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The transformation from authoritative to user-generated data landscapes has garnered considerable 
attention, notably with the proliferation of crowdsourced geospatial data. Facilitated by advancements 
in digital technology and high-speed communication, this paradigm shift has democratized data 
collection, obliterating traditional barriers between data producers and users. While previous literature 
has compartmentalized this subject into distinct platforms and application domains, this review offers 
a holistic examination of crowdsourced geospatial data. Employing a narrative review approach due to 
the interdisciplinary nature of the topic, we investigate both human and Earth observations through 
crowdsourced initiatives. This review categorizes the diverse applications of these data and rigorously 
examines specific platforms and paradigms pertinent to data collection. Furthermore, it addresses 
salient challenges, encompassing data quality, inherent biases, and ethical dimensions. We contend that 
this thorough analysis will serve as an invaluable scholarly resource, encapsulating the current state-
of-the-art in crowdsourced geospatial data, and offering strategic directions for future interdisciplinary 
research and applications across various sectors.

Introduction

Over the past several decades, human and Earth observations 
have been overwhelmingly dictated by traditional, authoritative 
data sources, such as population censuses, surveys, satellite imag-
ery, and other physical sensors. However, the landscape of data 
creation and analysis has undergone a seismic shift in recent 
times, fueled primarily by the advent of revolutionary paradigms 
such as Web 2.0 [1] and Big Data [2]. This paradigm shift was 
precipitated by several key factors, including widespread internet 

access, the ubiquity of smartphones, and a general surge in 
participatory culture [3]. The impact of this transition has been 
profound across various industries. In sectors like urban plan-
ning, transportation, and environmental monitoring, user- 
generated data have provided unprecedented real-time insights 
and community-driven perspectives, often leading to more 
responsive and adaptive decision-making processes [4]. In the 
commercial sector, businesses harness user-generated content 
for enhanced market research, customer engagement, and trend 
analysis, leading to more customer-centric product development 
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and marketing strategies. The importance of this shift lies in its 
empowerment of ordinary individuals to contribute to and influ-
ence fields traditionally dominated by experts and authorities. 
This democratization has not only diversified the types of data 
available but also led to richer, more multifaceted insights into 
human behavior and environmental changes.

It is crucial to recognize that this democratization and the 
ensuing influx of user-generated content have crucially linked 
human experiences with environmental monitoring and analy-
sis. For instance, the real-time tracking of human mobility patterns 
using smartphone data can greatly enhance our understanding 
of urban dynamics, traffic management, and even disaster res-
ponse, effectively bridging the gap between human behaviors 
and environmental impacts. Similarly, public engagement in 
reporting environmental changes, like air quality or weather con-
ditions, through mobile applications or social media platforms, 
brings a unique and valuable human dimension to Earth observa-
tions. These interconnected contributions emphasize a vital, yet 
previously underexplored synergy between human and Earth 
data sources, illustrating a more cohesive narrative of how human 
activities and Earth systems are inextricably linked.

The term “crowdsourcing (crowdsourced) geospatial data,” 
which is used extensively throughout this paper, encapsulates 
the data acquisition process undertaken by large, diverse groups 
of individuals who often lack professional training [3]. The term 
“NeoGeography,” introduced by Turner [5], conveys a broader 
contextual understanding through the sharing of location data, 
enabled by an ever-expanding array of freely accessible tools. In 
the same vein, “Volunteered Geographic Information (VGI)” 
[6] signifies the rising trend of ordinary citizens playing an 
active role in the creation of geographic information. VGI is 
characterized as “the employment of tools to create, assemble, 
and distribute geographic data provided voluntarily by individu-
als.” Another pertinent term, “Citizen Science,” refers to the 
active participation of the public in scientific research, monitor-
ing, and action research, which often culminates in scientific 
progress and a broader public understanding of scientific prin-
ciples [7,8]. Despite the varying focuses of these definitions, 
they all emphasize the growing importance and impact of non-
authoritative data sources. The simultaneous advancement of 
rapid, accurate positioning technology, the prevalence of digital 
devices, the accessibility of high-speed communication links, 
and the progression in data management techniques have expe-
dited the conceptual, methodological, and practical evolution 
of crowdsourced geospatial data. Contrasting with the tradi-
tional human and Earth observation methods, which are pri-
marily coordinated by governmental and large institutional 
entities, the data collection process has been increasingly 
democratized, incorporating the participation of everyday users. 
This development effectively diminishes the erstwhile barrier 
between data producers and users. Such an innovative, decen-
tralized approach to data collection, bolstered by an extensive 
global user base, potentially facilitates high-resolution spatio-
temporal observations that were previously unattainable.

Crowdsourcing geospatial data has been analyzed through a 
multitude of lenses in recent studies. Numerous scholarly reviews 
have adopted a categorical approach to structure their analyses, 
centering on data source types. These include various platforms 
such as social media [9,10], OpenStreetMap (OSM) [11], and an 
array of other participatory datasets [12,13]. On the other hand, 
some reviews have taken a domain-focused approach, examining 
the practical applications of crowdsourcing geospatial data in 

fields like disaster mitigation [14], public health [15], remote 
sensing [16], and urban sciences [17]. While these studies offer 
valuable insights, a common limitation is the absence of a com-
prehensive, overarching perspective that ties together the various 
data sources and application domains. The primary motivation 
behind this review is to bridge this existing gap by offering a 
holistic perspective of crowdsourcing geospatial data. This will 
aid in fostering an improved interdisciplinary dialogue, support-
ing the development of innovative strategies and facilitating more 
efficient utilization of crowdsourced geospatial data across dif-
ferent sectors.

In addressing the interdisciplinary nature of this topic, we 
opted for a narrative review over traditional systematic or meta-
analytical methods. Systematic reviews and meta-analyses, 
reliant on keyword-based database queries and quantitative 
data aggregation, often fail to adequately capture the nuanced 
and theoretical aspects crucial for such a multifaceted topic, 
necessitating substantial post-selection refinement [10]. Our 
narrative approach, emphasizing seminal works identified by 
subject-matter experts, offers a more targeted and insightful 
exploration. This method ensures comprehensive coverage and 
a contextual understanding, circumventing the limitations of 
keyword-dependent searches and the quantitative constraints 
of meta-analyses in addressing the complex dimensions of our 
interdisciplinary study. The articles assessed in this undertaking 
were intentionally chosen by the authors, who possess substan-
tial expertise in crowdsourcing studies and have conducted 
interdisciplinary inquiries using crowdsourcing data. This tar-
geted selection process ensures that the review encapsulates 
diverse perspectives and a rich array of experiences in this 
complex and evolving field.

In this study, we conduct an exhaustive analysis of the cur-
rent efforts, possibilities, and obstacles associated with crowd-
sourced geospatial data across two fundamental perspectives: 
human observations (“Crowdsourcing Earth Observations” 
section) and Earth observations (“Crowdsourcing Human 
Observations” section). We group the applications of crowd-
sourcing geospatial data into varying domains, dissect the traits 
of data and contributors for widely recognized crowdsourced 
geospatial platforms, and investigate their data collection para-
digms and applicable potential in detail. Furthermore, we dis-
cuss the intrinsic challenges (“Challenges in Crowdsourcing 
Earth and Human Observations” section) connected to crowd-
sourced geospatial data, considering facets such as data quality 
and accuracy, data bias, privacy concerns, legal and ethical 
dimensions, the sustainability of data collection, training and 
validation requirements, and issues surrounding data interpre-
tation. This section is followed by a forward-looking discussion 
on prospective directions and pathways (“Future Directions 
and Pathways” section). The organizational layout of this review 
is illustrated in Fig. 1.

We believe that this comprehensive review will serve as an 
invaluable touchstone, encapsulating the concerted efforts in 
human and Earth observations utilizing crowdsourced geospa-
tial data and providing future direction for effectively utilizing 
information gathered from crowdsourcing platforms to address 
extant and future challenges.

Crowdsourcing Earth Observations
In the era of rapidly evolving technology and increasing envi-
ronmental concerns, crowdsourcing Earth observations has 
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emerged as an innovative and participatory approach to data 
gathering and analysis. Harnessing the collective intelligence 
and technological resources of citizens around the globe, this 
democratized methodology has fundamentally transformed the 
way we understand our planet. The approach transcends tra-
ditional barriers, involving the public in scientific research and 
decision-making processes. It has a wide array of applications 
that benefit both science and society. In the following sessions, 
we will delve deep into various facets of crowdsourcing Earth 
observations, examining its impact and efficacy in areas such as 
weather and climate observations, biodiversity assessment, air 
and water quality monitoring, and natural hazards and disaster 
response. We will also explore its role in understanding land 
cover and land use changes, aiding urban planning and infra-
structure development, contributing to astronomical observa-
tions, and even creating geo-games and gamification strategies 
for educational and engagement purposes. The structure of our 
review on crowdsourcing Earth observation is presented in Fig. 2.

Weather and climate observations
The progression of technology has significantly advanced crowd-
sourcing methods for geospatial data collection for weather and 
climate observations. These methodologies can be effectively seg-
mented into four principal categories, i.e., citizen science, social 
media, in situ sensors, and smart devices, with each offering unique 
benefits, facing specific challenges, and bringing distinct values.

Citizen Science stands out as a transformative force, espe-
cially in the domains of historical data retrieval and ongoing 

environmental monitoring. Endeavors such as Old Weather [18] 
and Cyclone Centre [19] highlight the tremendous capability 
of leveraging the general populace in data transcription and 
categorization. The Global Learning and Observations to Benefit 
the Environment Programme (GLOBE) further integrates stu-
dents and educators in environmental measurements that adhere 
to stringent scientific standards. Moreover, ventures such as 
CoCoRaHS [20] and We Sense It (http://www.wesenseit.com/
web/guest/home) underscore the significant contributions of 
community-driven networks, ensuring superior data collection 
quality. These data profoundly influence areas like climate 
change assessments [21], meteorological forecasting [22], and 
advancing knowledge about extreme weather events [23].

Social media platforms including Twitter and several mobile 
apps are progressively utilized as real-time data repositories. 
Initiatives like the UK snow map (https://uksnowmap.com/) 
and Twitcident (http://twitcident.com/) [24] emphasize the 
importance of user-generated content in monitoring events, 
from snow patterns to storm occurrences. Moreover, applica-
tions such as Metwit (https://metwit.com/) and Weddar (http://
www.weddar.com/) procure localized meteorological data, 
forming a nexus between personal experiences and analytical 
data. Yet, the intrinsic attributes of social media, which can 
occasionally propagate misinformation, demand the adoption 
of meticulous filtering mechanisms.

In situ sensors have become pivotal in the data collection 
landscape. The incorporation of internet-capable, cost-effective 
sensors, integrated into individual weather stations or larger 

Fig. 1. The structure of this review.
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networks, has magnified both the quantity and detail of data 
accrued. Networks like Air Quality Egg (https://airqualityegg.
com/home), a community-led air quality-sensing network, and 
Weather Underground (https://www.wunderground.com/) expe-
dite real-time data acquisition from diverse origins. Although 
these devices are cost-effective, they necessitate rigorous calibra-
tion to validate data precision.

Smart devices are increasingly designed to connect with a 
variety of sensors, such as the BlutolTemp Thermometer [25], 
iCelsius thermistor (https://www.icelsius.com/), and iSPEX 
aerosol measuring sensor (www.ispex.nl), greatly facilitating 
dense data acquisition, predominantly in metropolitan settings. 
Notable initiatives, like the N-Smarts pollution project [26], 
leverage these sensor-equipped smartphones to understand 
urban air pollution's effects on individuals and communities. 
This plethora of sensors facilitates a crowdsourcing approach 
termed “human-in-the-loop sensing,” enabling the collection 
and analysis of real-world data. Apps like OpenSignal (https://
www.opensignal.com/apps) and PressureNet (http://pressurenet.
cumulonimbus.ca) harness smartphone sensors to collect real-
time weather data. However, there are challenges in using such 
data, primarily due to the potential variations in local weather 
conditions, which raises concerns about data accuracy and 
consistency.

In conclusion, the convergence of technological innovation 
and community collaboration has significantly transformed the 
realm of geospatial data collection, especially in weather and 
climate studies. Citizen science initiatives democratize the scientific 

process and ensure a consistent influx of essential data. Although 
social media introduces certain complexities, it provides unparal-
leled real-time insights. In situ sensors and smart devices 
enhance the precision and depth of data collection, facilitating 
more sophisticated interpretations. When integrated with rigor-
ous validation and calibration methodologies, these tools are 
poised to drive future breakthroughs in environmental and 
atmospheric research.

Biodiversity
A plethora of crowdsourcing geospatial data has been accumu-
lated through biodiversity citizen science projects for document-
ing and monitoring plants, animals, and other species on Earth 
[27]. Biodiversity citizen science projects provide infrastructure 
and platforms (e.g., website and app) to communities of volun-
teers (e.g., nature observers) who are interested in any aspects of 
biodiversity to contribute species observations [28,29]. A variety 
of biodiversity citizen science projects are in operation, attracting 
millions of contributors to report species observations. These 
projects may differ in species specialization and/or geographic 
scope, but together, they provide valuable data on species distri-
bution, helping scientists monitor biodiversity. Three representa-
tive biodiversity citizen science projects are introduced here for 
illustration.

iNaturalist (https://www.inaturalist.org/), launched in 2008, 
enables anyone to share species observations of all taxa around 
the world by uploading species photos [29,30]. Each species 
observation is referenced with a geographic location and time 

Fig. 2. Crowdsourcing geospatial data for Earth observations.
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(e.g., extracted from photos), and a species identification vetted 
by the community. Information of the observer and identifier 
is also retained. iNaturalist is arguably the largest biodiversity 
citizen science project in the world, having compiled over 
148.5 million observations on more than 431,900 species based 
on contributions from over 2.7 million observers and 317,000 
identifiers. eBird (https://ebird.org/) is for birdwatchers around 
the world to share bird sightings by submitting their birding 
checklists [28]. Essential information in a checklist includes 
location and time of the birding event, list of bird species 
observed, bird activity (e.g., breeding and behavior codes), bird 
group size, and information of the observer. A total of 10,715 
bird species have been reported to eBird based on 82.3 million 
complete checklists contributed by 899,200 birders since the 
launch of eBird in 2002. FrogWatch USA (https://www.akro-
nzoo.org/frogwatch), established in 1998, is a citizen science 
program for volunteers at a network of chapters to collect and 
submit data on local frog and toad populations in the United 
States. Volunteers are trained to listen to and identify frogs and 
toad calls. Frog and toad observations are recorded with loca-
tion, time, and descriptions of habitat characteristics. A total 
of 178,795 observations have been submitted to this project by 
15,641 volunteers.

Datasets resulted from biodiversity citizen science projects 
contain, at the minimum, spatially and temporally referenced 
records of the observed species and, in some cases (e.g., eBird 
and iNaturalist), even information of the underlying human 
volunteers who carry out the observations [31]. Species records 
can be analyzed to reveal the spatiotemporal dynamics of spe-
cies distributions [32,33] to help inform conservation strate-
gies, while information regarding data contributors allows 
examining volunteers’ data contribution behavior patterns 
[34,35]. It should be noted that, although crowdsourcing offers 
an effective means for compiling timely biodiversity data at very 
large scales, the volunteers behind biodiversity data production 
are of varied levels of expertise [36] and their observation efforts 
are highly variable across space, time, and observation targets 
[34], leading to potential biases in the data (e.g., more bird 
observations are made during migration seasons on common 
species in accessible geographic areas). Such biases must be 
assessed and mitigated where necessary in order to make robust 
inferences from the data [37,38,39].

Air and water quality monitoring
Crowdsourcing emerges as a cost-effective tool for the data 
collection on air quality, especially enabling a broader spatial 
coverage and increased temporal resolutions as compared to 
traditional regulatory-grade monitoring. PurpleAir, a very 
affordable, accessible, and easy-to-use low-cost air sensor net-
work, has become one of the most popular and largest crowd-
sourced networks worldwide [40]. The dense network is built 
with the help of stakeholders such as residents, environmental 
and public health agencies, and university researchers to mea-
sure real-time particulate matter (PM) at residential areas, 
industrial facilities, schools, and various other places of interest 
[41,42]. For example, the PurpleAir sensor data are also inte-
grated into AirNow, a one-stop source of air quality platform 
developed by major agencies, including the US Environmental 
Protection Agency (EPA), to provide historical, current, and 
future air quality data, especially during wildfire seasons [43]. 
Similarly, “AirVisual,” developed by IQAir, also engages citizen 
scientists to collect various pollutants (e.g., PM, ozone, and 

nitrogen dioxide) mainly through indoor (e.g., home, office, and 
hospital) and mobile (e.g., travel) applications [44]. SmartCitizen 
offers a kit with open-source files and schematics, enabling users 
to customize their air measurement needs through citizen science 
[45]. Clarity monitoring network enhances traditional air moni-
tors by incorporating solar panels to sustain internal batteries 
and enable the measurement of black carbon [46]. Additionally, 
Air Quality Egg aims to empower K-12 students to become citi-
zen scientists by measuring multiple pollutants, including car-
bon monoxide and sulfur dioxide [47]. Overall, crowdsourced 
platforms emerged as integrated systems for short-term and long-
term community-based air quality monitoring networks, enabling 
the public to measure and report real-time crowdsourced data. 
Importantly, the crowdsourced air quality data could be com-
bined with satellite remote sensing data, meteorological data, 
noise data, and other smart-phone applications to revolution-
ize environmental exposure assessment, disaster resilience, 
urban planning, environmental justice, and epidemiological 
studies [48,49].

Crowdsourcing has also become increasingly valuable in 
water quality monitoring, engaging citizen scientists to collect 
data on a large scale. For example, the Secchi disk, a plain white, 
circular disk with a diameter of 30 cm, is commonly used for 
measuring water transparency or turbidity. Citizens, scientists, 
nongovernment organizations, and other stakeholders have 
employed this tool to increase networks of in situ measurements 
mainly in oceans [50] and lakes [51,52], supplementing tradi-
tional monitoring networks. Particularly, the North American 
Lake Management Society has held annual crowdsourcing 
events—“Secchi Dip-In”—since 1994 to engage lake enthusiasts 
and volunteers to contribute to a comprehensive database of 
water quality [53]. State agencies also encourages the use of 
crowdsourced air quality monitoring to supplement routine 
water monitoring activities, such as the Citizens Statewide Lake 
Assessment Program [54] and the Clean Water Team under the 
Surface Water Ambient Monitoring Program [55]. Volunteers 
are trained to collect samples and measure various parameters, 
such as dissolved oxygen, pH, and nutrient levels to character-
ize water quality. Additionally, environmental charity such 
as Earthwatch Europe has launched a global citizen science 
project— FreshWater Watch in 2012. This initiative engages vol-
unteers in using the same standardized research method to 
monitor various water bodies on a broader scale and to identify 
regional and global trend, including rivers, lakes, streams, ponds, 
and wetlands [56]. The Surfrider Foundation's Blue Water Task 
Force is a crowd-sourcing initiative focused on monitoring water 
quality at beaches and coastal areas to protect public health and 
advocate for clean water policies [57]. These example programs 
commonly value the advantages of crowd-sourcing data in water 
quality monitoring. By leveraging citizen science and engaging 
the public to collect data on parameters essential to understand-
ing water quality, the crowdsourced database contributes to 
enhance spatial and temporal coverage, expand types of waters, 
support decision-making, and inform efforts in water resource 
management and conservation.

Natural hazards and disaster response
Natural hazards like flash floods or earthquakes usually take place 
in a short period, while their impacts vary by communities and 
individuals and depend on local context, e.g., hazard conditions, 
natural and built environment, socioeconomic characteristics, 
management strategies, and responding behaviors. Therefore, 
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timely and hyperlocal observations of natural hazards and affected 
communities are necessary to understand the impacts of natural 
hazards and formulate immediate, actionable disaster response 
that can minimize loss of lives, property damages, and social and 
environmental disruptions. Harnessing crowdsourced geospatial 
data from social media platforms, smartphone apps, or crowd-
sourcing websites offers a novel avenue for observing short-term, 
localized events with exceptional spatial and temporal resolutions 
[58]. Several initiatives have adeptly harnessed crowdsourced data 
to observe natural hazards and their impacts, as well as supporting 
disaster responses.

For example, the United States Geological Survey (USGS) 
developed the “Did You Feel It?” (DYFI) website in 1999 to 
gather information about the impacts and effects of earth-
quakes from people who have experienced them. When an 
earthquake occurs, individuals in the affected area can visit 
the DYFI website and provide details about their experience, 
including their location, the level of shaking they felt, and any 
observed effects, such as swaying of buildings, rattling objects, 
or other impacts. This information is then aggregated and dis-
played on an interactive map, allowing users to see how the 
shaking was perceived across different areas. Crowdsourced 
DYFI data have been demonstrated valuable in better under-
standing the spatial distribution of shaking intensity, which 
can be used to refine earthquake hazard maps [59], evaluate 
the performance of buildings and infrastructure, and improve 
earthquake engineering practices [60].

Another notable example is Ushahidi (meaning “testimony” 
in Swahili), an open-source platform that facilitates crowdsourc-
ing, mapping, and data visualization for hazardous events or 
crises. This platform empowers both individuals and organiza-
tions to collect reports that elucidate local damages and identify 
individuals needing help during natural hazards. These reports 
are derived from diverse sources like text messages, social media 
posts, emails, and web forms [61]. The reports are then aggre-
gated and displayed on an interactive web map to coordinate 
disaster response missions. Since its inception in 2007, Ushahidi 
has been employed in over 90,000 cases, received more than 
6.5 million reports from 160 countries, and played a pivotal role 
in several disaster response tasks, such as searching and rescuing 
victims during the 2010 Haiti Earthquake [62].

CrowdSource Rescue (CRS) is a similar platform that uses 
crowdsourced geospatial data to bolster disaster response. It 
was established in 2017, prompted by the unprecedented flood-
ing caused by Hurricane Harvey in Houston and the surround-
ing areas. During Harvey, many people failed to evacuate on 
time while the 911 system was overloaded [63]. As a result, 
flood victims turned to online platforms (e.g., Twitter and 
Facebook) and volunteer groups (e.g., Cajun Navy) to seek help 
[64]. CRS emerged as a solution to aggregate these help requests 
through a crowdsourcing methodology and present them via 
an interactive WebGIS platform. This platform enables victims 
to submit help requests and allows certified volunteers to access 
the geographical locations of individuals seeking help and 
extends assistance accordingly. As of 2023, CRS has engaged 
over 13,513 rescuers and volunteers, facilitating aid to more 
than 94,036 survivors across 28 hazardous incidents.

In addition, disaster-affected regions with limited geospatial 
data and experts can benefit from geospatial data crowdsourced 
by cartography professionals or volunteers. The Humanitarian 
OSM Team (HOT) is a pioneering and collaborative effort that 
leverages crowdsourced geospatial data to co-produce mapping 

products for decision-making in disaster response. Using OSM, 
cartography professionals or volunteers can contribute to satel-
lite image digitization and mapping roads, buildings, rivers, 
and essential features in disaster-affected regions with limited 
mapping resources. This collective endeavor yields comprehen-
sive and up-to-date geographical data that significantly enhance 
disaster response efforts by supporting the assessment of fun-
damental infrastructure (e.g., transportation and shelters), iden-
tification of resource availability, delineation of impacted zones, 
evaluation of damages, and estimation of affected populations. 
HOT’s establishment was prompted by the 2010 Haiti Earthquake, 
and its contributions have been demonstrated in various natural 
hazard events, including the 2015 Nepal Earthquake [65].

Land cover and land use
Citizen science has emerged as a powerful tool for collecting 
and analyzing data across a wide range of disciplines, including 
land cover and land use studies. The integration of citizen sci-
ence with Earth observation has the potential to provide valu-
able calibration and validation data, covering a diverse set of 
fields from disaster response to environmental monitoring. This 
integration has yet to be fully exploited, and there is a significant 
opportunity for citizen science to contribute to the achievement 
of the United Nations Sustainable Development Goals, includ-
ing those related to land use and land cover [66].

Several projects have demonstrated the potential of citizen 
science in this domain. For instance, the Geo-Wiki project has 
leveraged a global network of volunteers to improve the quality 
of geographic data by validating and correcting existing land 
cover maps [67]. This project has harnessed the collective 
efforts of a global network of volunteers to enhance the quality 
of geographic data, primarily through the validation and cor-
rection of existing land cover maps [67,68]. The tool has found 
particular utility in Central Europe, where it has been exten-
sively employed to improve land cover maps [69]. Similarly, 
the LUCID project has engaged participants in identifying 
types of land cover in satellite images to monitor land use 
changes over time [70]. The Missing Maps project has mobi-
lized volunteers to use satellite images to map areas that are 
home to vulnerable populations but are poorly covered in exist-
ing maps. These projects, among others, have shown that citizen 
science can provide high-quality data for land use and land 
cover classification tasks, and that local knowledge and profes-
sional background have a minimal impact on volunteer per-
formance in these tasks [66]. Additionally, these ground-based 
observations frequently provide essential datasets for training 
machine learning algorithms or for developing mapping rules, 
thereby enhancing the interpretation of satellite imagery and 
improving the accuracy and dependability of land cover clas-
sifications obtained from satellite data [71].

The integration of citizen and community science into land 
cover, land use, and land change detection processes has been 
explored in various contexts. For instance, Olteanu-Raimond 
et al. [72] proposed an experimental framework for integrating 
citizen science into a national mapping agency. Theobald [73] 
put forth a general-purpose spatial survey design for collabora-
tive science and monitoring of global environmental change. 
In addition, Kolstoe et al. [74] leveraged citizen science to study 
the differential impacts of climate and land cover on bird popu-
lations in the Pacific Northwest. In a similar vein, Whitehorn et al. 
[75] utilized a decade of citizen science observations to inves-
tigate the effects of climate and land use on British bumblebees. 
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These and other projects demonstrate the diverse applications 
of citizen science in monitoring and understanding changes in 
land cover and land use.

Urban planning and infrastructure
Data on the infrastructure in the built environment, such as 
buildings, roads, amenities, and public open spaces, is crucial 
for urban planning and supporting livable and smart cities. 
The acquisition and management of such data has traditionally 
been in the realm of governments, but the crowdsourcing route 
has been gaining momentum in the past decade with increas-
ing completeness and application of such data in academia 
and practice. Further, the surge of sensors and the volume of 
user-generated geographic information in cities introduced 
new means to collect information on the built environment. 
For example, recent crowdsourced datasets that have been 
gaining attention in the built environment are real estate ads 
and accommodation reviews to collect information on build-
ing characteristics [76,77,78].

OSM, the open and collaborative map of the world that is 
built by a community of mappers, is perhaps the most relevant 
instance of crowdsourcing in this context [79]. The community 
contributes and maintains data about roads, trails, cafes, railway 
stations, etc., with the content reaching high levels of quality 
globally. For example, currently, there are more than half billion 
buildings mapped around the world, reaching full complete-
ness, high quality, and rich semantic information in many 
urban areas around the world [80,81]. Taking advantage of this 
trend, data on a variety of features sourced from OSM have 
been used for myriads of purposes in urban planning, support-
ing, e.g., modeling urban change and characterizing the urban 
form, real estate analyses, and population studies [82,83,84,85]. 
Considering the continuous popularity of OSM and the grow-
ing role of corporate editors [86], i.e., companies that contribute 
data to OSM, the platform is expected to remain very relevant 
and instrumental in the crowdsourced mapping of the urban 
infrastructure and its applications in urban planning.

Mapillary, a platform that manages crowdsourced imagery 
to create a visual representation of the world for improving 
maps [87], is another increasingly popular instance of crowd-
sourcing spatial data in the built environment as street-level 
imagery plays an important role in urban planning and infra-
structure management. Despite being a relatively new type of 
spatial data, because of offering a new perspective and other 
advantages such as dense coverage, street-level imagery has 
rapidly gained attention for a variety of use cases in the built 
environment. Initially, use cases have been dominated by data 
provided by commercial services such as Google Street View 
and Baidu Maps, with many demonstrated uses of it for map-
ping infrastructure and supporting urban planning, such as 
collecting information on buildings, assessing perception of 
streetscapes, and mapping greenery [88,89,90]. However, recent 
years have seen a growing use of Mapillary for similar purposes, 
offering an alternative at a liberal license and with various 
advantages such as imagery taken from bicycles and in open 
public spaces, owing to the heterogeneity of contributors, and 
offering dense coverage in urban areas that are often not avail-
able in commercial counterparts. For example, Mapillary has 
been used to extract detailed information of buildings to gener-
ate three-dimensional (3D) building models at high level of 
detail, map networks of bicycle paths, and measure greenery 
along roads [91,92,93,94]. While Mapillary remains the most 

popular crowdsourced platform for street-level imagery, there are 
alternative services that are more popular in particular regions, 
e.g., KartaView, which is particularly focused on Southeast Asia.

Astronomical observations
Astronomical observations, as part of the emerging concept of 
“Citizens as Sensors,” leverage the potential of crowdsourcing for 
capturing celestial phenomena and contributing to a global data-
set. This active data collection, engaged by voluntary contributors 
worldwide, provides a unique opportunity to gather scientific 
data on a scale that would be otherwise impossible with tradi-
tional methods. The “Globe at Night” and “Aurorasaurus” proj-
ects, two remarkable examples of this burgeoning field, harness 
the enthusiasm and curiosity of citizen scientists to contribute 
to our understanding of the cosmos.

“Globe at Night” is an international citizen science project invit-
ing global participants to measure and submit observations of their 
night sky's brightness. It aims to construct a global dataset of light 
pollution, a growing concern that affects astronomical observa-
tions and the natural world. This initiative provides a cost-effective 
method for obtaining comprehensive geospatial data on light pol-
lution, with citizen scientists worldwide acting as “sensors” in their 
locales. The protocol is simple: Participants engage in a “star hunt” 
during moonless nights, recording the faintest star visible to them. 
These data are then submitted along with the date, time, and loca-
tion, contributing to a worldwide light pollution map. From 2006 
to 2019, this project accumulated over 190,000 data points with 
more than 200,000 measurements from 180 countries, providing 
a rich dataset utilized in numerous domains, including city ordi-
nances, school science projects, and monitoring conditions near 
observatory sites. The participatory nature of the project encour-
ages public awareness about light pollution, turning citizen scien-
tists into advocates for darker skies [95].

Similarly innovative, the “Aurorasaurus” project crowdsources 
observations of the aurora (both positive and negative), providing 
real-time data that can assist in forecasting these extraordinary 
events. The utility of this initiative was demonstrated during a 
significant geomagnetic storm event when an unprecedented 
number of sightings were reported, illustrating the platform’s 
potential for large-scale, real-time data collection on auroral activ-
ity. Like the “Globe at Night,” this project serves dual purposes: 
collecting observations and fostering public understanding of 
auroras and space weather. The process of submitting observa-
tions involves detailing auroral activity, color, and height in the 
sky, often accompanied by a photograph. The platform further 
enriches its dataset by combing social media (e.g., Twitter) for 
likely aurora sightings [96].

Both “Globe at Night” and “Aurorasaurus” are emblematic 
of the potential of crowdsourcing in astronomical observations. 
By capitalizing on the enthusiasm of the public and the ubiquity 
of smart devices, these projects collect data on a scale that would 
be unfeasible through traditional means. Moreover, they turn 
every participant into an advocate for scientific understanding, 
fostering a deeper appreciation for the natural world. In this 
sense, they embody the essence of gamification described by 
Ahlqvist and Schlieder [97], transforming a mundane data col-
lection exercise into an engaging and enjoyable activity. While 
this session has mainly focused on these two projects, the vast 
potential and applicability of crowdsourced astronomical obser-
vations is worth noting. The combination of citizen science and 
geospatial data collection represents a powerful tool for scien-
tific discovery that is only beginning to be fully realized.
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Geo-games and gamification
Gamification is an emerging strategy used by cities to promote, 
persuade, invite, engage, and educate people through game-
based approaches (e.g., geo-games and geoplay) that include a 
geospatial element for data collection, validation, and analysis 
of geo-information. With minimal cost, the crowdsourcing 
strategy utilizes gamification approaches to carry out activities 
by incorporating game elements that provide meaningful 
results for further analysis. Ahlqvist and Schlieder [97] provide 
detailed elaboration on spatial gamification from both within 
and outside the realm of geo-information science, highlighting 
its applications in education, spatial planning, tourism, product 
marketing, and other areas. Augmented reality games or gami-
fied apps have been developed to encourage environmental 
exploration or reward users for documenting specific environ-
mental features. Major geospatial organizations, such as OSM, 
WikiMapia, DigitalGlobe-tomnod, GeoWiki, and Zooniverse, 
have reported the gamification of their work related to manag-
ing innovation processes over the past decade [97]. Several 
important features define gamification: first, the focus on fun 
as the primary element to ensure an enjoyable game experience; 
second, the emphasis on collective intelligence to avoid infor-
mation imbalances, where players generate information explic-
itly through commenting or rating, as well as implicitly without 
realizing it; and third, the utilization of stable architectures 
and gamification systems that obtain geographic information 
through people's activities, such as check-ins, place registra-
tions, and message postings.

Building on the three aforementioned features, several typical 
examples of geo-games have been developed and are increasingly 
popular in the field. For instance, SocialVenue [98] is a location 
sharing app designed to facilitate communication among users 
through location sharing features. Mag-ike (magic bike) is a bik-
ing game developed by a research team in Spain [99] with the 
aim of gathering crowdsourced commuting data. It employs a 
multi-cache approach, providing daily reports with accumulated 
scores and game status to help players improve their results. 
Gezgin is a geo-game application [100] developed to evaluate 
the benefits, values, and skills related to the global connections 
learning area of the social studies curriculum in Turkey. It is 
based on the four-component instructional design (4C/ID) 
model and incorporates expert opinions. NavApps, designed by 
Geotech, a research team in Germany [101], aims to raise aware-
ness among high school students about their surrounding loca-
tions and educate citizens about existing services in smart cities, 
such as traffic conditions. Additionally, some games have been 
involved in evaluating the cultural and historical significance of 
cities. For example, Pokemon GO is primarily used to identify 
tangible attributes and values from textual descriptions, while 
Minecraft is a 3D block-building geogame developed for (re)
designing buildings, cities, and landscapes [102]. These games 
have gained popularity and attracted a large online community 
of players who contribute to the creation and adaptation of 
worlds, fostering autonomy, 3D and spatial awareness, creativity, 
and social interactions. They serve as emerging approaches for 
crowdsourced data generation and collection.

Crowdsourcing Human Observations

In the intricate landscape of human experiences and societal 
complexities, the methodology of crowdsourcing human obser-
vations has emerged as a pivotal instrument for achieving 

unparalleled granularity and scalability in data collection. By 
facilitating the contribution of real-time information from indi-
viduals, this model is effecting transformative changes across 
diverse sectors, ranging from healthcare to public safety. This 
participatory framework extends beyond mere data accumula-
tion to actively involve communities, thereby amplifying voices 
that might otherwise remain marginalized. In the forthcoming 
sessions, we will engage in a comprehensive exploration of the 
various dimensions of crowdsourcing human observations, 
examining its seminal impact on areas such as health and well-
ness, the optimization of transportation systems, and the real-
time capture of public sentiments and opinions. Furthermore, 
we will discuss the utility of this approach in the arenas of disas-
ter management and response, the enhancement of physical and 
social connectivity, as well as the fortification of public safety 
and security protocols. Each specialized session aims to furnish 
attendees with nuanced understandings of the interplay among 
technological, ethical, and societal considerations, thereby offer-
ing a balanced view of both the benefits and limitations inherent 
in leveraging collective intelligence. The structure of our review 
on crowdsourcing human observation is presented in Fig. 3.

Health and wellness
Crowdsourcing technology has played a pivotal role in advanc-
ing health and medical research, providing enormous oppor-
tunities to transcend geographical and organizational barriers 
faced by traditional research processes. One of the most nota-
ble benefits of this technology in addressing complex medical 
and public health issues is the ability to accelerate the collec-
tion of health-related data from a large number of individuals 
across various geographic locations and demographic groups 
[103]. Powered by electronic/mobile health (e/m-health) and 
wearable sensor technologies, a wealth of individual-level geo-
spatial data has contributed to making groundbreaking dis-
coveries that would otherwise be impossible due to the large 
number of research participants required for data collection 
[104,105]. For instance, Mappiness—a mobile application 
developed to collect large-scale geo-referenced data on subjec-
tive well-being—has allowed researchers to understand the 
effect of environmental aesthetics on happiness at a population 
level by capturing the spatiotemporal variability in happiness 
experienced in a wide range of environments [106]. The real-
time nature of these data has been proven to significantly 
reduce recall bias since researchers no longer have to rely on 
people’s recollections of their feelings and locations. Similarly, 
crowdsourced disease surveillance platforms that enable real-
time geospatial data collection, such as Mosquito Alert and 
Flu Near You, have become an essential means for open col-
laboration between public health professionals and the general 
public to identify geographic hot spots of infectious disease 
and implement timely interventions [107,108].

Due to the principle of the self-selected sample in the crowd-
sourcing health data, however, particular attention should be paid 
to the characteristics of the population generating the data and the 
possibility of under- or over-representation of certain population 
groups [109]. Some researchers thus suggest that crowdsourcing 
approaches are best suited for studies in which rapid data collection 
from a large group of people is crucial but a representative sample 
is not necessary [110], such as Qin et al.’s [111] geo-crowdsourcing 
application developed to offer people with mobility or visual 
impairments real-time information on the locations of navigation 
obstacles. However, when executed carefully, crowdsourcing 
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approaches hold significant potential for addressing health dispari-
ties by facilitating engagement with underrepresented communi-
ties. Park et al. [112] utilized GeoAir2, a portable air sensor that 
does not require technical proficiency in users or a local Wi-Fi 
network for data collection—which often hinder underserved 
groups’ participation [113]—to ensure the inclusion of low-income 
immigrant communities in real-time air quality monitoring and 
empower them to take data-driven action. These examples dem-
onstrate that crowdsourcing will remain increasingly a powerful 
tool for addressing public health challenges as e/m-health and 
participatory sensing technologies continue to evolve.

Transportation
Transportation management is rapidly evolving into a data-
driven discipline. The integration and analysis of data have 
become essential for enhancing efficiency, safety, and decision-
making in transportation systems [114,115]. The advancement 
of Internet of Things (IoT) technologies and the widespread 
use of mobile devices have facilitated the active contribution 
and passive collection of vast amounts of traffic information 
from various road users [116,117]. This has opened new pos-
sibilities for cost-efficient solutions in transportation monitor-
ing and management. Crowdsourced observations have gained 
widespread adoption in different transportation management 
tasks [118,119,120]. This review will primarily introduce two 
key applications of crowdsourced data in transportation stud-
ies: traffic volume estimation and road safety assessment.

Traffic volume is a critical component of transportation plan-
ning and management. Traditionally, traffic volume data were 
collected through stationary sensors or manual surveys, which 
are not only expensive but also limited in their spatiotemporal 

coverage [121]. Many studies have shown that speed patterns on 
roadways are closely related to volume patterns, making them 
valuable for estimating the volume of road segments not covered 
by traffic sensors. Researchers can potentially estimate traffic 
volume for extended areas by leveraging speed patterns from 
crowdsourced Floating Car Data (FCD) [122,123]. FCD refers 
to real-time or near-real-time driving information collected from 
individual vehicles moving through the road network [122]. 
Common sources of FCD include phone-based navigation apps 
(e.g., Google Maps, Waze, and HERE WeGo), connected vehi-
cles, probe vehicles, and car-sharing and ride-hailing platforms 
(e.g., Uber), providing valuable insights into vehicle movements. 
Apart from vehicle volumes, the number of active transportation 
users, such as pedestrians and cyclists, also plays a critical role 
in urban and transportation planning. However, there is often a 
lack of counts for nonmotorized traffic modes [124]. To address 
this, many mobile apps have been created, allowing users to 
track, report, and share their walking or cycling activities. One 
prominent data source in this regard is Strava, which anonymizes 
and aggregates data to help urban planners understand the vol-
ume of active activities, such as walking, running, and cycling, 
obtained from their registered users. By linking crowdsourced 
activity/user counts with additional features such as road inven-
tory, built-environment characteristics, and sociodemographic 
data, researchers have proposed various models achieving satis-
factory results in estimating volumes of different active trans-
portation users [124,125].

Crowdsourced observations are also widely used in road 
safety studies. Traditionally, official crash records have been 
the primary data source for such studies. However, analyzing 
crash data is a retrospective approach, often requiring 3 to 

Fig. 3. Crowdsourcing geospatial data for human observations.
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5 years of crash data to obtain statistically reliable results. Moreover, 
using crash data alone may lead to an underestimation of traffic 
risk as many unreported crashes, incidents, and near-miss events 
are not captured [126]. To address these limitations, an increas-
ing number of studies are exploring the potential of surrogate 
safety measures, such as traffic conflicts and abnormal driving 
behaviors, in road safety assessments (e.g., identifying traffic 
blackspots) instead of relying solely on crash data [122,127]. 
With the advent of mobile sensing techniques, a vast volume of 
hazardous driving behaviors (e.g., hard braking, fast accelera-
tion, and frequent lane changes) can be detected using crowd-
sensing solutions through phone- or vehicle-based sensors. 
Different crowdsourced driving behaviors, such as hard braking 
[128], driving jerks [129], and speed variations [130], have been 
proven to be strongly correlated with crash risks. Additionally, 
people can also actively report traffic incidents through mobile 
apps. For instance, Waze, a leading crowdsourcing platform, can 
efficiently collect traffic incidents reported by its registered users, 
proving to be a valuable data source for road safety assessment. 
By combining Waze-captured incidents with historical crash 
records, a more comprehensive understanding of traffic risks 
can be achieved [131].

In addition to applications in traffic volume estimation and 
road safety assessment, crowdsourced data have also found 
successful use in various transportation management tasks, 
including traffic congestion detection [121], road surface 
assessment [119,132], transport asset management [133], and 
transportation planning [134]. These applications demonstrate 
the great potential of crowdsourced information in supporting 
the establishment of intelligent transport systems.

Public emotions, sentiments, and opinions
In comparison to traditional techniques such as surveys and 
questionnaires, crowdsourcing is particularly effective in studies 
that necessitate broad spatiotemporal coverage and involvement 
of large population sizes. One of the major arenas where crowd-
sourcing shines is in the extraction and interpretation of public 
emotions, sentiments, and opinions. The rapid advancements 
in natural language processing and deep learning techniques 
have substantially enhanced the application of crowdsourced 
data in sentiment analysis [135,136]. Social media, offering 
an extensive, continually updated, and diverse array of user- 
generated content, serves as a rich data source for sentiment 
analysis. Platforms like Twitter, Flickr, Weibo, and Facebook are 
particularly significant, as sentiment analysis techniques applied 
to data from these platforms have found extensive usage across 
various disciplines, providing invaluable insights that shape 
strategic decision-making [137,138,139,140].

The application of sentiment analysis using social media 
data spans across multiple areas. In healthcare, it helps in moni-
toring public attitudes toward healthcare policies, tracking 
disease outbreaks, and understanding the social and psycho-
logical impacts of various health conditions [141,142,143]. In 
politics, it is used for predicting election outcomes by assessing 
public sentiment toward general elections and users’ reaction 
to political campaign [144,145,146]. Furthermore, the technique 
has been employed to analyze public perceptions of the urban 
built environment, thereby informing urban landscape plan-
ning [147]. In the field of marketing, sentiment analysis plays 
a crucial role in understanding consumers’ or employers’ senti-
ments toward products and brands, informing strategic mar-
keting decisions [148,149].

Within the realm of public health, the application of sentiment 
analysis using crowdsourced data, particularly from social media, 
has been particularly impactful. For instance, Broniatowski et al. 
[150] leveraged Twitter data as a surveillance tool to concurrently 
monitor influenza cases and the related public reactions. Similarly, 
Ahmed et al. [151] adopted a similar approach during the 2009 
H1N1 pandemic, using Twitter data to dissect public sentiment 
and responses. Further enhancing such approach, Müller and 
Salathé [152] introduced “Crowdbreaks,” an open-source platform 
that streamlines this process with crowdsourced labeling, enabling 
efficient sentiment analysis of health trends in real time, thereby 
accelerating pace of research in the public health domain.

The recent worldwide coronavirus disease 2019 (COVID-19) 
pandemic saw a significant application of a similar approach in 
understanding public sentiment related to the disease and its 
respective vaccines. Several researchers, including but not lim-
ited to Ibrahim et al. [153], Hussain et al. [154], and Hussain 
et al. [155], have demonstrated the value of sentiment analysis 
using social media data. Ibrahim et al. [153] built a Hierarchical 
Twitter Sentiment Model to discern sentiment polarities within 
COVID-19-related tweets, while Hussain et al. [154] extended 
the use of artificial intelligence (AI) techniques to analyze over 
300,000 social media posts from Facebook and Twitter about 
COVID-19 vaccines in the UK and the US. Complementing 
this, Hussain et al. [155] conducted a parallel analysis of posts 
discussing adverse effects following immunization, effectively 
underscoring the utility of social media analysis as a supportive 
mechanism in traditional pharmacovigilance. This broadened 
usage of crowdsourced data in sentiment analysis signifies its 
critical role in comprehending and navigating public sentiment 
during health-related crises.

Disaster management and response
The real-time nature of crowdsourced data enables rapid response 
to dynamic situations, mitigating the impacts of disasters. It 
leverages the collective intelligence and capabilities of diverse 
individuals, tapping into a wide range of knowledge and experi-
ences to offer a holistic view of disaster situations. Importantly, 
crowdsourcing democratizes disaster management by empower-
ing communities to contribute to response efforts, fostering resil-
ience at a grassroots level.

A number of applications and tools have been developed to 
harness the power of crowdsourcing in disaster management 
and response. For example, Ushahidi is an open-source platform 
designed to crowdsource crisis information, visualizing these 
data on a map to provide situational awareness during disaster 
events. Similarly, HOT uses crowdsourcing to generate geo-
graphic data, aiding relief organizations in their operations. 
During the 2010 earthquake in Haiti, Ushahidi was used to col-
lect and map incidents of collapsed buildings, trapped individu-
als, and medical emergencies. This allowed emergency services 
to prioritize their resources effectively [156]. Meanwhile, there 
was an immediate need for high-quality maps of the affected 
areas to aid in rescue and relief operations. The HOT used avail-
able satellite imagery to map the affected areas and a virtually 
blank map was transformed into a detailed spatial dataset in a 
short time. FloodCrowd is a UK-based citizen science project 
that crowdsources flood reports from the public. Using a simple 
online form, anyone can report flooding incidents, providing 
key details, such as the location, timing, and impact of the flood. 
The collected data are then used to improve the understanding 
and modeling of flood risks. Many other tools, such as Crisis 
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Cleanup and Safecast, also illustrate the transformative role of 
crowdsourcing in optimizing disaster management strategies 
and actions.

In addition to the tools above, researchers often use data from 
social media platforms (e.g., Twitter, Weibo, and Facebook) to 
gain situational awareness and improve disaster response [157]. 
The gathered data are analyzed using Geographical Information 
System (GIS) and natural language processing techniques to 
extract useful information such as sentiments, needs, and loca-
tions of affected individuals. For example, Ashktorab et al. [158] 
developed Tweedr, an architecture for collecting and analyz-
ing Twitter data to identify actionable information for disaster 
response. Tweedr was shown to effectively mine disaster- 
related information from the vast amount of data on Twitter. 
De Albuquerque et al. [159] proposed an approach for integrating 
social media data with authoritative data for improved disaster 
management. The authors demonstrated that social media could 
provide timely, geographically diverse information that comple-
ments traditional data sources. Wang et al. [160] examined the 
use of social media in managing flood emergencies in urban 
areas, focusing specifically on the 2012 Beijing rainstorm. They 
used data from Weibo, a popular Chinese microblogging site, to 
highlight the potential of social media in real-time information 
dissemination and public participation in flood management. To 
improve the quality of data available to emergency responders, 
Tien Nguyen et al. [161] developed a deep learning model to 
automatically filter out irrelevant images from social media dur-
ing crises. These studies illustrate the valuable insights that can 
be gleaned from social media data during disasters, from improv-
ing situational awareness to understanding public sentiment and 
aiding in disaster response coordination. However, these research-
ers also note the challenges, such as data validity and privacy 
concerns, that must be addressed when using such data.

Physical and social connectivity
The emerging “Web 2.0” and “Citizens as Sensors” represent a 
forward-thinking concept for leveraging the potential of crowd-
sourcing in the accumulation of digital imprints left by users of 
digital devices, capitalizing on the burgeoning trend of geopo-
sitioning technologies. Both passive and active data collection 
means have greatly facilitated our understanding of physical 
connectivity, quantified by human moving patterns. Passive data 
collection, for instance, comprises information acquired from 
sources such as mobile phone GPS [162,163], smart card trans-
actions [164,165], and wireless networks [166,167]. The spatial 
connections originating from these passive traces often exhibit 
high degrees of representation, due to their broad data penetra-
tion ratios [168]. This prevalence, nonetheless, prompts signifi-
cant apprehensions regarding privacy and confidentiality. An 
alternative that offers reduced intrusion and ameliorates privacy 
concerns incorporates spatial data gathered from social media 
platforms [169,170,171]. Given the active sharing characteristic 
inherent in these platforms, data extracted from social media 
sources are typically less abundant compared to passively col-
lected GPS locations from mobile devices. The physical inter-
linkages derived from the abovementioned sources have been 
deciphered and employed for a myriad of purposes. These 
include transportation planning [172,173], disease modeling 
[174,175,176], identification of urban functional zones [177,178], 
disaster management [179,180], and marketing and business 
development [181,182].

Transitioning to social connectivity, crowdsourcing data 
present a rich reservoir for understanding and analyzing social 
interactions and patterns. One principal source of social con-
nectivity data is online social media platforms, where user-
generated content can provide significant insights into social 
behavior and community dynamics. These platforms inherently 
encourage interaction, engagement, and social sharing, resulting 
in a plethora of records that, when analyzed, reveal a complex 
network of social relationships [183]. An in-depth examination 
of engagement indicators, encompassing likes, shares, com-
ments, and even the subtle nuances of language usage, offers a 
robust methodology for gauging sentiment [184], identifying 
social affiliations [185], and discovering shared interests [186]. 
Furthermore, the applicability of social media transcends the 
realm of direct social engagement. It serves as an invaluable tool 
in tracing the spread of information [187,188], monitoring soci-
etal attitudes [189,190], and understanding online communities 
[191]. The advent of location tagging introduces a new spatial 
facet to social connectivity, further enriching the depth and 
breadth of analytical possibilities.

Public safety and security
Traditional data that measure public safety and security are 
typically collected through government agencies, law enforce-
ment organizations, research institutions, and other formal 
sources [192]. For example, crime reports that compile crimes 
documented various criminal activities, incidences requiring 
immediate assistance collected from emergency call centers, 
and injuries resulting from incidents related to public safety 
from hospital records [192]. Those types of data are typically 
well-established and reliable. However, the data may not be able 
to document dynamic changes in the cases and may not be 
able to be shared with the public promptly. The development 
of crowdsourcing data complements these limitations through 
a rapid and cost-effective data collection and sharing process.

Mobile phone applications are popular tools to collect and 
share crowdsourcing data, which can affect public safety and 
security. For example, Citizen app, an application that keeps 
users updated about nearby crimes, accidents, and emergencies 
in real time, sources information from police scanners and 
application user reports. Based on a recent online survey, 87% 
of the participants expressed their willingness to use the Citizen 
app to report accidents, crime, and corruption [193]. Researchers 
also find that the Citizen app generates earlier notifications in 
traumatic cardiac arrest compared with standard Emergency 
Medical Service radio communications [194]. The out-of-
hospital information provided by the app may create a comple-
mentary source for the emergency department to make rapid 
resuscitative decisions for upcoming patients [194].

Crowdsourcing data can also be used to serve specific popu-
lations, for example, Stop AAPI Hate, a website that operates 
the nation’s largest reporting center tracking acts of hate against 
Asian Americans and Pacific Islanders (AAPI). The website was 
initiated in 2020 due to the rising of AAPI hate during the 
COVID-19 pandemic. From 2020 March 19 to 2021 December 
31, a total of 10,905 hate incidents against the AAPI community 
were reported through this website [195]. The data collected 
have been used in research and reports measuring the experi-
ence related to AAPI hate incidences [196,197,198]. The col-
lection of crowdsourcing data combating public safety and 
security is a global effort. In Egypt, HarassMap was initiated to 
encourage people to report instances of sexual harassment via 

D
ow

nloaded from
 https://spj.science.org on January 22, 2024

https://doi.org/10.34133/remotesensing.0105


Huang et al. 2024 | https://doi.org/10.34133/remotesensing.0105 12

texting or internet reporting [199]. The reports are then plotted 
on a map, highlighting hotspots of such activities. This initia-
tion has inspired people in other countries to establish similar 
systems, for example, Safe City in India, Harasstracker in 
Lebanon, and Biyoya in Bangladesh.

Although crowdsourcing has the benefit of collecting timely 
data through novel and cost-effective approaches, it is still subject 
to numerous concerns and challenges. For example, the informa-
tion collected might not be reliable as some of the information 
comes from unverified sources. Additionally, those systems might 
increase people’s anxiety about public safety [200]. Participants 
who reported using neighborhood apps perceived local crime 
rates as higher than those who do not use the apps, independent 
of actual crime rates [201]. For example, the Citizen app men-
tioned above was originally released as Vigilante, a banned appli-
cation in 2017, which encouraged users to develop a vigilante-style 
network to protect themselves from potential offenders before 
the police needed to intervene. The app has the potential to incite 
violence and put innocent people in danger. Citizens did not seem 
to have learned from previous experience but rather created a 
dangerous effort to seek an arsonist of a wildfire in Los Angeles’ 
Pacific Palisades neighborhood through app users [202]. Thus, 
regulation is needed to use crowdsourcing efforts legally and ethi-
cally to protect public safety and security.

Challenges in Crowdsourcing Earth and Human 
Observations

Data quality and accuracy
Crowdsourced data can vary significantly in quality and accu-
racy. Contributors might have different levels of expertise, com-
mitment, and access to high-quality recording devices. Data 
validation and quality control processes are essential but can 
be complex and resource-intensive [203].

Data quality is of paramount importance when discussing 
crowdsourced geoinformation data. This is because contribu-
tors vary in their levels of expertise, dedication, and access to 
high-quality recording devices. Furthermore, due to the ano-
nymity of crowdsourcing platforms, there is an inherent risk 
of vandalism [204]. Prior to utilizing crowdsourced data in 
experiments, applications, or projects, stakeholders typically 
seek to understand the quality of the data to a certain degree. 
Nevertheless, there are persistent challenges from various per-
spectives regarding data quality.

On the one hand, establishing appropriate criteria for quality 
assessment is challenging due to the evolving nature of crowd-
sourced data and the different application-specific requirements 
in terms of input data quality. These data might introduce novel 
types of information and geographic features that are not pres-
ent in authoritative databases, rendering the evaluation of such 
new data difficult. Existing research has proposed quality cri-
teria for crowdsourced data, which often encompass geometric, 
temporal, and positional accuracy, data completeness, logical 
consistency, and fitness for purpose [205]. However, delineating 
precise thresholds to categorize quality—such as distinguishing 
between high, medium, or low quality—is problematic, given 
the varying perceptions of quality across different domains.

On the other hand, executing quality assessments presents 
its own set of challenges. In many instances, reference data 
(typically sourced from authoritative or commercial databases) 
may not be readily available due to the prohibitive costs associ-
ated with acquisition, especially at a large scale. Even when such 

reference data are accessible, its utility in quality assessments 
is often limited due to its slower update frequency relative to 
crowdsourced data. While some might advocate for intrinsic 
quality assessment methods [206], the absence of standardized 
quality criteria and associated methodologies introduces ambi-
guity into the assessment process.

In addition, new kinds of crowdsourced data may have their 
own set of particularities that render currently established data 
quality assessment procedures and standards insufficient, pre-
senting another challenge. For example, researchers have iden-
tified that crowdsourced street-level imagery (see the “Urban 
planning and infrastructure” section) has a number of quality 
aspects that have not been foreseen in existing approaches to 
gauge the quality of crowdsourced geographic information and 
have been working on establishing a quality assessment frame-
work that is tailored for such form of data [207].

Data bias
Crowdsourced geospatial data inherently contain biases as it relies 
on voluntary contributions, leading to less credible inferences 
compared to conclusions drawn from a randomly sampled popu-
lation [208]. Biases can affect the reliability, representativeness, 
and usability of the data derived from various factors and sources. 
Common categories of biases encompass spatial biases, temporal 
biases, demographic biases, cognitive biases, and systematic biases 
[208,209,210,211,212]. Spatial biases in crowdsourced geospatial 
data occur as a result of the unequal geographical distribution of 
contributors or specific local characteristics of crowdsourcing 
tasks, causing certain regions or places to receive higher contribu-
tions due to factors such as popularity, population density, inter-
net accessibility, and task localization [213,214,215,216]. Temporal 
biases can arise when crowdsourcing tasks are limited to specific 
events or time frames, potentially distorting the comprehensive 
understanding of individuals’ characteristics, behaviors, or opin-
ions over time and resulting in biased insights or conclusions 
[217,218].

Beyond spatial and temporal considerations, demographic 
biases play a substantial role in influencing the representative-
ness of crowdsourcing participants concerning age, gender, 
education, socioeconomic status, culture, and other demo-
graphic attributes [212,219,220,221]. These biases—often over-
representation—tend to be more prevalent among young, male, 
well-educated, technologically literate, and affluent segments of 
the population [208,212,213,217,222,223], resulting in a lack of 
diversity and inclusivity in the participant pool and subse-
quently leading to an imbalance in perspectives and experiences. 
Additionally, other inherent biases, such as cognitive biases, 
derive from limitations in human cognitive processes, and sys-
tematic biases arise due to flaws in the data collection process, 
study design, or analysis methods. Both biases require attention 
when assessing the quality and representation of crowdsourcing 
geospatial data [224,225]. They can manifest in varying ways, 
impacting the responses of participants and the decision- making 
of researchers and decision-makers.

Different strategies have been explored to effectively miti-
gate and address these data bias challenges in crowdsourcing 
geospatial data: first, performing data preprocessing, reweight-
ing, or sensitivity analysis to reduce the impact of biases on 
downstream analysis or modelling [211,219]; second, combin-
ing crowdsourced data with authoritative geospatial sources to 
gain a more balanced view of the data [168,208,226]; third, 
designing tasks with clear guidelines and varying perspective 
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considerations, such as relying on long-term trends and unbi-
ased statements or questions [211,224]; fourth, encouraging a 
broad range of contributors with different demographic back-
grounds from different regions for inclusivity and diversity 
[220,227]; finally, implementing quality control measures dur-
ing the crowdsourcing process can help identify and filter out 
biased responses [225,228]. This can involve prescreening 
workers, incorporating validation questions, or using redun-
dancy to compare multiple worker responses.

Data privacy
Apart from inherent data biases, the use of crowdsourced data, 
particularly from social media or mobile devices, can raise data 
privacy concerns. One of the primary data privacy issues is loca-
tion privacy. Geospatial information often reveals precise details 
about individuals’ whereabouts, activities, behaviors, or even 
their home addresses. Without adequate safeguards, such data 
could be exploited by malicious actors to track or identify indi-
viduals, leading to potential risks related to personal safety and 
security [229,230]. Furthermore, crowdsourced geospatial data 
might inadvertently contain personal identifiers, such as user-
names or profile information, which could lead to the re- 
identification of individuals. Studies have shown that it is still 
possible to re-identify individuals through cross-referencing with 
external datasets [230,231,232]. This poses a significant challenge 
as it compromises the anonymity of contributors and exposes 
them to potential privacy breaches. Additionally, third-party 
access and sharing are also data privacy challenges of crowd-
sourcing platforms, such as research or commercial use. This 
raises concerns about how these entities handle the data and 
whether they adhere to privacy regulations. The lack of explicit 
consent for data sharing may lead to unexpected data usage, 
emphasizing the need for transparent data sharing policies and 
stringent agreements with third-party partners [233,234].

It is crucial for organizations and researchers to implement 
robust privacy measures, uphold ethical standards, and comply 
with relevant data protection regulations to ensure the confi-
dentiality and security of crowdsourced geospatial data while 
maximizing its potential for beneficial insights. Various tech-
niques have been proposed to avoid violating user privacy, aim-
ing to strike a balance between data utility and individual 
privacy, ensuring responsible data usage. Anonymization, aggre-
gation, and privacy-preserving methodologies are essential 
strategies to mitigate location privacy risks [231,235,236], spe-
cifically anonymizing the geospatial data by removing direct 
identifiers, such as names and direct details, aggregating data at 
higher spatial or temporal resolutions to enhance privacy by 
obscuring specific locations, and implementing clear and trans-
parent data sharing policies by explicating the consent mecha-
nism for contributors. To help protect the identity of participants 
and minimize the risk of re-identification, techniques like 
pseudonymization and data encryption can be employed by 
enabling secure computation on encrypted geospatial data 
[229,233]. Secure multi-party computation is also a promising 
approach that allows multiple parties to jointly analyze data 
without sharing raw information [237].

Legal and ethical issues
Using crowdsourced data inevitably raises legal and ethical issues 
due to the nature of the data, which is typically contributed by a 
diverse group of individuals. These issues include concerns about 
data ownership, intellectual property rights, and liability, which 

have been extensively discussed in the literature on citizen sci-
ence [238]. Unlike traditional data sources where ownership is 
often more straightforward, determining the ownership rights 
of crowdsourced data can be complex since there are usually no 
clear guidelines or agreements regarding ownership and usage 
rights. This ambiguity gives rise to concerns regarding privacy, 
intellectual property, and the potential exploitation of contribu-
tors’ data. Data scientists must navigate this ethical and legal 
landscape by establishing transparent protocols, consent mecha-
nisms, and fair compensation approaches to ensure that the rights 
of contributors are protected while harnessing the full potential 
of crowdsourced data for valuable insights and innovation.

More specifically, crowdsourced Earth observation data, 
such as OSM, require users to attribute the source of the data 
and share any derivative works under the same license [239]. 
It is crucial to understand and comply with the licensing terms 
when using OSM data to avoid legal repercussions. OSM has 
a strong community that follows specific guidelines and norms. 
Ethical considerations involve respecting the principles of the 
OSM community, such as refraining from vandalizing or mis-
representing data, giving proper credit to contributors, and 
collaborating with the community to improve the dataset. In 
contrast, the legal and ethical issues surrounding crowdsourced 
human observation data, such as tweets, are even more signifi-
cant. There is a growing need for universal guidelines address-
ing the ethics of social media research, particularly concerning 
the privacy and anonymity of social media users. Although 
social media data are often claimed to be anonymized, sharing 
such data via public repositories and platforms should involve 
discussions on obtaining consent and/or ethical approval for 
research purposes [240]. This is especially crucial for datasets 
containing user profile information, as these datasets can be 
potentially identifiable through cross-referencing data attri-
butes [10]. While adhering to data sharing regulations and the 
principles of reproducibility, it is important to approach the 
sharing of processed social media data via public repositories 
and platforms with caution and establish reproducible work-
flows that can be utilized by end-users without a coding 
background.

Sustainability of data collection
The sustainability of data collection in crowdsourcing initiatives 
can be a significant challenge, because it heavily relies on the 
active participation and engagement of volunteers. As noted 
by Newman et al. [241], the sustainability of such efforts can 
be compromised when volunteers lose interest, leading to a 
drop in data input, and consequently affecting the efficacy and 
validity of the gathered data.

Moreover, sustainability is also influenced by the nature of 
the community driving the project. The absence of ongoing 
community involvement can contribute to this dwindling inter-
est, leading to sporadic data collection that lacks consistency 
and continuity. According to Starbird and Palen [242], the effec-
tiveness and sustainability of crowdsourcing efforts, especially 
during crisis situations, can be significantly improved with the 
presence of dedicated coordinators who can motivate volun-
teers, manage and direct efforts, and ensure that data collection 
continues in an organized and systematic manner.

Institutional support can also play a crucial role in the long-
term sustainability of crowdsourcing initiatives. With the neces-
sary resources and funding, institutions can maintain motivation 
and engagement among volunteers through incentives, training, 
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and recognition of efforts. This can ensure the continued flow of 
data and enhance the sustainability of the project over time [243].

Therefore, sustainable crowdsourcing efforts, especially in 
terms of data collection, need strategic planning, community 
engagement, and strong institutional support. These factors 
can ensure the continuation of volunteer participation and data 
collection in prolonged periods, thus ensuring the effectiveness 
of crowdsourcing initiatives.

Data interpretation
The process of interpreting crowdsourced data, especially when 
employed for scientific research, is fraught with complexities 
attributable to the diverse nature of the data and the potential 
dearth of metadata. The task of extracting consequential insights 
from crowdsourced data, as applied to Earth and human obser-
vations, is underscored by the substantial challenge of data 
interpretation. Despite the surge in accessible information (e.g., 
OSM) and the evolution of sophisticated tools designed to man-
age these data (e.g., OSM Analytics Tool), the endeavor of 
unraveling the salient meaning and implicit subtleties within 
the data poses a demanding task.

The process of interpreting crowdsourced data necessitates a 
meticulous traverse through a multifarious landscape of infor-
mational noise [244,245]. Data acquisition, a composite process 
entailing the collection from an extensive range of sources, each 
varying in their level of expertise, precision, and consistency, often 
culminates in datasets marked by heightened complexity and 
diversity. This inherent heterogeneity, while advantageous to 
crowdsourcing, amplifies the task of isolating accurate, germane 
signals amidst an expanse of potentially discordant or erroneous 
data. The task of data interpretation is further intensified by the 
intrinsic subjectivity associated with human observations. This 
set of data, commonly influenced by personal biases [246], per-
ceptual variations [247], and undulating levels of comprehension 
and expressive proficiency among contributors [66], can exert 
considerable influence over the final output. The dearth of a 
robust system to temper these variables could elevate the likeli-
hood of data misinterpretation, potentially leading to skewed 
deductions and misplaced strategic decisions, thereby emphasiz-
ing the need for rigorous analytical approaches in the scientific 
processing and interpretation of crowdsourced data.

Addressing spatial and temporal variations is a critical 
aspect in the interpretation of crowdsourced data, particularly 
for earth and human observations. There can be notable fluc-
tuations in the quality and frequency of data across distinct 
geographical areas and over varying time periods, thereby 
presenting significant hurdles in synthesizing a holistic and 
globally representative interpretation [248,249]. These incon-
sistencies mandate thorough attention and the employment 
of advanced analytical methodologies to enable trustworthy 
interpretations. Moreover, the absence of uniform protocols 
for data validation and verification intensifies the complexities 
involved in data interpretation [104]. Yet, the formulation and 
execution of such protocols pose significant challenges, espe-
cially considering the characteristically decentralized and often 
anonymized nature of crowdsourcing initiatives.

Responding to these challenges necessitates the adoption of 
inventive and rigorous methodologies for data management, 
analysis, and interpretation. We argue that emphasis should be 
placed on the evolution of more advanced machine learning 
algorithms, capable of filtering and standardizing crowdsourced 
data. This should occur in tandem with the application of robust 

statistical approaches designed to address inherent biases and 
discrepancies within the data, aiming to rectify any embedded 
biases and discrepancies within the data, thereby ensuring that 
subsequent interpretations of the data retain their validity and 
accuracy.

Training and education
In the realm of crowdsourced data collection, it is crucial to 
provide proper training and guidelines to volunteers to ensure 
the quality and consistency of the collected data. Data collec-
tors, who are often volunteers, play a significant role in crowd-
sourcing initiatives by contributing their time and efforts to 
gather valuable information. However, without adequate train-
ing, the data collected may vary widely in terms of accuracy, 
completeness, and adherence to predefined standards. Data 
scientists should establish comprehensive training programs 
that equip volunteers with the necessary skills, knowledge, and 
understanding of the data collection process. This includes 
educating them about specific data requirements, providing 
clear instructions on data collection techniques, and familiar-
izing them with any relevant tools or technologies. An emerg-
ing trend in this domain is the use of robots to cope with data 
processing, such as the development of Roboturk, a crowd-
sourcing platform for robotic skill learning through imitation 
[250]. However, it should be noted that training robots involves 
different requirements and infrastructure compared to training 
human workers. Regardless of the subjects involved in data 
collection and manipulation, data scientists should be prepared 
for unexpected outcomes, as design choices in data collection 
can have a significant impact on the quality of crowdsourced 
user-generated content [251].

To achieve better results of training and education in data 
collection and manipulation, several key steps can be consid-
ered to ensure their effectiveness and the quality of the collected 
information. First, we need to begin by clearly defining the 
objectives and requirements of the data collection project. This 
includes specifying the type of data needed, the desired format, 
and any specific guidelines or standards to be followed. Second, 
there is a need to create comprehensive training materials that 
cover all aspects of the data collection process. These materials 
should be accessible, be easy to understand, and provide step-
by-step instructions, including visual aids, examples, and real-
world scenarios to facilitate learning. Third, it is important to 
offer opportunities for volunteers to gain hands-on experience 
by conducting practice data collection exercises. This can be 
done through simulated scenarios or by providing sample data-
sets for practice. Volunteers are encouraged to seek feedback 
and address any questions or concerns they may have during 
this practice phase. It is crucial to organize training sessions 
where volunteers can learn directly from data experts or expe-
rienced team members. These sessions can be conducted in 
person, through webinars, or using online platforms. Fourth, 
the introduction of data quality control measures is necessary 
to ensure the reliability and consistency of the collected data. 
This can involve periodic reviews, validation checks, or random 
audits of the data collected by volunteers. Meanwhile, we 
should provide feedback and constructive suggestions to help 
volunteers improve their data collection techniques. Fifth, it 
needs to have a supportive and collaborative environment 
where volunteers can share their experiences, ask questions, 
and learn from one another, through establishing communica-
tion channels, such as discussion forums or chat groups, where 
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volunteers can interact and seek guidance from data experts or 
project coordinators. Finally, offering regular training and sup-
port throughout the data collection process could ensure that 
volunteers receive regular updates and refresh sessions, and 
address any issues or challenges that arise during the process. By 
following these steps, data scientists can effectively train volun-
teers in collecting crowdsourced data, ensuring a high level of 
quality, consistency, and adherence to project requirements.

Future Directions and Pathways

Harnessing the power of the crowd: Expanding the 
scope of geospatial crowdsourcing
Navigating the evolving landscape of crowdsourcing geospatial 
data collection and analysis reveals transformative perspectives. 
These include harnessing the temporal dimension, leveraging 
advanced AI and machine learning, integrating IoT technolo-
gies with crowdsourcing, and prioritizing inclusivity, particu-
larly from underrepresented regions such as the Global South. 
We believe that the amalgamation of these insights is poised to 
significantly reshape our methodologies, enriching our under-
standing of the world through a comprehensive and representa-
tive approach to geospatial crowdsourcing. We illustrate these 
four perspectives in detail below.

Embracing the fourth dimension
Presently, a significant portion of crowdsourcing initiatives in 
geospatial data accumulation predominantly concentrates on 
static data. Nevertheless, prospective endeavors possess the 
capability to transcend conventional limitations by integrating 
the fourth dimension: time. By assimilating this temporal aspect 
more proficiently, geospatial crowdsourcing can expedite real-
time or near-real-time data collation and evaluation. This 
dynamic strategy has the potential to enhance our competency 
in cultivating a more exhaustive and nuanced comprehension 
of our environmental milieu. Furthermore, it capacitates timely 
reactions to emerging circumstances and challenges, thereby 
fostering more informed decision-making processes and proac-
tive initiatives. The incorporation of this temporal facet into 
geospatial crowdsourcing broadens the spectrum of potentiali-
ties and empowers us to harness the collective intelligence of 
the masses to stimulate consequential and impactful results.

Deepening the wisdom of crowds
The intensification of collective intelligence in geospatial crowd-
sourcing signifies a compelling venture to exploit avant-garde 
AI and machine learning methodologies. Utilization of these 
state-of-the-art technologies empowers the extraction of more 
intricate and sophisticated insights from the amassed data, 
thereby augmenting traditional analytical frameworks. AI and 
machine learning algorithms harbor the capacity to reveal latent 
patterns, associations, and tendencies inherent in geospatial 
data, facilitating an enhanced comprehension of our environ-
ment. These methodologies can supplement human potentiali-
ties by processing extensive quantities of data with expedience 
and efficiency, discerning intricate spatiotemporal patterns, and 
offering predictive analytics. By amplifying collective intel-
ligence through AI and machine learning, we can unfetter 
unprecedented layers of comprehension and catalyze innovative 
solutions in geospatial analysis. Ultimately, this contributes to 
the refinement of decision-making processes and promotes sus-
tainable development.

Seamless integration of IoT and crowdsourcing
The advent of the IoT offers an extraordinary opportunity for 
seamless integration with crowdsourcing initiatives. There lies 
tremendous potential in amalgamating sensor data emanating 
from diverse sources with crowdsourced information to furnish 
a more enriched, comprehensive depiction of our planet and 
human perceptions. This multifaceted integration not only 
optimizes the capacity to acquire extensive datasets but also 
enhances the depth of analysis by incorporating the vastness 
of sensor-based IoT data. This convergence of technologies 
empowers us to derive a finer granularity of insights and, ulti-
mately, a more robust understanding of the patterns and pro-
cesses shaping our world. Consequently, the synthesis of IoT 
and crowdsourcing technologies signifies an innovative stride 
toward more comprehensive and informed decision-making, 
fostering a proactive approach in our interactions with the 
environment.

Encouraging citizen science in the global south
Momentous efforts need to be marshaled to invigorate participa-
tion from areas that are currently underrepresented, particularly 
the Global South, within the sphere of crowdsourcing sciences. 
The adoption of an inclusive strategy for data collection propa-
gates the cultivation of a more balanced, representative, and 
comprehensive database. This approach ensures the capture of 
diverse perspectives, thereby enriching our comprehension of 
multifarious geospatial phenomena. The proactive integration 
of these regions provides a crucial conduit to bridge extant data 
voids while fostering knowledge sharing and capacity develop-
ment. Moreover, it engenders a sense of communal responsibility 
and global collaboration directed toward understanding and 
mitigating shared challenges. Hence, we believe that the advance-
ment of Citizen Science in the Global South marks a vital stride 
toward shaping a more equitable and insightful scientific terrain, 
profoundly contributing to the enhancement and inclusivity of 
our global data reservoir.

Pioneering a sustainable crowdsourcing ecosystem: 
From motivation to retention
In the contemporary digital landscape, the opportunity has 
emerged for citizens to significantly contribute to scientific 
advancements via crowdsourcing. For this potent instrument 
to realize its full potential and to make it sustainable, it is 
imperative to fortify several foundational elements. This entails 
constructing a unified community of dedicated citizen scien-
tists and crafting incentives that optimally balance motivation 
with genuine engagement. Equally important is the commit-
ment to inclusivity, ensuring that technological progress does 
not inadvertently result in disparities or omit specific groups. 
Central to this endeavor is comprehensive education, which 
guarantees that participants are not only adept at their tasks 
but also cognizant of the wider ramifications of their input. We 
illustrate these four perspectives in detail below.

Building a robust community of citizen scientists
Developing strong communities around these efforts can improve 
the long-term sustainability of data. Cultivating a robust com-
munity of engaged citizen scientists is imperative for the longevity 
of crowdsourcing initiatives [247]. Projects that foster a sense of 
collective purpose and belonging can promote prolonged contri-
butions from volunteers [252]. For instance, eBird’s passionate 
birder community and discussion forums create social incentives 
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that sustain participation [253]. Effective community-building 
entails establishing open communication channels, providing 
mentorship opportunities, and encouraging a participatory 
culture where volunteers feel valued in the scientific process 
[254]. Decentralizing leadership and facilitating collaborations 
via workshops and events also strengthens communal bonds 
[255]. Modular and personalized training resources further 
enhance sustainability by enabling volunteers to develop relevant 
skills while recognizing their contributions’ significance [256]. 
For example, CitSci.org’s adaptive courses on gathering field data 
provide tailored learning pathways based on needs and schedules, 
ensuring broad accessibility.

Incentivizing participation
Besides intrinsic motivations, crowdsourcing projects should 
explore supplementary incentives for attracting and retaining 
contributors [257]. These could include reputational rewards like 
leaderboards, milestone badges, and opportunities for public 
recognition [258]. More tangible benefits may include discounts 
on project merchandise, premium account features, or prize give-
aways for active participants [259]. However, caution is necessary 
to avoid over-gamifying participation or introducing dispropor-
tionate incentives that skew data [253]. The SciStarter Project 
Finder illustrates how participants can be incentivized via differ-
ent benefit categories (e.g., career development and social engage-
ment), displayed transparently alongside each project [260].

Bridging the digital divide
Bridging digital divides is also critical for pioneering an inclusive 
crowdsourcing ecosystem, as technological and socioeconomic 
barriers can perpetuate representation gaps [261]. For example, 
community-driven monitoring of local air quality using low-cost 
sensors revealed participation discrepancies along socioeconomic 
lines [262]. Targeted outreach, infrastructure development, and 
offline participation options can help engage marginalized com-
munities [263]. LOCALE facilitates neighborhood-level data col-
lection by providing local access to equipment and training [262]. 
Text and telephone reporting systems also expand access, as 
exemplified by Mosquito Alert’s multichannel disease surveillance 
[264]. Ensuring wide accessibility promotes representative data 
inputs unconstrained by demographic factors.

Education and training initiatives
Lastly, comprehensive education and training initiatives raise 
awareness of crowdsourcing’s significance while empowering 
quality contributions [265]. Interactive workshops with field 
components enhance skills and data literacy for diverse audi-
ences from students to policymakers [266]. For example, Public 
Lab’s community events build capacity for using low-cost tools 
for environmental monitoring through hands-on learning [267]. 
Online resources like tutorial videos, customized teaching mod-
ules, and webinars enable self-paced learning. Knowledge 
exchange forums allow participants to learn from each other 
[268], as exemplified by the Cornell Bird Academy fostering an 
educative birder community [265]. By imparting skills and com-
municating larger purposes, robust education sustains crowd-
sourcing participation while benefiting society.

From data to action: Translating crowdsourced 
geospatial data into real-world impact
There are several pathways toward translating the analytical 
results generated by crowdsourced geospatial data into real-world 

impact. First, crowdsourced data play a vital role in informing 
policy decisions and driving policy changes, particularly in the 
domains of environmental [262], health [203], and urban plan-
ning policies [269]. This role has become increasingly impor-
tant, especially following the outbreak of the COVID-19 
pandemic [10]. Additionally, crowdsourced data have immense 
potential in advancing scientific research and enabling scien-
tists to gather data at scales and resolutions that were previously 
unattainable. The abundance of crowdsourced earth observa-
tion data (e.g., OSM and Mapillary) and human observation 
data (e.g., sentiment measures derived from social media) with 
extensive temporal and spatial coverage facilitates the avail-
ability of global or nationwide time-series studies [190,221,248]. 
The analytical results, encompassing large spatial and temporal 
coverage, provide evidence that can be compared across coun-
tries and regions, offering policy implications for governments 
at various levels and international organizations.

Second, crowdsourced data contributed by individuals rep-
resent the intentions, ideas, and behavioral tendencies of the 
general public, often referred to as the “silent voice,” aiming 
to raise public awareness and encourage participation in citi-
zen science. In this sense, crowdsourced data promote a broader 
understanding of people’s awareness regarding public health 
crises (e.g., COVID-19 and vaccination), environmental changes 
(e.g., natural hazards), and post-pandemic economic recovery 
[190,270,271]. Specifically, prior to the occurrence of these 
events and crises, crowdsourced data can enhance emergency 
preparedness and response through early warning systems, 
improved resource allocation, and better coordination on the 
ground. After these disasters and crises, crowdsourced data 
have the potential to facilitate real-time action through data 
mapping and monitoring, such as crisis mapping during disas-
ters [272] or real-time air quality monitoring for public health 
advisories [273]. Furthermore, industries and businesses also 
incorporate crowdsourced geospatial data into their strategies 
to gain business insights and support decisions related to mar-
ket analysis [274], product development [275], and logistics 
planning [276].

Third, due to the aforementioned advantages of crowd-
sourced data, it has wide-ranging benefits and implications in 
empowering communities and individuals to advocate for their 
needs and protect their rights [277]. It also facilitates global 
collaboration to address global challenges, such as climate change 
or pandemic tracking, which cannot be effectively tackled by 
traditional survey data or other types of small data. In the realm 
of urban planning and governance, crowdsourced data enable 
urban planners and government officials to make informed deci-
sions regarding city development, transportation networks, 
and public infrastructure. It also enables the timely collection 
of feedback and suggestions from the general public through 
e-participation and e-governance channels [278]. The afore-
mentioned benefits associated with the use of crowdsourced 
data can be further extended through the development of 
tools and platforms that not only facilitate data collection but 
also make the data accessible and usable for decision-makers, 
communities, and individuals. This, in turn, helps bridge the 
gap between data and action, aligning with the goals of smart 
city initiatives and citizen science, which aim to create inclu-
sive cities with an improved quality of life and increased 
socioeconomic performance through data-driven approaches, 
intelligent resource management, and participatory gover-
nance [279].
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Conclusion
In this comprehensive review, we have dissected the multifaceted 
realm of crowdsourced geospatial data, illuminating its myriad 
applications, inherent challenges, and expansive potential in both 
human and Earth observations. Our exploration traverses the 
diverse domains of application, analyzes the nature and contribu-
tions of the data, and examines current data collection paradigms. 
In doing so, we map the present landscape of this burgeoning field 
and chart strategic directions essential for steering future research 
and applications across varied sectors.

The integration of time-sensitive data collection, AI, and IoT 
within geospatial crowdsourcing, coupled with an inclusive 
approach that encompasses underrepresented communities, 
fosters a detailed, real-time understanding of Earth's dynamics 
and human experiences, supported by a strong network of con-
tributors. The emphasis on the collection of time-sensitive data 
allows for the attainment of enhanced, real-time socioenviron-
mental insights. Furthermore, the integration of AI and machine 
learning technologies holds the promise of revealing more intri-
cate patterns and understandings within these accumulated 
data. The incorporation of IoT innovations in conjunction with 
crowdsourcing methodologies yields a more detailed and holis-
tic understanding of environments and societal interactions. It 
is critically important to include a broad range of perspectives, 
particularly from typically underrepresented communities, in 
these initiatives. This inclusivity not only broadens the scope 
and depth of the data gathered but also guarantees a representa-
tion that is truly global in scale. To maintain the viability and 
effectiveness of geospatial crowdsourcing, it is vital to cultivate 
a strong network of citizen scientists, incentivize participation 
effectively, and address technological disparities. This endeavor 
requires comprehensive educational initiatives and training 
programs that adequately prepare participants, thereby equip-
ping them with the necessary skills and knowledge.

The exceptional possibilities offered by crowdsourced geo-
spatial data in reshaping information environments are simul-
taneously promising and complex. This calls for our focus not 
only on its extraordinary potential but also on addressing its 
inherent, multifaceted challenges, necessitating a collaborative 
and interdisciplinary strategy for effective solutions. With an 
eye on real-world applicability, we aspire for this review to serve 
as a foundational reference, guiding both scholarly and prag-
matic pathways in upcoming explorations and applications 
within this evolving field.
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The transformation from authoritative to user-generated data landscapes has garnered considerable attention, notably
with the proliferation of crowdsourced geospatial data. Facilitated by advancements in digital technology and high-
speed communication, this paradigm shift has democratized data collection, obliterating traditional barriers between data
producers and users. While previous literature has compartmentalized this subject into distinct platforms and application
domains, this review offers a holistic examination of crowdsourced geospatial data. Employing a narrative review
approach due to the interdisciplinary nature of the topic, we investigate both human and Earth observations through
crowdsourced initiatives. This review categorizes the diverse applications of these data and rigorously examines specific
platforms and paradigms pertinent to data collection. Furthermore, it addresses salient challenges, encompassing data
quality, inherent biases, and ethical dimensions. We contend that this thorough analysis will serve as an invaluable
scholarly resource, encapsulating the current state-of-the-art in crowdsourced geospatial data, and offering strategic
directions for future interdisciplinary research and applications across various sectors.
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