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Abstract
Urban road networks (URNs) are ubiquitous and essential components of cities. Visually, they
present diverse patterns that embody latent planning principles. However, we still lack a global
insight into such patterns. In this paper, we propose a scalable deep learning-based frame-
work to automate accurate and multiscale classification of road network patterns in cities and
present a comprehensive global implementation on 144 major cities around the world, yielding
their multiscale pattern profiles and urban fabrics, highlighting both similarities and contrasts.
We observe significant disparities across continents and regions, particularly at larger scales.
We give particular attention to exploring inter-city pattern similarities with new metrics we
introduce, and uncover subgroups in each continent, unveiling the potential intercontinental
dissemination of planning paradigms. We establish four modes of intra-city spatial distribution
of patterns considering diversity and clustering. Notably, radial road networks are found to be
positively correlated with GDP per capita and negatively correlated with PM2.5 pollution. Our
global study provides a new perspective to understand the URN texture of cities, which helps
to understand the externalities of different road patterns and accordingly promote scientific and
sustainable solutions for urban development.

Keywords: Complex system, Urban science, Street morphology, Street network, Urban
analytics

1. Introduction

Urban Road Networks (URNs) are the fundamental infrastructure to support efficient and
sustainable urban systems (Maki, 1964; Ganin et al., 2017). They constitute the skeletons of
cities and maintain the urban metabolism, which comprises the movement of both human (Frank
et al., 2008; Jiang et al., 2009) and freight traffics (SteadieSeifi et al., 2014). Understanding the
characteristics of URNs is a perennial topic of interest in urban systems and planning (Bet-
tencourt and West, 2010; Barthélemy, 2011; Barthelemy, 2016). Since URNs are complex
systems, portraying their properties is never tractable, always requiring simplification (Lämmer

⇤Correspondence : filip@nus.edu.sg
Preprint submitted to Landscape and Urban Planning September 30, 2023

https://doi.org/10.1016/j.landurbplan.2023.104901
http://creativecommons.org/licenses/by-nc-nd/4.0/


et al., 2006; Strano et al., 2013; Marshall et al., 2018). In this regard, URNs are oftentimes
modeled by methods based on graph theories from the perspective of topology (Bafna, 2003;
Porta et al., 2006; Cardillo et al., 2006). Various relevant indicators are utilized to embed the
original URNs, such as degree of intersections (Kalapala et al., 2006; Masucci et al., 2009), cen-
trality (Crucitti et al., 2006; Kirkley et al., 2018), enclosed block shape (Louf and Barthelemy,
2014), and their combination (Boeing, 2020). While most urban scientists tend to perceive
URNs through mathematical methods and quantitative indicators, another, more intuitive and
visual-based perspective — the perceptive pattern of URNs — is oftentimes omitted. In this
context, a pattern refers to a type of shape that is used to lay out the URNs. It directly manifests
the geometry of URNs based on human senses. In the literature hitherto, one of the mainstream
taxonomies identifies four categories of street pattern, namely linear, tributary, radial, and grid-
iron (Marshall, 2004). Consequently, the interplay between road network patterns and urban
mobility (Marshall and Garrick, 2010; Pasha et al., 2016; Wu et al., 2021), social security (Mar-
shall and Garrick, 2011; Rifaat et al., 2011, 2012), and urban vitality (Chen et al., 2021) has
been reported in the literature, underscoring the importance of road network patterns in urban
systems. However, most preceding studies classify road network patterns manually and do so
only in particular geographies (Marshall and Garrick, 2011, 2010; Rifaat et al., 2011), which
restricts the scope of study area and thus hinders reliable and comprehensive research at a large
scale.

Bridging such gap necessitates developing automatic, scalable, and efficient methods to real-
ize a wide range of road network pattern classifications. A branch of existing methods harnesses
spatial features to recognize patterns. Based on the geometry of neighboring blocks, tailor-made
algorithms are available to detect gridiron patterns (Yang et al., 2010; Tian et al., 2016). Addi-
tionally, radial and linear patterns are also traceable using spatial features of junctions and road
segments (Xie and Levinson, 2007; Heinzle et al., 2007). However, these algorithms are only
trialed with limited local cases, which are not representative across many different geographies.
Their accuracy and stability in a broader scenario are still indeterminate. More recent methods
experience a two-step process (He et al., 2017; Wang et al., 2017; Han et al., 2020): establish-
ing a URN indicator set and whereby conducting the classification. Despite a unified way for
multiple patterns, the subjectively selected indicators usually oversimplify the intricate URNs,
which diminishes the accuracy (Wang et al., 2017). To overcome the obstacles faced by tradi-
tional methods, the literature explores to portray the urban form with deep learning technologies
(Wang et al., 2023; Li et al., 2023; Wu and Biljecki, 2023). A deep learning framework for road
network pattern classification is also proposed (Chen et al., 2021). It takes a graphical input
of URNs (Colored Road Hierarchical Diagram — CRHD), which maintains intrinsic geomet-
ric properties, and outputs the pattern. Skipping subjective feature engineering, the end-to-end
method enables identifying multiple patterns simultaneously with favorable performances.

In the era of big data, urban studies spanning large study areas are gaining momentum
to support more insightful and sustainable urban development (Sun et al., 2020; Lemoine-
Rodríguez et al., 2020; Boeing, 2022; Biljecki and Chow, 2022; Zhu et al., 2022; Tian et al.,
2022; Li et al., 2022; Debray et al., 2023). OpenStreetMap (OSM) lays the foundation for
global URN studies, which has been used to explore the history of the global URN sprawl
(Barrington-Leigh and Millard-Ball, 2020; Burghardt et al., 2022), and characterize the current
URNs around the world with indicator-based methods (Valencia et al., 2019; Boeing, 2022).
Nevertheless, the inventory, understanding, and comparison of road network patterns from the
visual perspective is still limited to a handful cities (Chen et al., 2021). Here, we substantially
expand the state of the art to 144 cities globally, acknowledging the diversity of the most popu-
lous cities from all six inhabited continents. These cities have been selected to have a balanced
representation of cities around the world with diverse morphological configurations and socioe-
conomic conditions. Besides dimensional advances among deep learning-based global URN
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studies, we also considerably ameliorate the road network pattern classification method. First,
the supported categories of road network patterns are enhanced from 4 to 6, with a more uni-
versal and computer legible taxonomy integrated by the commonly used ones (Snellen et al.,
2002; Marshall, 2004; Southworth and Ben-Joseph, 2013). Second, we consider the scale effect
(Openshaw, 1981) on road network patterns, regarding the neglected aspect that patterns vary
with scale. Instead of focusing on a monotonous scale, this study introduces a novel approach
of multiscale pattern classification that does not only capture how scale mutates the pattern,
but also demonstrates continental and dimensional disparities around the world. Furthermore,
leveraging the scale-induced variation of road network patterns, we raise the concept, ‘pattern
convolution’, which summarizes the patterns within cities and evaluates inter-city pattern simi-
larities. Based on that approach, we reveal subgroups of cities in each continent, clarifying both
internal homogeneity and cross-continental entanglement in road network patterns. We also
highlight the intra-city spatial distribution of road network patterns. Through quadrant analysis,
we conclude four paradigms of pattern distribution within a city in terms of both proportional
and spatial features. Both inter-city and intra-city relationships in road network patterns embody
histories of world urban development. We unveil synergies between road network patterns and
urban socioeconomic and environmental conditions. Our paper aspires to introduce a new per-
spective to interpret cities. It allows us to imitate human sense-based urban form classifications
on a wide scale. Our global and multiscale study fills the gap in the literature on such topics,
which supplements the fundamental materials for high-quality and sustainable urban develop-
ment and contributes to data-driven urban planning and other domains relying on morphological
studies.

2. Methods

2.1. Urban meshing and multiscale pattern classification
There are thousands of cities in the world that may be included in such analysis. To keep

the analysis feasible and within computational means, we choose major cities around the world
as study area, believing that the road network patterns of major cities can represent regional
characteristics. We use population as the key criterion to filter major cities. We also highlight
the geographic dispersion of selected cities to capture road network characteristics in more
regions of the world. Thus, major cities in each continent are filtered separately. After listing
the most populous cities on each continent, we further screen the cities considering the diversity
of age (new and old cities), locations (inland and coastal cities), and development stages (cities
in developed and developing countries), and finally get 144 cities of interest (Supplementary
Table 1). For every city of interest, the coordinates of the city center are derived from the World
Cities Database maintained by SimpleMaps, which accommodates an up-to-date authoritative
database of locations and populations for cities and towns worldwide. Based on a preliminary
analysis of the study boundary selection (Supplementary Note 3), we define a consistent study
boundary (i.e. a 15 km buffer from the city center) for all the cities, forming a uniform criterion
for inter-city comparisons. For multiscale analysis, the study area of each city is meshed into
regular grids on small, mid, and large scales with the resolution of 0.5 km, 1 km, and 2 km,
respectively. The mid-scale grids comply with the WorldPop 1 km-resolution grids (WorldPop,
2018). Based on the mid-scale grids (actual grids) , we generate small and large-scale grids
(virtual grids) with geometric operations. Specifically, each mid-scale grid is split into four
small-scale grids, while four adjacent mid-scale grids are combined into a large-scale grid.

We use the Colored Road Hierarchical Diagram (CRHD) to represent the feature of URNs
in a grid (Chen et al., 2021). CRHD is a kind of diagram that reflects road hierarchies and struc-
tures by lines with different colors and widths (see details in Supplementary Note 1.1). The
spatial data of URNs behind it is retrieved from the OpenStreetMap (OSM) database (Open-
StreetMap contributors, 2017), queried by the open source Python package OSMnx (Boeing,
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2017). CRHDs are generated through a standard workflow (Fig. 1a and Supplementary Note
1.1), which is optimized and released as one of our open source software. We adopt the de-
sign of “outreach” to incorporate the interactions with ambient road networks (Supplementary
Fig. 1a and Supplementary Note 1.2). The scope covered by a CRHD is referred to as the
‘receptive field’, and the URNs inside it are seen and classified by the model.

Figure 1: Workflow of urban meshing and multiscale road network pattern classification. a The workflow of
generating a CRHD from OpenStreetMap (see details in Supplementary Note 1.1). b Our taxonomy of road
network patterns with example CRHDs (1 km ⇥ 1 km). c The technical framework of multiscale road network
pattern classification for a city (exemplified with Singapore), which consists of three major steps: urban meshing,
CRHD operations, and multiscale pattern classification. Source of the raw street network data: (c) OpenStreetMap
contributors.

Thanks to the design of actual and virtual grids, we only need to glean mid-scale CRHDs
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as the basic materials, with which, CRHDs at other scales can be generated through CRHD
operations. We introduce stitching operation for upscaling the CRHD (see details in Supple-
mentary Note 1.3 and Supplementary Fig. 1c). It merges four adjacent mid-scale CRHDs into a
large-scale one, by truncating the redundant areas of the input diagrams and concatenating them
based on pixel-level matching at the edge. Inversely, subsampling operation splits a mid-scale
CRHD into four small-scale ones (see details in Supplementary Note 1.3 and Supplementary
Fig. 1d). CRHD operations considerably accelerate multiscale CRHD collection and the fol-
lowing classification.

Next, CRHDs at each scale are classified into different patterns. Considering the global
coverage of cities and the fit with our computational method, our pattern taxonomy is sup-
posed to be universally applicable and computer legible. Derived from various commonly
used taxonomies (Snellen et al., 2002; Marshall, 2004; Southworth and Ben-Joseph, 2013), ra-
dial, organic, gridiron, and no pattern have been proven to meet the above requirements (Chen
et al., 2021), We refer to the four categories, while for a more detailed classification, we di-
vide “no pattern” further into three distinctive ones (i.e. tributary, linear, and chaotic). As a
result, we obtain six categories with typical visual characteristics: gridiron — densely arranged
orthogonal road networks, organic — enclosed major roads with irregular shapes, radial —
major/secondary roads spreading out from a central point, tributary — unclosed dendritic ma-
jor/secondary roads, linear — single linear major/secondary road, and chaotic — road networks
lacking major/secondary roads or the aforementioned patterns. The quintessential CRHD for
each category is illustrated in Fig. 1b. To conclude, Fig. 1c demonstrates the overall workflow
of conducting multiple road network pattern classifications in a city.

2.2. Classification model and performance
ResNets (He et al., 2015, 2016) have been found to be an effective deep learning model

for road network pattern classification (Chen et al., 2021). We choose ResNet-34, which per-
forms the best among the ResNets family in our preliminary experiments, as the final model
architecture (see details in Supplementary Note. 1.4). The model are trained and tested with a
labeled dataset including 1,548 mid-scale CRHDs. CRHDs selected into the dataset must have
clear characteristics of one of the six categories and present minimum pattern mixture. Details
of training configurations and processes are available in Supplementary Note 2.1. As a classic
classification task, the model performance is evaluated with confusion matrix and ROC curves
(Supplementary Fig. 2a,b). The results indicate that our model achieves an promising average
precision (0.93), recall (0.92), and F1-score (0.92). It performs particularly well in recognizing
linear, chaotic, and organic URNs with the accuracy over 0.95, while performs slightly worse
for gridiron (0.84), radial (0.88), and tributary (0.88). An explanation for the relative drop in
accuracy for these categories is that, aside from their distinctive features, gridiron, radial, trib-
utary, and organic patterns also share some partial similarities that are difficult to completely
exclude from the dataset. Nevertheless, considering our model’s favorable overall performance
and consistent criteria for handling the difficult-to-distinguish cases, the flaw is quite acceptable
and should not significantly affect the results. We also validate the performance at other scales
through cross-scale experiments (Supplementary Note 2.2). Therefore, the model is reliable
enough for this study.

2.3. Pattern Diversity Index
Pattern Diversity Index (PDI) is defined to delineate the diversity of road network patterns

within a city. For a city, the larger the PDI value, the more dispersed and uniform the propor-
tion of different road network patterns. PDI is calculated by the formula of Shannon entropy
(Shannon, 1948) given the pattern proportions at a certain scale:
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PDI =�
n

Â
i=1

pi log pi (1)

where n denotes the total number of pattern categories in the city, and pi is the proportion of
the ith category. Mathematically, the minimal PDI is 0 when all the grids in the city belong to
an identical category. The maximal PDI is �ln(1/6) (⇡ 1.792) when the proportions of the six
categories are evenly distributed.

2.4. Neighborhood Similarity Index
Neighborhood Similarity Index (NSI) is proposed to quantify the level of pattern spatial

clustering in an area or a city. We refer to the widespread indicator of spatial autocorrelation
(Moran’s I) (Moran, 1950; Anselin, 1995), and extrapolate the definition of NSI as the similarity
level of road network patterns between proximal grids. Akin to spatial autocorrelation, NSI
has both global and local versions as well. Global NSI (GNSI) summarizes neighborhood
pattern similarities at the city level, which is measured by the quotient of the total number of
neighboring grid pairs with consistent patterns and the total number of neighboring grid pairs in
the city (Eq. 2). Local NSI (LNSI) reflects the level of pattern similarity for a specific grid cell,
which is measured by the quotient of the number of neighboring grids with the same pattern
as the grid and the total number of neighbors of the grid (Eq. 3). The neighbors of a grid are
determined by Queen’s contiguity.

Local NSI(g) =
Â

n2N(g)
I(p(g) = p(n))

|N(g)| (2)

Global NSI(c) =
Â

g2G(c)
Â

n2N(g)
I(p(g) = p(n))

Â
g2G(c)

|N(g)| (3)

where g denotes a grid, N(g) is the neighbor set of grid g, | · | denotes the number of elements
in set ·, and n represents a neighbor. p(·) represents the road network pattern of grid ·. I(·) is
the indicator function which returns 1 if condition · is true and returns 0 otherwise. c is a city
and G(c) denotes the grid set of city c.

3. Results

3.1. Scale effect on road network patterns
The road network pattern in a fixed location and time can vary at different scales of receptive

fields. Thus, we firstly conduct some experiments to investigate the scale effect on road network
patterns. Note that, instead of distinguishing road network patterns of streets with different
service levels (Marshall, 2004; Marshall and Garrick, 2010, 2011), which is characterized by
a dramatic scale shift from the neighborhood to the citywide level, we focus on road network
patterns formed by all road grades. In our case, the scale effect can be portrayed by the scale-
induced variation in predictive probabilities (Fig. 2a). Specifically, we regard the mid-scale (1
km radius) road network pattern as the prior category of a location classified at the original
scale. Then we classify the pattern of the same location for multiple times with varying radii
and record the variation of predictive probabilities for each category. The average variation of
probabilities across the test set for each prior category is shown in Fig. 2b. The scale effect on
different prior categories appears to be heterogeneous. Gridiron pattern becomes more evident
during upscaling, which is unique compared with the counterparts. For patterns with less major
road components such as linear and chaotic, downscaling casts an insignificant impact on their
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Figure 2: Scale effect on road network patterns. a The mechanism for evaluating the scale effect on road network
patterns. b Scale-induced variations of predictive probabilities for each prior category. c Global pattern proportions
at different scales. The global proportion of a pattern is the amount of grids pertaining to the pattern divided by
the total amount of grids of all cities. d Global cross-scale mapping relations. There are two layers of mapping
relations among the three scales, which are visualized by the Sankey diagram. The height of a node (i.e. pattern)
denotes its proportion at the scale, while the width of a link indicates the proportion of aggregated cross-scale
mapping relations from the larger scale to the smaller one (see detailed statistics in Supplementary Table 5).

recognition. However, when more adjacent streets are encompassed into the receptive field due
to upscaling, these two patterns evolve into more complex patterns (linear towards tributary and
organic, and chaotic towards linear and tributary), indicating a presumable transferring chain
from simple to complex patterns. Conversely, we can also observe the inverse conversion from
organic and tributary to those simpler patterns when the scale shrinks. As a relatively isolated
case, radial tends to transfer towards organic with more newly formed road circuits during
upscaling, while it remains robust in the opposite direction.

Following the framework in Fig. 1c, we adopt multiscale road network pattern classifica-
tions in our cities of interest. The results uncover heterogeneities in proportions of patterns at
different scales (Fig. 2c). At small scale, 79% of URNs within our study area are of simple pat-
tern such as tributary, linear, and chaotic. When the scale expands to mid and large, the shares
of linear and chaotic URNs shrink dramatically, which are mainly replaced by organic and ra-
dial URNs. Besides, tributary is a widespread pattern with a considerable proportion (around a
quarter) at all scales. Although not as prevailing as tributary, gridiron is also a common pattern
that occupies over 10% of the urban area regardless of the scale.

We leverage mapping relations across the scales to explore how larger-scale patterns are
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constituted by smaller-scale patterns (Fig. 2d). We observe three general constitutive types:
isotropic, semi-isotropic, and anisotropic. If links running though the same category are contin-
uously strong across the scales, it indicates that the pattern is self-repetitive, which we consider
as isotropic. Gridiron and chaotic are typical isotropic patterns. In contrast, linear and radial
exhibit the opposite feature, which is anisotropic. URNs of these categories are oftentimes
composed of various subpatterns. For example, linear is mainly made of linear and chaotic
subnetworks, while radial is associated with even more subpatterns. Another constitutive type
that lies between is semi-isotropic, represented by tributary and organic. Semi-isotropic pat-
terns exhibit an isotropic property from large to mid scale but transition into anisotropic from
mid to scale scale. For instance, large-scale tributary URNs are mainly constituted by mid-scale
tributary URNs, but the subpatterns of mid-scale tributary URNs become far more diverse.

3.2. Continental and dimensional comparison of dominant patterns
After studying the general proportion of road network patterns over the globe, we explore

the similarities and disparities of multiscale patterns across different cities and regions. For each
city, the pattern that accounts for the largest proportion at a scale is considered as its dominant
pattern at that scale, and the proportion of the dominant pattern (PDP) reflects the significance
of dominance. We present global landscapes of multiscale pattern dominance.

At small scale, the distribution of dominant patterns among cities appears to be somewhat
monotonous (Fig. 3a), with over half (58%) of the cities dominated by chaotic (colored by pur-
ple). Most of these cities are located in South America, Europe, and especially Africa where all
the cities are dominated by chaotic (Fig. 3b). It is noted that Chinese cities are primarily dom-
inated by linear URNs, while most North American cities exhibit gridiron-dominant. At small
scale, the receptive field of a CRHD covers several contiguous blocks, and most contributors
of the pattern serve neighborhood-level traffics. Local urban areas without sufficient neighbor-
hood roads tend to be classified as chaotic. Thus, for chaotic-dominant cities, the higher their
PDPs, the more likely they are deficient in neighborhood connectors. Meanwhile, for cities
dominated by other patterns, those with more complex dominant patterns tend to possess more
adequate neighborhood connectors. The observation that all leading gridiron-dominated cities
come from North America (Fig. 3c) uncovers the advantage of North American cities in neigh-
borhood mobility. Many other developed Western cities, headed by London, Toronto and Paris,
show the dominance of less complex pattern, i.e. tributary. Chinese cities occupy high-ranking
positions of the linear pattern. The leading chaotic-dominated cities are mostly from the under-
developed world. To some degree, the small-scale dominant patterns are related to the status of
urbanization around the world.

When the scale shifts from small to mid, visible changes occur on the distribution map
(Fig. 3d). At middle scale, considering the existence of outreaches, a few regional connectors
become contributory to the pattern, together with the neighborhood roads. As a result, some
chaotic areas at small scale are supplemented by the surrounding URNs and present clear pat-
terns. In total, 72% of cities of interest exhibit dominance of clear pattern at mid scale (Fig. 3e),
while the rate at small scale is only 42%. Tributary becomes the most prevailing dominant
pattern around the world, taking over the position of chaotic. The conversion is particularly sig-
nificant in Europe, where 20 out of the 34 small-scale chaotic-dominant cities become pattern-
dominant at mid scale. Exceptionally, the two largest cities, London and Paris, are dominated
by organic. It can be attributed to their denser road networks and larger downtown areas with
abundant road infrastructures. The majority of Chinese cities are also tributary-dominant at mid
scale. Similarly, major eastern coastal cities, such as Hangzhou and Shanghai, have more or-
ganic URNs than other cities in China. Regarding organic dominance, Mexico City and Tehran
rank as the top 2 cities (Fig. 3f). The preference to gridiron in North America preserves at mid
scale, with U.S. cities sweeping the top 5 positions of gridiron PDP. Particularly, the gridiron
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Figure 3: Continental and dimensional heterogeneities of dominant patterns. Distribution of cities with dominant
patterns and proportions of the dominant pattern (PDPs) at different scales: a small, d mid, and g large. Each
point on the world map represents a city whose color and size denote the dominant pattern and the PDP of the city,
respectively. The larger the point, the higher the proportion of the dominant category. Cities with PDP above 0.5
are labeled with their names. PDP values for individual cities at all scales could be found in Supplementary Table
6. Zoomed-in maps for regions with dense cities of interest are available in Supplementary Fig. 4. The number of
cities of each dominant pattern group for each continent at different scales: b small, d mid, and f large. c, f, and i
display cities with the top 5 PDP in each dominant pattern group. In some cases, the number of cities dominated
by some patterns is less than five.
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PDPs of Phoenix and Miami grow dramatically from small scale. In contrast, cities on the East
Coast of the U.S. are dominated by tributary, but their PDPs are basically below 0.35, indicating
a considerable mixture of different patterns. Note that chaotic remains the primary pattern for
South American and African cities, although some cities such as Johannesburg and Lima are no
longer in the list. The dominance of linear and radial is relatively scarce at mid scale, with only
three cities falling into these groups with low PDPs.

At large scale, regional URNs become the principal determinants of road network patterns,
diminishing the impact of small chaotic areas on the overall pattern. The intercontinental dis-
parity in patterns is the most significant at this scale. Geographically, we identify four major
clusters with distinct dominant patterns (Fig. 3g), including East Asia, Europe, North America,
and South America & Africa, respectively. The pattern commonality witnessed in China at
smaller scales extends to other parts of East Asia, where most cities are organic-dominant. This
cluster includes large East Asian metropolises (e.g. Shanghai, Hangzhou, Seoul, etc.), as well as
some Southeast Asian cities (Singapore and Manila) which are influenced by Chinese culture.
In Europe, most cities are characterized by a tributary dominance, with a few exceptions such
as London and Paris. The prevalence of tributary is consistent across most of Europe and even
spreads to Australia, which shares similar cultural roots. For North American cities (mainly
those from the U.S. and Canada), gridiron is unsurprisingly the predominant pattern at large
scale (Fig. 3h). Compared with mid scale, most cities on the East Coast of the U.S. transfer
from the dominance of tributary to gridiron, resulting in a more unified gridiron dominance in
the continent. Over 90% of the large-scale URNs in Chicago are gridiron, followed by Seattle
and Phoenix (Fig. 3i). In the last cluster, half of the cities in South America and Africa are dom-
inated by chaotic. Some cities are chaotic-prevalent across all scales. This could be attributed
not only to the possible underdevelopment of road infrastructures, but also to the smaller urban
area resulting from the lagged urban expansion behind urban population growth in these con-
tinents (Sun et al., 2020). With a consistent study boundary for all cities, smaller urban areas
entail the inclusion of less urban suburbs into account, leading to biases in the proportion of
chaotic URNs.

3.3. Panoramic pattern profile and inter-city similarity
The pattern dominance reflects the majority of road network patterns in a city, but overlooks

the composition of other patterns. To provide a comprehensive view of multiscale road net-
work patterns, we utilize rose diagrams to visualize continental profiles (Fig. 4a), which reveal
additional findings that may be overshadowed by the dominant pattern analysis. For example,
Africa and South America are akin in the dominance pattern (mainly chaotic). However, the
profiles indicate that tributary is the secondary pattern in Africa at all scales, while organic is
more prevailing in South America, especially at large scale. Globally, radial is found to be the
rarest pattern regardless of scales and continents. Howver, it is a distinct pattern that should
not be overlooked, and it may be present in core districts of cities such as London and Paris.
Meanwhile, some findings are reinforced by the profiles. For example, tributary and organic
appear to be the principal components of the urban fabric in Asia. In North America, signifi-
cant dominance of gridiron pattern is observed at all scales, confirming a well-known fact but
hitherto not established through such approach.

Besides the intuitive visualization of pattern profiles, we also use summary indicators to
encapsulate the characteristics. Supplementing the dominant pattern and PDP, we introduce
Pattern Diversity Index (PDI) to quantify the diversity of patterns in a city. A larger PDI value
implies a more diverse combination of road network patterns in the city, and vice-versa. For all
the cities, PDIs are calculated independently at each scale. In general, road network patterns
exhibit the highest degree of diversity at mid scale (median PDI = 1.51), compared with that
of small scale (median PDI = 1.41) and large scale (median PDI = 1.47). To understand the

10



Figure 4: Panoramic pattern profiles and pattern diversities. a Continental panoramic profiles of road network
patterns, presented by rose diagrams indicating the continentally average pattern proportions at every scale. To
explain the abbreviated annotations, the character before the dash denotes the scale (small as S, mid as M, and large
as L), while the one after the dash denotes the pattern (gridiron as G, linear as L, chaotic as C, organic as O, radial
as R, tributary as T). b Pairwise correlations among the PDIs at different scales measured by Pearson correlation
coefficients (r). c Box-plots showing the varying distributions of PDIs across the scales in each continent. PDI
values for individual cities at all scales could be found in Supplementary Table 6.

cross-scale association of pattern diversity, we examine the pairwise correlations among the
PDIs at multiple scales (Fig. 4b). There is a strong synergy between the mid-scale and large-
scale PDIs (r = 0.82), which is followed by the moderate correlation between small-scale and
mid-scale PDIs (r = 0.50). However, the small-large correlation (r = 0.02) is not significant.
It hints that the interplay of pattern diversity between contiguous scales is more prominent
than that between separate scales. Moreover, the greater uncertainty of patterns at small scale
presumably weakens the association between small-scale PDI and its counterparts.

The PDI distributions of cities on each continent and the variations induced by scale are
illustrated in (Fig. 4c). For Africa, the small-scale PDIs are significantly smaller than the rest of
the world. It may be due to the outstanding proportion of chaotic URNs. As the scale increases,
their larger-scale PDIs approach the global average level. Similarly, Australia and Europe also
present lower pattern diversity at small scale. However, their variances within the continent are
less notable than Africa. London and Paris stand out as outliers with considerably lower PDIs at
mid and large scale within Europe again. In contrast, North America exhibits an opposite trend
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regarding the variation in PDI distributions across different scales. Generally, North American
cities have the least diverse road network patterns at large scale, in accordance with their high
gridiron PDPs (Fig. 3i). In addition, when projecting the PDIs onto maps, disparities within the
continents become evident (Supplementary Fig. 5). In North America, coastal cities are more
diversely patterned than the inland ones. In Asia, the pattern diversity of Chinese cities keeps
low at all scales, while South and Southeast Asian cities surpass the median level. These two
groups of cities strike a balance, resulting in a relatively neutral pattern diversity statistics in
Asia.

Figure 5: Pattern convolution and inter-city pattern similarity. a The conceptual and schematic process of pattern
convolution. The method refers to the architecture of a naive inception module (Szegedy et al., 2015), where
multiscale CRHDs correspond to the kernels with different sizes (or receptive fields) and pattern maps resemble the
feature maps, which are flattened and concatenated by proportion calculation at the next stage. The obtained pattern
proportions serve as an embedding of city-level URN characteristics. b Inter-city pattern similarity matrix. The
inter-city pattern similarity is gauged by the normalized cosine similarity (0-1) between their pattern proportions.
The matrix here is a concise version that briefly shows the subgroups (blue squares on the diagonal, labeled in
alphabet sequence on the right) within each continent (Australia only has one subgroup so it is not annotated by
letters). Only the cells with the similarity score above the median (0.47) are visualized. The high-resolution matrix
with more descriptions is available in Supplementary Fig. 6. c Typical cities in different subgroups with their top
10 similar cities (ranked by similarity scores). We use different colors to mark the continents that the similar cities
come from.

Now that we have obtained the multiscale pattern proportions of our cities of interest, we
continue to explore the inter-city similarities. Our framework of multiscale pattern classifica-
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tion (Fig. 1c) could be seen as a convolution process acting on meshed cities. We term the
process ‘pattern convolution’ (Fig. 5a), which encodes road network patterns within a city into
pattern proportions. Using these 18-dimensional vectors, we evaluate the inter-city similar-
ity and obtain a 144 ⇥ 144 pattern similarity matrix (Fig. 5b). This matrix divides cities into
subgroups in each continent, and also reveals intercontinental associations. Totally, thirteen
subgroups are detected across the six continents. To give a succinct but representative inter-
pretation of the results, we pick out six typical subgroups and a representative city from each
subgroup respectively, along with their top 10 most similar cities worldwide (Fig. 5c). Our first
observation is that most Chinese cities form a subgroup themselves (Asia (a)). In this group,
we could find Shanghai, which is probably the Chinese city bearing the most western heritage.
However, its road network patterns are more identical to other Chinese cities. Singapore, as a
city influenced by Chinese culture, is also found in this subgroup. In contrast, Tokyo in Japan
pertains to another subgroup in Asia (Asia (c)), which shows evident connections with western
cities. This subgroup also includes other cities linked closer to the west, such as Osaka, Seoul,
and Istanbul. In Europe, cities seem to be partitioned in terms of their international influence
in the history. Cities in Europe (b), represented by Brussels, exhibit strong internal similarity
with most European cities, except for those dominated by chaotic (Europe (a)). It is interesting
that Europe (b) turns out to resemble Asia (a) moderately, indicating a potential entanglement
of street patterns between the oldest and newest urbanized area in the world. Europe (c) con-
sists of European cities with greater international influence, such as London, Paris, and Madrid.
These cities take a role in the world colonial history, and exert profound influence on relevant
regions. London, as a typical example, shares remarkably similar road network patterns with
cities in Asia, Australia, South America, and North America. North America (a) is another sub-
group characterized by general homogeneity within the continent. Cities in this subgroup are
mostly gridiron-dominated cities in the U.S. and Canada. Furthermore, the close morphological
relationship between Australian and European cities is verified again, considering that 8 out of
10 most similar cities to Sydney are in Europe. Sydney is also a suitable case for investigating
the effect of topography on inter-city pattern similarities. It is characterized by an organic city
core intermingled with a few gridiron or radial patterns and broad tributary residential zones.
One typical topography is a broad waterbody (Sydney Harbor) near the city center, which is
classified as chaotic. The cities that are most similar to Sydney, as identified by our method,
not only share analogous road network patterns. Some of them even have similar topographic
conditions (e.g. Hamburg and Toronto). This finding suggests that the road network patterns of
some cities may be shaped by a combination of cultural and topographical influences, and our
method can capture this information to some extent.

3.4. Intra-city spatial distribution of road network patterns
Intra-city spatial distribution of road network patterns is also an interesting topic to inves-

tigate. For simplicity, we concentrate on mid-scale patterns in this section. We emphasize the
spatial clustering of road network patterns, considering that spatial clusters of different urban
forms could reflect urban histories and planning ordinances (Ortman et al., 2014; Xue et al.,
2022). We propose a indicator, Neighborhood Similarity Index (NSI), to quantify the level of
pattern clustering in a city or a local area, using global NSI (GNSI) and local NSI (LNSI),
respectively. In Fig. 6a, we illustrate the distribution of cities with mid-scale GNSIs globally.
European cities constitute a geographic group with a low-level pattern clustering. This group
also includes the cities on the East Coast of North and South America, Southeast Asia, and
Australia, which happen to be the major European colonial territories in and before the 19th
century. It supports the transplant of western-style urban form in colonial urban development
(King, 2012). Cities with high GNSIs are subject to different indigenous conditions. Compared
with the earlier built cities on the east coast, U.S. Midwest cities have more regular and contin-
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uous URNs under the zoning ordinance enacted in the early 20th century (Whittemore, 2012).
Besides, since most urban areas in China are developed in post-reform period with corporate
planning paradigms (Ma, 2002; Wu et al., 2006), their road network patterns are more uniform.
In Africa, the high GNSIs can root from the large number of unbuilt suburbs within the study
boundary.

Figure 6: Modes of intra-city spatial distributions of road network patterns. a The distribution of cities with mid-
scale GNSIs. The color of the point indicates the absolute value of GNSI, while the size of the point represents
the level of deviation from the median. GNSIs for individual cities could be found in Supplementary Table 6. b
Scatter-plot between PDIs and GNSIs for cities of interest. The color of the point indicates the dominant pattern
of the city. The red dashed lines mark the median of each axis, which divide the feature space into four quadrants:
namely High-High (HH), Low-High(LH), Low-Low (LL), and High-Low (HL). c Bars indicate the number of
cities with different dominant patterns in each quadrant, while the blue line is the total amount of cities of interest
in each quadrant. d PDI distribution density curves of tributary-dominated Chinese and non-Chinese cities. The
red dashed line indicates the median PDI of all cities of interest.

To integrate both proportional and spatial knowledge, we conduct a cross-analysis among
the pattern indicators. We preliminarily investigate the distributions of individual indicators
and their pairwise correlations (Supplementary Fig. 7). PDI and PDP follow a unimodal dis-
tribution (skew normal distribution), while GNSI follows a multimodal distribution, implying
different modes of pattern clustering among the cities. As expected, PDP and PDI have a strong
negative correlation (r = -0.88) because of their shared reflection on pattern proportions. Al-
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though GNSI is also partly associated with pattern proportions, its spatial characterization is
indispensible. Thus, we choose the indicator less correlated with GNSI — PDI, as the final
proxy of proportional features. Consequently, we disperse the cities into the feature space de-
fined by PDI and GNSI (Fig. 6b). The space is partitioned into four quadrants by the median
of each coordinate. An immediate finding is that most cities fall in the LH and HL quadrants,
which conforms the overall trend that rising pattern diversity reduces the likelihood of pattern
clustering. Nevertheless, some cities still lie in the rest two quadrants.

Some potential relationships between quadrant groups and dominant patterns are observed.
Over 90% of tributary-dominated cities fall in the LH and HL groups with a higher concentra-
tion in the latter (Fig. 6c). We notice that cities in these two groups actually belong to distinct
regions. Tributary-dominated cities in the LH group mostly come from China, while the major-
ity of those in the HL group do not. The distinction is evident in their PDI distribution density
curves (Fig. 6d), which are well separated by the median PDI of all cities. It reminds us that
although we perceive similarities between Chinese cities and a subgroup of European cities
through pattern convolution, there are still disparities in their spatial distributions of patterns.
Tributary URNs are more prevalent in Chinese cities than in European ones. We also find that
25 out of 40 chaotic-dominated cities belong to the LH group, and over half of the gridiron-
dominated cities is in the same group. These findings stress the necessity of considering spatial
perspectives when interpreting street patterns of cities.

Figure 7: Road network pattern and LNSI maps for representative cities in each quadrant.

Fig. 7 displays the pattern and LNSI map of a representative city from each quadrant (more
example cities available in Supplementary Fig. 8). LNSIs successfully capture the spatial clus-
ters of road network patterns in cities. As an example high in both pattern diversity and clus-
tering (HH), Los Angeles contains multiple spatial clusters with different patterns. The organic
cluster in the southeast is the early settlement before the enactment of the zoning ordinance
(Whittemore, 2012), while the gridiron clusters in the mid and south are built afterwards. In
comparison, LH cities have less diverse patterns and thus embody a higher level of neighbor-
hood similarity. Chicago is a typical LH city almost entirely covered by gridiron URNs, with
the exception of the canal areas. Similar features also present in cities dominated by other pat-
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terns such as organic (Mexico City), tributary (Toronto) (Supplementary Fig. 8). In LL cities,
the dominant patterns also occupy a large proportion of URNs, but they are not fully gathered.
For instance, in Paris, organic is the dominant pattern, but radial URNs scattered are among
the organic ones, lowering down both the GNSI and LNSI of the city. Lastly, HL cities (e.g.
Madrid) show a limited pattern clustering similar to LL cities. However, the difference is that
they bear a blending of manifold patterns within the city.

3.4.1. Synergy with urban socioeconomic and environmental conditions
Road networks serve as the fundamental infrastructure for urban socioeconomic activities.

Their patterns may affect the efficiency of urban systems, thereby being potentially related to
socioeconomic and environmental conditions. To simply verify this effect with our results, we
conduct some straightforward correlation analyses. Due to the lack of a global database for city
economic indicators (e.g. GDP, GNI, etc.), we leverage country-level GDP, GDP per capita,
and GNI per capita from World Bank as proxies. The city-level socioeconomic vitality is re-
flected by the average PP-VIIRS-like nighttime light (NTL) brightness in 2020 (Chen et al.,
2020). Population growth are measured by the growth rate of population estimated by World-
Pop within the 15 km city boundary from 2010 to 2020. In addition, we also account for the
negative environmental externalities of cities with annual PM2.5 pollution data from WHO Air
Quality Database. To make the investigation concise and clear, we use the pattern indicators
at the most representative scale (mid scale) to represent city-level road network patterns, and
obtain the Pearson correlation matrix between the pattern indicators and the aforementioned
socioeconomic and environmental indicators (Supplementary Table 7).

The degree of economic development, as measured by GDP per capita and GNI per capita,
presents a significant positive correlation with the proportion of gridiron and radial URNs
(r>0.4, p<0.05). However, the impact of the proportion of gridiron URNs weakens if we
exclude the U.S. cities characterized by gridiron-dominated URNs and developed economies,
while the positive correlation remains for radial (Supplementary Table 8). Gridiron and ra-
dial URNs often signifies greater investment in road network planning and construction, which
is expected to improve urban mobility and promote economic development. The finding also
suggests that gridiron road network may not be a general planning paradigm for achieving eco-
nomic prosperity outside the U.S. Radial URNs show more consistent ties to more developed
economies. In contrast, the shortage of systematically planned road networks may symbolize
and exacerbate economic underdevelopment, given that the proportions of linear and chaotic
URNs are negatively correlated with the economic indicators (r<-0.35, p<0.05). Cities with
higher GDP/GNI per capita are correlated with a more mixed spatial distribution of road net-
work patterns, indicated by a smaller GNSI).

Cities with a higher proportion of gridiron, radial, and organic URNs are associated with
greater average NTL brightness than those with more tributary, linear, and chaotic URNs. Since
NTL brightness is a common proxy of economic vitality, the findings reinforce the potential
connection between well-established URNs and advanced economies reflected by economic
indicators.

Another observation is that a higher proportion of organic (r=0.454, p<0.05) and radial
(r=0.242, p<0.05) URNs is associated with more population. The positive correlation remains
significant (organic: r=0.469, p<0.05; radial: r=0.334, p<0.05) even when excluding all the
Chinese cities, which generally have both more organic URNs and population (Supplemen-
tary Table 9). This indicates that organic may be conducive to accommodating larger popula-
tions. Besides, population growth is positively correlated with the proportion of chaotic URNs
(r=0.202, p<0.05), indicating that cities retaining more areas with irregular URNs (e.g. urban
villages and slums) may experience faster population growth.

Furthermore, cities with more linear URNs are correlated with higher levels of PM2.5 pol-
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lution, while those with more radial URNs show the opposite trend. Although local industry
is often the main contributor to air pollution, road network patterns may also affect road traffic
pollution. Cities with more linear URNs may be subject to overall worse mobility, resulting in
increased vehicle detours and aggravated air pollution. In contrast, radial URNs provide greater
flexibility in terms of road connectivity, which may be beneficial to reducing driving distances
and mitigating air pollution.

4. Discussion

The contribution of this work is three-fold. First, this study sheds light on visual-based
road network patterns around the world with fine spatial granularity and introduces a scalable
deep learning framework that can accommodate more cities in the future. The framework is
also affiliated with a comprehensive toolkit, from pattern indicators (e.g. PDP, PDI, and NSI)
to detailed feature extractors (e.g. pattern convolution), which greatly facilitate the study of
urban morphology in various scenarios. Second, our study establishes an inventory of road
network patterns covering primary urban areas worldwide. As a feature that reflects the sophis-
tication, efficiency, and externalities of urban systems, road network patterns can be integrated
into broad research fields. For example, we find that the proportion of radial URNs may be
an indicator of urban economic development and air quality conditions, and organic road pat-
terns are associated with accommodating more population. The interplay could be portrayed
further by incorporating our results with neighborhood attribute estimations (Dong et al., 2019;
Gebru et al., 2017). Furthermore, our methods can also be used to monitor the progress and
quality of urban expansion (Barrington-Leigh and Millard-Ball, 2020; Xu et al., 2020), gauge
the environmental impact of urban morphology, including urban climate (Xu et al., 2017; He
et al., 2020), carbon emissions (Duren and Miller, 2012; Van Houtan et al., 2021; Deng et al.,
2023), and air quality (Huang et al., 2022). The existing and prospective results are valuable
materials for guiding rational urbanization (Zhu et al., 2022; Sun et al., 2020; Elmqvist et al.,
2013) and sustainable urban development (Burke et al., 2021; Elmqvist et al., 2019; Patias et al.,
2021), especially for the cities in the developing world to learn from the pioneer cities. Third,
our image-based representation of URNs and deep learning-based approach open up new di-
rections for urban morphology studies. This study reveals promising accuracy of deep neural
networks in urban form classification. Our proposed method, pattern convolution, effectively
summarizes city-level URN characteristics with the simplest aggregation of pattern maps using
pattern proportions. These findings unveil the potential of using computer vision techniques to
capture visual features of the built environment, such as street canyons (Middel et al., 2019; Ito
and Biljecki, 2021) and building footprints (Wu and Biljecki, 2022, 2023). Based on the pow-
erful fitting ability and massive training cases, artificial intelligence techniques may incubate
urban morphology theories with stronger predictive capacities, which are oftentimes limited in
traditional case studies (Moudon, 1997). Such advances can support next-generation studies on
urban planning and computing.

The findings of this study have to be seen in light of the following limitations. There are
still some unconsidered factors in our city selection strategy that might affect the results. For
example, the road network pattern characteristics of small and medium cities are not included,
and some regions may have insufficient major cities to cover different ages, locations, and
development stages. These factors have the potential to lead to underrepresentation of regional
patterns. To obtain more comprehensive results, more cities could be involved in the future
using our scalable methods. Besides, the demarcation of city boundaries is a ubiquitous question
for urban studies (Valencia et al., 2019). In this work, we define an unified study boundary
for all cities to facilitate inter-city comparison, and avoid issues arising from varying study
boundaries. Although we conduct a preliminary analysis to carefully select the radius based
on population, development level, and built-up intensity, the wide difference in urban sizes
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inevitably triggers the excessive inclusion of suburbs for some small-size cities, which may
introduce biases to the pattern proportions. Besides, more annotated images can be included to
improve the robustness and performance of the classification model. While the study produces
a massive and fine-grained dataset of road network patterns around the world, covering over
32,000 square kilometer of urban area with a finest resolution of 500 m, we primarily focus on
aggregated statistics and analysis to obtain the global landscape, which somewhat wastes the
granularity of our dataset. We omit possible fine-grained spatial analysis, such as examining
interactions between neighboring road network patterns and exploring relationships between
patterns and zoning. Also, the discussion on the influence of topography on road network
patterns could be expanded. These research lines could benefit the understanding of urban forms
and dynamics. Thus, we invite more targeted or integrated studies on road network patterns on
the ground of our open source methods and datasets.

5. Conclusion

Cities are distinguished by their unique urban form, which is largely shaped by road net-
works. This paper introduces a novel perspective to interpret urban forms using a visual ap-
proach natural to humans. The work encompasses 144 major cities globally, considering mul-
tiple spatial scales with fine granularity. In our analysis, we are cautious about the scale ef-
fect, which are examined and leveraged to obtain multiscale profiles of road network patterns.
These profiles demonstrate the continental and dimensional heterogeneity of dominant patterns,
highlight inter-city pattern similarities, and uncover characteristics of intra-city pattern spatial
distributions. Furthermore, we explore the synergies between road network patterns and so-
cioeconomic and environmental conditions, including GDP, population, and air pollution. Our
method and findings can be used to monitor the progress and quality of urban expansion, and as-
sess the impact of the urban form on phenomena such as the urban heat island effect, emissions,
and air quality.

Data availability

The spatial data of URNs derives from OpenStreetMap at https://www.openstreetmap.org.
The Python package (OSMnx) that we utilize to download OSM data is available at https://github.com/gboeing/osmnx.
The database of locations and populations of world cities is available at https://simplemaps.com/data/world-
cities. The data of WorldPop grids can be accessed at https://www.worldpop.org/. The global
nighttime light data is available at https://doi.org/10.7910/DVN/YGIVCD. Country socioe-
conomic indicators are from the World Bank at https://data.worldbank.org/. The air quality
data is from the WHO Air Quality Database at https://www.who.int/data/gho/data/themes/air-
pollution/who-air-quality-database . The base map derives from Mapbox at https://www.mapbox.com/maps.
The outcome dataset of road network patterns has been uploaded to figshare at https://doi.org/10.6084/m9.figshare.19375103.v3
or from the corresponding author.

Code availability

All the custom codes related to this paper have been released public at https://github.com/ualsg/Global-
road-network-patterns.
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1 Supplementary Note 1: Colored Road Hierarchical Diagram (CRHD)
1.1 Definition of CRHD
Colored Road Hierarchical Diagram (CRHD) is a type of diagram that maps different grades of roads with varying widths
and colors in a cartographic manner1. Its merits include enhanced legibility for machines and convenience for preprocessing.
Since the seminal paper does not expound on the details about the feature and generation of CRHD, we provide additional
elaborations here.

After retrieving the spatial data of roads in a specified scope (receptive field), the CRHD is created using CRHD generator,
which is upgraded from the open-source Python tool provided by ref.1. Roads are sequentially plotted with different widths and
colors using the road class attribute (fclass) in OpenStreetMap (OSM). The original road classes are condensed into five
groups, including motorway, primary road, secondary road, tertiary road and service road. Since we use white as the background
color of a CRHD, we assign darker colors to higher-class roads with a colormap from skyblue to black. Exceptionally, we
mark motorways using a distinct color (darkred) to outline its special position, given the fact that motorway is considered to
have different nature from the other roads during network modeling2, 3. Although the selection of colors for each road grade
are rigorously testified, in our experiment, we find that the model trained on CRHDs achieves a significantly higher overall
accuracy (0.92) than that trained on monochrome diagrams (0.70). Another study suggests improved performance by using
different color combination4. It implies that coloring matters more than the selection of colors.

1.2 Outreach of CRHD
A CRHD could be considered as a snapshot of urban road networks (URNs) within a designated boundary. We regard the scope
of the CRHD as the receptive field acting on the complete URNs, and based on that, the pattern of the covered subnetwork
is classified. Since URN is a sort of continuum, other than the scale effect discussed in the main text, it is also inevitable to
consider the interactions among the neighborhoods when exerting pattern classification on separate urban grids. To consider
that, when generating the CRHD for a grid, we define ‘outreaches’ that expand the receptive field beyond the grid. In this study,
the existence of outreaches also facilitates the CRHD operations (see the next subsection — Section 1.3). The width of the
outreach is defined empirically. We posit that the neighboring effect would be more significant at smaller scale. Microscopically,
the concerned roads tend to be a component of a larger network, and in this case, the interplay and cooperation between ambient
roads is more negligible. Therefore, we assign relatively wider outreaches for the small-scale and mid-scale grids (a half of the
grid width) than large-scale grids (a quarter of the grid width) (Fig. 1a). From another perspective, CRHDs with outreaches are
similar with that of convolution kernels in the field of computer vision (Fig. 1b). It lays the foundation for deeply understanding
the urban form of the whole city.

1.3 CRHD operations
To conduct multiscale analysis based on CRHDs collected at single scale, tools to rescale CRHDs is necessary. Stitching
operation is used to upscale the CRHDs. It merges four neighboring CRHDs into a larger one (Fig. 1c). Correspondingly,
for downscaling, we have the subsampling operation, which extracts smaller-scale CRHDs from the source CRHD (Fig. 1d).
Other than the merit of abbreviated data collection, considering the internet-dependent and time-consuming process of CRHD
generation, the operations also accelerate the process of multiscale pattern classification. The Python codes for the operations
would be released open source.

1.4 Pattern classification
Our road network pattern classification model applies the ResNets architecture5, 6. In our experiments, we find that ResNet-34
outperforms the other members in the ResNets family in our tasks. Thus, we choose this specific architecture (Supplementary
Fig. 1e) to establish our model. As an important branch of convolutional neural networks (CNN), ResNets is notable for the
design of ‘shortcuts’, and achieves favorable performances in various tasks. The model architecture is stacked by a series of
standardized residual blocks. A residual block is defined as:

y = F(x,{Wi})+Wsx (1)

where x and y are the input and output vectors, respectively. Function F(x,{Wi}) is the residual mapping to be learned. The
addition of an extra x in the end serves as a shortcut connection. Ws is only used when matching dimensions.

Based on the mid-scale CRHD set and above-mentioned CRHD operations, we are able to obtain all small-scale, mid-scale
and large-scale CRHDs in our cities of interest. CRHDs at all the scales are resized into224⇥224 and fed into the pattern
classification model. The model returns a 6⇥1 vector indicating the predictive probabilities of being each pattern category. The
category with the highest probability would be regarded as the final pattern.
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Supplementary Figure 1. Introduction of CRHDs, CRHD operations, and the architecture of the classification model. a The sizes of
grids and corresponding CRHDs at small, mid, and large scales. The green squares in the middle are the urban grid and the yellow bounds
represent the associated outreaches. Together, they constitute the receptive field of a CRHD. b The analogy between a convolution kernel and
a CRHD. The process of classifying URN patterns by CRHDs is similar with conducting convolutions on images. The diagram shows the
matchup of concepts between the two. c Stitching operation. It merges the CRHDs of four neighboring grids into a larger-scale one. The
process is achieved by truncating the repetitive areas (edge areas) of the input diagrams and concatenating them based on pixel-level matching
on the edges. After that, the width of outreaches remains the same. d Subsampling operation. It splits a CRHD into four smaller-scale ones
that contain the road information of grids with outreaches in each corner. The operation is realized by slicing the CRHD by bounding boxes
with varying positions. e The architecture of our pattern classification model (ResNet-34).
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2 Supplementary Note 2: Training process and model performance

Supplementary Figure 2. Performance of the pattern classification model. a The confusion matrix evaluated by test set at original
scale. The numbers on the diagonal denote the accuracy for each pattern. The numbers elsewhere refer to the rates of misclassifying the
category in the row into the one in the column. b ROC curves and the corresponding AUC values of micro-average, macro-average and each
category at original scale. c Variation of performance metrics (overall accuracy, precision, recall and f1-score) of the model at different scales.
d Variation of f1-scores of individual categories at different scales.

2.1 Training process
The model is trained on a manually annotated image set including 1,548 CRHDs at mid scale. CRHDs selected into the image
set must be easily discernible and present minimum pattern mixture. The image set is split randomly into training (80%),
validation (10%) and test (10%) sets. Since we would apply the model in numerous cities worldwide, the samples are selected
dispersively from different cities and continents. Given a dataset with relatively small size, we adopt data augmentation (random
flip, rotation and scale) during the training process to enrich the dataset and enhance the robustness of the model. Our best
performance model is trained with a batch size of 16, a learning rate of 0.00005, and a maximum epoch of 50.

2.2 Evaluation of cross-scale performance
We regard road network pattern as a domestic feature, which means the scale must be definite when the pattern is perceived.
The pattern may vary significantly at the same position due to scale effect. As the model is trained with CRHDs at invariable
scale, its applicability at other scales should be examined. For this purpose, we replicate the centroids of the CRHDs in the test
set, and generate CRHDs with fluctuating radius to establish test sets at different scales. Because some patterns would alter
in this process, we inspect and update the annotations of these derivative test sets. The performance of the model at multiple
scales are then evaluated. As it is shown in Fig. 2c, the model works best at the original scale as expected. All the metrics
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drop when the scale deviates from the initial scale. More details behind the performance decay could be found in Fig. 2d. At a
smaller scale, there is a clear decline in the f1-score of organic. A possible explanation is that organic is primarily formed by
circuits of major roads in the training set. A shrinking scale excludes part of the major roads, leaving the model an unfamiliar
situation where major and secondary roads constitute circuits together. The assumption is supported by the better performance
for organic at larger scale. Conversely, f1-scores for radial and tributary get worse during upscaling. Radial and tributary
are characterized by radiated or unclosed major roads. When the receptive field is enlarged, more roads are involved, which
encourages the presence of road major road circuits and thus leads to misclassifications. To conclude, although performance
decay exists because of scale variation, the overall f1-score only reduces by 14.5% from the best (1000 m) to the worst (2000
m) occasion, which we believe acceptable in this study.
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3 Supplementary Note 3: Study boundary radius selection
The size of urban centers varies greatly across different cities. A proper definition of study boundary for the cities is the premise
of conducting further analysis. One option is to use morphological boundaries derived from satellite remote-sensing data (such
as Global Human Settlement Layer (GHSL) Data Package). GHSL provides a layer of the degree of urbanization, which
distinguishes the urban center (high density cluster) and suburban areas worldwide. However, different scales in urban centers
among the cities bring difficulties to the road network pattern analysis. For cities with large urban centers, including a large
study area may dilute a city’s unique road network pattern characteristics, which are usually reflected in the core urban area.
Among our cities of interest, large cities (e.g. London, Paris, etc.) may possess a urban center scale over ten times as that of the
small cities (e.g. Sevilla, Odesa, etc.). We cannot rule out the influence of scale differences between cities when comparing
their overall road network patterns. Meanwhile, although our data acquisition is mostly automated, collecting CRHDs is still
pretty time-consuming due to the online inquiry process with OSMnx.

Thus, to avoid the issues above, we decide to use a consistent study boundary (a buffer from the city center) for all the cities.
To determine a proper buffer radius, we introduce three auxiliary indicators from the perspective of population, development
level, and built-up intensity, respectively. First, using the total population data from SimpleMaps and the gridded population
data from WorldPop (2020), we calculate the average proportion of population covered by buffer zones with radii ranging from
5 km to 40 km in the cities. Second, we harness nighttime light data (NTL) to reflect the general urban development level.
With the annual NPP-VIIRS-like NTL data (2020)7, we obtain the average NTL brightness for each radius, and normalize the
value to 0-100 by dividing the maximum. The average normalized NTL brightness in the cities is the second indicator. Last,
the proportion of urban center area within the buffer is used to measure the built-up intensity of each radius. The variation of
the indicators over different radii is illustrated in Supplementary Fig. 3a. Generally, we prefer a radius that can achieve more
population coverage, higher NTL brightness, and stronger built-up intensity. We end up with a radius of 15 km, which yields
moderate values for all the indicators, as a joint consideration from the three aspects. On average, this radius covers 57.8% of
the total population, with an average NTL brightness of 70.1% of the brightest zone and 72.7% of the area covered by the city
center.

To further examine the selection, we demonstrate the extreme cases obtained with the 15 km radius for each indicators
(Supplementary Fig. 3b). A 15 km-buffer may cover more people than the total population of some cities (e.g. Medellin,
Colombia). It is mainly due to the heavy population concentration and the underestimated total population. The covered
population could also be minor for the cities with only a small part of the population in the main city and most of the population
scattered in subordinate counties (e.g. Nanyang, China). Similar situation could also occur for the cities with small urban
centers (e.g. Ganzhou, China). The normalized NTL brightness for 15 km radius is influenced by the relative location between
the geographical and functional city centers. When both centers are misaligned by some distance, the brightness tends to be
high. When both centers overlap in space and the city scale is small, the 5 km-radius area tends to be the brightest and the
brightness for 15 km radius becomes lower. For the cases mentioned so far, the main urban area is well included by the study
boundary. For megacities such as Paris, although the 15 km buffer cannot cover the whole urban center areas, it involves the
most historic and distinctive areas. In summary, defining consistent study boundaries as a 15 km-radius buffer is well suited to
the needs of the research.
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Supplementary Figure 3. Process and validation of the study boundary radius selection. a Variation of indicators with different study
boundary radii. The abscissa indicates different radius from 5 km to 40 km, while the ordinate denotes the values of three indicators: (1)
average proportion of population covered (%), (2) average normalized NTL brightness (0-100), and (3) average proportion of urban center
(%). b Example maps of cities with an extreme state of indicators. From left to right is the spatial distribution map of city pairs with the
maximum and minimum values of each indicator. The black circle indicates the 15 km-radius study boundary. Source of the base map: (c)
Mapbox.
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Supplementary Figure 4. Zoomed-in maps of dominant patterns in regions with dense cities of interest. The regions include East
Asia, Europe and North America.
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Supplementary Figure 5. Distribution of cities with Pattern Diversity Index (PDI) at different scales: a small, b mid, c large. PDIs
are divided into five groups based on quintiles. The point color indicates the degree of deviation from the median PDI. Grey is around the
median, green means approaching the lower bound, and red means approaching the upper bound. Cities lying in the 1st and 5th quintiles are
labelled with names on the maps. PDI values at all scales for individual cities could be found in Supplementary Table 6.
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Supplementary Figure 6. Inter-city pattern similarity matrix. After pattern convolution, each city is embedded by the pattern
proportions (a 18-dimension feature vector). The cities and their pattern proportions form a 144 ⇥ 18 feature matrix. We standardize each
column to be normally distributed, calculate the cosine similarity between each pair of cities, and obtain a 144 ⇥ 144 similarity matrix. For
easier interpretation, the cosine similarity scores are normalized to 0 to 1 by the maximum and minimum. Only the cells with the similarity
score above the median (0.47) are visible. To discover the potential subgrouping among the cities, we reorder the similarity matrix in a
special way. First, cities from the same continent are aligned together. Then, the cities in each continent are ranked by their average
similarities with the cities in the same continent and those outside. Note that all the average similarities are replaced by ranges to loosen the
constraint of absolute number size and inject more flexibility for grouping. The number of ranges are set as 4 with the best experimental
performance. As we keep the similarity matrix symmetric, every square of dark cells on the diagonal indicates a potential subgroup of cities
in the continent. There are totally 13 subgroups, including 2 in Africa, 3 in Asia, 1 in Australia, 3 for Europe, 2 for North America, and 2 for
South America. The subgroups are annotated separately for each continent in alphabetical order.

10/20



Supplementary Figure 7. Distribution of the pattern indicators and the pairwise correlations among them. a, b, and c are the
histograms and kernel density estimate curves (KDEs), which describe the distribution of PDPs, PDIs and NSIs of cities of interest
respectively. The numbers above the curves mark the peaks of the KDEs. d, e and f demonstrate the correlations between each pair of the
three indicators, together with the corresponding Pearson correlation coefficient (r).
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Supplementary Figure 8. Pattern and LNSI maps at mid scale for representative cities in each quadrant. a HH, b LH, c LL and d
HL groups. The corresponding PDI and GNSI are labelled at top right. 12/20



Supplementary Table 1. List of cities of interest (alphabetical order by continent and country).

No. City Country Continent No. City Country Continent
1 Algiers Algeria Africa 73 Budapest Hungary Europe
2 Luanda Angola Africa 74 Dublin Ireland Europe
3 Kinshasa Congo Africa 75 Milan Italy Europe
4 Abidjan Cte D’Ivoire Africa 76 Rome Italy Europe
5 Alexandria Egypt Africa 77 Amsterdam Netherlands Europe
6 Cairo Egypt Africa 78 The Hague Netherlands Europe
7 Addis Ababa Ethiopia Africa 79 Oslo Norway Europe
8 Nairobi Kenya Africa 80 Warsaw Poland Europe
9 Casablanca Morocco Africa 81 Bucharest Romania Europe

10 Kano Nigeria Africa 82 Kazan Russia Europe
11 Johannesburg South Africa Africa 83 Moscow Russia Europe
12 Khartoum Sudan Africa 84 Nizhniy Novgorod Russia Europe
13 Omdurman Sudan Africa 85 Perm Russia Europe
14 Dar es Salaam Tanzania Africa 86 Rostov Russia Europe
15 Dhaka Bangladesh Asia 87 Saint Petersburg Russia Europe
16 Baoding China Asia 88 Samara Russia Europe
17 Beijing China Asia 89 Ufa Russia Europe
18 Changchun China Asia 90 Volgograd Russia Europe
19 Changsha China Asia 91 Voronezh Russia Europe
20 Chengdu China Asia 92 Belgrade Serbia Europe
21 Chongqing China Asia 93 Barcelona Spain Europe
22 Dongguan China Asia 94 Madrid Spain Europe
23 Fuzhou China Asia 95 Sevilla Spain Europe
24 Ganzhou China Asia 96 Dnipro Ukraine Europe
25 Guangzhou China Asia 97 Kyiv Ukraine Europe
26 Hangzhou China Asia 98 Odesa Ukraine Europe
27 Hefei China Asia 99 Birmingham United Kingdom Europe
28 Jinan China Asia 100 Birstall United Kingdom Europe
29 Nanchang China Asia 101 Leeds United Kingdom Europe
30 Nanjing China Asia 102 London United Kingdom Europe
31 Nanyang China Asia 103 Manchester United Kingdom Europe
32 Ningbo China Asia 104 Newcastle United Kingdom Europe
33 Qingdao China Asia 105 Montreal Canada North America
34 Shanghai China Asia 106 Toronto Canada North America
35 Shenyang China Asia 107 Vancouver Canada North America
36 Shenzhen China Asia 108 Santo Domingo Dominican Republic North America
37 Shijiazhuang China Asia 109 Guatemala City Guatemala North America
38 Tianjin China Asia 110 Guadalajara Mexico North America
39 Wuhan China Asia 111 Mexico City Mexico North America
40 Xi’an China Asia 112 Monterrey Mexico North America
41 Delhi India Asia 113 Tijuana Mexico North America
42 Kolkata India Asia 114 Atlanta United States North America
43 Jakarta Indonesia Asia 115 Boston United States North America
44 Tehran Iran Asia 116 Chicago United States North America
45 Nagoya Japan Asia 117 Dallas United States North America
46 Osaka Japan Asia 118 Denver United States North America
47 Tokyo Japan Asia 119 Detroit United States North America
48 Seoul Korea Asia 120 Houston United States North America
49 Kuala Lumpur Malaysia Asia 121 Los Angeles United States North America
50 Karachi Pakistan Asia 122 Miami United States North America
51 Lahore Pakistan Asia 123 Minneapolis United States North America
52 Manila Philippines Asia 124 New York United States North America
53 Singapore Singapore Asia 125 Philadelphia United States North America
54 Bangkok Thailand Asia 126 Phoenix United States North America
55 Istanbul Turkey Asia 127 San Diego United States North America
56 Hanoi Vietnam Asia 128 San Francisco United States North America
57 Ho Chi Minh City Vietnam Asia 129 Seattle United States North America
58 Brisbane Australia Australia 130 Tampa United States North America
59 Melbourne Australia Australia 131 Washington United States North America
60 Sydney Australia Australia 132 Buenos Aires Argentina South America
61 Vienna Austria Europe 133 La Paz Bolivia South America
62 Minsk Belarus Europe 134 Santa Cruz Bolivia South America
63 Brussels Belgium Europe 135 Belo Horizonte Brazil South America
64 Sofia Bulgaria Europe 136 Brasilia Brazil South America
65 Zagreb Croatia Europe 137 Fortaleza Brazil South America
66 Prague Czechia Europe 138 Rio de Janeiro Brazil South America
67 Paris France Europe 139 Sao Paulo Brazil South America
68 Berlin Germany Europe 140 Santiago Chile South America
69 Cologne Germany Europe 141 Bogota Colombia South America
70 Hamburg Germany Europe 142 Medellin Colombia South America
71 Munich Germany Europe 143 Quito Ecuador South America
72 Athens Greece Europe 144 Lima Peru South America
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Supplementary Table 2. Pattern proportions of cities at small scale.

No. City Gridiron Linear Chaotic Organic Radial Tributary No. City Gridiron Linear Chaotic Organic Radial Tributary
1 Algiers 10.1% 25.1% 28.5% 4.5% 5.0% 26.7% 73 Budapest 11.9% 22.6% 45.8% 0.2% 2.7% 16.8%
2 Luanda 19.2% 19.4% 50.9% 0.4% 0.9% 9.1% 74 Dublin 12.1% 15.2% 27.2% 4.7% 3.9% 36.8%
3 Kinshasa 16.4% 16.5% 55.8% 0.4% 0.9% 10.0% 75 Milan 2.8% 29.7% 45.8% 0.9% 2.5% 18.3%
4 Abidjan 9.0% 12.9% 70.0% 0.2% 0.8% 7.1% 76 Rome 7.3% 25.5% 36.8% 2.7% 5.9% 21.8%
5 Alexandria 5.3% 20.3% 61.3% 4.1% 3.3% 5.7% 77 Amsterdam 4.5% 24.6% 40.7% 1.2% 3.9% 25.2%
6 Cairo 21.1% 19.2% 33.1% 4.1% 7.5% 15.1% 78 The Hague 12.5% 29.8% 40.9% 0.7% 1.8% 14.3%
7 Addis Ababa 4.7% 20.0% 58.5% 2.5% 2.5% 11.9% 79 Oslo 14.1% 16.2% 32.3% 2.8% 6.0% 28.8%
8 Nairobi 5.1% 18.1% 70.6% 0.5% 0.9% 4.8% 80 Warsaw 7.7% 29.4% 38.3% 2.0% 4.3% 18.3%
9 Casablanca 11.5% 22.7% 34.0% 4.0% 4.7% 23.0% 81 Bucharest 6.0% 30.0% 41.1% 4.1% 4.0% 14.8%

10 Kano 4.8% 18.0% 70.6% 0.1% 0.3% 6.1% 82 Kazan 8.5% 29.8% 42.4% 1.0% 3.6% 14.7%
11 Johannesburg 5.0% 33.2% 40.4% 1.3% 2.5% 17.7% 83 Moscow 14.3% 24.4% 18.0% 5.6% 12.6% 25.1%
12 Khartoum 36.1% 13.0% 40.1% 0.1% 0.6% 10.1% 84 Nizhniy Novgorod 9.6% 18.3% 58.8% 0.7% 1.9% 10.8%
13 Omdurman 13.2% 9.2% 76.3% 0.0% 0.0% 1.3% 85 Perm 0.9% 23.7% 57.2% 3.6% 1.2% 13.4%
14 Dar es Salaam 3.1% 23.4% 67.5% 0.0% 0.5% 5.5% 86 Rostov 6.0% 23.9% 52.6% 1.7% 1.9% 13.9%
15 Dhaka 1.8% 16.8% 71.8% 1.0% 0.8% 7.9% 87 Saint Petersburg 17.2% 19.2% 18.1% 9.8% 5.6% 30.1%
16 Baoding 0.5% 40.5% 49.5% 0.0% 1.4% 8.2% 88 Samara 2.9% 21.3% 63.2% 2.1% 0.8% 9.7%
17 Beijing 2.7% 39.1% 13.8% 0.2% 4.1% 40.2% 89 Ufa 1.8% 14.1% 70.9% 1.7% 1.8% 9.5%
18 Changchun 0.2% 38.7% 50.6% 0.0% 0.7% 9.8% 90 Volgograd 2.1% 24.3% 65.0% 0.8% 1.6% 6.2%
19 Changsha 1.3% 40.8% 22.5% 1.9% 3.4% 30.0% 91 Voronezh 7.1% 25.9% 55.2% 0.1% 1.7% 10.0%
20 Chengdu 5.2% 35.9% 22.4% 2.2% 8.7% 25.6% 92 Belgrade 8.4% 13.7% 58.9% 2.5% 2.0% 14.5%
21 Chongqing 1.1% 43.0% 28.8% 2.9% 3.8% 20.4% 93 Barcelona 14.5% 19.8% 43.2% 2.8% 2.9% 16.9%
22 Dongguan 1.1% 42.9% 39.7% 0.9% 3.9% 11.6% 94 Madrid 11.0% 22.4% 32.4% 3.2% 9.2% 21.9%
23 Fuzhou 0.1% 35.9% 44.8% 1.2% 2.6% 15.3% 95 Sevilla 3.5% 26.4% 52.3% 2.4% 3.6% 11.8%
24 Ganzhou 0.6% 27.6% 55.0% 1.3% 1.0% 14.5% 96 Dnipro 1.8% 26.2% 59.4% 1.3% 2.5% 8.8%
25 Guangzhou 1.5% 40.4% 30.2% 2.0% 3.6% 22.3% 97 Kyiv 5.3% 28.3% 43.0% 1.3% 3.5% 18.6%
26 Hangzhou 0.8% 31.3% 21.7% 6.8% 4.5% 34.9% 98 Odesa 5.2% 30.1% 44.0% 1.3% 1.1% 18.3%
27 Hefei 1.3% 36.9% 22.1% 2.9% 5.5% 31.3% 99 Birmingham 8.5% 21.4% 24.8% 2.8% 6.0% 36.5%
28 Jinan 1.7% 28.2% 32.7% 3.5% 5.0% 28.9% 100 Birstall 3.1% 20.4% 64.4% 0.2% 0.8% 11.1%
29 Nanchang 0.2% 47.2% 28.5% 1.5% 3.0% 19.5% 101 Leeds 11.9% 26.4% 38.6% 0.6% 5.3% 17.2%
30 Nanjing 0.7% 41.1% 27.2% 4.5% 3.9% 22.6% 102 London 6.1% 10.3% 5.7% 14.2% 6.5% 57.3%
31 Nanyang 1.4% 37.8% 50.8% 0.4% 1.2% 8.3% 103 Manchester 5.7% 23.5% 27.3% 4.1% 5.5% 33.8%
32 Ningbo 0.8% 36.6% 23.5% 7.1% 3.5% 28.5% 104 Newcastle 7.2% 25.6% 39.2% 2.6% 3.3% 22.2%
33 Qingdao 1.9% 34.9% 27.1% 2.3% 3.5% 30.3% 105 Montreal 24.0% 16.8% 22.8% 5.2% 8.6% 22.5%
34 Shanghai 1.0% 33.4% 11.0% 3.9% 10.0% 40.7% 106 Toronto 4.7% 17.6% 20.9% 3.3% 3.6% 49.9%
35 Shenyang 1.6% 43.2% 32.8% 2.3% 1.3% 18.8% 107 Vancouver 42.5% 12.1% 27.2% 0.4% 2.0% 15.8%
36 Shenzhen 4.4% 27.1% 40.4% 4.1% 7.0% 17.1% 108 Santo Domingo 14.8% 23.1% 41.2% 3.1% 3.7% 14.1%
37 Shijiazhuang 0.2% 45.8% 33.1% 0.5% 1.1% 19.3% 109 Guatemala City 5.0% 21.2% 63.3% 2.2% 1.5% 6.8%
38 Tianjin 1.2% 46.5% 24.3% 2.5% 3.5% 22.0% 110 Guadalajara 22.6% 24.6% 36.7% 0.8% 4.8% 10.5%
39 Wuhan 0.7% 46.7% 20.3% 2.8% 4.0% 25.4% 111 Mexico City 33.6% 7.7% 16.5% 23.6% 14.0% 4.5%
40 Xi’an 8.8% 25.5% 29.3% 4.2% 8.4% 23.8% 112 Monterrey 33.0% 14.6% 33.6% 1.5% 5.1% 12.2%
41 Delhi 14.9% 27.3% 37.9% 2.3% 2.0% 15.5% 113 Tijuana 20.8% 17.6% 43.4% 1.1% 3.7% 13.5%
42 Kolkata 11.0% 22.2% 51.2% 2.6% 1.3% 11.8% 114 Atlanta 9.3% 24.2% 46.6% 1.2% 3.3% 15.4%
43 Jakarta 30.3% 18.0% 19.9% 2.2% 9.8% 19.8% 115 Boston 27.5% 14.5% 20.3% 5.6% 6.3% 25.8%
44 Tehran 30.1% 9.2% 10.5% 21.3% 11.0% 17.9% 116 Chicago 61.3% 9.3% 7.7% 2.0% 5.1% 14.6%
45 Nagoya 19.0% 15.8% 15.7% 2.9% 5.8% 40.9% 117 Dallas 29.9% 24.2% 19.3% 2.4% 7.2% 17.0%
46 Osaka 33.8% 11.3% 18.2% 2.1% 7.8% 26.9% 118 Denver 36.0% 18.5% 29.2% 0.6% 3.0% 12.6%
47 Tokyo 39.2% 7.3% 4.4% 6.2% 6.2% 36.7% 119 Detroit 41.3% 11.8% 14.9% 2.6% 10.8% 18.6%
48 Seoul 9.4% 17.7% 21.6% 19.6% 7.6% 24.1% 120 Houston 23.1% 20.9% 13.7% 2.9% 14.4% 25.0%
49 Kuala Lumpur 19.4% 17.8% 40.9% 1.7% 4.0% 16.2% 121 Los Angeles 37.0% 8.5% 24.5% 9.6% 6.2% 14.3%
50 Karachi 26.6% 19.7% 32.2% 5.6% 4.5% 11.4% 122 Miami 31.4% 20.8% 16.7% 0.9% 4.2% 25.9%
51 Lahore 20.0% 18.3% 39.9% 2.9% 5.7% 13.1% 123 Minneapolis 54.0% 12.3% 18.6% 0.9% 4.0% 10.3%
52 Manila 20.7% 19.6% 16.8% 7.3% 7.5% 28.1% 124 New York 17.5% 12.6% 15.3% 8.3% 12.1% 34.1%
53 Singapore 3.6% 33.9% 26.5% 5.8% 7.3% 22.9% 125 Philadelphia 25.0% 19.1% 18.1% 3.8% 7.7% 26.3%
54 Bangkok 16.4% 29.1% 32.0% 1.2% 6.9% 14.4% 126 Phoenix 34.9% 16.1% 22.0% 0.8% 4.1% 22.2%
55 Istanbul 31.4% 13.1% 9.1% 13.2% 12.6% 20.5% 127 San Diego 16.4% 21.5% 45.1% 2.0% 4.5% 10.5%
56 Hanoi 8.6% 30.8% 44.3% 1.3% 5.6% 9.4% 128 San Francisco 25.0% 20.4% 30.0% 3.0% 7.3% 14.3%
57 Ho Chi Minh City 17.8% 17.4% 49.0% 2.0% 4.4% 9.4% 129 Seattle 50.5% 12.7% 16.8% 1.1% 3.5% 15.4%
58 Brisbane 3.8% 29.4% 35.6% 2.2% 3.0% 26.1% 130 Tampa 17.1% 27.2% 42.8% 0.5% 1.6% 10.8%
59 Melbourne 18.9% 19.6% 13.9% 2.1% 7.6% 37.9% 131 Washington 22.6% 25.6% 20.5% 2.0% 5.9% 23.4%
60 Sydney 6.0% 22.4% 31.4% 4.2% 4.4% 31.8% 132 Buenos Aires 9.3% 16.4% 14.0% 10.0% 10.2% 40.2%
61 Vienna 5.8% 27.7% 34.0% 3.0% 6.4% 23.0% 133 La Paz 18.5% 14.6% 55.2% 2.4% 3.0% 6.3%
62 Minsk 4.7% 30.7% 26.2% 3.2% 4.1% 31.1% 134 Santa Cruz 11.4% 14.0% 62.7% 1.2% 4.1% 6.6%
63 Brussels 6.3% 23.6% 38.7% 2.1% 5.7% 23.6% 135 Belo Horizonte 20.2% 14.7% 49.2% 1.4% 6.2% 8.4%
64 Sofia 6.1% 23.1% 56.4% 1.3% 3.3% 9.8% 136 Brasilia 5.2% 25.7% 54.4% 3.3% 6.5% 4.9%
65 Zagreb 12.4% 15.1% 58.6% 0.8% 0.4% 12.7% 137 Fortaleza 17.3% 30.7% 28.9% 3.5% 4.8% 14.8%
66 Prague 6.7% 23.4% 41.6% 1.8% 3.6% 22.9% 138 Rio de Janeiro 9.5% 18.9% 47.0% 2.7% 8.0% 13.8%
67 Paris 6.8% 10.7% 5.8% 15.3% 13.2% 48.3% 139 Sao Paulo 32.7% 12.1% 8.0% 7.0% 16.0% 24.3%
68 Berlin 6.1% 24.8% 17.3% 4.1% 5.6% 42.0% 140 Santiago 21.5% 10.2% 15.9% 10.5% 15.6% 26.2%
69 Cologne 4.4% 28.1% 34.8% 2.4% 4.4% 25.8% 141 Bogota 16.1% 12.4% 52.1% 3.8% 9.9% 5.7%
70 Hamburg 3.7% 22.3% 36.0% 2.8% 5.2% 30.0% 142 Medellin 8.6% 12.5% 70.5% 1.4% 1.7% 5.3%
71 Munich 4.6% 26.8% 36.2% 2.0% 2.7% 27.8% 143 Quito 5.3% 16.3% 66.7% 1.6% 2.2% 7.8%
72 Athens 39.1% 12.7% 30.4% 2.0% 6.2% 9.7% 144 Lima 16.6% 11.2% 32.1% 11.6% 12.7% 15.9%

14/20



Supplementary Table 3. Pattern proportions of cities at mid scale.

No. City Gridiron Linear Chaotic Organic Radial Tributary No. City Gridiron Linear Chaotic Organic Radial Tributary
1 Algiers 2.8% 14.4% 11.6% 19.4% 14.7% 37.0% 73 Budapest 21.5% 12.1% 22.9% 7.0% 8.4% 28.1%
2 Luanda 37.0% 14.2% 18.2% 3.8% 4.2% 22.6% 74 Dublin 18.1% 7.9% 12.9% 12.6% 14.9% 33.7%
3 Kinshasa 18.2% 12.9% 39.9% 4.2% 3.1% 21.7% 75 Milan 5.4% 16.5% 23.9% 6.1% 7.8% 40.4%
4 Abidjan 15.4% 12.5% 53.6% 2.0% 2.4% 14.0% 76 Rome 5.9% 16.2% 16.4% 11.5% 14.7% 35.3%
5 Alexandria 0.8% 16.9% 52.5% 14.2% 3.9% 11.7% 77 Amsterdam 2.9% 14.2% 27.4% 14.6% 9.3% 31.6%
6 Cairo 11.8% 9.8% 19.9% 26.0% 12.9% 19.5% 78 The Hague 13.5% 18.2% 19.6% 5.5% 10.1% 33.1%
7 Addis Ababa 2.0% 13.0% 46.2% 11.9% 4.6% 22.3% 79 Oslo 10.3% 4.7% 22.0% 13.3% 17.7% 32.0%
8 Nairobi 8.1% 20.2% 51.5% 2.2% 2.0% 15.9% 80 Warsaw 3.3% 11.1% 18.9% 18.0% 11.1% 37.6%
9 Casablanca 4.3% 12.5% 18.9% 27.4% 9.1% 27.7% 81 Bucharest 3.0% 25.8% 20.0% 17.5% 6.0% 27.7%

10 Kano 5.9% 19.8% 51.4% 1.7% 2.1% 19.1% 82 Kazan 7.6% 18.5% 22.1% 12.1% 7.1% 32.6%
11 Johannesburg 8.4% 16.8% 14.3% 5.9% 10.0% 44.6% 83 Moscow 7.1% 1.7% 6.9% 31.4% 22.6% 30.2%
12 Khartoum 41.2% 7.0% 29.2% 1.7% 3.0% 17.9% 84 Nizhniy Novgorod 11.0% 14.3% 39.8% 2.5% 6.5% 26.0%
13 Omdurman 16.8% 14.4% 63.2% 0.0% 0.3% 5.2% 85 Perm 0.5% 20.7% 40.9% 10.1% 4.8% 23.0%
14 Dar es Salaam 10.5% 18.6% 43.9% 0.9% 2.4% 23.7% 86 Rostov 8.5% 22.0% 34.2% 8.9% 6.4% 20.1%
15 Dhaka 2.0% 17.0% 58.6% 6.6% 2.0% 14.0% 87 Saint Petersburg 4.4% 1.9% 7.5% 46.7% 11.4% 28.1%
16 Baoding 0.3% 35.6% 25.2% 1.7% 1.2% 36.0% 88 Samara 6.5% 16.7% 51.4% 5.2% 3.9% 16.2%
17 Beijing 6.0% 6.2% 2.2% 29.5% 7.1% 49.0% 89 Ufa 3.1% 18.1% 58.2% 5.7% 3.8% 11.0%
18 Changchun 0.9% 22.2% 29.2% 3.7% 5.0% 39.0% 90 Volgograd 2.1% 18.8% 51.1% 3.8% 2.7% 21.5%
19 Changsha 2.6% 11.1% 7.1% 30.3% 4.4% 44.6% 91 Voronezh 5.0% 20.0% 35.8% 3.8% 6.4% 29.0%
20 Chengdu 4.9% 10.2% 7.0% 26.5% 10.8% 40.5% 92 Belgrade 8.3% 10.6% 48.4% 11.4% 4.8% 16.6%
21 Chongqing 0.8% 16.6% 9.1% 24.2% 7.2% 42.1% 93 Barcelona 12.9% 14.9% 26.7% 10.3% 12.1% 23.0%
22 Dongguan 0.3% 16.6% 19.0% 14.9% 6.0% 43.3% 94 Madrid 8.6% 10.8% 20.2% 17.6% 17.3% 25.5%
23 Fuzhou 0.0% 19.8% 28.3% 18.3% 4.3% 29.3% 95 Sevilla 0.7% 25.8% 36.8% 10.6% 5.6% 20.5%
24 Ganzhou 0.7% 14.1% 42.8% 12.3% 2.4% 27.8% 96 Dnipro 5.3% 19.9% 37.9% 4.4% 3.4% 29.0%
25 Guangzhou 2.3% 12.4% 12.3% 21.5% 4.9% 46.5% 97 Kyiv 5.2% 10.8% 21.7% 7.1% 12.5% 42.7%
26 Hangzhou 1.5% 13.6% 8.6% 50.2% 3.7% 22.4% 98 Odesa 8.5% 29.0% 21.1% 8.2% 5.4% 27.8%
27 Hefei 2.3% 8.4% 8.4% 36.7% 4.2% 39.8% 99 Birmingham 15.0% 2.0% 3.5% 16.2% 21.2% 42.0%
28 Jinan 3.0% 16.0% 18.3% 28.5% 7.6% 26.8% 100 Birstall 3.3% 12.4% 52.4% 2.2% 4.2% 25.4%
29 Nanchang 0.0% 19.3% 5.4% 19.4% 6.0% 49.8% 101 Leeds 8.1% 15.3% 17.8% 5.8% 13.2% 39.8%
30 Nanjing 0.8% 11.6% 12.9% 27.8% 6.1% 40.7% 102 London 0.9% 0.4% 0.4% 58.5% 20.1% 19.7%
31 Nanyang 1.2% 37.9% 30.0% 8.7% 1.9% 20.3% 103 Manchester 6.7% 5.6% 9.2% 21.7% 16.7% 40.2%
32 Ningbo 0.4% 13.4% 7.6% 37.2% 3.8% 37.5% 104 Newcastle 3.0% 13.5% 23.7% 13.2% 9.0% 37.6%
33 Qingdao 2.1% 13.3% 9.8% 30.3% 5.6% 38.8% 105 Montreal 20.3% 3.4% 9.0% 24.6% 19.5% 23.1%
34 Shanghai 1.1% 3.2% 0.5% 46.3% 10.8% 38.1% 106 Toronto 2.9% 1.6% 1.8% 11.5% 14.2% 67.9%
35 Shenyang 1.6% 19.5% 12.7% 17.3% 3.4% 45.5% 107 Vancouver 51.1% 8.7% 15.8% 6.4% 3.9% 14.0%
36 Shenzhen 2.4% 17.2% 25.8% 22.8% 9.8% 22.0% 108 Santo Domingo 12.8% 18.1% 26.4% 11.0% 6.7% 25.1%
37 Shijiazhuang 1.2% 20.9% 11.5% 10.9% 5.1% 50.5% 109 Guatemala City 2.0% 18.3% 50.1% 6.1% 4.1% 19.4%
38 Tianjin 1.7% 13.4% 6.7% 27.4% 5.0% 45.7% 110 Guadalajara 23.3% 11.8% 21.5% 7.3% 10.6% 25.6%
39 Wuhan 0.4% 11.1% 4.6% 33.8% 6.2% 44.0% 111 Mexico City 8.0% 1.8% 7.6% 71.3% 6.3% 5.1%
40 Xi’an 11.1% 7.9% 14.3% 31.3% 10.5% 24.9% 112 Monterrey 24.3% 3.9% 26.2% 8.9% 13.8% 22.9%
41 Delhi 14.0% 12.1% 16.9% 11.2% 10.0% 35.8% 113 Tijuana 21.2% 8.9% 29.9% 8.0% 7.3% 24.7%
42 Kolkata 8.2% 17.5% 35.0% 11.7% 4.7% 22.9% 114 Atlanta 15.1% 16.6% 21.8% 2.9% 9.6% 34.1%
43 Jakarta 30.3% 3.3% 5.3% 12.1% 18.1% 31.0% 115 Boston 21.5% 5.3% 8.5% 20.0% 18.0% 26.7%
44 Tehran 12.8% 2.4% 5.7% 59.8% 12.6% 6.6% 116 Chicago 72.6% 1.4% 2.2% 6.1% 6.5% 11.2%
45 Nagoya 22.5% 2.8% 3.6% 23.0% 13.4% 34.6% 117 Dallas 24.7% 7.8% 6.2% 13.9% 14.7% 32.8%
46 Osaka 31.8% 4.2% 8.4% 19.4% 13.2% 23.1% 118 Denver 46.4% 6.9% 14.1% 3.9% 6.3% 22.5%
47 Tokyo 26.3% 0.6% 0.6% 37.9% 20.5% 14.0% 119 Detroit 45.3% 1.9% 4.0% 11.7% 16.4% 20.6%
48 Seoul 3.8% 5.9% 11.1% 47.2% 12.9% 19.1% 120 Houston 21.5% 3.0% 0.8% 21.3% 28.2% 25.2%
49 Kuala Lumpur 15.7% 6.6% 28.0% 10.3% 10.8% 28.6% 121 Los Angeles 37.6% 4.1% 12.9% 24.6% 11.5% 9.4%
50 Karachi 11.4% 13.1% 20.5% 25.8% 9.7% 19.7% 122 Miami 52.9% 10.6% 5.9% 7.0% 9.2% 14.4%
51 Lahore 18.2% 8.1% 24.0% 12.2% 12.0% 25.5% 123 Minneapolis 66.1% 3.5% 5.0% 3.7% 6.7% 15.0%
52 Manila 12.6% 5.7% 6.3% 35.0% 12.6% 27.8% 124 New York 16.9% 3.1% 10.1% 27.8% 25.6% 16.4%
53 Singapore 0.4% 13.4% 15.7% 33.8% 11.8% 25.0% 125 Philadelphia 18.1% 7.8% 4.3% 17.1% 22.8% 30.0%
54 Bangkok 14.3% 10.4% 11.6% 6.8% 13.0% 43.9% 126 Phoenix 61.2% 6.0% 7.0% 1.6% 5.4% 18.8%
55 Istanbul 9.0% 4.5% 2.1% 45.0% 22.4% 17.0% 127 San Diego 14.5% 14.2% 27.5% 4.3% 12.1% 27.4%
56 Hanoi 5.3% 22.3% 22.9% 7.6% 9.4% 32.4% 128 San Francisco 24.0% 11.1% 17.2% 12.2% 15.2% 20.3%
57 Ho Chi Minh City 20.7% 10.8% 31.8% 6.9% 9.6% 20.2% 129 Seattle 64.2% 3.6% 8.4% 3.0% 5.4% 15.4%
58 Brisbane 6.1% 15.9% 14.7% 9.5% 10.0% 43.8% 130 Tampa 33.7% 15.6% 16.5% 1.1% 4.0% 29.0%
59 Melbourne 21.7% 4.1% 2.0% 21.3% 17.0% 34.0% 131 Washington 17.9% 4.9% 4.8% 14.8% 20.9% 36.7%
60 Sydney 4.7% 9.2% 16.8% 21.7% 12.1% 35.4% 132 Buenos Aires 11.0% 3.8% 7.3% 40.1% 20.1% 17.7%
61 Vienna 5.1% 13.5% 16.2% 15.0% 17.4% 32.8% 133 La Paz 12.5% 13.6% 46.2% 7.7% 7.1% 12.9%
62 Minsk 2.1% 9.3% 9.3% 31.0% 7.2% 41.2% 134 Santa Cruz 17.9% 10.1% 48.4% 7.4% 5.9% 10.2%
63 Brussels 4.0% 12.4% 20.2% 10.9% 15.3% 37.2% 135 Belo Horizonte 22.4% 10.1% 35.6% 4.8% 13.0% 14.2%
64 Sofia 5.0% 14.6% 42.4% 5.8% 6.7% 25.5% 136 Brasilia 2.4% 20.7% 41.2% 8.0% 11.7% 16.1%
65 Zagreb 15.6% 14.3% 42.4% 2.0% 3.0% 22.8% 137 Fortaleza 12.4% 14.7% 10.1% 14.7% 13.7% 34.5%
66 Prague 2.5% 11.0% 21.7% 13.0% 12.8% 39.0% 138 Rio de Janeiro 3.6% 13.9% 35.9% 11.0% 16.4% 19.3%
67 Paris 1.6% 0.6% 1.2% 48.4% 29.8% 18.3% 139 Sao Paulo 19.1% 0.9% 3.9% 30.6% 26.0% 19.6%
68 Berlin 4.4% 3.3% 3.5% 30.1% 17.9% 40.7% 140 Santiago 13.5% 3.4% 10.6% 39.8% 20.1% 12.7%
69 Cologne 4.4% 12.3% 15.0% 12.3% 9.3% 46.6% 141 Bogota 5.8% 8.0% 46.5% 21.7% 8.9% 9.1%
70 Hamburg 4.2% 11.6% 16.2% 19.2% 12.3% 36.6% 142 Medellin 6.6% 16.0% 61.0% 6.0% 4.5% 6.0%
71 Munich 2.6% 13.9% 16.5% 19.4% 11.9% 35.7% 143 Quito 6.6% 10.0% 56.6% 6.4% 6.0% 14.4%
72 Athens 26.4% 7.4% 23.4% 14.1% 14.3% 14.3% 144 Lima 6.0% 4.2% 24.2% 43.8% 11.0% 10.7%
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Supplementary Table 4. Pattern proportions of cities at large scale.

No. City Gridiron Linear Chaotic Organic Radial Tributary No. City Gridiron Linear Chaotic Organic Radial Tributary
1 Algiers 5.0% 6.3% 5.0% 28.8% 10.0% 45.0% 73 Budapest 31.3% 3.1% 18.8% 8.6% 12.5% 25.8%
2 Luanda 43.0% 10.3% 13.1% 7.5% 4.7% 21.5% 74 Dublin 47.5% 3.0% 11.9% 9.9% 9.9% 17.8%
3 Kinshasa 24.4% 10.4% 31.9% 3.7% 3.7% 25.9% 75 Milan 12.6% 8.1% 11.9% 8.1% 12.6% 46.7%
4 Abidjan 23.2% 11.0% 43.3% 3.0% 3.0% 16.5% 76 Rome 8.6% 7.2% 7.2% 20.1% 12.9% 43.9%
5 Alexandria 1.1% 17.0% 45.7% 16.0% 3.2% 17.0% 77 Amsterdam 15.0% 4.4% 23.9% 21.2% 9.7% 25.7%
6 Cairo 14.9% 4.8% 14.3% 33.3% 8.9% 23.8% 78 The Hague 18.4% 11.5% 14.9% 6.9% 10.3% 37.9%
7 Addis Ababa 5.5% 12.6% 41.2% 14.3% 3.8% 22.5% 79 Oslo 26.7% 4.0% 17.3% 16.0% 18.7% 17.3%
8 Nairobi 15.7% 13.6% 39.3% 1.6% 1.6% 28.3% 80 Warsaw 11.3% 7.0% 11.3% 27.0% 15.7% 27.8%
9 Casablanca 7.3% 4.9% 14.6% 30.5% 18.3% 24.4% 81 Bucharest 6.8% 18.0% 12.8% 22.6% 6.0% 33.8%

10 Kano 10.2% 17.7% 45.7% 3.2% 1.1% 22.0% 82 Kazan 20.0% 10.6% 14.1% 11.8% 11.8% 31.8%
11 Johannesburg 12.9% 4.7% 7.1% 5.9% 11.8% 57.6% 83 Moscow 15.2% 0.0% 1.9% 41.0% 24.8% 17.1%
12 Khartoum 50.6% 7.8% 23.4% 3.9% 1.3% 13.0% 84 Nizhniy Novgorod 20.0% 6.0% 39.0% 1.0% 11.0% 23.0%
13 Omdurman 17.7% 20.3% 60.8% 0.0% 0.0% 1.3% 85 Perm 2.0% 11.1% 36.4% 11.1% 8.1% 31.3%
14 Dar es Salaam 32.5% 8.8% 24.6% 0.9% 5.3% 28.1% 86 Rostov 12.2% 13.0% 27.5% 9.9% 4.6% 32.8%
15 Dhaka 4.8% 7.1% 60.1% 8.3% 1.8% 17.9% 87 Saint Petersburg 14.4% 1.1% 3.3% 46.7% 15.6% 18.9%
16 Baoding 0.7% 21.9% 19.9% 6.2% 4.1% 47.3% 88 Samara 11.1% 11.1% 49.5% 11.1% 0.0% 17.2%
17 Beijing 13.1% 2.1% 0.7% 55.2% 6.9% 22.1% 89 Ufa 11.1% 18.5% 53.7% 6.5% 3.7% 6.5%
18 Changchun 1.5% 16.9% 25.0% 10.3% 4.4% 41.9% 90 Volgograd 4.1% 18.2% 43.8% 3.3% 4.1% 26.4%
19 Changsha 7.2% 3.0% 5.4% 46.4% 4.8% 33.1% 91 Voronezh 8.5% 10.4% 33.0% 0.9% 10.4% 36.8%
20 Chengdu 2.4% 3.7% 2.4% 52.4% 7.3% 31.7% 92 Belgrade 20.8% 7.7% 43.1% 10.0% 5.4% 13.1%
21 Chongqing 0.6% 10.4% 6.1% 44.5% 4.9% 33.5% 93 Barcelona 14.9% 10.3% 24.1% 9.2% 14.9% 26.4%
22 Dongguan 0.6% 12.6% 13.1% 29.7% 8.0% 36.0% 94 Madrid 11.1% 4.9% 15.3% 22.9% 16.0% 29.9%
23 Fuzhou 0.0% 13.0% 25.4% 31.4% 3.0% 27.2% 95 Sevilla 1.4% 15.0% 34.0% 14.3% 5.4% 29.9%
24 Ganzhou 0.6% 4.7% 42.0% 21.3% 3.6% 27.8% 96 Dnipro 11.0% 15.3% 28.0% 7.6% 6.8% 31.4%
25 Guangzhou 3.5% 4.6% 5.2% 34.1% 6.4% 46.2% 97 Kyiv 14.2% 7.5% 13.3% 5.8% 21.7% 37.5%
26 Hangzhou 3.2% 6.5% 6.5% 55.2% 7.1% 21.4% 98 Odesa 15.7% 16.9% 12.0% 4.8% 9.6% 41.0%
27 Hefei 5.0% 3.1% 6.3% 56.9% 2.5% 26.3% 99 Birmingham 25.7% 0.9% 0.0% 25.7% 24.8% 23.0%
28 Jinan 5.3% 9.2% 15.8% 39.5% 8.6% 21.7% 100 Birstall 8.0% 10.6% 45.1% 2.7% 8.8% 24.8%
29 Nanchang 0.6% 6.6% 1.8% 38.0% 4.8% 48.2% 101 Leeds 10.2% 7.4% 13.9% 13.0% 12.0% 43.5%
30 Nanjing 0.7% 6.0% 9.3% 48.3% 8.6% 27.2% 102 London 6.8% 0.0% 0.0% 71.8% 16.2% 5.1%
31 Nanyang 0.6% 21.7% 31.1% 12.4% 0.0% 34.2% 103 Manchester 12.5% 1.8% 5.4% 24.1% 16.1% 40.2%
32 Ningbo 1.2% 7.1% 2.9% 52.4% 5.9% 30.6% 104 Newcastle 7.4% 5.6% 17.6% 19.4% 9.3% 40.7%
33 Qingdao 5.3% 10.6% 4.3% 44.7% 9.6% 25.5% 105 Montreal 30.8% 1.7% 6.0% 30.8% 17.1% 13.7%
34 Shanghai 0.6% 0.0% 0.0% 73.5% 6.2% 19.8% 106 Toronto 29.2% 0.0% 0.7% 12.4% 10.2% 47.4%
35 Shenyang 0.7% 13.6% 5.0% 30.7% 5.7% 44.3% 107 Vancouver 58.7% 4.6% 10.1% 8.3% 3.7% 14.7%
36 Shenzhen 1.3% 14.6% 19.0% 31.6% 14.6% 19.0% 108 Santo Domingo 18.6% 14.2% 20.4% 13.3% 7.1% 26.5%
37 Shijiazhuang 0.7% 9.9% 6.6% 23.0% 7.2% 52.6% 109 Guatemala City 4.9% 10.8% 40.5% 8.1% 5.4% 30.3%
38 Tianjin 0.7% 7.6% 1.4% 42.8% 9.7% 37.9% 110 Guadalajara 23.7% 5.6% 18.6% 13.0% 11.3% 27.7%
39 Wuhan 0.7% 2.8% 4.2% 56.3% 9.2% 26.8% 111 Mexico City 9.3% 0.0% 6.0% 73.6% 7.1% 3.8%
40 Xi’an 27.7% 4.4% 8.8% 36.5% 5.7% 17.0% 112 Monterrey 25.8% 1.3% 25.2% 16.1% 16.8% 14.8%
41 Delhi 16.7% 6.0% 13.7% 17.9% 10.7% 35.1% 113 Tijuana 33.6% 4.2% 23.1% 9.1% 7.7% 22.4%
42 Kolkata 13.3% 11.0% 31.2% 12.1% 4.0% 28.3% 114 Atlanta 38.9% 3.2% 11.5% 0.6% 7.0% 38.9%
43 Jakarta 39.4% 1.7% 2.2% 14.4% 15.0% 27.2% 115 Boston 31.5% 0.8% 7.3% 19.4% 17.7% 23.4%
44 Tehran 23.9% 0.6% 3.2% 59.4% 7.1% 5.8% 116 Chicago 91.1% 0.0% 0.0% 2.4% 4.1% 2.4%
45 Nagoya 37.3% 2.0% 2.0% 26.8% 13.7% 18.3% 117 Dallas 36.7% 1.9% 2.5% 20.9% 11.4% 26.6%
46 Osaka 45.2% 1.9% 5.2% 24.5% 13.5% 9.7% 118 Denver 56.3% 2.1% 14.6% 4.9% 2.8% 19.4%
47 Tokyo 35.9% 0.0% 0.0% 44.9% 16.0% 3.2% 119 Detroit 67.1% 0.0% 0.7% 13.3% 7.7% 11.2%
48 Seoul 13.1% 2.0% 9.2% 56.2% 5.9% 13.7% 120 Houston 39.0% 0.0% 0.0% 28.0% 18.3% 14.6%
49 Kuala Lumpur 26.3% 2.1% 22.6% 15.3% 8.9% 24.7% 121 Los Angeles 41.6% 2.2% 19.0% 19.0% 10.2% 8.0%
50 Karachi 13.5% 9.0% 15.0% 32.3% 9.0% 21.1% 122 Miami 68.5% 5.4% 2.7% 5.4% 7.2% 10.8%
51 Lahore 25.0% 5.1% 23.7% 18.6% 9.6% 17.9% 123 Minneapolis 77.8% 0.7% 2.2% 3.7% 7.4% 8.1%
52 Manila 30.2% 0.9% 3.4% 34.5% 14.7% 16.4% 124 New York 35.8% 2.2% 8.0% 29.9% 17.5% 6.6%
53 Singapore 0.7% 6.7% 8.2% 50.0% 8.2% 26.1% 125 Philadelphia 35.2% 4.1% 1.4% 17.2% 19.3% 22.8%
54 Bangkok 20.3% 5.3% 1.1% 14.4% 16.6% 42.2% 126 Phoenix 80.4% 2.5% 5.7% 0.6% 1.3% 9.5%
55 Istanbul 12.3% 0.9% 0.9% 52.8% 21.7% 11.3% 127 San Diego 24.1% 5.7% 20.3% 4.4% 10.1% 35.4%
56 Hanoi 6.7% 13.5% 13.5% 11.2% 10.1% 44.9% 128 San Francisco 35.1% 8.1% 13.5% 13.5% 9.5% 20.3%
57 Ho Chi Minh City 25.5% 7.4% 22.3% 9.6% 10.6% 24.5% 129 Seattle 85.5% 1.2% 4.8% 0.0% 2.4% 6.0%
58 Brisbane 14.3% 7.1% 7.7% 12.5% 13.1% 45.2% 130 Tampa 49.7% 5.2% 9.7% 0.6% 1.9% 32.9%
59 Melbourne 37.5% 0.8% 1.6% 29.7% 10.9% 19.5% 131 Washington 31.3% 0.7% 2.7% 16.3% 23.8% 25.2%
60 Sydney 14.1% 4.7% 13.3% 24.2% 14.8% 28.9% 132 Buenos Aires 20.9% 2.3% 3.5% 48.8% 15.1% 9.3%
61 Vienna 9.4% 6.3% 11.7% 22.7% 18.0% 32.0% 133 La Paz 9.9% 7.6% 48.8% 11.0% 6.4% 16.3%
62 Minsk 11.1% 3.7% 6.5% 31.5% 13.0% 34.3% 134 Santa Cruz 20.9% 9.9% 44.5% 10.4% 4.9% 9.3%
63 Brussels 10.1% 5.9% 14.3% 21.8% 14.3% 33.6% 135 Belo Horizonte 24.7% 11.2% 29.8% 8.4% 11.8% 14.0%
64 Sofia 5.0% 12.2% 38.8% 9.4% 7.2% 27.3% 136 Brasilia 2.9% 12.0% 35.4% 11.4% 9.7% 28.6%
65 Zagreb 28.9% 8.1% 37.0% 1.5% 0.7% 23.7% 137 Fortaleza 12.2% 7.1% 6.1% 20.4% 9.2% 44.9%
66 Prague 6.6% 6.6% 18.2% 12.4% 19.0% 37.2% 138 Rio de Janeiro 6.3% 8.9% 25.9% 21.4% 13.4% 24.1%
67 Paris 10.5% 0.0% 0.8% 54.8% 26.6% 7.3% 139 Sao Paulo 24.6% 0.0% 2.3% 40.6% 21.1% 11.4%
68 Berlin 18.6% 0.9% 0.9% 39.8% 15.9% 23.9% 140 Santiago 25.3% 0.0% 9.1% 44.2% 11.7% 9.7%
69 Cologne 13.6% 3.4% 9.3% 18.6% 11.0% 44.1% 141 Bogota 7.0% 5.4% 47.8% 27.4% 5.4% 7.0%
70 Hamburg 13.0% 1.9% 13.9% 21.3% 14.8% 35.2% 142 Medellin 8.9% 11.6% 61.1% 3.2% 6.8% 8.4%
71 Munich 9.5% 7.1% 13.5% 27.0% 6.3% 36.5% 143 Quito 8.1% 8.1% 51.9% 8.1% 5.4% 18.4%
72 Athens 31.9% 9.4% 21.0% 18.8% 9.4% 9.4% 144 Lima 11.7% 3.9% 17.5% 48.1% 9.1% 9.7%
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Supplementary Table 5. Aggregated cross-scale mapping relations (counts and percentages).

Large Mid Count of Mapping Relations Percentage Mid Small Count of Mapping Relations Percentage

Gridiron

Gridiron 30016 50.3%

Gridiron

Gridiron 20786 53.8%
Linear 1184 2.0% Linear 2053 5.3%
Chaotic 4704 7.9% Chaotic 8215 21.2%
Organic 6148 10.3% Organic 673 1.7%
Radial 4712 7.9% Radial 830 2.1%
Tributary 12920 21.6% Tributary 6111 15.8%

Linear

Gridiron 300 1.4%

Linear

Gridiron 406 1.1%
Linear 12068 56.5% Linear 19166 51.5%
Chaotic 7044 33.0% Chaotic 16649 44.7%
Organic 36 0.2% Organic 21 0.1%
Radial 220 1.0% Radial 328 0.9%
Tributary 1696 7.9% Tributary 650 1.7%

Chaotic

Gridiron 916 1.7%

Chaotic

Gridiron 853 1.2%
Linear 4288 8.0% Linear 1282 1.9%
Chaotic 47124 87.8% Chaotic 65949 96.4%
Organic 56 0.1% Organic 27 0.0%
Radial 152 0.3% Radial 32 0.0%
Tributary 1148 2.1% Tributary 261 0.4%

Organic

Gridiron 2432 3.4%

Organic

Gridiron 8061 14.9%
Linear 776 1.1% Linear 8289 15.4%
Chaotic 308 0.4% Chaotic 994 1.8%
Organic 39956 55.9% Organic 7342 13.6%
Radial 10596 14.8% Radial 5884 10.9%
Tributary 17400 24.3% Tributary 23430 43.4%

Radial

Gridiron 1460 4.9%

Radial

Gridiron 4822 15.4%
Linear 1500 5.0% Linear 6248 20.0%
Chaotic 540 1.8% Chaotic 1476 4.7%
Organic 6304 21.1% Organic 2181 7.0%
Radial 11000 36.9% Radial 7058 22.6%
Tributary 9036 30.3% Tributary 9435 30.2%

Tributary

Gridiron 3544 4.4%

Tributary

Gridiron 6323 7.3%
Linear 17404 21.8% Linear 36699 42.5%
Chaotic 8684 10.9% Chaotic 22411 25.9%
Organic 1500 1.9% Organic 182 0.2%
Radial 4540 5.7% Radial 1376 1.6%
Tributary 44248 55.4% Tributary 19457 22.5%
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Supplementary Table 7. Pearson correlation matrix between road network pattern and socioeconomic & environmental indicators.
PropG�T denotes proportion of gridiron, linear, chaotic, organic, radial, and tributary, respectively. GDP, GDP per capita, and
GNI per capita are 2020 country data in current US dollar. NT L indicates the average nighttime light brightness in the study boundary.
Population refers to the total population of cities. Pop. growth is the population growth rate within the 15 km city boundary from 2010 to
2020. PM2.5 denotes the annual average PM2.5 density (mostly in 2019). The values are the Pearson correlation coefficients (r), while the *
behind indicates the p-value significance (*: significant, p<=0.05).

Prop_G Prop_L Prop_C Prop_O Prop_R Prop_T PDP PDI GNSI
GDP 0.324 (*) -0.073 -0.415 (*) 0.048 -0.009 0.169 (*) 0.049 -0.179 (*) 0.041
GDP per capita 0.449 (*) -0.346 (*) -0.422 (*) -0.057 0.416 (*) 0.087 -0.046 0.069 -0.257 (*)
GNI per capita 0.458 (*) -0.351 (*) -0.424 (*) -0.058 0.42 (*) 0.082 -0.043 0.064 -0.252 (*)
NTL 0.312 (*) -0.482 (*) -0.444 (*) 0.415 (*) 0.503 (*) -0.248 (*) -0.03 0.024 -0.217 (*)
Population 0.031 -0.305 (*) -0.338 (*) 0.454 (*) 0.242 (*) -0.06 -0.023 -0.087 -0.147
Pop. growth 0.145 0.017 0.202 (*) -0.156 -0.215 (*) -0.172 (*) 0.14 -0.189 (*) 0.196 (*)
PM2.5 -0.25 (*) 0.297 (*) 0.026 0.064 -0.359 (*) 0.152 -0.017 -0.078 0.157

Supplementary Table 8. Pearson correlation matrix between road network pattern and socioeconomic & environmental indicators
(excluding the US cities).

Prop_G Prop_L Prop_C Prop_O Prop_R Prop_T PDP PDI GNSI
GDP -0.372 (*) 0.189 (*) -0.331 (*) 0.239 (*) -0.266 (*) 0.453 (*) 0.032 -0.252 (*) 0.117
GDP per capita 0.031 -0.247 (*) -0.338 (*) 0.083 0.432 (*) 0.284 (*) -0.118 0.146 -0.352 (*)
GNI per capita 0.03 -0.255 (*) -0.342 (*) 0.087 0.443 (*) 0.286 (*) -0.118 0.144 -0.351 (*)
NTL 0.144 -0.452 (*) -0.393 (*) 0.528 (*) 0.529 (*) -0.204 (*) -0.112 0.097 -0.292 (*)
Population 0.161 -0.337 (*) -0.383 (*) 0.438 (*) 0.259 (*) -0.057 -0.006 -0.115 -0.163
Pop. growth 0.334 (*) -0.01 0.188 (*) -0.175 -0.22 (*) -0.198 (*) 0.17 -0.217 (*) 0.217 (*)
PM2.5 -0.163 0.281 (*) -0.01 0.004 0.358 (*) 0.124 -0.035 -0.072 0.157

Supplementary Table 9. Pearson correlation matrix between road network pattern and socioeconomic & environmental indicators
(excluding Chinese cities).

Prop_G Prop_L Prop_C Prop_O Prop_R Prop_T PDP PDI GNSI
GDP 0.622 (*) -0.291 (*) -0.384 (*) -0.107 0.202 (*) -0.067 0.043 -0.085 -0.047
GDP per capita 0.399 (*) -0.341 (*) -0.521 (*) 0.009 0.371 (*) 0.239 (*) -0.041 0.015 -0.234 (*)
GNI per capita 0.409 (*) -0.348 (*) -0.524 (*) 0.008 0.375 (*) 0.233 (*) -0.039 0.01 0.228 (*)
NTL 0.284 (*) -0.464 (*) -0.482 (*) 0.468 (*) 0.485 (*) -0.25 (*) -0.038 -0.007 -0.203 (*)
Population 0.109 -0.423 (*) -0.318 (*) 0.469 (*) 0.334 (*) -0.202 (*) -0.05 -0.023 -0.191 (*)
Pop. growth 0.144 0.05 0.218 (*) -0.182 (*) -0.248 (*) -0.191 (*) 0.145 -0.209 (*) 0.211 (*)
PM2.5 -0.081 0.134 0.17 -0.024 -0.171 -0.082 -0.075 0.103 0.03

19/20



References
1. Chen, W., Wu, A. N. & Biljecki, F. Classification of urban morphology with deep learning: Application on urban vitality.

Comput. Environ. Urban Syst. 90, 101706, DOI: 10.1016/j.compenvurbsys.2021.101706 (2021).

2. Cardillo, A., Scellato, S., Latora, V. & Porta, S. Structural properties of planar graphs of urban street patterns. Phys. Rev. E

73, 066107 (2006).

3. Eppstein, D. & Goodrich, M. T. Studying (non-planar) road networks through an algorithmic lens. In Proceedings of the

16th ACM SIGSPATIAL international conference on Advances in geographic information systems, 1–10 (2008).

4. Wu, A. N. & Biljecki, F. Ganmapper: geographical data translation. Int. J. Geogr. Inf. Sci. (2022).

5. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition (2015). 1512.03385.

6. He, K., Zhang, X., Ren, S. & Sun, J. Identity mappings in deep residual networks (2016). 1603.05027.

7. Chen, Z. et al. An extended time-series (2000-2018) of global NPP-VIIRS-like nighttime light data, DOI: 10.7910/DVN/
YGIVCD (2020).

20/20

10.1016/j.compenvurbsys.2021.101706
1512.03385
1603.05027
10.7910/DVN/YGIVCD
10.7910/DVN/YGIVCD

	Introduction
	Methods
	Urban meshing and multiscale pattern classification
	Classification model and performance
	Pattern Diversity Index
	Neighborhood Similarity Index

	Results
	Scale effect on road network patterns
	Continental and dimensional comparison of dominant patterns
	Panoramic pattern profile and inter-city similarity
	Intra-city spatial distribution of road network patterns
	Synergy with urban socioeconomic and environmental conditions


	Discussion
	Conclusion

