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Street View Imagery (SVI) has emerged as a valuable data form in urban stud-
ies, enabling new ways to map and sense urban environments. However, funda-
mental concerns regarding the representativeness, quality, and reliability of SVI
remain underexplored, e.g. to what extent can cities be captured by such data and
do data gaps result in bias. This research, positioned at the intersection of spatial
data quality and urban analytics, addresses these concerns by proposing a novel
and effective method to estimate SVI’s element-level coverage in the urban en-
vironment. The method integrates the positional relationships between SVI and
target elements, as well as the impact of physical obstructions. Expanding the
domain of data quality to SVI, we introduce an indicator system that evaluates the
extent of coverage, focusing on the completeness and frequency dimensions. Tak-
ing London as a case study, three experiments are conducted to identify potential
biases in SVI’s ability to cover and represent urban environmental elements, us-
ing building facades as an example. It is found that despite their high availability
along urban road networks, Google Street View covers only 62.4 % of buildings
in the case study area. The average facade coverage per building is 12.4 %. SVI
tends to over-represent non-residential buildings, thus possibly resulting in biased
analyses, and its coverage of environmental elements is position-dependent. The
research also highlights the variability of SVI coverage under different data acqui-
sition practices and proposes an optimal sampling interval range of 50–60 m for
SVI collection. The findings suggest that while SVI offers valuable insights, it is
no panacea — its application in urban research requires careful consideration of
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data coverage and element-level representativeness to ensure reliable results.
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1. Introduction

Street View Imagery (SVI) has gained a significant role in urban studies and
in spatial data infrastructure as a new means to map and sense urban environ-
ments (Biljecki and Ito, 2021; Kang et al., 2020; Ibrahim et al., 2020; Zhang et al.,
2024). Research efforts have been predominantly focused on the development of
use cases, while fundamental concerns of data quality and reliability of this emerg-
ing form of data have not been given sufficient attention in international scientific
literature. The lack of understanding of questions such as reach and coverage of
SVI data may have adverse effects on use cases and downstream analyses. For
example, SVI has been used intensively for mapping street greenery (Zhu et al.,
2023; Liu et al., 2023a) and buildings (Zhong et al., 2021; Ramalingam and Ku-
mar, 2025), assessing walking environment (Liu et al., 2023b; He and He, 2023)
and microclimate (Fujiwara et al., 2024), and understanding human perception at
the urban scale (Wu et al., 2023; Wang et al., 2022; Ramı́rez et al., 2021; Verma
et al., 2020), but not much is known about the representativeness and suitability
of the data for the corresponding road and sidewalk scenarios, or for the inves-
tigated neighborhoods and local zones, e.g. it is not known what is the reach of
data and to what extent can we sense an urban aspect using SVI, and whether the
(incomplete) coverage is representative or biased.

This challenge is exacerbated by the gap that traditional spatial data quality
metrics, such as accuracy and resolution, are primarily designed for remote sens-
ing imagery or geometric data, which do not fully apply to SVI (Hou and Biljecki,
2022). While some studies employ completeness to evaluate the integrity of SVI
in geospatial coverage (Kim and Jang, 2023; Hou and Biljecki, 2022; Juhász and
Hochmair, 2016; Quinn and Alvarez León, 2019), they predominantly focus on
the spatial and temporal availability of imagery, limiting their analysis to their
coordinates and timestamps. However, there are other unique metadata and prop-
erties that set SVI apart from traditional urban data forms, leading to potential
variability in its application. For example, the impact of SVI camera parameters
(e.g., heading, Field of View (FOV), image formats), and collection intervals are
frequently neglected in common SVI-based research practices (Kim et al., 2021;
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Biljecki et al., 2023b). These metadata shape the potential of SVI to map specific
street elements horizontally in urban environments, which are crucial for SVI as a
proxy for human-centered sensing and perception. To address some of these limi-
tations, Hou and Biljecki (2022) propose a comprehensive framework to evaluate
SVI data quality, primarily focusing on image quality, metadata availability and
accuracy, and spatial and temporal aspects. The framework promotes SVI meta-
data and improves the standardization in SVI collection and utilization, especially
for volunteered street view imagery (VSVI), which are subject to heterogeneous
acquisition practices (Hou and Biljecki, 2022; Danish et al., 2025; Helbich et al.,
2024). However, the framework is tightly constrained to quality considerations,
with limited exploration of how metadata practically impacts SVI’s capability to
represent environmental information.

Even with high quality of imagery, homogeneous acquisition protocols em-
ployed by commercial providers, extensive availability, and proper metadata con-
trol, SVI does not necessarily guarantee reliable representation of the urban en-
vironment. One major limitation is that SVI is largely constrained to roads. It is
reported that SVI has diminishing reach from public streets to the interior roads
of blocks or neighborhoods (Biljecki and Ito, 2021; Kang et al., 2020). Moreover,
the complexity of real-world objects and their layouts, as captured by SVI, can
introduce noise that impacts the reliability of this data in covering specific en-
vironmental elements. For example, similarly as how vegetation and clouds can
obstruct the observation of ground-level objects in remote sensing imagery (Hos-
seini et al., 2023), elements such as trees and vehicles may obstruct street-level
mapping of urban elements such as building facades (Novack et al., 2020). Their
interplay is also important — buildings, while often the main focus of use cases,
can also act as unwanted obstacles to other objects (Yan and Huang, 2022; Raghu
et al., 2023). In densely built environments with congested layouts, such mutual
obstructions are further amplified, which hinders SVI from providing complete
and extensive coverage of environmental elements. Efforts to address these chal-
lenges include the use of generative models to inpaint obstructed SVI images, such
as removing trees, street furniture from building facades (Yu et al., 2023; Hu et al.,
2023). However, the systematic effects of these obstructions on urban sensing us-
ing SVI remain untouched. As a result, the complexity of urban environments
should be considered another critical concern.

In spite of the importance, there is a notable absence of effective methodol-
ogy and set of metrics to assess the SVI’s representativeness of environmental
information, not just relying on a general coverage analysis inferred from SVI
locations but also by diving into element-level coverage. The assessment should
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examine the discrepancies and biases between SVI covered element information
to its real-world distribution, and address the uncertainty introduced by different
SVI metadata, their practical usage, and the complexity of urban environment.
Some existing studies only explore the stability and sensitivity of SVI in proxy-
ing environmental elements (e.g. building, sky, and greenery), and under varying
metadata settings such as different image formats and projection methods (Bil-
jecki et al., 2023b), different image collection intervals (Kim and Jang, 2023),
from pedestrian and vehicle perspectives and different directions (Ki et al., 2023).
However, whether stable or not, the degree to which SVI-based environmental
measurement correspond to actual environmental elements is still undetermined.
This lack of knowledge suggests a need for further and more surgical research
that departs from the general SVI data quality studies or sensitivity research, to
understand the extent and limitations of SVI in providing a comprehensive view
of urban environments.

With the above elaborated gaps and research ideas, the main research ques-
tions we seek to answer in this paper are:

Q1. How can we quantitatively estimate and describe the element-
level coverage of SVI on urban environment?

Q2. Are there typical biases or discrepancies in SVI’s representation
of the urban environment when analyzed through the element-level
perspectives?

To address the questions, the research proposes a novel workflow to estimate
SVI’s coverage on elements in urban environment. The workflow integrates both
the positional relationships between SVI and the target element, and the obstruc-
tions from environmental objects and settings into consideration, applying isovist
analysis and semantic segmentation methods. Moreover, an accompanying indi-
cator system is developed to evaluate and describe the coverage extent. Key con-
siderations include the degree to which total street elements in a city can be cap-
tured in SVI, and whether certain instances in the element are repeatedly covered
while others are frequently left out of sight. Taking the central area in the Greater
London as the case study area, the research is further structured around three ex-
periments to identify potential bias of SVI in covering and representing environ-
ment information. Urban building facade is selected as the example element for
these experiments. In Experiment 1, we examine the distribution characteristics of
building information captured by SVI and compare it with the initial distribution
based on building footprint data. Experiment 2 focuses on SVI coverage at the
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aggregated level, comparing the proposed element-level coverage estimates with
traditional coverage estimates that rely on spatial distribution. In Experiment 3,
we explore the impact of different SVI collection intervals, an important aspect of
SVI metadata, on the variability of element-level SVI coverage. Through the ex-
periments above, we justify our element-level SVI coverage estimation workflow
and metrics, and offer useful suggestions and reference in improving the reliability
of further SVI-based urban research.

2. Background and related work

2.1. Application and concerns of SVI in mapping urban environment elements
Thanks to the rapid advancements in deep learning, particularly in visual tasks

such as image classification, semantic segmentation, and object detection, Street
View Imagery (SVI) data has been widely applied in urban science. By combining
SVI with deep learning, researchers have been able to map and classify urban
elements such as buildings, roads, and greenery on a large scale, generating new
geospatial data or enhancing existing datasets (Biljecki and Ito, 2021; Seiferling
et al., 2017). SVI also serves as a visual proxy for investigating socio-economic
attributes and human perceptions of specific neighborhoods or urban spaces (He
and Li, 2021; Fan et al., 2023; Kang et al., 2020). Table A.1 summarizes recent
studies that use SVI to map and sense typical environmental elements.

The considerable quantity and the extensive distribution of SVI, coupled with
scalable machine learning models, are the prominent reasons SVI has been a pop-
ular urban data source for city-scale analyses (Biljecki and Ito, 2021; Kang et al.,
2020). Nevertheless, existing research falls short in articulating the specific extent
of SVI’s representativeness. Specifically, in terms of mapping urban environment
elements such as building and greenery, it is questionable to which degree SVI
can reach all the corresponding elements compared to their nature of existence.
For perception research relying SVI as visual proxy, similar concerns raise about
whether the SVI captured information, shares a similar distribution with the in-
formation represented in total investigated scenarios, or in the selected regions or
neighborhoods. Acknowledging the potential limitations, models trained on SVI
for mapping environmental elements or evaluating spatial attributes are often pre-
sented as an initial step or baseline for a broader research goal (Raghu et al., 2023;
Yan and Huang, 2022; Ramalingam and Kumar, 2023). Fully achieving the goal
requires addressing the uncertainty in SVI’s ability to systematically represent the
urban environment.
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2.2. Sources of uncertainty in SVI application
To better understand the limitations of SVI, the section identifies three typical

sources of uncertainty reported in previous research, namely SVI data availability
and quality, common practices in SVI utilization, and complexity in real-world
environment.

2.2.1. SVI data quality: availability, image quality, and others
SVI data quality problems can be regarded as an inherent source of uncertain-

ties for SVI in representing urban environment. Among them, the data availability
have received more attention, and there are uneven availability distribution of SVI
images and services across various geographic scales. Notably, a significant num-
ber of cities worldwide still lack SVI services. Cities in Europe and North Amer-
ica enjoy broader SVI coverage, whereas economically underdeveloped regions
in Latin America and Africa experience sparse and limited distribution (Bendixen
et al., 2023; Hou and Biljecki, 2022; Quinn and Alvarez León, 2019). Moreover,
there is spatial heterogeneity of SVI collection within cities where SVI services
are available. For example, streets in areas characterized by high traffic volumes,
dense populations, or wealthier demographics are more likely to be imaged (Fry
et al., 2020). Conversely, smaller towns and rural areas are often overlooked
(Szczepańska and Pietrzyk, 2020). Additionally, image availability in informal
urban sectors can be compromised by the absence of accessible roads (Chen et al.,
2022; He and Li, 2021), which results in the structured missingness problem (Mi-
tra et al., 2023). In their review papers, Kang et al. (2020) and Biljecki and Ito
(2021) point out that SVI is predominantly collected along streets, making it chal-
lenging to analyze variations within neighborhood built environments, potentially
leading to structural issues in the completeness of information.

The distribution of SVI availability also varies among different service providers.
Google Street View often employs an all-or-nothing approach to collecting SVI
(Quinn and Alvarez León, 2019), and achieves a more complete coverage on road
network for cities where the service is available. In contrast,crowdsourcing plat-
forms such as Mapillary, which rely on user contributions, lag behind commercial
services in terms of the number of globally available cities and the completeness
of road coverage (Biljecki and Ito, 2021; Wang et al., 2024). Nevertheless, Zheng
and Amemiya (2024) found that as cumulative image contributions along streets
increase, the spatial density and viewing angle coverage of VSVI improve sig-
nificantly. Additionally, the temporal continuity of SVI availability in same or
nearby geo-locations is a concern for both commercial and crowdsourced sources
(Kim and Jang, 2023; Hou and Biljecki, 2022). There are series of method for
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measuring spatial and temporal availability of SVI data. For Google Street View,
a typical method for assessing availability is to extract sampling points randomly
or in a standardized way based on the road network in specific urban areas, calcu-
lating the proportion of these sampling points that have valid SVI in the vicinity
(Smith et al., 2021; Fry et al., 2020; Kim and Jang, 2023). For crowdsourced data
such as Mapillary or KartaView, besides the method above, the availability of SVI
can also be measured by the proportion of road lengths covered by continuous
SVI sequences to the total length of the road network (Mahabir et al., 2020; Hou
and Biljecki, 2022). Spatial coordinates and timestamps in SVI metadata play a
crucial role in these assessment methods. As this paper will demonstrate, such
methods may be useful but simplistic, so they may not paint a complete picture
of the coverage of SVI, especially in the context of use cases. For example, it is
difficult to tell from such metrics what is the percentage of buildings that can be
mapped from SVI.

Beyond general data availability problems, SVI also suffers from image qual-
ity problems, such as blurriness, and variable lighting and weather conditions (Rui
and Cheng, 2023; Zou and Wang, 2022; Yuan et al., 2023). Low-quality and de-
fective images may hinder the performance of computer vision models (Vo et al.,
2023). The missing or inaccuracy of SVI metadata, such as GPS coordinates,
timestamps, and exterior orientation parameters can also limit the usability of
SVI in reflecting environmental information (Lumnitz et al., 2021; Liang et al.,
2017). Given the situation, Hou and Biljecki (2022) first proposed a comprehen-
sive framework to assess SVI quality problems beyond availability. The qual-
ity issues are conceptualized into 48 elements across 7 categories, namely image
quality, metadata availability and accuracy, spatial quality, temporal quality, log-
ical consistency, redundancy, and privacy. The relevant evaluation system and
methods have been used to create an open global street view dataset, with a focus
on enhancing metadata in existing crowdsourced street view data sources (Hou
et al., 2024).

2.2.2. Common practices in SVI utilization
Beyond data availability and quality, the way researchers utilize SVI data in-

troduces another layer of uncertainty. As a common practice, many studies re-
trieve SVI by sampling points at regular intervals along road networks, selecting
the nearest images for analysis. This approach primarily aims to mitigate potential
spatial unevenness in SVI distribution.

On the one hand, the road networks used for sampling, often based on Open-
StreetMap (OSM), may have limitations in terms of timeliness and completeness
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(Sánchez and Labib, 2024). In underdeveloped areas or regions with policy re-
strictions, the coverage may be even less comprehensive. This issue can be ampli-
fied by SVI’s focus on main streets, often neglecting pedestrian paths or internal
neighborhood spaces (Kang et al., 2020; Biljecki and Ito, 2021). Given the situ-
ation, research focused on mapping trees and plants usually restricts the mapped
targets to those located along the street (Lumnitz et al., 2021; Liang et al., 2024a).
However, for studies primarily concerned with mapping buildings, the spatial
boundaries of the targeted objects are often vaguely defined (Zhou et al., 2023;
Aravena Pelizari et al., 2021).

On the other hand, there is a lack of sufficient evidence to determine the op-
timal interval for SVI sampling. Smaller intervals may introduce redundancy,
which is advantageous for mapping environmental elements as it ensures the cap-
ture of useful information and prevents data gaps (Liang et al., 2024a). However,
in studies focused on spatial perception at the neighborhood or regional level,
overly dense intervals could result in the repeated capture and overemphasizing
of certain environmental element in the overall captured information, leading to
a biased representation. Kim et al. (2021) systematically examined how different
sampling intervals affect the SVI-based measurement of various street view ele-
ments, finding significant fluctuations across intervals. However, their focus was
more on the stability of these measurements rather than on how accurately SVI
reflects the real environment.

Beyond the image sampling methods and intervals, researchers also consider
the impact from other parameter selections and practices on SVI utilization. Specif-
ically, these studies have compared different SVI orientations (Kim et al., 2021),
different collection positions (lanes and sidewalks) (Ki et al., 2023; Ito et al.,
2024a), and different image sources and forms (crowdsourced and commercial;
perspective and panoramic) (Biljecki et al., 2023b), to see if they affect how SVI
summarizes and reflects the same urban environment elements, such as buildings,
greenery, and sky. It is reported that though reliability of a single, crowdsourced
imagery is comparable to commercial panoramas (Biljecki et al., 2023b), there are
significant measurement errors for sidewalks, greenery, and roads between pedes-
trian and vehicle views (Ki et al., 2023). Additionally, Liu and Sevtsuk (2024)
discussed the issues such as lack of clear technical definitions in street attributes
extracted from SVI, the lag in CV model performance, and the absence of bench-
marks. Although not the focus of this paper, these issues contribute another aspect
of uncertainty in the common practices of SVI utilization.
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2.2.3. Complexity of real-world environment
Different sampling strategies and parameter selections for SVI primarily test

the stability of SVI in mapping diverse urban environments. Beyond stability,
however, the extent to which SVI can effectively cover and represent complex
environments remains under-researched. The complexity of urban environments
can be further explained by the obstructions of other environmental instances, and
the density and layout of the overall built environment and their heterogeneity.
Biljecki and Ito (2021) and Novack et al. (2020) note that objects frequently ana-
lyzed in SVI-based studies, such as buildings and trees, are often blocked by other
street-level elements in the imagery. Specifically, obstructions are one of the main
issues when using SVI to measure tree size (Liang et al., 2024a), estimate build-
ing height (Yan and Huang, 2022) and classify building materials (Raghu et al.,
2023). The presence of obstructions also amplifies the differences in environ-
mental measurements based on pedestrian versus vehicle perspectives (Ki et al.,
2023).

Additionally, when mapping buildings or trees in urban environment, obstruc-
tions can also be caused by the targeted elements themselves (Yan and Huang,
2022; Raghu et al., 2023), which is related to the density and layout distributions
of element instances in the surrounding environment. Obstruction is fundamen-
tally a problem of the relative position between the camera and the target element
instances. While SVI can be collected using relatively standardized procedures,
the distance and angle between environmental elements and the camera lens can
vary significantly (Zou and Wang, 2022; Lumnitz et al., 2021; Huang et al., 2025).
In studies focused on building assessments, some retrieved SVI may only show
the sides or partial views of buildings due to the variation of horizontal angles,
which might not provide sufficient façade features for classification or evaluation
tasks (Zou and Wang, 2022). Furthermore, suburban neighborhoods with sparse,
wide roads may differ significantly in openness from densely packed commercial
areas in city centers. This will affect not only the quantity and distribution of
SVI collected, but also the completeness and frequency with which SVI captures
specific environmental elements and instances.

In summary, the complexity of the urban environment introduces additional
uncertainty in SVI coverage of environmental elements. However, compared to
data quality problems or impact from SVI usage practices discussed in previous
sections, it has not been given enough attention. There is a notable research gap
concerning the extent to which SVI accurately covers the spatial instances in the
environment, corresponding to the visual elements it aims to represent in the im-
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age space. Limited and relevant examples are only about the greenness visibility
(Yan et al., 2023; Labib et al., 2021), where Green View Index (from SVI) and
Viewshed Greenness Visibility Index (from GIS simulation) are compared. The
focuses are about the similarity and discrepancies between the two indicators,
rather than element coverage potential of SVI. For this reason, new perspective
and method are explored to estimate the SVI coverage on urban environmental el-
ements in this study, quantitatively incorporating the impact from environmental
complexity. The details are depicted in the following sections.

3. Methodology

A research framework of the study is illustrated in Figure 1. We propose
a novel method to estimate element-level coverage of SVI, that integrates isovist
analysis method developed by Benedikt (1979) and computer vision technologies.
On this basis, comprehensive SVI coverage indicators are designed and calcu-
lated to describe the SVI coverage extents in different dimensions and in multiple
geographical scales. Utilizing the SVI coverage indicators, we design three ex-
periments to identify the potential bias of SVI in representing built environment
information in horizontal dimension.

3.1. Element-level SVI coverage estimation
3.1.1. Concept

As SVI can be regarded as the projection of 3D urban environment onto 2D
image space at specific locations, the coverage of SVI on environment elements
can be naturally examined both from two perspectives: from the visibility of en-
vironmental elements in image space, and from the relationship between SVI lo-
cations and element locations in the geometric space. The dual relationship forms
the foundation of the proposed SVI coverage estimation method, which is suffi-
ciently adaptable to various elements of the built environment.

In this study, urban building facades are chosen as a representative element
for coverage estimation and bias assessment. This choice is motivated by the fact
that buildings typically account for a significant portion of the visual information
captured in SVI and also serve as the primary containers of urban functions and
activities. Mapping buildings as static elements in urban environment is also more
common and reliable in current research practices compared to mapping dynamic
elements, such as pedestrians. In addition, by exploring how other environmental
elements, such as trees or vehicles, obstruct SVI’s coverage on building facades,
this investigation sheds light on how the complexity of urban environment shape
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Fig. 1. Research framework. The isovist analysis example is generated based on ‘t4gpd’ Python
library.
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the utility and limitations of SVI. A two-step workflow for estimating SVI cover-
age on building facades is introduced in the following sections.

3.1.2. Step 1 – coverage estimation based on geometric analysis
The SVI coverage on building facades can be first defined in 2D space, as the

intersection of the visual field of a potential observer at SVI location, with respect
to the surrounding building instances. The definition is based on the nature of
SVI as the collection of visible street elements at specific geographical locations.
Practically, the SVI coverage can be computed quantitatively based on the iso-
vist analysis method, as the proportion of building facades directly visible from
SVI locations and within a given distance. Buildings serve as both the observed
objects and the visual obstacles in the analysis, and how frequently and how com-
pletely the building facades can be visible from SVI locations, represent the extent
building covered by SVIs.

Fig. 2. A simplified workflow integrating isovist analysis and computer vision technology for
estimating the SVI coverage on building facades.

A Python script is designed to carry out simplified isovist analysis for SVI
location points. As shown in the workflow illustrated in Figure 2, sampling points
in 2 m interval are extracted from the boundaries of building footprints, as the
unit representation of building facades which are potentially visible. A thresh-
old of 50 m is set for isovist analysis, as the proximity of the maximum distance
where human can achieve an efficient observation in complex urban environment.
For each SVI location, lines of sight are first constructed towards all the build-
ing samplings points within the distance threshold. The spatial join method in
‘GeoPandas’ Python library is then applied to filter lines of sight which are not
intersected with the surrounding building footprints. Each line of sight filtered
counts as once a building sampling point can be seen via a specific SVI location.
While there are existing tools to carry out 2D isovist analysis (Leduc, 2024), such
as ‘t4gpd’,1 they are not fully applicable in our work due to being computationally

1https://github.com/thomas-leduc/t4gpd/
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intensive for this kind of analysis. Thus, we develop our own implementation.

3.1.3. Step 2 – coverage validation based on image content
To validate whether the lines of sight are blocked by non-building elements

in the real street environment, we calculate the absolute angles for lines of sight
compared to the true north, and relocate them in the image space of SVI, with
the SVI metadata of location and heading. For each SVI, semantic segmentation
is conducted via the Python library ‘ZenSVI’,2 to detect different street view ele-
ments, such as building, road, sky, vehicle and greenery (Ito et al., 2024b). Then
the SVI as a panoramic image is horizontally divided into 12 pieces with equal
angle range. Sinusoidal projection is applied to each angle range to restore the
distortion of street view elements at polar points and suit for an eye-level view.
The proportion of building elements with respect to the non-sky and non-ground
elements in the angle range are calculated, as shown in Formula B.1. For angle
ranges with building proportion below a certain threshold, the lines of sight within
the ranges can be removed, as they are highly likely to be blocked by other street
obstacles. By summarizing the remaining lines of sight by building footprints
and by local geospatial units, we gain a cumulative distribution of SVI coverage
potential. More comprehensive indicators can be calculated to describe the SVI
coverage on building facades in different dimensions.

3.2. SVI coverage indicators
We propose a novel indicator system to describe the extent of element-level

SVI coverage in two dimensions, namely the completeness and frequency. Tak-
ing SVI coverage on a single building as an example, the completeness indicator
measures how thoroughly the open facades of a building can be viewed from sur-
rounding panoramic SVIs. Specifically, the Completeness of SVI Coverage for
Individual Building (CoC-B) is given by the Formula 1, as the ratio of the visible
building sampling points with respect to all the sampling points that are available
from public facades for a single building. CoC-B reflects the representativeness
of building information captured by SVI compared to what building conveys in
public. In terms of frequency, the indicator represents the total number of lines of
sight that reach one building and from the surrounding panoramic SVIs. Lines of
sight between the same SVI and building pair, but through different building sam-
pling points are counted as independent occurrences. Since larger buildings with

2https://github.com/koito19960406/ZenSVI/
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longer facades naturally have a higher probability of being viewed, these occur-
rences are weighted by the building’s perimeter. The Frequency of SVI Coverage
on A Single Building (FoC-B) is given by the Formula 2. A higher FoC-B indicates
there is a higher probability a building can be viewed in urban environment.

CoC-B =
Useen

Uavail
(1)

where

• Useen denotes the actual number of unique sampling points visible from the
surrounding panoramic SVIs.

• Uavail represents the total number of unique sampling points available around
the building, providing a measure of the potential for SVI coverage.

FoC-B =
V
P

(2)

where

• V represents the occurrences sampling points from one building being visi-
ble by panoramic SVIs in the surrounding.

• P denotes the building perimeter, serving as a measure for normalizing vis-
ibility by the building’s size.

Beyond the building-level indicators, we also design indicators to describe the
SVI coverage extent at the aggregated level, similarly in the dimensions of fre-
quency and completeness. Specifically, the Completeness of SVI Coverage on
Buildings in Local Area (CoC-A), is designed to describe the proportion of build-
ings with at least one line of sight reached in local areas, such as neighborhoods
or census units. The indicator is given by the Formula 3. The indicator can be ap-
plied to detecting areas with insufficient SVI coverage from building perspective,
or conversely, evaluating the privacy risk of neighborhoods when exposed to SVI.
The Frequency of SVI Coverage on Buildings in Local Area (FoC-A) denotes the
proportion of SVI coverage occurrence on a certain building type, relative to the
total SVI coverage occurrence across all the building types in the local area. Given
by the Formula 4, this indicator plays a significant role in measuring the impact of
a building type on the overall character and visual perception of an area. A higher
concentration of SVI coverage of specific building types within an area suggests
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that renovations and improvements to buildings of this type could potentially have
greater visual and social impacts. Table C.2 in the appendix provides a summary
for all the four SVI coverage indicators.

CoC-A =
Nseen

Ntotal
(3)

where

• Nseen denotes the number of buildings with SVI coverage in the local area.

• Ntotal represents the total number of buildings in the local area.

FoC-A =
∑

i Vi,type∑
j V j,total

(4)

where

• Vi,type represents the SVI coverage occurrence for the ith building in a spe-
cific building type in the local area.

• V j,total represents the SVI coverage occurrence for the jth building across all
building types in the local area.

4. Case study

A case study is conducted in Greater London, UK, to implement the proposed
workflow for SVI coverage estimation. Following the results of the SVI coverage
estimation, the study undertakes three experiments to understand the potential bias
and uncertainty related to SVI coverage and potential data gaps. Further solutions
and suggestions are provided based on the experiments to help support the robust
application of SVI in urban research.

4.1. Data collection
The largest and most popular commercial street view service – Google Street

View (GSV) is selected as the source of SVI data in this case study. We achieve a
thorough search for all the latest SVI locations in the Greater London administra-
tive area, via the official Google Maps API and the python library ‘streetlevel’.3

3https://github.com/sk-zk/streetlevel/
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‘Streetlevel’ provides a feasible method to fetch all the available SVI locations by
map tiles. The method can succeed the traditional SVI collection method rely-
ing on road sampling points, which may result in an incomplete SVI searching.
Totally, 2,590,604 SVI location points and their heading directions are collected
in the Greater London administrative area. We randomly sampled 1 % of these
location points and analyzed their nearest distances to neighboring points. It was
revealed that over 71.3 % of the sampled points had at least one neighboring point
within a 10-m buffer. In addition to SVI data, the research adapts the building
footprint and road network data from OSM as the representation of urban envi-
ronment elements. Land use data from the Colouring Cities Research Programme
(CCRP) (Hudson, 2024) is applied to supplement building data from OSM, pro-
viding representations of building functional types, since such information is not
always available in OSM (Biljecki et al., 2023a). Detailed classification informa-
tion is available in Appendix D.

4.2. Data management

Fig. 3. The data collection and pre-processing workflow in the case study. Source of the base map
data: OpenStreetMap, Greater London Authority.

Considering that the isovist analysis is a computation intensive analytics method,
and the datasets collected above contain a large quantity of geometry shapes,
which can bring challenges to data loading and processing, the research employs
Uber’s H3 discrete global grid system (DGGS)4 to manage the datasets in an effi-
cient manner. The H3 DGGS adopts a hierarchical representation to divide Earth’s
surface into grids at sixteen different resolutions. As illustrated in Figure 3, the
H3 level-7 grids, which have an average hexagon area of 5.16 km2 and an aver-
age edge length of 1.40 km, are applied to split SVI locations, building footprints
and sampling points into smaller groups for isovist analysis. Each building sam-
pling point is assigned a unique H3 id and building id for further aggregation and

4https://h3geo.org/
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statistics analysis. To avoid the incomplete analysis for building samplings points
at the edge of grid, SVI location points and building footprints are indexed in an
extended 200 m buffer area for each H3 level-7 grid, to ensure building sampling
points are surrounded sufficiently with potential observers and obstacles in the
isovist analysis. Given that OSM building footprint data may not always be com-
plete (Herfort et al., 2023), we select 41 H3 level-7 grids with building footprint
completeness over 90 % as case areas in study. The building completeness in-
formation is referenced from the open dataset released from the work by Herfort
et al. (2023).

4.3. Experiments
4.3.1. Identifying potential bias in the SVI covered building information

For the Experiment 1, the study aims to detect the potential bias of SVI in
representing building information. To begin with, we hope to know whether SVI
coverage achieves an even distribution across buildings of different function types
and sizes, or it is prone to highlight or ignore specific buildings in the built en-
vironment. The experiment is conducted by comparing interior distribution of
the building-level SVI coverage completeness indicator, CoC-B, across buildings
grouped by building types and sizes.

Furthermore, we hope to learn whether the SVI captured building information
is representative of the building in reality. For building function types such as
residential, retail, transport etc., we calculate the area-level frequency indicator,
FoC-A, and their proportion by count in OSM in each H3 level-9 grid. By explor-
ing the linear association between the two indicators, especially interpreting the
correlation scores and the regression coefficients, we investigate whether specific
building function types are prone to be over-represented or under-represented in
SVI, i.e. whether using SVI to map the built environment is biased.

4.3.2. Mapping and explaining poorly represented neighborhoods in SVI
In the Experiment 2, we aim to identify neighborhoods that are not adequately

represented in SVI. This investigation is based on the hypothesis that even if SVI
provides sufficient coverage in terms of spatial distribution within a neighborhood,
it may still lack adequate coverage on building facades or on other environmental
elements. Consequently, this insufficiency might hinder a comprehensive repre-
sentation of the built environment within the neighborhood. Examining this hy-
pothesis could help uncover potential biases in numerous neighborhood-focused
studies based on SVI data.
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The experiment is conducted by comparing the spatial distribution of tradition-
ally adopted SVI coverage indicator with the spatial distribution of new coverage
indicators proposed in this study. Specifically, for each H3 level-9 grids in the
case study area, we aggregate the mean values of CoC-B indicators and calculate
the CoC-A indicators, as proxies of SVI’s capability in covering building facades
in local areas. Concurrently, referring to previous work by Juhász and Hochmair
(2016) and Hou and Biljecki (2022), we compute the completeness of SVI cov-
erage on road networks in the H3 level-9 grids as benchmarks. The calculation
detail is described in Appendix E. Utilizing Getis-Ord Gi* analysis, a spatial
auto-correlation analysis method identifying the hot-spots and cold-spots from
geo-spatial data, we highlight and compare the spatial distribution characteristics
of the above mentioned metrics. We further compare the local built environment
features, such as road density and centrality, building size, count and distance, and
proportion of street view elements of greenery, vehicle and human, between the
typical hot-spots and cold-spots of above coverage indicators. The aim is to reveal
the environmental causes of the potential insufficiency in SVI coverage.

4.3.3. Exploring the impact of collection interval on SVI coverage
In the Experiment 3, we aim to investigate the stability of SVI coverage on

building facades in terms of different SVI collection intervals. This investigation
is based on the hypothesis that smaller collection interval will increase both the
completeness and frequency of SVI coverage on the built environment, enhancing
the information density, but may not suit best for urban research due to the extra
redundancies introduced and the uncertainty in distribution.

This investigation starts with resampling SVI locations at different intervals
along the road networks to simulate different SVI collection strategies. For each
SVI collection interval and at each H3 level-9 grid, the mean values of CoC-B and
FoC-B are calculated and aggregated, respectively. By observing the variation
of the SVI coverage indicators relative to different SVI collection intervals, the
study hopes to reveal the potential bias and uncertainty introduced by different
SVI collection strategies.

On this basis, Experiment 3 explores whether there is an optimal SVI collec-
tion interval helping improve the reliability of SVI based urban research. Non-
linear functions can be fitted to precisely describe the variation of CoC-B and
FoC-B indicators along different intervals, respectively. By analyzing the two fit-
ted functions, especially the speed of indicator increase or decrease relative to the
SVI collection interval change, it is hypothesized that we can identify certain inter-
vals which enables sufficient completeness of SVI coverage on built environment
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information while helping eliminate the unnecessary redundancy and uncertainty.

4.4. Parameters and settings
For the standardization of the study and convenience of expression, the Exper-

iment 1 and 2 are carried out based on SVI locations resampled at 50-m interval
from the total SVI locations searched. 50-m’s searching radius is adopted in the
isovist analysis and 50 % of the building element proportion is applied to de-
cide whether SVI achieve a coverage on building facade on the corresponding
directions, thus filtering the isovist analysis results. For the Experiment 3, SVI
collection intervals increasing from 10 m to 95 m in 5 m increments are applied to
resample the SVI locations. For each interval, the isovist analysis radius is set dif-
ferently in 30 m, 40 m, and 50 m for comparing the experiment results. The same
50 % of the building element proportion serves as the filter for isovist analysis
results.

5. Results

5.1. Potential bias in the SVI covered building information
5.1.1. Coverage completeness distribution by building functions and sizes

In Experiment 1, the study first applies CoC-B indicator to investigate the
completeness of SVI coverage on individual buildings. As a preliminary result,
Figure 4 illustrates the spatial distribution of CoC-B indicator estimated in the
case study area. Notable heterogeneity is observed in this completeness indicator
across individual buildings, which varies according to building sizes and locations.
Additionally, around 37.6 % of total buildings are recorded with CoC-B equal to 0,
indicating that SVI may fail to reach these buildings within the threshold distance,
or the buildings are blocked visually by other street elements in SVI.

For buildings with CoC-B more than 0, Figure 5 depicts distribution of CoC-B
values across different building types and sizes. It is found that all building types
exhibit 75th percentile values of CoC-B indicator below 0.2. This suggests that
for the majority of buildings reached by SVI, less than 20 % of their public fa-
cades can be covered. Notably, residential, retail, and mixed-use buildings exhibit
significant fluctuations in CoC-B distribution, which suggests that the ways SVI
achieve coverage on these building types can be more diverse. For residential and
retails buildings, they are also featured with higher 25th percentile values of CoC-
B than other building types, indicating that these building types tend to be covered
more completely via SVI. Regarding building size, buildings are re-classified into
five groups based on perimeter length, from smallest to largest. It is consistently
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Fig. 4. Map illustrating the distribution of CoC-B indicator across the case study area.

Fig. 5. Boxplots showing the distribution of CoC-B for different function types and size quantiles.
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observed that buildings with longer perimeters exhibit lower CoC-B values, sug-
gesting that larger buildings tend to have less complete SVI coverage. Analysis
above reveals that the completeness of SVI coverage varies significantly across
buildings of different types and sizes, and most of buildings exhibit an insufficient
completeness in SVI coverage.

5.1.2. SVI covered building information and its original distribution
Beyond completeness, frequency indicators are applied in Experiment 1 to

investigate the distribution characteristics of SVI covered building information.
The aim is to learn whether SVI tends to under- or over-represent specific building
types in covered visual information, relative to their initial proportion in building
footprints.

The study first identifies dominant buildings and building types within each
H3 level-9 grid, by mapping the top 10 % of buildings with highest FoC-B in the
grids, and coloring the grids according to the building types with highest FoC-A
values, as illustrated in Figure 6. Buildings with traffic, community services, in-
dustrial and business functions, along with a multitude of unclassified, large-scale
buildings, emerge as the individual buildings more frequently viewed and hav-
ing a larger visual impact on the local areas. However, when analyzing dominant
building types at the grid level, we find that non-residential building types are pre-
dominantly visible only within the City of London, the central area of the case
study, and in a few isolated grids. Beyond these, residential buildings are the most
frequently viewed and serve as general background in the building information
covered by most grids in the study area. According to Table F.4 and the method
depicted in Appendix G, in total there are 62 % residential buildings covered in
SVI, which correspond to 66.2 % residential population in the study area.

Fig. 6. Mapping the dominant building instance and building types that show highest frequency to
view via SVI in each local area.

The study further explored the linear association between the frequency of
building types viewed in SVI (FoC-A) and the proportion of building types ex-
isting in the grids, as depicted in Figure 7. It was found that for building types
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beyond residential and defence, the regression coefficients of fitted linear equa-
tions are all above 1, indicating that SVI tends to over-represent the real presence
of these buildings compared to in building footprint data in the study area. The
pattern is more prominent in industry & business buildings and mixed use build-
ings, where the frequency and the proportion variables present highest correla-
tion scores of 0.93 and 0.9, and there are higher coefficients in the linear equa-
tions. For residential buildings and buildings with defence usage, SVI tend to
under-represent their presence in the built environment. Specifically, for grids
with a FoC-A of residential buildings less than 0.8, areas with more diverse build-
ing function types, an increase of every 1 unit of residential building proportion
only explains about a 0.74 unit increase in the frequency of residential buildings
viewed. Conversely, for grids with residential buildings dominant in visual infor-
mation, a limited increase or decrease in residential building proportion has little
impact on the frequency with which residential buildings can be viewed via SVI.

Fig. 7. Scatter plots showing the association between FoC-A indicator of a specific building type
and count proportion of the building type in H3 level-9 grids. The correlation coefficient and the
formula of the fitted trend line are labeled on each subplot.

The interpretation and analysis on the frequency and completeness indica-
tors above suggests that information of individual buildings are not completely or
evenly captured by SVI, and the distribution of SVI covered building information
may differ from its distribution in original form and medium. Additionally, the
completeness and frequency indicators can serve as effective tools for understand-
ing the potential bias of SVI in representing local environment from a horizontal
perspective.
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5.2. Poorly represented neighborhoods in SVI
5.2.1. Comparing different SVI coverage measurement methods

In Experiment 2 we hope to investigate, whether SVI achieving sufficient cov-
erage in terms of spatial distribution, is equivalent to SVI achieving adequate cov-
erage on building facades. As shown in Figure 8, using the H3 level-9 grid as a
basis, we summarized and visualized the completeness of SVI coverage of road
lengths within the grid, the proportion of buildings reached by SVI relative to all
buildings in the grid (CoC-A), and the mean value of coverage completeness for
individual building facades within the grid (CoC-B). Additionally, we visualized
the hot-spot and cold-spot distribution of these indicators using the Getis-Ord Gi*
statistics. SVI data was collected from the road networks at equal 50m intervals.

Fig. 8. Distribution of different SVI coverage completeness metrics and the hot-spot analysis
results.

It is found that the three completeness-related indicators show significant dif-
ferences in their numerical and spatial distribution. The completeness of road
length coverage by SVI within each grid generally falls within the high range of
0.8 to 1. Spatially, cold-spots are mainly concentrated along the Thames River. In
non-riverbank areas, the degree of SVI coverage for road lengths is relatively uni-
form. In contrast, the completeness distribution varies significantly when it comes
to building facade coverage. Notably, in many grids, only less than 50 % of build-
ings can be reached by SVI. Grids with low CoC-A values are mostly located in
residential-dominated neighborhoods on the periphery of the study area and along
the Thames River. Closer to the urban center, the proportion of buildings reached
by SVI is relatively higher.

The completeness of SVI coverage for individual buildings is even lower, with
most grids having a mean CoC-B indicator value of less than 0.1. Higher values
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are mainly observed in a continuous band in the central areas of the City, Cam-
den, and Westminster, as well as in eastern residential areas, showing significant
local clustering. Low-value grids are primarily found in the western and northern
peripheral neighborhoods and along the Thames River.

Based on the above analysis, it can be observed that for most local areas in
the case study area, although SVI coverage can achieve sufficient coverage of
the road networks, its ability to capture internal block information may be lim-
ited, leaving many buildings outside the reach of SVI. Additionally, even if SVI
reaches a high proportion of buildings within neighborhoods, the completeness of
individual buildings’ exposure to SVI may still be significantly lacking. These dif-
ferences further indicate that SVI collected through equidistant sampling along the
road networks may provide misleading information about the built environment.
This is particularly important for research evaluating the external environment of
buildings at the neighborhood level based on SVI.

5.2.2. Built environment factors impacting SVI coverage
Utilizing Getis-Ord Gi* statistics for completeness indicators on road length

and building facades, respectively, we rank the h3 grids and select the top 5 %
and bottom 5 % as typical hot-spots and cold-spots characterizing the indicators’
distribution. Figure 9 compares the distribution of a series of built environment
features between the hot-spot and cold-spot grids in each completeness indicator.

Fig. 9. Distribution of built-environment related indicators for local hot-spots and cold-spots of
SVI coverage on road length and building facades.

For coverage completeness on road length, there is only a limited difference
in built environment features between the hot-spot and cold-spot grids. Specifi-
cally, the cold-spot grids tend to have relatively lower building counts, lower road
density, and longer building perimeters compared to the hot spots. These charac-
teristics align with their consistent distribution along the riverbank, where large
buildings cluster and road access is limited. In contrast, significant differences
can be observed between hot-spots and cold-spots for the completeness indicator
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on building facades. Cold-spots show lower road density, lower building counts,
and longer building perimeters. Additionally, these cold-spots feature higher pro-
portions of natural and human elements in SVI, and significantly lower close-
ness values. The former indicates that greens and humans rather than vehicles
may play more positive roles in blocking building elements within image space
of SVI. While the latter suggests that grids far from local urban centers or high
streets, and deeper within neighborhoods are prone to having poorer coverage of
building facades.

5.3. Impact of collection interval on SVI coverage
5.3.1. Robustness of SVI coverage across different SVI collection intervals

In Experiment 3, we explore how different SVI collection intervals impact
the values and distributions of SVI coverage indicators. Figure 10 presents the
distribution of CoC-B and FoC-B, the building-level completeness and frequency
SVI coverage indicators, with SVI collection intervals increasing from 10 m to
95 m in 5 m increments. The observations are mean values of indicators aggre-
gated at h3 level-9 grids across the case study area. It can be identified that when
applying smaller SVI collection intervals, the FoC-B indicators of SVI coverage
show larger differences between different grids, while the differences decrease
significantly when larger collection intervals are employed. In comparison, the
distribution differences of the CoC-B indicators across grids are less affected by
the SVI collection interval. In addition, the decreasing of mean frequency across
grids along with the increasing of SVI collection interval tend to be faster than
the decreasing of mean completeness. The results indicate that the completeness
indicators show stronger robustness to changes in SVI collection interval, in terms
of spatial distribution and numerical values. In contrast, the frequency indicators
can be sensitive to lower SVI collection intervals and higher SVI density.

5.3.2. Optimal SVI collection intervals for frequency and completeness
Beyond the differences in robustness, the study attempts to explore whether

there exists an optimal SVI collection interval that achieves higher SVI cover-
age completeness while avoiding unnecessary high SVI coverage frequency, tak-
ing the speed difference in the decline of frequency and completeness indicators
alongside rising SVI collection interval as an entry point.

The study first normalizes the values of completeness and frequency in each
H3 level-9 grid for each SVI collection interval based on the corresponding values
at the minimum SVI collection interval within the grid. As shown in Figure 11,
plotting the normalized values into the same quadrant reveals the trend of both
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Fig. 10. Box plots drawn based on SVI coverage indicators of different local grids and at different
SVI collection intervals.

indicators shrinking relative to their maximum values as the SVI collection inter-
val increases. It is observed that the shrinking speed of frequency is significantly
higher than that of completeness at lower stages of the SVI collection interval,
whether for a single grid or on an average level of grids. With the increase in the
SVI collection interval, the rate of shrinkage for both indicators slows down and
converges.

Fig. 11. Left: Normalized values of CoC-B and FoC-B of different local grids and at different SVI
collection intervals, with the mean values highlighted. Right: A comparison of curve functions
fitted with generalized additive model and other modeling methods, based on the mean values.

Based on this observation, it can be hypothesized that there exists a specific
interval threshold where the decrease speeds of completeness and frequency are
equal. Below this interval, the decrease speed of frequency exceeds that of com-
pleteness, indicating that the reduction in redundancy in the environment infor-
mation captured by SVI is faster than the decrease in completeness, and it is eco-
nomical to continue reducing the SVI collection interval. Above this interval, the
decrease speed of frequency is lower than that of completeness, indicating that
further reducing the SVI collection interval would relatively more severely affect
the completeness of the environmental information captured by SVI. Collecting
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SVI at this interval threshold can be seen as an optimal strategy to balance the
completeness and redundancy of the information captured by SVI.

To precisely identify the optimal interval, the study attempts to fit functions to
the normalized values of completeness and frequency at different SVI collection
intervals in each grid and identify derivative curves based on them. The interval
corresponding to the intersection point of the two derivative curves is considered
the optimal interval. Polynomial function, power function, logarithm function,
and generalized additive model (GAM) are applied to fit curves with the observa-
tions, respectively. Among them, the GAM model is identified as the best model
to capture both the global decreasing trend of completeness and frequency indi-
cators (the highest R2) and their subtle changes in local regions. Figure 11 shows
that the match between original observations and the GAM-fitted curves is signif-
icantly better than that for other curves.

Fig. 12. Derivative curves of completeness and frequency across different local grids and under
different isovist analysis radii, and the intersection points between the paired curves.

Fig. 13. Spatial and data distribution of optimal SVI collection intervals detected from each H3
level-9 grid in the case study area.

Figure 12 presents the distribution of individual derivative curves fitted based
on each grid’s completeness and frequency observations, and the intersection
points from the paired curves. Considering that the distance thresholds applied
in isovist analysis may also have an impact on the distribution of SVI coverage
indicators, the figure further compares the distribution of curves and intersection
points across isovist analysis distance thresholds of 30 m, 40 m and 50 m. In
general, the derivative curves fitted present significant trends for intersecting af-
ter SVI collection interval of around 30 m. More intersection points are densely
distributed between 50 m - 60 m interval. The increasing of distance threshold
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of isovist analysis shows little impact on the location distribution of intersection
points.

Taking analysis results under the isovist analysis thresholds of 50 m as an ex-
ample, Figure 13 further plots the spatial and data distribution of detected optimal
SVI collection interval for each H3 level-9 grid. It is found that grids with optimal
SVI collection intervals around 50 m - 60 m present a relatively even distribution
across grids in the study area, without showing significant spatial clustering. The
analysis results above demonstrate that, it’s possible to employ a consistent and
stable optimal interval at a large spatial scale for SVI data collection.

6. Discussion

6.1. Uneven SVI coverage at element level
SVI is typically collected at equal intervals along roads to achieve even map-

ping and reliable representation of the urban environment. However, Experiment
1 reveals that SVI collected in this manner does not translate into uniform cov-
erage of buildings of different types and sizes, particularly in terms of facade
completeness. Residential and retail buildings, and buildings with smaller sizes
tend to have more complete facade coverage in SVI. Moreover, the distribution
of SVI-covered buildings does not align with the actual distribution of buildings
in footprint. Specifically, SVI tends to significantly over-represent building types
such as mixed use, industry & business, and transport. Community and retail
buildings are slightly over-represented, while residential buildings, especially in
suburban areas, are generally under-represented.

The practical impact of these disparities depends on the specific research pur-
pose. If SVI is used for urban perception studies focused only on visible elements
or experiences at SVI locations, uneven coverage may not affect reliability. How-
ever, using limited SVI data to characterize an entire region may over-represent
frequently covered elements and under-represent others. This implicit prioritiza-
tion of certain environmental elements in SVI can be considered a form of spatial
weighting, which has been largely overlooked in previous urban studies and adds
uncertainty to interpretations of SVI-based urban perception studies. Neverthe-
less, the element-level coverage estimation method proposed in this study helps
address this gap by providing a clearer understanding of how different elements
and instances are represented in SVI data.
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6.2. Element-level coverage as a new Dimension for SVI data quality
In Experiment 2, the study compares the proposed element-level SVI cov-

erage estimation method, which considers both SVI locations and environmental
obstructions, with traditional methods that only consider SVI locations. It is found
that, even in regions where traditional methods aim to achieve complete SVI cov-
erage, CoC-A and CoC-B indicators are often low, reflecting a lack of building
instances reached by SVI and incomplete facade coverage. The spatial distribu-
tion of SVI building facade coverage shows strong spatial auto-correlation, with
hot-spots and cold-spots linked to factors like building size, road network central-
ity, density, and obstacles like greenery and human. The results further explain
the implicit prioritization of certain environmental elements in SVI. It is not de-
termined by the subjective intentions of researchers, but rather by the complex
spatial configuration and obstruction relations shaped collectively by the roads,
buildings and other environmental elements.

Based on this comparison, we propose introducing the extent of SVI coverage
on urban environmental elements as a novel dimension in SVI data quality assess-
ments. This dimension addresses the impact of environmental obstructions on SVI
usage. Moreover, it highlights SVI’s capacity to reveal urban information in the
horizontal dimension, distinguishing SVI from other data forms such as building
footprints or satellite imagery, which conventionally provide vertical perspectives.
In the data quality evaluation framework by Hou and Biljecki (2022), environ-
mental obstruction is treated as part of image quality issues. However, we argue
that obstruction-related problems should be considered as an external dimension.
Obstruction, such as buildings blocked by vegetation or other buildings, may not
occur randomly but instead follow patterns related to spatial and socioeconomic
factors, such as residential density.

The method proposed in this study was tested using Google Street View and
commercial SVI in general, but it can also be applied to volunteered street view
imagery (VSVI) sources, only if key SVI metadata is available. For panoramic
images, this includes image heading and coordinates, while for perspective im-
ages, additional information such as field of view (FOV) and rotation is required.
If SVI data quality is low or reference data, such as building footprints, is incom-
plete, the proposed method can be supplemented with additional approaches. In
such cases, the relationship between SVI coverage extent and built environment
features can be modeled in areas with sufficient data, and this model can then
be used to infer the bias risks of SVI coverage in regions lacking adequate data,
guiding the data collection and utilization strategies. The global OSM building
completeness dataset created by Herfort et al. (2023) serves as a relevant example
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of this approach. Overall, our element-level SVI coverage estimation framework
demonstrates significant potential to enhance the reliability of SVI in urban anal-
ysis and perception studies, with broad applications across related fields.

6.3. Does an optimal SVI collection interval really exist?
In this study, we also test the impact of different SVI collection intervals on

the element-level SVI coverage. The building-level completeness and frequency
indicators, CoC-B and FoC-B, act as a pair of complementary indicators to deter-
mine whether the SVI coverage of building information is sufficient and whether
there is potential redundancy. By calculating these indicators across various inter-
vals, we found that a 10 m sampling interval significantly increases the average
completeness and frequency of SVI coverage for element instances compared to
a 50 m interval, which can notably influence subsequent analysis based on SVI.
This result aligns with the findings of Kim et al. (2021).

Our study goes further by revealing that CoC-B and FoC-B decrease non-
linearly as the SVI sampling interval increases, but at different rates. We iden-
tified a critical interval: below this threshold, the frequency indicator (FoC-B)
decreases faster than the completeness indicator (CoC-B); above it, the reverse
occurs. This suggests that SVI collected near this critical interval threshold bal-
ances higher building coverage completeness with lower redundancy, maximizing
cost-effectiveness. Further analysis confirmed this critical interval, typically rang-
ing between 50 m and 60 m, is consistently distributed across most local grids,
supporting current common practices and providing valuable guidance for future
SVI-based urban research.

Nevertheless, due to the diverse use cases of SVI, a universal SVI sampling
interval may not exist for all applications. The intervals identified in this study
are mainly suited for SVI as a comprehensive visual representation of the en-
vironment, particularly for applications such as spatial perception and experience
studies. However, for mapping specific environmental elements, such as buildings
or trees, smaller intervals and denser SVI sampling—while introducing more re-
dundancy—can effectively enhance coverage completeness and reduce data gaps.

7. Conclusion

This paper introduces a comprehensive workflow to estimate the element-level
coverage of SVI, taking urban building facades as an example, and has further ex-
plored the potential of coverage extent as novel indicators in validating the usage
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of SVI in urban and spatial analytics. Our study shows that, despite dense avail-
ability on urban road networks, SVI only reaches 62.4 % of buildings in the case
study area. The completeness of SVI coverage on building facades remains low,
averaging 12.4 %, with large differences depending on building types and sizes.
Further, besides revealing data gaps and inconsistent coverage, our results indi-
cate questionable representativeness of SVI — there are biases in the information
collected from SVI, with some instances being over- or under-represented. These
biases can impact the integrity of urban studies relying on SVI. For example, if
one is using SVI to infer the share of certain building types in streets, with some
instances being omitted more often than others in the images collected from cars
on roads, the result would not be entirely accurate.

A potential range of optimal SVI sampling intervals, 50–60 m, is identified
to help achieve a better application of SVI data. SVI data has been used widely
across multiple disciplines, but data quality and integrity have not been given ade-
quate attention. Regarding both the infrastructural and human aspect, for the first
time, we reveal at a very high resolution and large-scale, the reach and usability
of SVI for urban sensing and mapping. Our study argues that the element-level
coverage of SVI, with respect to building, greenery, and other useful street view
elements and visual information, should be included as a new dimension for SVI
data quality assessment.

Nonetheless, the study has some limitations that offer opportunities for fu-
ture work. We believe that the findings and results will depend on the particular
context — our study focuses on a particular use case (mapping buildings) in a par-
ticular location (London), so further investigations are necessary. Next, to balance
detail and scalability, the study does not fully account for variations in building
heights within the SVI coverage estimation workflow. However, it is possible that
even if one building is blocked by another building according to the 2D isovist
analysis based on building footprints, part of the blocked building may still be
visible from SVI due to differences in building heights. Incorporating 3D urban
data, such as Digital Surface Models (DSM) and LiDAR point clouds, along with
3D isovist analysis, presents opportunities to enhance analytic precision in future
developments. Another concern is the limitation of SVI in capturing temporal
variation, especially in measuring dynamic street objects, such as pedestrians and
vehicles, and in reflecting the seasonal change of vegetation (Liu and Sevtsuk,
2024; Yan et al., 2023). The limitation introduces disturbance when incorporating
environmental obstructions in the element-level SVI coverage estimation.
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Appendix A. An Overview of Studies on Mapping and Sensing Urban Envi-
ronmental Elements Using SVI Data

Table A.1. Overview of latest studies on mapping and sensing urban environmental elements using
SVI data, with a focus on individual elements such as roads, buildings, greenery, and the use of
combined elements.

Elements Use Cases References

Road

Damage detection Ren et al. (2023)

Sidewalk mapping
Hamim et al. (2024),
de Mesquita et al. (2024),
Ning et al. (2022b)

Wheelchair usage Ning et al. (2022a)

Building

Perception on exteriors Liang et al. (2024b)
Building typology Gonzalez et al. (2020)
Building height Yan and Huang (2022)
Age and style Sun et al. (2022)
Building material Raghu et al. (2023)
Building color Zhou et al. (2023)
Building usage Ramalingam and Kumar (2023, 2025)
Energy efficiency Mayer et al. (2023)

Seismic vulnerability
Ruggieri et al. (2021),
Aravena Pelizari et al. (2021)

Flood risk Xing et al. (2023)
Abandoned houses Zou and Wang (2022)

Greenery
Green View Index distribution Zhang and Zeng (2024)
Greenery visibility Sánchez and Labib (2024)

Trees mapping
Liu et al. (2023a),
Lumnitz et al. (2021)

Tree species detection Choi et al. (2022)
Crop types detection Yan and Ryu (2021)
Street forest Liang et al. (2023a)

Impression and perceptions
Ogawa et al. (2024), Dong et al. (2023),
Inoue et al. (2022)

Road safety and accidents Ye et al. (2024), Yu et al. (2024)
Gentrification Thackway et al. (2023)
Potential of urban renewal He et al. (2023)

Combined Poverty Yuan et al. (2023)
Elements Spatial quality Rui and Cheng (2023)

Physical disorder Chen et al. (2023)
Temporal evolution Liang et al. (2023b)
Violent crime, travel and Fan et al. (2023)health behavior
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Appendix B. Building Threshold Calculation

With Formula B.1, we calculate the proportion of general building elements
(buildings, walls, fences) with respect to all non-void, non-flat, and non-sky ele-
ments. The proportion serves as threshold to examine whether in the line of sight
direction, building facades are visible effectively from SVI location and to quan-
tify the potential impact of environmental obstructions such as vehicles, trees, and
pedestrians on SVI coverage. Label id and colormap from the Cityscapes seg-
mentation benchmark is applied (Cordts et al., 2016). The proportion calculated
serves as a threshold to help filter the lines of sight that reach building facades for
each SVI.

Pbuilding =

∑
i∈B Ai∑

j∈(E\{void,flat,sky}) A j
(B.1)

where:

• B: The set of selected building elements, which includes: Building (id =
11), Wall (id = 12), Fence (id = 13).

• Ai: The area of element i.

• E \ {void,flat, sky}: The set of all elements excluding the following cate-
gories:

– Void: Unlabeled (id = 0), ego vehicle (id = 1), rectification border
(id = 2), out of ROI (id = 3), static (id = 4), dynamic (id = 5), ground
(id = 6).

– Flat: Road (id = 7), sidewalk (id = 8), parking (id = 9), rail track
(id = 10).

– Sky: Sky (id = 23).
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Appendix C. Summary of the Completeness and Frequency Indicators

The study proposes an indicator system to describe the extent of SVI coverage
on building element. Below is a table summarizing the SVI coverage indicators
proposed and applied in the study.

Table C.2. Dimensions, Metrics, and Description of SVI Coverage

Dimensions Metrics Description

Building Level
Completeness of SVI
Coverage for Individual
Building (CoC-B)

Proportion of SVI-covered sampling
points relative to the total available
sampling points for a single building.

Frequency of SVI Cover-
age for Individual Build-
ing (FoC-B)

Number of occurrences SVI achieves
coverage around a single building, ad-
justed for building perimeter.

Area Level
Completeness of SVI
Coverage on Buildings in
Local Area (CoC-A)

Proportion of SVI-covered buildings
relative to the total number of buildings
in a local area.

Frequency of SVI Cover-
age on Buildings in Local
Area (FoC-A)

Sum of SVI coverage frequency for
specific building types (not adjusted),
relative to the total SVI coverage fre-
quency for all buildings in the local
area.
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Appendix D. A Re-classification of OSM Building Types

The study adopts building-level land use data from the Colouring Cities Re-
search Programme (CCRP), an open building data project managed by The Alan
Turing Institute, as the basis for categorizing building footprints into different
types. Building type information from OSM is also utilized as a complement for
building footprints whose land use information is missing.

Table D.3. Corresponding between CCRP land use types and OSM building types. The study
gives priority to the CCRP land use data corresponding to the building footprint. In cases where
land use data is missing, if the OSM building type information is not empty, then convert the OSM
classification into the corresponding land use categories.

CCRP Land Use Types OSM Building Type Labels

Residential ‘apartments’, ‘flats’, ‘house’, ‘terrace’, ‘detached’, ‘semidetached house’, ‘dor-
mitory’, ‘hall of residence’, ‘cottage’, ‘bungalow’, ‘terrace house’, ‘coun-
cil flats’, ‘farm auxiliary’, ‘farm’, ‘houseboat’, ‘stable’, ‘cabin’, ‘ter-
raced house’, ‘Nursery, School’, ‘yes;dormitory’

Mixed Use ‘yes, office, shop, r’, ‘apartments;residenti’, ‘apartments;yes’, ‘commer-
cial;detached’, ‘retail;yes’

Industry and Business ‘office’, ‘data center’, ‘commercial’, ‘warehouse’, ‘industrial’, ‘light industrial’,
‘factory’, ‘manufacture’, ‘office;yes’, ‘telecommunication’, ‘business’,
‘artists studio’

Community Services ‘church’, ‘university’, ‘school’, ‘government’, ‘public’, ‘hospital’, ‘college’,
‘Community Building’, ‘kindergarten’, ‘memorial’, ‘student residence’, ‘gate-
house’, ‘cafe’, ‘greenhouse’, ‘monument’, ‘pavilion’, ‘palace’, ‘mosque’, ‘syn-
agogue’, ‘police station’, ‘religious’, ‘clock tower’, ‘village hall’, ‘conserva-
tory’, ‘chapel’

Retail ‘retail’, ‘pub’, ‘kiosk’, ‘stall’, ‘bar’, ‘shop’

Transport ‘train station’, ‘transportation’, ‘ship’, ‘boat’, ‘bridge’, ‘railway arch’, ‘rail-
way’, ‘bus’, ‘viaduct’, ‘tunnel mouth’, ‘tunnel entrance’, ‘bus garage’

Recreation and Leisure ‘civic’, ‘hall’, ‘ruins’, ‘stadium’, ‘recreational’, ‘gallery’, ‘theatre’, ‘cin-
ema’, ‘museum’, ‘sports centre’, ‘sports hall’, ‘swimming pool’, ‘parking’,
‘yes;public;sports ce’

Utilities and Infrastructure ‘service’, ‘construction’, ‘roof’, ‘vent shaft’, ‘air shaft’, ‘ventilation shaft’,
‘electricity’, ‘substation’, ‘gasometer’, ‘air vent’, ‘tunnel shaft’, ‘water’

Vacant and Derelict ‘vacant’, ‘disused station’, ‘abandoned’, ‘ruins’

Defence ‘guardhouse’, ‘bunker’, ‘barracks’

Unclassified ‘None’, ‘yes’, ‘no’, ‘multiple’, ‘part’

36



Appendix E. Completeness of SVI Coverage on Road Networks

The completeness of SVI coverage along the road networks is calculated ac-
cording to the Formula E.1. Buffering analysis with a radius of 50 m is carried out
based on each SVI location. Then we calculate the proportion of buffered road
length with respect to the total road length within each local area.

S VICoverageroad =

∑
r∈R Lr∑
t∈T Lt

(E.1)

where:

• R: The set of road segments covered within a 50 m buffer around SVI loca-
tions.

• Lr: The length of road segment r within the buffered area.

• T : The total set of road segments in the local area being analyzed.

• Lt: The total length of road segment t in the local area.

37



Table F.4. The table illustrates the proportion of buildings in different types and sizes that have at
least one sampling point visible from SVI locations and the related CoC-B values. The results are
based on SVI locations resampled with a 10 m interval and the isovist analysis carried out based
on a radius of 50m. The visible building sampling points are filtered with a threshold that the
building element proportion visible along the observing direction should be over 50 %

Building
Type

Proportion
of SVI Covered
Building

Mean
Completeness
(All)

Mean
Completeness
(SVI Covered)

Building Function

Residential 0.619621 0.077682 0.125371
Retail 0.698083 0.105884 0.151678
Industry And Business 0.796421 0.052092 0.065407
Mixed Use 0.829787 0.089946 0.108397
Community Services 0.642818 0.027731 0.043140
Recreation And Leisure 0.507937 0.023605 0.046472
Transport 0.675287 0.049409 0.073167
Utilities And
Infrastructure 0.421053 0.021906 0.050206

Defence 0.300000 0.029499 0.083163
Vacant And Derelict 0.500000 0.016393 0.032787
Unclassified,
presumed non-residential 0.820789 0.041508 0.050571

Unlabeled 0.595276 0.072217 0.121317

Building Size (Perimeter Ranking)

Q1 (0-20 %) 0.532637 0.104767 0.196695
Q2 (20 %-40 %) 0.594441 0.095654 0.160915
Q3 (40 %-60 %) 0.615115 0.084116 0.136748
Q4 (60 %-80 %) 0.626316 0.067932 0.108462
Q5 (80 %-100 %) 0.750752 0.036253 0.048288

Appendix F. Completeness Distribution By Building Functions and Sizes

For buildings with different type and size labels, Table F.4 compares how the
proportions of SVI covered buildings vary. Approximately 62.4 % of the total
buildings are visible from at least one SVI location within the case study area.
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Appendix G. Estimation of SVI Covered Population

The research aims to understand to what extent the SVI coverage of residential
buildings also achieves coverage of the total population within the study area. The
study uses the proportion of residential buildings visible in the SVI at the H3 level-
9 grid as a rough representation of the SVI coverage rate of the population in each
grid. At the same time, Meta 30 m precision population data is used to estimate
the number of people in each H3 grid. The proportion of total population covered
in SVI can be calculated based on the Formula G.1. Based on the proportion of
residential buildings covered, it is estimated that approximately 66.2 % of the total
population in the study area can be covered by SVI.

Total Population Covered in SVI =
∑

n

(CoC − Ar × Pn) (G.1)

where:

• CoC −Ar represents the completeness of SVI coverage on residential build-
ings in the nth grid.

• Pn denotes the population in the nth grid.
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