID measures the similarity between the distributions of real and generated images
using activations from an intermediate layer of the Inception network. Qualitative
evaluation focused on overall structure, image quality/sharpness, and street feature
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details. Additionally, we performed semantic segmentation to evaluate the models’
ability to generate images with less bias compared to road center SVI. This segmen-
tation analysis was conducted on a specific road as a case study to identify attributes
causing larger errors.

4. Results

4.1. Quantitative and qualitative assessments of GAN results

Quantitative Assessments: Both Pix2Pix and CycleGAN models were trained us-
ing default parameters set by Isola et al. (2018) and Zhu et al. (2020b), shown in
Table 4 as mentioned in section 3. Training losses for both models are depicted in Fig-
ure 6. The left plots show that Pix2Pix losses did not converge visibly. The right plots
indicate that CycleGAN losses converged, with both cycle-consistency and identity
losses decreasing over epochs. However, mIoU losses struggled to converge, possibly
due to challenges in accurately predicting target image semantic classes at the pixel
level.

Table 3 presents FID scores, where lower scores indicate better performance. Road
shoulder models generally outperformed sidewalk models, probably because views from
road shoulders are closer to road centers, allowing easier learning of pixel value dis-
tributions. CycleGAN models often achieved twice as good FID scores as Pix2Pix
models, contradicting Saxena and Teli (2022), which found Pix2Pix to perform better
with well-paired datasets. In this study, CycleGAN excelled due to its cycle consis-
tency loss aiding in consistent translation output despite scalability and data quality
challenges.

Perspective image input consistently yielded better FID scores, suggesting that lim-
iting model input to relevant information improves output. Adding mIoU loss provided
some improvement over default parameters but was less effective than perspective im-
age input.

Qualitative Assessments: To further evaluate the GAN models’ performance,
we qualitatively analyzed the output images. Figure 7 shows real and generated im-
ages from different models. The first three columns display real images: road center
panorama SVI, road center perspective SVI, and road shoulder/sidewalk SVI, with
the first two used as input and the third as the target image.

The remaining columns show generated images from CycleGAN and Pix2Pix models
with different parameter configurations: default, mIoU loss, and perspective input
images. The first two rows display road shoulder images, while the last two rows show
sidewalk images.

For road shoulder images, CycleGAN mIoU generated slightly sharper images than
CycleGAN default with minimal distortion, and CycleGAN perspective produced the
sharpest images closest to the real cyclist view. CycleGAN models preserved minor
details like lane marker color. Pix2Pix models, however, produced grainier images
with lower contrast and less defined object boundaries. Among Pix2Pix models, image
quality improved in the order of perspective, mIoU, and default. Pix2Pix maintained a
consistent structural composition but missed elements like lane markers and overhead
roads.

For sidewalk images, GAN models performed worse. CycleGAN models showed
distortion and overfitting, with CycleGAN default and mIoU displaying duplicated
footpath lines and CycleGAN perspective resembling input images with slightly more
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greenery. Pix2Pix models produced grainier, incomplete images with many white pix-
els, struggling with perspective translation due to the greater distance between input
and target images and fewer training images.

Overall, the qualitative evaluation suggests CycleGAN models, especially with per-
spective input images, might better produce understandable images while preserving
real image details.

4.2. Approach evaluation and bias analysis

This study also utilized semantic segmentation on the test data set (i.e., 653 images for
road shoulder and 155 images for sidewalk) to further analyze the bias of road center
SVI compared to the road shoulder and sidewalk SVI and evaluate model performance.
Only the major elements — building, sky, and vegetation — were examined because it
is more difficult to accurately segment minor elements, such as traffic lights and bike
lanes. Table 2 presents the performance for the vegetation’s pixel ratio from the road
shoulder view: mean squared error (MSE), mean absolute error (MAE), R-squared,
and Pearson’s r. The rest of the performance for building and sky from road shoulder
and for building, sky, and vegetation from sidewalk can be found in the appendix
(see Table 5, Table 6, Table 7, Table 8, and Table 9). The MSE and MAE quantify
the discrepancies between predicted values and ground truth, with lower values being
preferable. Conversely, R-squared represents the proportion of the variance in the
ground truth values that is predictable from the predicted values, while Pearson’s r
measures the correlation between them. For both, higher values are desirable.

The findings from the road center SVI panorama and perspective indicate that the
road center SVI, on its own, is not a dependable tool for evaluating greenery views
from a cyclist’s viewpoint. This is evidenced by the substantial errors reflected in its
MSE values (0.0136 - 0.018) and MAE values (0.0935 - 0.107). Its R-squared values,
ranging from -0.847 to -0.393, suggest a poor ability to account for variance — in
fact, they perform worse than random predictions. Additionally, the correlation with
ground truth, which lies between 0.355 and 0.553, remains relatively low. This result
answers our first research question about the existence of bias between different views
and confirms the concerns raised by previous papers (Steinmetz-Wood et al. 2019,
Ito and Biljecki 2021). Moreover, we showed the metrics of SVI shifted with a naive
method for road shoulder, which show even worse biases due to the issues discussed
in Section 2.

GAN-based models alone demonstrated their capabilities to mitigate the bias by
improving the metrics. All the metrics for CycleGAN panorama (A1) and Pix2Pix
panorama (A1) outperformed their road center SVI counterpart, and MSE, MAE, and
R-squared were also improved by CycleGAN perspective and Pix2Pix perspective over
their road center SVI counterpart. ResNet performed better than GAN-based models
in all the metrics, and LightGBM performed even better than ResNet models. However,
it is also important to note that we cannot simply compare them directly as their
purposes are different (i.e., GAN models can produce images, but LightGBM can only
take tabular data and produce numeric values). The best-performing model was the
LightGBM model trained on segmentation results of perspective images together with
segmented images generated by CycleGAN, which scored the best in all the metrics
(MSE = 0.00334, MAE = 0.0427, R-squared = 0.658, and Pearson’s r = 0.812). Thus,
our findings suggest that GAN models can generate images from different perspectives
and also provide useful features that can improve the predictions in some cases. The
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Road shoulder CycleGAN with default pa-
rameters.

Road shoulder Pix2Pix with default pa-
rameters.

Road shoulder CycleGAN with mIoU loss. Road shoulder Pix2Pix with mIoU loss.

Road shoulder CycleGAN with perspec-
tive input images.

Road shoulder Pix2Pix with perspective
input images.

Sidewalk CycleGAN with default parame-
ters. Sidewalk Pix2Pix with default parameters.

Sidewalk CycleGAN with mIoU loss. Sidewalk Pix2Pix with mIoU loss.

Sidewalk CycleGAN with perspective in-
put images.

Sidewalk Pix2Pix with perspective input
images.

Figure 6.: Train losses for CycleGAN and Pix2Pix models. The left column shows
losses of CycleGAN — including cycle consistency loss, discriminator loss, generator
loss, and identity loss — and losses of Pix2Pix — including discriminator loss for fake
images, discriminator loss for real images, generator’s GAN loss, and generator’s L1
loss.
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Figure 7.: This diagram shows an array of real images and generated images both
for road shoulder and sidewalk. From left to right, it displays real road center SVI
panorama, real road center SVI perspective, real cyclist and pedestrian view, Cycle-
GAN with default parameters, CycleGAN with mIoU loss, CycleGAN with perspective
input images, Pix2Pix with default parameters, Pix2Pix with mIoU loss, and Pix2Pix
with perspective images. From top to bottom, it depicts two examples of road shoulder
views and two examples of sidewalk views.
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Table 2.: Performance of models trained on vegetation’s pixel ratios from road shoulder
perspectives. For MSE and MAE, the lower the number is, the more accurate the model
is. And for R-squared and Pearson’s r, the higher the number is, the more accurate
the model is.

Model MSE MAE R-squared Pearson’s r

Road center SVI panorama 0.018 0.107 -0.847 0.355
SVI panorama shifted with a naive method 0.020 0.114 -1.104 0.352
CycleGAN panorama (A1) 0.00979 0.0749 -0.00568 0.419
Pix2Pix panorama (A1) 0.00801 0.0668 0.177 0.494
LightGBM panorama without GAN (A3) 0.00365 0.0434 0.625 0.798
LightGBM panorama CycleGAN (A5) 0.00341 0.0433 0.65 0.806
LightGBM panorama Pix2Pix (A5) 0.00405 0.0478 0.584 0.767
ResNet-50 panorama without GAN (A2) 0.00439 0.0508 0.549 0.744
ResNet-50 panorama CycleGAN (A4) 0.00552 0.0578 0.433 0.664
ResNet-50 panorama Pix2Pix (A4) 0.00645 0.0623 0.337 0.596
Road center SVI perspective 0.0136 0.0935 -0.393 0.553
SVI perspective shifted with a naive method 0.064 0.232 -5.572 0.108
CycleGAN perspective (A1) 0.0107 0.0795 -0.0936 0.468
Pix2Pix perspective (A1) 0.00883 0.067 0.097 0.46
LightGBM perspective without GAN (A3) 0.0034 0.043 0.653 0.811
LightGBM perspective CycleGAN (A5) 0.00334 0.0427 0.658 0.812
LightGBM perspective Pix2Pix (A5) 0.00405 0.0473 0.586 0.768
ResNet-50 perspective without GAN (A2) 0.00382 0.0461 0.61 0.782
ResNet-50 perspective CycleGAN (A4) 0.00542 0.0568 0.446 0.683
ResNet-50 perspective Pix2Pix (A4) 0.00624 0.0617 0.362 0.624

findings above are consistent in other semantic classes on both road shoulder and
sidewalk views.

4.3. Case study

Lastly, a case study was conducted on Pasir Panjang Road, a bidirectional secondary
road with two lanes and sidewalks in Singapore, by running an inference with the
best-performing models and performing semantic segmentation on the output. More
specifically, we selected the LightGBM model trained on perspective images with Cy-
cleGAN output for the road shoulder and the LightGBM model trained on panorama
images with CycleGAN output for the sidewalk based on their performance on the
major semantic classes.

To analyze the variance in predicted pixel ratios from the ground truth, we visualized
the discrepancy distributions for buildings, sky, and vegetation. These distributions
are detailed in Figure 8, illustrating how our predictions diverge from actual measure-
ments. The upper plot represents the road shoulder, while the lower one denotes the
sidewalk. Distributions closer to 0 indicate a greater similarity to the ground truth.
The density plots colored in red showcase the distribution of discrepancies among
Google Street View images, while those in blue highlight the pixel ratios predicted by
the CycleGAN-aided LightGBM models.

For the vegetation on the road shoulder, the CycleGAN-aided LightGBM model
exhibits a higher density of around 0. In contrast, road center SVI’s distribution centers
more to the right of 0 and exhibits more extended tails on both ends. Regarding the
sky on the road shoulder, both the combined LightGBM and CycleGAN model and
road center SVI show denser distributions around a difference of 0. However, they are
left-skewed, implying that the sky is frequently underrepresented in the road center
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SVI and often underestimated by the model. This could be due to overrepresentation of
the road in the generated images and blurs in the sky, which could cause inaccuracies
in segmentation. For the building on the road shoulder, both the road center SVI
and the CycleGAN-aided LightGBM model demonstrate dense distributions around
a difference of 0. Yet, the latter’s density is even more pronounced, highlighting its
advantage over road center SVI.

As for the sidewalk, it is clearer that our CycleGAN-aided LightGBM model can
predict pixel ratios of the three major classes much more accurately than road center
SVI. Road center SVI’s difference density plot for the vegetation is much longer-
tailed, more left-skewed, and most importantly less dense at the difference of 0 than
our model. Density plots for the sky also exhibit a similar pattern to vegetation, and
those for the building also display longer tails of road center SVI and a highly dense
distribution of our model’s prediction around the difference of 0. Overall, our model’s
predictions are closely distributed around the difference of 0, and they are mostly
within ±25% differences while road center SVI shows shifted centers and longer tails.

To assess the geographic spread of our models’ enhancements, we created maps de-
picting the improvements for buildings, sky, and vegetation along streets in the study
area. These enhancements are showcased in Figure 9, providing a visual representa-
tion of model performance across different road segments. These maps show blue color
to represent positive improvements and red color to indicate negative changes. They
also display images of input road center SVI, and both the most and least improved
real and generated output from the CycleGAN model across the three categories. For
buildings on the road shoulder, the map reveals improvements that are fairly uniformly
distributed around and above 0 across the road. This suggests our model introduced
consistent, albeit moderate, enhancements. In contrast, the map for buildings on the
sidewalk predominantly features darker blue hues, pointing to the model’s success in
rectifying road center SVI-induced biases. Specific improvements for the road shoul-
der ranged between a high of 70% and a low of -10%. For the sidewalk, these values
were 64% and -30%, respectively. Notably, despite achieving significant improvements,
there’s a discernible discrepancy between real and generated images in the plots. The
map for the sky reveals some deterioration for the road shoulder, but improvements
for the sidewalk span the entire road. For the road shoulder, improvements fluctuated
between 22% and -22%, and between 37% and -19% for the sidewalk. Interestingly,
generated images for the road shoulder closely mirror the real ones, but those for the
sidewalk markedly differ. Regarding vegetation, both the road shoulder and sidewalk
maps display consistent improvements by our model over road center SVI. Improve-
ments on the road shoulder ranged from 29% to -20%, and from 61% to -18% on the
sidewalk. Similar to the sky, while generated images for the road shoulder are nearly
indistinguishable from real ones, those for the sidewalk deviate noticeably.

5. Discussion

This pioneering study introduces a novel, model-agnostic framework to explore the
use of Generative Adversarial Networks (GANs) and deep/machine learning models
for translating SVI from road centers to road shoulders and sidewalks. Despite its
novelty, we also faced some limitations.
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Density plots for road shoulder.

Density plots for sidewalk.

Figure 8.: Density plots of semantic segmentation’s pixel ratios from Google Street
View imagery (i.e., raw images taken from vehicular point of view) in red and from
predictions by CycleGAN and LightGBM models for road shoulder and sidewalk in
blue. The selected semantic classes are vegetation, sky, and building from top to bot-
tom in the plots.
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Building on road shoulder Building on sidewalk

Sky on road shoulder Sky on sidewalk

Vegetation on road shoulder Vegetation on sidewalk

Figure 9.: These maps depict the enhancements made by the best models over Google
Street View images. Street segments in blue signify improvements, while those in
red highlight deteriorations. The top-right triplets show the largest improvements in
percentage, and the bottom-left pairs show the smallest improvements in percentage.
The left-most images in the triplets are Google Street View images used as input images
for the model, the middle images are the real road shoulder/sidewalk view images, and
the right-most images are the fake images generated by the model. Basemap credit:
(c) OpenStreetMap contributors; CARTO’s light theme.19



Category Method Parameters FID

road shoulder cyclegan perspective 60
road shoulder cyclegan default 81
road shoulder cyclegan miou 90
road shoulder pix2pix perspective 131
road shoulder pix2pix miou 138
road shoulder pix2pix default 158
sidewalk cyclegan perspective 115
sidewalk cyclegan miou 138
sidewalk cyclegan default 144
sidewalk pix2pix miou 179
sidewalk pix2pix perspective 184
sidewalk pix2pix default 188

Table 3.: This table displays FID scores for different models. The category column
shows the target perspectives, the method column shows the names of the GAN mod-
els, the parameter column shows different parameter settings, and the FID column
shows FID scores.

5.1. Data quality

The first challenge was data quality. This study used road center SVI and road shoul-
der/sidewalk SVI as input data by matching their locations. However, it was difficult
to standardize their locational relationships, despite our extensive effort in collecting
SVI for a few months in a standardized manner (e.g., time, camera positions on road
shoulders and sidewalks) and pre-processing the data (e.g., filtering spatiotemporally
irrelevant SVI and SVI with occlusions). More specifically, to ensure their proximity,
we set a threshold of five meters, within which both input SVI should be located;
nonetheless, the angles of the shift from road center SVI to road shoulder/sidewalk
SVI in relation to the streets were different for each pair. Thus, the unstandardized
locational relationships might have made it difficult for GAN models to accurately
learn the patterns and predict road shoulder/sidewalk views. Locational accuracies
of SVI were difficult to judge simply from their distances as well. Such an example
is shown on the first row of Figure 10. In some cases, there were overhead highways
above the roads where road shoulder/sidewalk SVI was collected: when we used the
coordinates of the road shoulder/sidewalk SVI to retrieve GSV (i.e., road center SVI),
its API returned images of highways, not the road under it (see the second image of
Figure 10. Despite the effort to remove such road center SVI with image classification,
we could not manage to remove all of them which caused the GAN models to suffer
from low-quality data. Occlusions in images were also problematic. Not only did road
shoulder/sidewalk SVI have many occlusions like vehicles, but also road center SVI
had occlusions, which created blurs and voids in the output images (see the third
image in Figure 10).

Another important aspect of SVI data and artificial intelligence technologies is pri-
vacy and data security. The collection and processing of such imagery can inadvertently
capture private moments and personal information of individuals without their con-
sent, leading to potential privacy violations. Furthermore, the storage and analysis
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of large datasets necessitate robust data security measures to prevent unauthorized
access and misuse of sensitive information. For these reasons, we chose Mapillary as a
platform to store our data as they take strict measures to protect privacy and security
by, for example, blurring people’s faces and vehicles’ license plates.

5.2. Scalability and generalizability

Another challenge is the scalability of the study. The GAN models trained in this
study are highly focused on the context of the study area (i.e. Singapore); thus, simply
applying this study’s models in different contexts may be difficult. Moreover, as this
paper’s methodology involves field data collection, it is resource-intensive to develop
GANmodels that are applicable in many different contexts. In sum, the generalizability
and applicability of our model and approach to other cities would depend much on
the similarity of the target context to our study area in Singapore, and it remains to
be evaluated in future studies.

Lastly, the size/dimension of the input image might have been a bottleneck for the
GAN models. Road center SVI is a 360-degree panorama, whereas the road shoul-
der/sidewalk SVI only has about 90 degrees of field of view, so their width-height
ratios are quite different. Input images are usually fit into set sizes by either resizing
or cropping them, which creates a trade-off in this study’s context (i.e. distortion and
completeness of the data). This study chose to resize them to retain as much infor-
mation in the input images as possible, but one can observe that output images are
affected by the distortion consequently.

5.3. Future opportunities

To overcome these challenges above, future studies can explore the possibility of uti-
lizing more controlled settings such as 3D city models. In doing so, the data quality-
related issues can be easily avoided. Moreover, by modifying the characteristics of
urban environments, different contexts (e.g., cities outside of this study’s study area)
can be simulated with lower costs, and the input image size can be standardized by
using the same image size (e.g., 360 degrees) for both the road center SVI perspective
and the road shoulder/sidewalk SVI.

Our approach is just one method of mitigating perspective bias, and there may
be others that can address this issue more effectively. The significance of GAN-based
models cannot be overstated. While neither CycleGAN nor Pix2Pix’s outputs substan-
tially offset the aforementioned perspective bias, several important utilities of GANs
have emerged. Firstly, they serve as invaluable tools for feature extraction and repre-
sentation learning. The rich feature representations learned by GANs, whether from
the generator or discriminator, can be leveraged as inputs for other models, enhancing
their performance. Moreover, as demonstrated, GAN outputs can support other mod-
els and provide insightful visual aids for urban planners and policymakers. In terms
of visualization and understanding of the environment, GANs can generate images
from varied perspectives, offering a profound means to comprehend and map urban
landscapes more effectively. Future studies should aim to refine and build upon our
method to improve its effectiveness and applicability.

Considering future research and improvements, it is essential to note that GANs
remain at the forefront of contemporary research. The likelihood that with deeper
research and optimization, GANs might outperform other methods is compelling.
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Adopting GANs can be viewed as a forward-thinking strategy, anticipating immi-
nent advancements in GAN technology. Given the swift advancements in generative
models’ performances recently, there is an optimistic prospect that GANs will yield
even more impressive outcomes in the near future.

In the selection of methodologies for our study, we opted for Generative Adversarial
Networks (GANs) over diffusion models — a technique that has gained popularity
in image generation tasks—for several reasons. Notably, diffusion models have been
primarily employed in text-to-image generation Saharia et al. (2022b) and partial
image-inpainting and image-style transformation applications Saharia et al. (2022a),
not image-to-image translation, which was our focus. In contrast, GANs, with es-
tablished variants such as Pix2Pix and CycleGAN, offer mature frameworks with a
strong focus on image-to-image translation, facilitating their immediate application
to our study’s objectives. These GAN architectures are specifically optimized for im-
age translation tasks, aligning with our goal of bias mitigation in SVI. Moreover,
GANs are generally more computationally efficient than diffusion models — a cru-
cial advantage for the extensive and data-intensive nature of our SVI analysis. GANs
are particularly effective at capturing and translating the nuanced differences in road
shoulder/sidewalk SVI and road center SVI, which was vital for addressing our re-
search questions. While diffusion models are indeed an exciting and promising area of
research for future SVI analysis, the established frameworks, practicality, and ready
accessibility of GANs made them the more suitable choice for this study. We acknowl-
edge the rapid development in the field of diffusion models and suggest their potential
integration in future work as they become more tailored for complex image-to-image
translation tasks in domains such as SVI. Our framework can still be leveraged when
using different models.

Lastly, the implications of this study are particularly transformative for the scal-
able assessment of bikeability and walkability. By identifying and quantifying the bias
inherent in road center SVI through Google Street View, our research has laid the
groundwork for a more accurate representation of active mobility users’ perspectives.
The deployment of GAN and other machine learning models to mitigate these biases
represents a substantial leap forward. Our approach corrects the skew in data interpre-
tation that has previously gone unaddressed, enabling urban planners and researchers
to harness the convenience and reach of SVI with newfound confidence in its accuracy.
This methodological advancement allows for the broad application of SVI in urban
studies, ensuring that assessments of walkability and bikeability can be conducted
more reliably at scale. The corrected SVI, reflective of actual pedestrian and cyclist
experiences, can be instrumental in shaping cities that are better designed for sus-
tainable transportation, ultimately encouraging walking and biking through informed,
data-driven urban design.

6. Conclusion

Street view imagery has been widely applied in geographical information science (Yao
et al. 2021, Dai et al. 2024, Hu et al. 2023, Ito et al. 2024), and used to assess walkability
and bikeability, typically with data taken from cars with elevated cameras. Given its
increasing popularity, addressing potential bias due to mismatching perspectives is
important.

This research is the first to investigate the extent of this bias and explore the poten-
tial of GAN and other machine/deep learning models to overcome it by predicting the
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Unstable locational relationship due to unusual angle of the road shoulder view image.

A highway image paired with a non-highway image.

Occlusions by vehicles.

Figure 10.: Examples of the issues that we identified in the dataset, namely, unstable
locational relationship, inclusion of highway images, and occlusions in images.
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pixel ratios of semantic classes based on views from the road shoulder and sidewalk.
The results indicate that road center SVI bias in assessing active transportation exists,
and our framework with the Pix2Pix and CycleGAN models alleviates this by predict-
ing major visual feature categories (i.e., building, sky, and vegetation) more accurately.
Additionally, predictions improve when combining LightGBM with the segmentation
results from CycleGAN-generated images.

Our findings are useful in understanding the previous research on active mobility
and SVI with a perspective bias, justifying crowdsourced and human-oriented SVI
collection efforts, and obtaining more accurate walkability and bikeability assessments
by calibrating SVI perspectives.

Further research can leverage our model-agnostic approach using different models
for more accurate and scalable results, utilizing controlled settings such as 3D models
and realistic renderings. The technical contributions and findings of this study will be
valuable for future studies that assess bike and walkability with SVI.
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Appendix

Table 4.: Model parameters used in this study

Parameters Values Descriptions

input nc 3 # of input image channels
output nc 3 # of output image channels
ngf 64 # of gen filters in the last conv layer
ndf 64 # of discrim filters in the first conv layer
netD basic specify discriminator architecture
netG resnet 9blocks specify generator architecture
n layers D 3 only used if netD==n layers
norm instance instance normalization or batch normalization
init type normal network initialization
init gain 0.02 scaling factor for initialization
no dropout true no dropout for the generator
serial batches true if true, takes images in order to make batches
num threads 4 # threads for loading data
batch size 1 input batch size
load size 286 scale images to this size
crop size 256 then crop to this size
max dataset size inf Maximum number of samples allowed per dataset
preprocess resize and crop scaling and cropping of images at load time
no flip false if specified, do not flip the images
n epochs 50 number of epochs with the initial learning rate
n epochs decay 50 number of epochs to linearly decay learning rate to

zero
beta1 0.5 momentum term of adam
lr 0.0002 initial learning rate for adam
gan mode lsgan type of GAN objective
pool size 50 size of image buffer that stores previously generated

images
lr policy linear learning rate policy
lr decay iters 50 multiply by a gamma every lr decay iters iterations
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Table 5.: Performance of models trained on building’s pixel ratios from road shoulder
perspectives.

Model MSE MAE R-squared Pearson’s r

Road center SVI panorama 0.0698 0.211 -9.19 0.405
SVI panorama shifted with a naive method 0.0943 0.239 -12.757 0.210
CycleGAN panorama (A1) 0.00641 0.0569 0.065 0.473
Pix2Pix panorama (A1) 0.006 0.057 0.124 0.407
LightGBM panorama without GAN (A3) 0.00217 0.0308 0.683 0.829
LightGBM panorama CycleGAN (A5) 0.00222 0.0324 0.676 0.822
LightGBM panorama Pix2Pix (A5) 0.00264 0.0366 0.615 0.785
ResNet-50 panorama without GAN (A2) 0.00241 0.0339 0.648 0.806
ResNet-50 panorama CycleGAN (A4) 0.00246 0.0351 0.642 0.805
ResNet-50 panorama Pix2Pix (A4) 0.00245 0.0346 0.642 0.804
Road center SVI perspective 0.00997 0.0647 -0.448 0.533
SVI perspective shifted with a naive method 0.100 0.194 -13.704 0.103
CycleGAN perspective (A1) 0.0066 0.0544 0.0423 0.543
Pix2Pix perspective (A1) 0.00562 0.0495 0.184 0.509
LightGBM perspective without GAN (A3) 0.00195 0.0296 0.717 0.847
LightGBM perspective CycleGAN (A5) 0.00204 0.0302 0.704 0.839
LightGBM perspective Pix2Pix (A5) 0.00231 0.0327 0.665 0.824
ResNet-50 perspective without GAN (A2) 0.00204 0.0304 0.703 0.837
ResNet-50 perspective CycleGAN (A4) 0.00221 0.032 0.676 0.827
ResNet-50 perspective Pix2Pix (A4) 0.00222 0.0318 0.674 0.827

Table 6.: Performance of models trained on sky’s pixel ratios from road shoulder
perspectives.

Model MSE MAE R-squared Pearson’s r

Road center SVI panorama 0.00589 0.0541 -0.49 0.371
SVI panorama shifted with a naive method 0.00748 0.0676 -0.887 0.294
CycleGAN panorama (A1) 0.00294 0.0392 0.257 0.614
Pix2Pix panorama (A1) 0.0014 0.0261 0.647 0.837
LightGBM panorama without GAN (A3) 0.000902 0.0205 0.772 0.88
LightGBM panorama CycleGAN (A5) 0.000874 0.0202 0.779 0.883
LightGBM panorama Pix2Pix (A5) 0.000915 0.0215 0.769 0.878
ResNet-50 panorama without GAN (A2) 0.000919 0.0224 0.768 0.877
ResNet-50 panorama CycleGAN (A4) 0.0015 0.0294 0.621 0.804
ResNet-50 panorama Pix2Pix (A4) 0.00294 0.043 0.256 0.604
Road center SVI perspective 0.00643 0.0513 -0.628 0.61
SVI perspective shifted with a naive method 0.00898 0.0734 -1.264 0.172
CycleGAN perspective (A1) 0.00311 0.04 0.213 0.627
Pix2Pix perspective (A1) 0.00139 0.0245 0.648 0.835
LightGBM perspective without GAN (A3) 0.000782 0.0193 0.802 0.897
LightGBM perspective CycleGAN (A5) 0.000789 0.0193 0.8 0.897
LightGBM perspective Pix2Pix (A5) 0.000917 0.0215 0.768 0.878
ResNet-50 perspective without GAN (A2) 0.000849 0.0215 0.785 0.887
ResNet-50 perspective CycleGAN (A4) 0.00136 0.0297 0.655 0.813
ResNet-50 perspective Pix2Pix (A4) 0.00304 0.0436 0.231 0.627
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Table 7.: Performance of models trained on building’s pixel ratios from sidewalk per-
spectives.

Model MSE MAE R-squared Pearson’s r

Road center SVI panorama 0.065 0.192 -2.03 0.26
CycleGAN panorama (A1) 0.0237 0.103 -0.104 0.273
Pix2Pix panorama (A1) 0.0309 0.108 -0.438 0.153
LightGBM panorama without GAN (A3) 0.0125 0.0774 0.418 0.648
LightGBM panorama CycleGAN (A5) 0.0129 0.0777 0.399 0.635
LightGBM panorama Pix2Pix (A5) 0.0141 0.0845 0.341 0.586
ResNet-50 panorama without GAN (A2) 0.0156 0.0834 0.271 0.544
ResNet-50 panorama CycleGAN (A4) 0.0137 0.0861 0.361 0.615
ResNet-50 panorama Pix2Pix (A4) 0.0152 0.0857 0.29 0.556
Road center SVI perspective 0.0246 0.105 -0.131 0.262
CycleGAN perspective (A1) 0.0252 0.108 -0.16 0.251
Pix2Pix perspective (A1) 0.0253 0.103 -0.165 0.241
LightGBM perspective without GAN (A3) 0.0153 0.0809 0.295 0.552
LightGBM perspective CycleGAN (A5) 0.0147 0.0807 0.323 0.574
LightGBM perspective Pix2Pix (A5) 0.0177 0.0899 0.185 0.464
ResNet-50 perspective without GAN (A2) 0.0155 0.0871 0.289 0.545
ResNet-50 perspective CycleGAN (A4) 0.0165 0.0892 0.24 0.513
ResNet-50 perspective Pix2Pix (A4) 0.0147 0.0813 0.325 0.593

Table 8.: Performance of models trained on sky’s pixel ratios from sidewalk perspec-
tives.

Model MSE MAE R-squared Pearson’s r

Road center SVI panorama 0.0151 0.086 -0.414 0.318
CycleGAN panorama (A1) 0.00857 0.0673 0.197 0.55
Pix2Pix panorama (A1) 0.00523 0.0471 0.509 0.773
LightGBM panorama without GAN (A3) 0.00465 0.0477 0.564 0.754
LightGBM panorama CycleGAN (A5) 0.0042 0.0447 0.606 0.78
LightGBM panorama Pix2Pix (A5) 0.00423 0.0452 0.603 0.782
ResNet-50 panorama without GAN (A2) 0.00505 0.0477 0.526 0.753
ResNet-50 panorama CycleGAN (A4) 0.0058 0.0557 0.456 0.682
ResNet-50 panorama Pix2Pix (A4) 0.007 0.0631 0.344 0.658
Road center SVI perspective 0.00948 0.0707 0.11 0.535
CycleGAN perspective (A1) 0.00922 0.0673 0.135 0.546
Pix2Pix perspective (A1) 0.00608 0.0508 0.429 0.74
LightGBM perspective without GAN (A3) 0.00445 0.0475 0.582 0.766
LightGBM perspective CycleGAN (A5) 0.00414 0.0445 0.612 0.785
LightGBM perspective Pix2Pix (A5) 0.00479 0.0461 0.551 0.758
ResNet-50 perspective without GAN (A2) 0.0052 0.05 0.512 0.76
ResNet-50 perspective CycleGAN (A4) 0.0067 0.0625 0.371 0.617
ResNet-50 perspective Pix2Pix (A4) 0.00798 0.0667 0.251 0.703
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Table 9.: Performance of models trained on vegetation’s pixel ratios from sidewalk
perspectives.

Model MSE MAE R-squared Pearson’s r

Road center SVI panorama 0.0381 0.149 -0.0943 0.47
CycleGAN panorama (A1) 0.0355 0.144 -0.0187 0.476
Pix2Pix panorama (A1) 0.0441 0.159 -0.265 0.577
LightGBM panorama without GAN (A3) 0.0112 0.0726 0.679 0.828
LightGBM panorama CycleGAN (A5) 0.0107 0.0748 0.694 0.835
LightGBM panorama Pix2Pix (A5) 0.0155 0.0914 0.554 0.753
ResNet-50 panorama without GAN (A2) 0.014 0.0878 0.599 0.776
ResNet-50 panorama CycleGAN (A4) 0.0166 0.102 0.524 0.74
ResNet-50 panorama Pix2Pix (A4) 0.0196 0.107 0.436 0.667
Road center SVI perspective 0.0313 0.131 0.106 0.451
CycleGAN perspective (A1) 0.0315 0.135 0.102 0.447
Pix2Pix perspective (A1) 0.0483 0.169 -0.378 0.52
LightGBM perspective without GAN (A3) 0.0131 0.0755 0.626 0.796
LightGBM perspective CycleGAN (A5) 0.0116 0.0771 0.669 0.819
LightGBM perspective Pix2Pix (A5) 0.0153 0.0898 0.562 0.757
ResNet-50 perspective without GAN (A2) 0.0113 0.0795 0.677 0.824
ResNet-50 perspective CycleGAN (A4) 0.015 0.092 0.572 0.757
ResNet-50 perspective Pix2Pix (A4) 0.0175 0.104 0.5 0.715
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