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A B S T R A C T

Street view imagery (SVI), with its rich visual information, is increasingly recognized as a valuable data source 
for urban research. Particularly, by leveraging computer vision techniques, SVI can be used to calculate various 
urban form indices (e.g., Green View Index, GVI), providing a new approach for large-scale quantitative as
sessments of urban environments. However, SVI data collected at the same location in different seasons can yield 
varying urban form indices due to phenological changes, even when the urban form remains constant. Numerous 
studies overlook this kind of seasonal bias. To address this gap, we propose a systematic analytical framework for 
quantifying and evaluating seasonal bias in SVI, drawing on more than 262,000 images from 40 cities worldwide. 
This framework encompasses three aspects: seasonal bias within urban areas, seasonal bias across cities on a 
global scale, and the impact of seasonal bias in practical applications. The results reveal that (1) seasonal bias is 
evident, with an average mean absolute percentage error (MAPE) of 54 % for GVI across all sampled cities, and it 
is particularly pronounced in areas with significant seasonal bias; (2) seasonal bias is strongly correlated with 
geographic location, with greater bias observed in cities with lower average rainfall and temperatures; and (3) in 
practical applications, ignoring seasonal bias may result in analytical errors (e.g., an ARI of 0.35 in clustering). 
By identifying and quantifying seasonal bias in SVI, this study contributes to improving the accuracy of urban 
environmental assessments based on street view data and provides new theoretical support for the broader 
application of such data on a global scale.

1. Introduction

Street View Imagery (SVI) data, as an emerging data source, provides 
rich urban visual information and has become a significant tool in urban 
environmental research (Biljecki & Ito, 2021). SVI data are typically 
captured using cameras installed on vehicles or carried by pedestrians, 
recording detailed landscape information along urban streets. Compared 
to traditional remote sensing images and geographic information data, 
SVI data offer higher resolution and a more realistic ground-level 
perspective, enabling the capture of more detailed urban environ
mental features (Kang et al., 2021; Zhang, Wu, Zhu, & Liu, 2019). In 

recent years, the application of SVI has attracted a great deal of attention 
in various fields such as urban planning, traffic management, and 
environmental monitoring (Wang et al., 2024; Yao et al., 2021; Zhang, 
Zhang, Fang, & Chen, 2023). Through computer vision techniques, such 
as semantic segmentation, multiple urban environmental indicators can 
be extracted from SVI, including Sky View Factor (SVF), Green View 
Index (GVI), and Building View Index (BVI) (Biljecki, Zhao, Liang, & 
Hou, 2023; Gong et al., 2018). These indicators not only help urban 
planners and policymakers better understand the urban environment 
but are also used to analyze urban microclimates, optimize public space 
design (Dong et al., 2025), and improve the quality of life of urban 
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residents.
SVI data come from various sources, with bias in data collection 

methods, equipment types, and spatial and temporal sampling intervals. 
These differences can lead to substantially different results when the 
same research questions are addressed using different data strategies 
(Ito, Kang, Zhang, Zhang, & Biljecki, 2024; Kim & Jang, 2023; Kim, Lee, 
Hipp, & Ki, 2021). This is especially important considering the rise of 
crowdsourced SVI, which amplifies the heterogeneity of the data 
(Helbich, Danish, Labib, & Ricker, 2024; Hou et al., 2024; Juhasz & 
Hochmair, 2016; Mahabir, Schuchard, Crooks, Croitoru, & Stefanidis, 
2020). As SVI data usage in urban studies continues to grow, the bias 
introduced by the use of different data strategies has received increasing 
attention (Fan, Feng, & Biljecki, 2025). For example, Biljecki et al. 
(2023) analyzed how different shooting angles might lead to significant 
visual discrepancies in SVI of the same location. In addition, bias in 
camera equipment can cause data differences. Panoramic cameras can 
capture 360-degree images, offering a more comprehensive view, 
whereas standard cameras typically capture images in a single direction. 
The research by Kim et al. (2021) demonstrated that the use of different 
spatial sampling intervals can also affect the results of the analysis. For 
example, sampling at 10-m intervals versus 50-m intervals can result in 
significant differences in data coverage and detail. The presence of dy
namic elements in SVIs, such as pedestrians, vehicles, and weather 
conditions, can also impact the consistency of the data and the stability 
of the analyses (Hou & Biljecki, 2022).

However, current research rarely evaluates the seasonal bias in the 
SVI data. Seasonal bias in this study refers to the discrepancies in street- 
level urban form indicators (e.g., GVI, BVI, SVF) that arise solely from 
the season of image acquisition, rather than from any actual changes in 
the built environment. As illustrated in Fig. 1, the difference in vege
tation cover between winter and summer is substantial, with vegetation 
potentially in a withered state during winter and flourishing in summer. 
Although SVIs are taken from the same location and angle, the GVI and 
other urban form indicators calculated using semantic segmentation can 
vary greatly (e.g., the GVI decreases from 0.379 to 0.223, a 41 % 
decrease), affecting downstream analyzes. Current research not only 
overlooks the timing of data collection, but also frequently mixes SVI 
data collected at different times in a city. Such combinations can lead to 
varying results, a phenomenon this study describes as seasonal bias in 
SVI. However, to our knowledge, no study has systematically evaluated 
and quantified the seasonal bias resulting from the different times of SVI 
data collection. Therefore, the primary objective of this study is to 
analyze and quantify seasonal bias in SVI data and explore the spatial 
distribution patterns of this bias. Through this research, our aim is to 
address the following research questions (RQ). 

RQ1. How significant is the seasonal bias in the SVI data, and what is 
its spatial distribution?

RQ2. How is the distribution of seasonal bias correlated with climate 
on a global scale?

RQ3. In practical applications, how significant are the errors in anal
ysis results caused by seasonal bias?

This study proposes a comprehensive framework to systematically 
analyze seasonal bias of SVI in global cities. We begin by introducing a 
conceptual model that explains how climatic and geographic factors 
contribute to seasonal variation in urban form indicators derived from 
SVI. Using a dataset of 262,988 seasonally tagged SVIs from 40 cities 
worldwide, semantic segmentation techniques were applied to extract 
three key indicators of urban form: GVI, BVI, and SVF. Seasonal bias is 
quantified using three metrics: mean absolute error (MAE), mean ab
solute percentage error (MAPE), and Pearson’s correlation coefficient 
(R), enabling a robust assessment of seasonal bias both within cities and 
between regions. To further investigate global patterns, a standardized 
index BX is constructed to represent the seasonal bias for each urban 
form indicator at the city level. Ordinary least squares (OLS) regression 

is then used to identify how seasonal bias in GVI is shaped by climatic 
variables such as mean temperature, rainfall, and their intraannual 
variability. Finally, the study demonstrates the real-world implications 
of seasonal bias through a functional urban clustering task, showing how 
variations in data collection season can significantly affect clustering 
outcomes and introduce bias into urban analysis and decision making.

The primary contributions of this study are as follows: (1) We 
introduce a systematic framework to quantify seasonal bias in urban 
form indicators derived from street-level imagery. To our knowledge, 
this is the first one to establish a framework  to quantitatively analyze 
seasonal bias in SVI and could be generalizable to other types of bias in 
SVI. (2) We examine seasonal bias in 40 global cities, elucidating the role 
of climatic and geographic drivers. Our findings reveal how latitude, 
temperature fluctuations, and rainfall patterns influence the reliability 
of SVI-based measurements, offering valuable insights for urban 
perception studies, walkability audits, and greenery assessments. (3) By 
mapping bias patterns and examining how these biases affect tasks such 
as functional zoning, we demonstrate that unaccounted for seasonal 
effects can lead to significant analytical errors. Our results underscore 
the importance of incorporating seasonal considerations in both the 
collection and interpretation of SVI for improved precision and reli
ability in urban research. In general, these contributions promote a 
deeper understanding of how seasonality can affect SVI, thus forming a 
variety of research domains, including urban perception, greenery 
auditing, and walkability, where robust and unbiased SVI-based metrics 
are vital to evidence-based planning and decision making.

2. Related work

2.1. SVI in urban research

SVI encompasses rich and detailed visual information on urban en
vironments. These data are typically collected on mobile platforms 
equipped with panoramic cameras, such as vehicles, backpacks, and 
drones, to capture comprehensive, high-resolution cityscapes (Biljecki & 
Ito, 2021; Xue et al., 2021). Compared to traditional remote sensing 
imagery and aerial photography, the unique advantages of SVI lie in its 
high resolution and distinctive perspective. Firstly, the high-resolution 
images provided by SVI enable a detailed analysis of urban micro
structures (Cao et al., 2023; Zeng, Lu, Li, & Li, 2018). For example, in
formation on building density, urban layout, street width and pedestrian 
activity can be obtained accurately, which is crucial for the management 
and optimization of urban infrastructure (Chen et al., 2024; Dong et al., 
2024; Kang, Körner, Wang, Taubenböck, & Zhu, 2018; Li et al., 2022; 
Ma, Zhang, Yi, & Lu, 2025; Tu et al., 2024). This level of detail surpasses 
that offered by conventional remote sensing methods, allowing for more 
precise urban planning and management. Furthermore, the perspective 
of SVI is closer to ground level, meaning that it captures scenes that are 
more akin to human visual experience (Cheng et al., 2017; He, Zhang, 
Yao, & Li, 2023; Luo, Liu, Xu, Zhao, & Biljecki, 2025; Ye, Zeng, Shen, 
Zhang, & Lu, 2019). This ground-level perspective makes the data more 
intuitive and easier to interpret while also providing a more accurate 
reflection of street-level environmental features. Consequently, SVI not 
only enhances the granularity of urban environmental assessments, but 
also improves the reliability of data for practical urban planning and 
management applications (Kruse, Kang, Liu, Zhang, & Gao, 2021; Yao 
et al., 2021).

The acquisition of SVI typically relies on two primary sources: 
commercial map service providers and crowdsourced mapping plat
forms (Kang, Zhang, Gao, Lin, & Liu, 2020). Commercial map service 
providers, such as Google Street View1 and Baidu Map,2 collect data 
using specialized equipment (e.g. 360-degree panoramic cameras) 

1 https://www.google.com/maps
2 https://map.baidu.com/
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mounted on vehicles that traverse urban roads, regularly updating the 
data to ensure timeliness and coverage. Crowdsourced mapping plat
forms, such as Mapillary3 and Kartaview,4 collect data through user 
contributions, where individuals use smartphones or other devices to 
capture and upload SVIs. This crowdsourcing approach supplements the 
coverage of commercial services and improves the diversity and time
liness of the data. Processing SVI generally involves the use of computer 
vision models to compute various environmental indices, such as SVF 
(Liang et al., 2017), GVI (Yu, Her, Huo, Chen, & Qi, 2022), and BVI 
(Gong et al., 2018). These indices can be calculated using different 
methods, including edge detection (Zeng et al., 2018), and semantic 
segmentation. Semantic segmentation employs deep learning models (e. 
g., DeepLab) to perform pixel-level classification of elements within SVI 
(Xia, Yabuki, & Fukuda, 2021b; Yi et al., 2025; Zhao, Liang, Tu, Huang, 
& Biljecki, 2023). This process identifies and quantifies the proportions 
of vegetation, sky, buildings, and other elements in the images.

SVI finds extensive applications in urban research, such as greening 
assessment, street vitality analysis, urban transportation, and sanitation 
research (Chen, Zhou, & Li, 2020; Li, Yabuki, & Fukuda, 2022; Liang, 
Chang, Gao, Zhao, & Biljecki, 2024; Wang, Sun, Yi, Grekousis, & Dong, 
2025; Wu, Ye, Gao, & Ye, 2023; Yi et al., 2024). For example, Xia, 
Yabuki, and Fukuda (2021a) proposed a method that uses semantic 
segmentation of SVIs to calculate the panoramic view GVI for assessing 
urban greenery. This scalable and automatable method offers accurate 
vegetation detection, enhancing urban planning efforts. In a study by Ma 
(2023), a comprehensive framework was developed combining street 
scene images, POI data, and deep learning algorithms to analyze urban 
vitality in Qingdao City. The findings reveal that visual perception fac
tors significantly influence urban vitality, emphasizing the need for 
street beautification and humanized design in urban planning. However, 
current research has limitations in handling the uncertainties associated 
with SVI, particularly those arising from seasonal bias (Chen & Biljecki, 
2023; Han et al., 2023). These bias can cause significant differences in 

images of the same location taken in different seasons, which can affect 
the accuracy of environmental indices calculated from these images. 
Addressing these uncertainties is crucial for improving the reliability of 
SVI in urban environmental assessments.

2.2. Seasonal changes and variability of SVI

Research on SVI time series analysis has garnered increasing atten
tion in recent years, as SVI collection can occur at different times, 
providing temporal snapshots of urban environments (Hou et al., 2024). 
Variability in data collection times introduces a new analytical dimen
sion, allowing researchers to track and analyze temporal changes in 
urban landscapes. For example, time series analysis of SVI can be used to 
monitor the growth of urban vegetation (Li, 2021; Yu et al., 2022), 
changes in urban landscapes (Koji et al., 2023; Wang, Ito, & Biljecki, 
2024), and the evolution of commercial activities (Li & Long, 2019). In a 
study by Han et al. (2023), multitemporal SVI was used to characterize 
seasonal bias in street greenery in Nanjing, China. The findings identi
fied four distinct greening patterns and highlighted the importance of 
seasonal monitoring for sustainable urban greening design and plan
ning. Liang, Zhao, and Biljecki (2023) proposed an embedding-driven 
clustering approach to analyze the spatio-temporal evolution of Singa
pore’s visual environment. The research identified six visual clusters 
from street view imagery, revealing trends such as the growth of high- 
density visual experiences in new towns and an increase in visually 
pleasant areas, demonstrating a novel method for urban planning and 
landscape improvement.

On the one hand, the temporal characteristics of SVI offer new op
portunities for observing urban changes. On the other hand, ignoring the 
collection time of SVI and controlling for seasonality can significantly 
impact the analysis results. Seasonal bias leads to substantial differences 
in vegetation cover (Zhang et al., 2022), lighting conditions, and street 
activity levels in SVIs, affecting the accuracy of environmental indices 
such as the GVI. For example, winter images may underestimate 
greenery due to reduced vegetation, while summer images may over
estimate it (Qi et al., 2024). In addition, seasonal changes can alter 
visible street features, leading to misinterpretation of urban landscape 

Fig. 1. Examples of bias in urban form indicators derived from SVI across different seasons at the same location. Different seasons significantly impact the 
computation of the GVI, which in turn also affects important metrics such as SVF and BVI.

3 https://www.mapillary.com/
4 https://kartaview.org/map/
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characteristics (Shukla & Jain, 2019). Therefore, considering seasonal 
bias is essential to improve the reliability and validity of urban envi
ronmental assessments.

The seasonal bias in SVI data refers to the variability in analysis re
sults caused by various parameters. These parameters include the source 
of the data, the time of data collection, and the methods of spatial 
sampling. Biljecki et al. (2023) proposed an analytical framework to 
examine differences in analysis results due to varying data sources, 
including panoramic and perspective images. The study investigated 
various methods for estimating indicators such as SVF and GVI using 
both panoramic and perspective SVIs. The results indicate that street 
view photos from consumer cameras at single angles often produce re
sults comparable to those from commercial panoramic images. This 
work demonstrates the value of integrating diverse image sources for 
urban environmental analysis, especially in the era of crowdsourcing 
geographic information (Yan et al., 2020). In a study by Kim et al. 
(2021), the sensitivity of Google Street View (GSV) for streetscape 
measurements in Santa Ana, California, was empirically assessed. The 
findings revealed that the measurement results vary significantly with 
changes in the GSV acquisition parameters, such as spacing and direc
tion, especially for targets such as humans, objects, and sidewalks. This 
highlights the need to carefully consider GSV settings in urban analysis 
to ensure accurate results.

3. Problem statement

The presence of seasonal bias in SVI is influenced by a combination 
of climatic, geographic, and urban morphological factors, as well as by 
the nature of data acquisition itself. This section introduces a conceptual 
model that links these components, clarifying how each contributes to or 
mitigates the manifestation of seasonal bias. This part lays the theoret
ical foundation for the methodological steps described in the following 
sections.

3.1. Definition 1: seasonal bias in SVI

Seasonal bias in SVI is defined as the systematic discrepancy in in
dicators of urban form, such as GVI, BVI, or SVF which arises solely due 
to the timing of data capture rather than actual changes in the built 
environment. Formally, let Xs,i represent the measured value of an in
dicator X (e.g., GVI) for location i during season s (spring, summer, 
autumn and winter). Seasonal bias occurs when 

Xs1 ,i − Xs2 ,i ∕= 0 (1) 

solely as a result of natural seasonal phenomena (e.g., vegetation leaf-on 
vs. leaf-off), independent of any morphological transformation.

3.2. Definition 2: urban form indicators

Urban form indicators are metrics derived from street-level images to 
describe specific elements of the urban environment. These three 
indices, GVI, BVI, and SVF are fundamental urban morphological mea
sures that reflect the distinct dimensions of the streetscape. While GVI is 
most sensitive to phenological changes, it can also indirectly alter the 
other two by obscuring or exposing buildings and sky areas. Accord
ingly, BVI and SVF are included to provide a more holistic under
standing of how seasonal biases may propagate through multiple 
elements of urban form.

3.3. Definition 3: climatic and geographic drivers

Climatic and geographic drivers refer to environmental factors, pri
marily latitude, temperature, precipitation, and vegetation phenology, 
that shape how seasons manifest in different cities. In higher-latitude 
areas, pronounced winters and leaf-off conditions can strongly alter 

street-level imagery, while tropical or subtropical climates have more 
uniform greenery year round. In regions with stark climate changes (e. 
g., monsoonal rainfall or large temperature swings), the contrast be
tween leaf-on and leaf-off seasons is amplified, making seasonal bias in 
SVI more evident.

4. Methodology

The proposed methodological framework, as illustrated in Fig. 2, is 
divided into two main stages: (1) data collection and pre-processing and 
(2) seasonal bias analysis. The first stage consists of three core steps. 
First, 40 cities around the world were selected as study areas based on 
criteria such as geographical diversity, climate diversity, and the rich
ness of SVI. Because this phenomenon varies around the world and will 
likely affect SVI-powered studies in different ways, it is imperative to 
include dozens of cities distributed globally. Then, several sampling 
points were chosen within each city, with SVIs captured for each sam
pling point in spring, summer, autumn, and winter. Finally, a semantic 
segmentation model was used to calculate urban form indicators for 
each sampling point in each season.

In the second stage, seasonal bias analysis was conducted from three 
perspectives. From the perspective of individual cities, three metrics 
such as MAE, MAPE, and R were used to evaluate seasonal bias in SVIs 
and analyze their spatial distribution patterns. From the global 
perspective, a standardized index BX was used to quantify the seasonal 
bias for each city, explain these biases with urban climate factors (e.g., 
precipitation and temperature) and explore their spatial distribution 
patterns. From the perspective of practical applications of SVI, different 
combinations of seasonal data were simulated to perform urban function 
classification, analyzing the impact of seasonal bias in practical appli
cations, and understanding the degree of bias.

4.1. Data collection and preprocessing

4.1.1. Collection of SVI
In this study, Google Street View (GSV) image was used as a data 

source. This commercial source provides high spatial coverage, a suffi
cient sampling frequency, and high-quality images, ensuring the 
collection of data for all four seasons at a sampling location. Further
more, focusing on a single data source minimizes the possible bias of 
using different acquisition approaches (e.g., two different providers may 
use different panoramic cameras and acquisition practices). The GSV 
data were downloaded using the open source tool streetview.5 With this 
tool, multiple panoramic SVIs can be obtained around a sampling 
location by entering the latitude and longitude coordinates of the 
location. These SVIs may be collected in different years and seasons. 
Google API6 was utilized to acquire metadata for the SVIs, such as 
timestamps, which were used to determine the season in which the 
images were captured. To ensure consistency in the perspectives of all 
collected images, these panoramic images were processed to various 
viewing angles (Biljecki et al., 2023). The camera was configured to face 
directly forward with a field of view (FOV) set to 120 degrees.

To ensure that the observed changes in SVI indicators primarily 
reflect seasonal bias, rather than being influenced by urban renewal or 
other external factors, it is necessary to carefully filter the raw collected 
data. The detailed steps of this filtering method are as follows:

• Spatial range control: The primary objective is to select a SVI at a 
sampling location for each of the four seasons, ensuring that they are 
sufficiently similar to exclude errors caused by scene changes due to 
spatial mismatch. The specific approach involves selecting SVI data from 
four different seasons within a defined spatial range for comparison. We 

5 https://github.com/robolyst/streetview
6 https://developers.google.com/maps/documentation/streetview
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employ the H3 spatial indexing system7 to generate hexagonal level 12 
grids, each covering an area of approximately 307.092 m2. At H3 index 
level 12, the maximum distance between any two points within a single 
hexagon does not exceed 18.83 m, ensuring a sufficiently localized 
spatial scope for subsequent analyzes.

• Temporal interval control: To minimize the effects of urban 
renewal, the study selects data collected during the same or closely 
related years. Within each spatial grouping, the data is further filtered 
by year to ensure that all images used for comparison fall within a 
similar temporal window, specifically within a 5-year range.

It should be noted that, in some areas, SVI data collection is not 
frequent enough, which may result in the absence of suitable data for 
certain spatial units. These areas will be excluded from the consider
ation. This study categorizes the SVI into different seasons based on the 
metadata’s capture date. Given the seasonal inversion between these 
hemispheres, the definition of seasons is adjusted accordingly: for cities 
in the Northern Hemisphere, December to February is considered 
winter, March to May as spring, June to August as summer, and 
September to November as autumn. Conversely, for cities in the 
Southern Hemisphere, the seasonality is reversed, with June to August 
designated as winter, and so forth.

4.1.2. Calculation of urban form index
Although the bias in vegetation coverage makes the GVI particularly 

sensitive to seasonal changes, the BVI and the SVF can also exhibit a 
notable seasonal bias. In winter, for example, withered trees can expose 
more building facades, thereby increasing the BVI and decreasing the 
GVI. In contrast, when vegetation is dense in summer, parts of the sky or 
building surfaces could be obscured by leaves, thereby reducing SVF or 
BVI while increasing GVI. Hence, seasonal bias in our work is not 
exclusively limited to the GVI; we systematically evaluate its impact on 
all three indices to obtain a more comprehensive understanding of how 
seasonal factors could skew SVI-based urban assessments. These indices 
represent the proportion of the corresponding elements within the entire 
image. They are widely used in urban landscape planning, land use 
analysis, and other related fields (Cao et al., 2023; Ito & Biljecki, 2021; 
Xia et al., 2021a).

Semantic segmentation is a common deep learning technique used to 
calculate these indices. This technique performs pixel-level classification 
on images, allowing for the accurate identification and segmentation of 
different elements within the image, such as vegetation, sky, and 
buildings. Among the numerous models developed for semantic seg
mentation, EfficientViT stands out as an innovative high-resolution 
vision model, distinguished by its novel multiscale linear attention 
mechanism (Cai, Li, Hu, Gan, & Han, 2023). The training data set used in 
this study is Cityscapes, a large-scale data set renowned for its 
comprehensive collection of SVIs from various urban settings in cities.8

Cityscapes is meticulously annotated, providing detailed pixel-level 

Fig. 2. A framework for analyzing seasonal bias in SVI.

7 https://h3geo.org/docs/core-library/restable 8 https://www.cityscapes-dataset.com/
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annotations for a wide range of categories, including but not limited to 
roads, vehicles, buildings, vegetation, and sky. The EfficientViT model, 
trained on the Cityscapes dataset, demonstrated a mean Intersection 
over Union (mIoU) accuracy of 83.228. This precision can ensure the 
correctness of the calculation of the GVI, SVF, and BVI.

4.2. Seasonal bias assessment framework

Seasonal bias refers to the differences in measuring urban form in
dicators or analysis results caused by natural and environmental 
changes between different seasons. It is important to note that no single 
season’s calculated indicators can be considered “correct” or “standard.” 
Rather, seasonal bias serves to quantify the variations between seasons, 
without implying that one season’s results are more accurate than 
another. In the previous step, semantic segmentation techniques were 
used to extract three key urban form indicators, BVI, SVF, and GVI from 
each SVI. The distribution of these indicators in each season can be 
obtained based on the collection time and location of the SVIs. This 
study analyzes seasonal bias in SVI from three perspectives: within 
urban areas, on a global scale, and in practical applications.

4.2.1. Intra-urban seasonal bias assessment
In order to assess the seasonal bias within a city across different 

seasons, we employ three complementary metrics: Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), and Pearson’s corre
lation coefficient (R). For each location i, let Xs1 ,i and Xs2 ,i represent the 
measured values of an urban form indicator X (e.g., BVI, SVF, GVI) in 
two distinct seasons s1 and s2. With n denoting the total number of lo
cations sampled and Xs1 and Xs2 as mean values of X in these two sea
sons, the metrics are defined as follows: 

MAE =
1
n
∑n

i=1

⃒
⃒Xs1 ,i − Xs2 ,i

⃒
⃒, (2) 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Xs1 ,i − Xs2 ,i

Xs1 ,i

⃒
⃒
⃒
⃒× 100%, (3) 

R =

∑n
i=1

(
Xs1 ,i − Xs1

)(
Xs2 ,i − Xs2

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(
Xs1 ,i − Xs1

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1

(
Xs2 ,i − Xs2

)2
√ . (4) 

By comparing these three statistics, we can capture the absolute 
discrepancy (MAE), the relative discrepancy (MAPE), and the rank- 
based consistency (R) in seasonal measurements of urban form in
dicators, thus quantifying the extent of seasonal bias. These three met
rics offer a comprehensive approach to assessing seasonal deviations 
from multiple perspectives.

• MAE: Measures the absolute deviation within a single city, 
reflecting how indicators differ between seasons (e.g., summer vs. 
winter). Although MAE may be misleading in cross-city comparisons 
(owing to different baselines), it remains valuable for quantifying the 
scale of seasonal change within an urban area.

• MAPE: Captures relative deviations, thus facilitating more equi
table cross-regional or cross-city comparisons. By normalizing the 
values, MAPE addresses the disparities in the levels of the baseline in
dicator. However, caution is needed if an indicator approaches zero, as 
this may yield disproportionately large percentages.

• Pearson’s R: Although absolute and relative errors gauge the 
degree of numerical deviation, it is also crucial to assess how consis
tently the indicator values of an area rank over seasons. Pearson’s R 
measures whether locations with high (or low) values in one season 
remain correspondingly high (or low) in another, thus capturing the 
spatial coherence of seasonal changes.

To further explore the spatial distribution patterns of seasonal bias, 
the three urban form and seasonal bias indicators were aggregated into 
predefined spatial units. Specifically, the H3 geospatial indexing system 

was utilized, setting the size of each spatial unit at H3 level 8, with an 
area of approximately 0.737 km2.

4.2.2. Global-scale seasonal bias quantification
Before performing a global scale analysis, it is necessary to define an 

indicator to evaluate seasonal bias on the city scale. we adopt the 
following two-step procedure: The first step is to quantify the seasonal 
bias at the point level. Let Xs,i be the value of a chosen indicator X (e.g., 
GVI, BVI, or SVF) at location i in season s, where s can be spring, sum
mer, autumn, or winter. The seasonal bias at the point level is the 
standard deviation for each sampling location i: 

σi = std
(
Xspring,i,Xsimmer,i,Xautumin,i,Xwintet,i

)
(5) 

Then, aggregating bias at the city scale. Suppose that the city has N 
valid sampling locations. We aggregate the standard deviations per 
point σi taking their average: 

BX =
1
N

∑N

i=1
σi (6) 

Here, BX represents the city-level seasonal bias for the chosen indi
cator X, capturing the overall magnitude of bias when transitioning 
among spring, summer, autumn, and winter. A larger BX implies the city 
experiences more pronounced seasonal changes in X, whereas a smaller 
value indicates relative stability across seasons.

To quantitatively assess how climatic characteristics affect BX, we 
incorporate an OLS regression. In this approach, the BX served as the 
dependent variable, while four predictors, namely the standard de
viations and mean values of rainfall and temperature, were chosen to 
capture both the magnitude and variability of local weather conditions. 
We source these climate indicators from worldclim,9 ensuring temporal 
alignment with our SVI sampling periods. In addition, to investigate the 
pattern of seasonal bias, we performed a cluster analysis. For each of the 
40 cities, we used five climate and geographic characteristics as inputs: 
mean and standard deviation of temperature, mean and standard devi
ation of rainfall, and absolute latitude. After normalizing these features, 
we applied the k-means algorithm, determining via the elbow method.

4.2.3. Evaluating seasonal bias impact on practical applications
To evaluate the impact of seasonal data bias on practical applica

tions, this study investigates the errors introduced by different combi
nations of seasonal data through a case study of urban functional 
analysis. Urban functional analysis using SVI is a common application in 
street view research. As illustrated in Fig. 3, by extracting the vegeta
tion, building, and sky features from SVIs and analyzing their pro
portions, the urban morphological types can be inferred. For instance, 
areas dominated by buildings are likely to be central business districts; 
areas dominated by vegetation may be natural scenic areas; and areas 
where the sky is predominant, along with some vegetation coverage, are 
likely to be suburban regions. Referencing literature by Liang et al. 
(2023), these three characteristics of a graph are input into an unsu
pervised clustering algorithm of k-means to categorize the city into 
different functional zones.

This study constructs four validation scenarios using different sea
sonal data combinations to assess the impact of data sampling on urban 
functional analysis. These scenarios are defined as follows:

• Latest data: Using 10,000 of the most recently captured SVIs.
• Random sampling: Randomly sampling SVIs taken over the past 

five years.
• Summer data: All data is sourced from images taken during the 

summer.
• Winter data: All data is sourced from images taken during the 

winter.

9 https://www.worldclim.org/data/index.html
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Spatial units are delineated using hexagonal H3 grids with a reso
lution of level 8,10 calculating the average values of vegetation, build
ing, and sky characteristics for each spatial unit. These features are used 
as input to the k-means unsupervised clustering algorithm to classify the 
city into functional zones. In this study, the value of k is set to 5, cate
gorizing the city into five distinct functional zones.

To quantitatively assess differences in the clustering results, this 
study uses the Adjusted Rand Index (ARI) to compare the clustering 
results of Vienna and Toronto under the four different data scenarios 
(Santos & Embrechts, 2009). ARI measures the similarity or consistency 
between two clustering results, with a value of 1 indicating complete 
agreement and 0 indicating random alignment. Formally, let X and Y be 
two clustering solutions on N samples, and denote by: a = the number of 
pairs of samples assigned to the same cluster in both X and Y, b = the 
number of pairs of samples assigned to different clusters in both X and Y. 
The Rand Index (RI) is then defined as: 

RI =
a + b
(

N
2

) (7) 

where 
(

N
2

)

is the total number of distinct pairs among the samples N. 

The ARI further incorporates an adjustment for chance as follows. 

ARI =
RI − E[RI]

max(RI) − E[RI]
(8) 

where E[RI] is the expected value of the Rand index under a hypergeo
metric distribution assumption, and max(RI) is the maximum value the 
Rand Index can take. In this study, rather than comparing our clustering 
results to an external “ground truth,” we used ARI to assess how 
consistent the identified clusters remain when the underlying streetview 
data are sampled in different seasons. A higher ARI indicates that two 
clustering configurations, for example “summer data” vs. “winter data,” 
assign samples (e.g., spatial units) more similarly, thus reflecting lower 
seasonal bias.

5. Experiment and results

5.1. Dataset summary

In this study, SVIs were collected from 40 cities in 25 countries. 
These cities were selected to ensure the sufficient quantity of Google 

Street View data in the dataset, climate diversity, geographic diversity, 
and variety on the urban scale. The details of the dataset are listed in 
Table A.1. Using the methods described in Section 4.1, image data was 
collected from 65,747 locations. For each location, SVI were obtained 
for the four seasons, spring, summer, autumn, and winter totaling 
262,988 images. Semantic segmentation models were used to extract 
three indicators from each image: buildings, vegetation, and sky, which 
were then utilized for subsequent analysis.

5.2. Analysis of intra-urban seasonal bias in SVI

5.2.1. An intuitive understanding of seasonal bias
The seasonal bias in SVI is illustrated through an intuitive compar

ison between two climatically distinct cities: Singapore and Toronto. 
Due to Singapore’s equatorial climate, characterized by consistently 
high humidity and abundant rainfall throughout the year, the city has no 
distinct true seasons and experiences almost no seasonal bias throughout 
the year. Toronto experiences a temperate continental humid climate 
characterized by warm, humid summers and cold winters, with clear 
seasonal distinctions and evenly distributed precipitation.

Box plots were used to represent the bias in three indicators of urban 
form in different seasons, as shown in Fig. 4. Overall, the three indicators 
for Toronto exhibit significant fluctuations throughout the four seasons, 
whereas those for Singapore remain relatively stable. Taking the GVI as 
an example, Singapore shows minimal bias in all four seasons, with a 
median between 0.288 and 0.294. However, in Toronto, the median falls 
between 0.150 and 0.179. In cities with different seasons, it is evident 
that seasonal changes significantly affect the GVI. During winter, the 
GVI decreases due to leaf fall, as there is less vegetation cover. At the 
same time, the BVI increases due to reduced tree obstruction. For 
instance, in Toronto, the GVI drops from 0.179 in summer to 0.150 in 
winter, while the BVI rises from 0.045 to 0.066.

Given the pronounced seasonal bias in Toronto, this city is used as an 
example to visually analyze the seasonal bias in SVI through specific 
scenarios. As shown in Fig. 5, the color of the spatial hexagons repre
sents the magnitude of the MEA between the GVI in summer and winter 
for the area. A comparative analysis is conducted by selecting two 
original images from summer and winter, along with their correspond
ing semantic segmentation results.

• The scene ① is a park. In summer, dense foliage results in high GVI. 
Despite the loss of leaves in winter, the tree outlines remain distinct, 
allowing the semantic segmentation algorithm to recognize most of 
the vegetation, resulting in a small bias in the GVI between the two 
seasons.

Fig. 3. SVI data analysis of different urban functional areas.

10 https://h3geo.org/docs/core-library/restable
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• The scene ② is a commercial district in the city center. In summer, a 
small amount of vegetation can be identified, such as trees and 
plants. However, in winter, with the vegetation withered, there is 
almost no recognizable vegetation, leading to a large bias in the GVI 
between the seasons. This suggests that in high-density urban envi
ronments, such as commercial districts, the GVI is highly influenced 
by seasonal changes.

• The scene ③ is a suburban area, where the GVI is high in the summer 
due to extensive grass and tree cover. However, in winter, the grass is 
covered with snow, resulting in a significant reduction in the GVI and 
creating a substantial seasonal bias.

• The scene ④ is a residential area, where the distinction between trees 
and buildings becomes difficult in winter. The MAE of the GVI be
tween winter and summer is distinct. This scenario highlights that in 
areas with mixed vegetation and buildings, seasonal changes can 
significantly affect the accuracy of the GVI calculations.

5.2.2. Quantitative assessment of seasonal bias
Quantitative assessment of seasonal bias was performed using three 

indicators: MAE, MAPE, and R. As shown in Table A.2, the mean MAE 
for the three indicators, GVI, BVI, and SVF in global cities are 0.071, 
0.046, and 0.052, respectively. These results suggest that, on average, 

Fig. 4. Bias in urban form indicators in different seasons.

Fig. 5. An intuitive understanding of seasonal bias using GVI as an example (Toronto).
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the GVI exhibits the largest seasonal deviation among the three metrics, 
likely reflecting the higher sensitivity of vegetation to seasonal changes. 
In contrast, although the MAE values for BVI and SVF are relatively 
small, they remain noteworthy. They still undergo changes due to bias in 
vegetative cover or weather conditions (e.g., snowfall). Taking GVI as an 
example, the highest MAE occurs in Singapore. From the previous 
analysis, it can be inferred that although Singapore exhibits minimal 
seasonal bias. However, the high vegetation coverage, which results in a 
higher GVI value, contributes to the larger MAE for GVI. Therefore, 
using MAE to measure seasonal bias might be somewhat misleading.

From the perspective of MAPE, the average MAPE values for GVI, BVI 
and SVF are 54.203 %, 857.216 %, and 22.238 %, respectively 
(Table A.2). For GVI, the cities with the highest and lowest MAPE are 
Montreal and Singapore, respectively, which aligns with the analysis in 
Section 5.2.1. Fig. 6 illustrates the distribution of MAPE in two repre
sentative cities, Vienna and Toronto, stratified into three groups ac
cording to their GVI levels: high, medium, and low. In particular, areas 
with higher GVI (high group) exhibit significantly smaller seasonal bias 
in MAPE. In Vienna, the median MAPE in the high group is only 1.44 %, 
compared to 12.96 % in the low group. A similar trend is observed in 
Toronto, where the median MAPE increases from 9.84 % in the high 
group to 25.36 % in the low group. The high group often corresponds to 
large urban parks or areas with dense tree canopy, where vegetation 
remains visible even in winter, leading to smaller seasonal differences. 
In contrast, the low group typically includes areas with sparse or scat
tered greenery that are more susceptible to seasonal loss. Furthermore, 
since MAPE is influenced by the baseline GVI value in winter, a lower 
winter GVI can result in inflated relative differences, even when the 
absolute change is minor. Together, these factors contribute to the larger 
apparent seasonal bias observed in the low-GVI group.

Spatial visualizations of GVI groupings and MAPE were performed to 
explore the spatial distribution patterns of vegetation bias. As shown in 
Fig. 7, the upper half of the figure illustrates the distribution of GVI in 
different spatial units (H3 units) in each city, classified into high, me
dium and low groups. The lower half of the figure displays the corre
sponding spatial distribution of seasonal bias in the GVI. In Vienna, areas 
with higher GVI are mainly located in the southeast and northwest re
gions, which probably include parks and nature reserves with extensive 
greenery. The MAPE shows significant bias across different regions but 
exhibits a certain degree of spatial clustering, with a global Moran’s I 
value of 0.312 (Anselin, Bera, Florax, & Yoon, 1996). In Toronto, the 
GVI distribution also reveals noticeable spatial differences, with higher 
GVI areas concentrated around the city’s periphery. Areas with higher 
seasonal vegetation bias are mainly located in the central-eastern part of 
the city and also show clear spatial clustering, with a Moran’s I value of 
0.456.

From the perspective of R, in the 40 global cities, the mean R be
tween summer and winter is highest for SVF (mean R = 0.772), followed 

by BVI (mean R = 0.712) and lowest for GVI (mean R = 0.674), indi
cating stronger seasonal variability in vegetation, as shown in Table A.2. 
In particular, tropical cities such as Singapore and Taipei show very high 
R values for GVI (0.938 and 0.934, respectively), while temperate cities 
such as Istanbul and Los Angeles exhibit much lower GVI correlations 
(0.316 and 0.059), reflecting substantial seasonal fluctuation. Taking 
Vienna and Toronto as examples, the correlation between different 
urban form indicators across seasons is analyzed, as shown in Table 1. 
High correlation coefficients indicate strong consistency of these indices 
between seasons, demonstrating stability in certain indices despite 
seasonal changes. In general, both cities show high correlations in BVI 
and SVF throughout the seasons, suggesting that these structural ele
ments are less affected by seasonal bias. However, the GVI in both cities 
shows a more pronounced seasonal bias, with significant differences 
observed in the indices during contrasting seasons. Specifically, in 
Vienna, the SVF achieves the highest correlation, reaching 0.943, indi
cating minimal seasonal bias in sky view. The correlation for GVI is 
relatively lower, with a maximum value of 0.87. A similar pattern is 
observed in Toronto, where the BVI and the SVF also show high corre
lations between seasons, with the SVF reaching a maximum of 0.937 
between autumn and summer. The GVI shows a lower correlation, 
especially between summer and winter (0.822), indicating a greater 
seasonal variability in vegetation.

5.3. Global-scale seasonal bias patterns in SVI

Table A.3 presents the seasonal bias results for 40 cities worldwide, 
where a higher BX signifies a stronger seasonal bias in the corresponding 
urban form indicator X. In all cities sampled, the mean values for BGVI,

BBVI, and BSVF are 0.059, 0.037, and 0.044, respectively. Notably, 
Istanbul reports the highest BGVI (0.087), Tokyo exhibits the highest BBVI 
(0.065), and Los Angeles records the highest BSVF (0.063). These find
ings illustrate how various facets of the urban environment exhibit dif
ferential susceptibility to seasonal changes under distinct climatic and 
geographic conditions. Among these indicators, vegetation bias appear 
to be the main driver of seasonal fluctuations in street-level imagery. 
Consequently, the ensuing analysis focuses on BGVI for a more detailed 
examination and comparison of global seasonal bias.

This section focuses on GVI as a representative indicator for 
analyzing global patterns of seasonal bias, as it exhibits clearer seasonal 
variability compared to other indicators of urban form, such as SVF or 
BVI, making it more suitable for illustrating climatic and geographic 
influences. Fig. 8 illustrates the global distribution of seasonal bias in the 
GVI, denoted as BGVI, in 40 representative cities around the world. The 
results reveal notable geographic disparities in the seasonal dynamics of 
green visibility. Cities located in temperate regions of the Northern 
Hemisphere, such as Vienna, Rome, London, and Toronto, exhibit 
relatively high BGVI values (above 0.069), indicating pronounced 

Fig. 6. Seasonal bias of GVI between summer and winter across high, medium, and low GVI areas in Vienna and Toronto, measured by MAPE (%).
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seasonal fluctuations in greenery, likely corresponding to deciduous tree 
cover and marked transitions between summer and winter vegetation 
states. Similarly, high deviations are observed in some Australian cities 
(e.g., Canberra, Adelaide), reflecting comparable seasonal vegetation 
cycles in the Southern Hemisphere. In contrast, tropical and equatorial 
cities, including Jakarta, Singapore, Kuala Lumpur, and Bangkok, 
display low BGVI values (typically below 0.046), suggesting a more stable 
year-round green view, consistent with their evergreen vegetation and 
relatively invariant climatic conditions. African cities such as Nairobi 
and Lagos, as well as Latin American cities such as Bogota and Sao Luis, 
also exhibit minimal seasonal bias in the GVI. Interestingly, some North 
American cities such as San Francisco and Denver demonstrate moder
ate seasonal deviation, likely due to region-specific climate and urban 
vegetation patterns. The heterogeneity in the seasonal bias of the GVI 
between global cities highlights the combined influence of bioclimatic 
zones, vegetation composition, and urban landscape planning on the 
dynamics of greenery at the street level.

Fig. 9 visualizes the spatial bias and climatic associations of seasonal 
bias in the BVI in 40 global cities. Here, the size of each bubble reflects 
the values of BGVI categorized into five equal-interval ranges. The bubble 
graph maps cities by their mean rainfall (x-axis) and mean temperature 
(y-axis), with the bubble size proportional to BGVI. In general, cities in 
colder and drier regions, such as Montreal, Toronto, and Vienna, exhibit 
a relatively higher BGVI, indicating a more pronounced seasonal bias. In 
contrast, cities in equatorial or tropical regions (for example, Jakarta, 
Singapore) show lower BGVI, consistent with evergreen vegetation and 
limited seasonal changes in canopy cover. This spatial pattern suggests 
that temperature and precipitation regimes exert a substantial influence 
on the seasonality of visual greenery in urban environments.

To further explore these relationships, the cities were grouped into 
three clusters using k-means clustering based on five geographic and 
climatic variables: mean temperature, temperature standard deviation, 
mean rainfall, rainfall standard deviation, and absolute latitude. As 
shown in both Fig. 9 and the corresponding radar plot in Fig. 10, the 
clusters capture distinct climatic-geographic regimes. Cluster 1 (blue) 
includes mainly tropical cities with high temperatures, low variability in 
temperature, and abundant and stable rainfall, conditions that result in 
consistently low BGVI. Cluster 2 (red) consists of cities with moderate 
climates and rainfall bias, leading to intermediate seasonal greenness 
fluctuation. Cluster 3 (green), on the contrary, represents cities with 
higher latitudes or continental cities with strong temperature season
ality and higher absolute latitudes. These cities experience pronounced 
leaf-on/leaf-off transitions, contributing to the highest levels of BGVI. 
Together, the results and visualizations of the clustering emphasize that 
the seasonality of urban greenness is closely intertwined with latitude- 
driven phenological patterns and local climatic variability.

Building on the spatial pattern analysis presented in the previous 
figures, we also employed an OLS regression model to examine the 
extent to which climatic factors contribute to the seasonal deviation of 

Fig. 7. Spatial distribution of GVI and its MAPE in summer and winter.

Table 1 
Pearson correlations between urban form indices in Vienna and Toronto in 
different seasons.

City Vienna Toronto

Indicator BVI GVI SVF BVI GVI SVF

Autumn_Spring 0.910 0.849 0.911 0.878 0.881 0.916
Autumn_Summer 0.873 0.865 0.910 0.861 0.859 0.937
Autumn_Winter 0.922 0.870 0.943 0.882 0.855 0.917
Spring_Summer 0.883 0.855 0.919 0.886 0.851 0.922
Spring_Winter 0.908 0.861 0.928 0.870 0.871 0.919
Summer_Winter 0.888 0.883 0.914 0.857 0.822 0.910

Note: Bolded values indicate the minimum Pearson correlation coefficients 
among the compared seasons, reflecting the largest degree of seasonal bias.
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Fig. 8. Global spatial distribution of seasonal bias of GVI Basemap: Esri.

Fig. 9. Visualization of seasonal bias in GVI relative to average temperature and rainfall.
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the vegetation index, denoted BGVI. The regression results are presented 
in Table 2. The model demonstrates moderate explanatory power, with 
an R2 of 0.513 and an adjusted R2 of 0.457. The overall model is sta
tistically significant (F = 9.218, p < 0.001). Among the explanatory 
variables, the standard deviation of temperature (SD_Temperature) is 
the only statistically significant predictor (β = 0.0009, p = 0.0414). 
This result suggests that greater intraannual temperature variability is 
positively associated with the seasonal deviation in vegetation index, 
potentially reflecting stronger phenological responses in regions with 
more distinct seasonal thermal contrasts. Other variables, including 
SD_Rainfall, Mean_Rainfall, and Mean_Temperature, are not statistically 
significant at the 0.05 level. However, the negative coefficients of 
Mean_Rainfall and Mean_Temperature may imply a dampening effect of 
consistently high rainfall or temperature on vegetation seasonality, 
although the effects are not robustly supported by the data.

5.4. Implications of seasonal bias for downstream applications

Using Vienna and Toronto as examples, the urban function clustering 
analysis method of Section 4.2.3 is applied to examine the impact of 
seasonal bias in SVI on practical applications. In this study, we pre
defined k = 5 for urban functional clustering, based on previous studies 
(e.g., Liang et al. (2023)) that used a similar approach and the number of 
clusters to classify urban function or morphology. The five-cluster 
classification effectively distinguishes major functional structures in a 

city, with each cluster exhibiting strong interpretability. Four different 
data scenarios were constructed for the analysis: latest, random, sum
mer, and winter data. As shown in Fig. 11, the five clusters derived from 
our k-means analysis (C1–C5) can be broadly assigned to the five cate
gories of urban landscape introduced in Subsection 4.2.3. Based on 
urban forms in Vienna and Toronto, we infer that C1 corresponds to the 
downtown commercial core, C2 encompasses mature residential zones, 
C3 includes peripheral industrial tracts, C4 comprises suburban neigh
borhoods, and C5 highlights ravine systems and large parks with 
abundant vegetation.

The various data sampling scenarios (latest, random, summer and 
winter) yield subtle but noticeable shifts in how the five clusters (C1-C5) 
are distributed throughout Vienna and Toronto. In the latest scenario, 
for example, C1 (CBD) appears to be more neatly concentrated in central 
areas, while random sampling scatters a slightly broader range of high- 
density clusters. In the summer configuration, where vegetation is at its 
peak, clusters corresponding to greener suburban or natural landscapes 
(C4 and C5) expand in spatial extent, pushing some mid-density resi
dential zones (C2) into smaller pockets. In contrast, the Winter scenario, 
which captures less foliage, reveals additional building coverage in areas 
that otherwise might be classified as suburban, thus redistributing a 
portion of C4 zones into the higher-BVI categories (C1 and C2). 
Although the data collection season can alter the boundary lines of each 
cluster, the fundamental morphological structure remains broadly 
recognizable.

Fig. 12 presents the ARI comparison results for both cities in the 
different data scenarios. In Toronto, the ARI values compared to the 
most recent data are 0.43 for random data, 0.35 for winter data, and 
0.41 for summer data, respectively. The ARI values between the random 
and the summer data is 0.53, indicating the highest similarity between 
the random and the summer data. In Vienna, the ARI values between the 
latest data and the random, winter, and summer data are 0.40, 0.44, and 
0.57, respectively. The ARI values between random and winter are 0.59, 
suggesting a greater similarity between random and winter data.

These results indicate that seasonal bias has a significant impact on 
practical application (urban functional cluster), and different cities may 
require distinct data combination strategies. In this study, Vienna 
exhibited the highest ARI value between the random and winter data, 

Fig. 10. Climatic and geographic metrics for each cluster.

Table 2 
OLS regression results for the relationship between climatic variables and BGVI .

Variable Estimate(β) Std. Error t value Pr( > |t|) Signif.

(Intercept) 0.0784 0.0165 4.7415 3.49E-05
SD_Rainfall − 0.0008 0.0020 − 0.4366 0.6651
SD_Temperature 0.0009 0.0004 2.1167 0.0414 *
Mean_Rainfall − 0.0018 0.0013 − 1.3506 0.1854
Mean_Temperature − 0.0003 0.0002 − 1.2516 0.2190

R2: 0.513, Adjusted R2: 0.457, F-statistic: 9.218, p-value: 3.39E-05 Signif. codes: 
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.
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Fig. 11. Clustering results under different scenarios.

Fig. 12. Heatmap of ARI comparing clustering results across different scenarios.
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while Toronto showed the highest ARI between the random and summer 
data. This phenomenon is likely related to the seasonal characteristics of 
urban landscapes. In cities where vegetation dominates the summer 
streetscape, summer data may more accurately represent the city’s 
typical landscape features. In contrast, in cities where vegetation is 
sparse and winter characteristics are more pronounced, using winter 
data as representative may be more appropriate. This finding highlights 
the importance of selecting seasonally appropriate data based on the 
specific climate and landscape characteristics of each city to ensure the 
accuracy and consistency of the results of the urban functional area 
delineation.

6. Discussion

6.1. Different ways of calculating urban form indicators

Taking the GVI as an example, commonly used calculation methods 
include semantic segmentation and color thresholding. Color thresh
olding for the calculation of GVI is a method that identifies green areas 
in an image by setting specific color value ranges (typically in the RGB or 
HSV color space) to detect vegetation based on its color (Li et al., 2015). 
Using Fig. 13 as an example, we illustrate the impact of these different 
methods on the results. In summer, trees and grass are in their peak 
growth period, resulting in a larger green vegetation coverage in the 
images. In contrast, in winter, many trees lose their leaves or rot, and 
grass can turn yellow or disappear due to low temperatures. Semantic 
segmentation uses deep learning techniques to perform pixel-by-pixel 
classification of the image, accurately identifying vegetation areas. 
This method can maintain relatively stable GVI values even in sparsely 
vegetated winters. Specifically, the GVI values for summer and winter 
are 0.245 and 0.232, respectively. However, color thresholding relies on 
preset color ranges to identify green vegetation, making it more sus
ceptible to seasonal changes. Consequently, the GVI values for summer 
and winter are 0.237 and 0.046, respectively.

The top 10 cities with the largest GVI discrepancies between summer 
and winter were selected (as shown in Table 3). We analyze the median 
and mean of MAPE for these cities. The results show that in cities like 
Montreal, Denver and Toronto, the median MAPE for the color thresh
olding method reached 424.563 %, 384.151 %, and 371.822 %, 
respectively. In contrast, the median MAPE for the semantic segmenta
tion method was 49.882 %, 41.741 %, and 48.092 %, respectively. The 
discrepancy in MAPE between the two methods exceeded a factor of 10. 
The results indicate that using different methods to calculate urban in
dicators from SVI to assess seasonal bias can lead to significant bias, with 
differences that can exceed tenfold. In comparison, the semantic 

segmentation method is better able to handle seasonal changes and 
reduce deviations when calculating the GVI. Therefore, it is crucial to 
select the appropriate GVI calculation method based on the experi
mental objectives and practical requirements.

6.2. Implications of seasonal bias in SVI

Seasonal bias in SVI has far-reaching implications for urban greening 
analysis and broader environmental assessments. Studies often rely on 
indicators such as the GVI to estimate the coverage of vegetation at 
street level, a crucial parameter to measure urban greenery and 
ecological health (Kelly, Davern, Farahani, Higgs, & Maller, 2022; 
Zhang & Dong, 2021). However, when images are collected during 
different seasons, particularly in regions with pronounced leaf-on and 
leaf-off cycles, the same location may exhibit striking discrepancies in 
GVI values. Furthermore, BVI and SVF, although less sensitive than GVI, 
also exhibit seasonal bias that can influence the analysis of urban density 
and sky visibility, respectively.

Beyond greenery, seasonal bias can significantly affect studies on 
walkability and subjective perceptions of pedestrians of the urban 
environment. Walkability metrics often incorporate factors such as 
shade, tree canopy coverage, urban aesthetics, and sidewalk comfort (Ito 
& Biljecki, 2021). Leafy canopies during warmer seasons can foster more 
positive user experiences and impressions of safety or aesthetic appeal, 
while the same sidewalks in winter, strung with fallen leaves or covered 
in snow, could appear less inviting and more hazardous. Consequently, a 
sidewalk audited through SVI in summer might yield a high walkability 
score, whereas winter images of the same street might lead planners or 

Fig. 13. Different methods for calculating the GVI.

Table 3 
Top 10 cities with the largest differences in GVI between summer and winter by 
different methods.

City Color Thresholding Semantic Segmentation

Median MAPE 
(%)

Mean MAPE 
(%)

Median MAPE 
(%)

Mean MAPE 
(%)

Montreal 424.563 539.333 49.882 90.307
Denver 384.151 548.382 41.741 71.511
Toronto 371.822 538.243 48.092 83.779
Seoul 282.097 399.404 50.458 86.945
Madrid 250.947 416.052 49.281 89.517
Vienna 227.608 374.701 34.645 62.051
London 204.971 362.598 33.902 67.776
Houston 202.780 340.905 29.781 49.909
Tokyo 163.874 288.088 45.177 78.908
Amsterdam 161.060 325.309 31.225 58.225
Istanbul 147.672 236.692 54.791 89.068
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researchers to judge it less favorably. Similarly, this bias may extend to 
studies that focus on street-level economic vitality (Li et al., 2021), as 
crowded outdoor dining areas or vibrant street markets in summer may 
appear empty or non-existent in the colder months.

6.3. Strategies for mitigating seasonal bias in SVI

One of the most important points about mitigating seasonal bias in 
SVI is to recognize that not all research contexts require the same level of 
attention to seasonal effects. Some studies, especially those centered on 
long-term stable aspects of the built environment (e.g., road layout, 
building facades, or permanent infrastructure) may tolerate mild sea
sonal bias without compromising key findings (Chen, Chen, Li, Zhang, & 
Long, 2023; Liang et al., 2024). Similarly, tropical or subtropical cities 
with relatively minor seasonal transitions (e.g., consistent foliage 
throughout the year) may also experience less pronounced seasonal bias 
(Chen & Biljecki, 2023). However, as soon as a study touches upon 
features strongly tied to phenology (such as tree canopy coverage), 
mitigating seasonal bias becomes critical. In terms of analysis of street- 
level vegetation or detection of time series changes, ignoring the shift 
between green canopies in summer and barren branches in winter could 
lead to substantial errors (Li, 2021). The same concern applies to 
walkability and perception studies that rely heavily on street ambiance, 
shade availability, and perceived attractiveness, all of which can exhibit 
dramatic seasonal swings in temperate or continental climates (Wei, 
Yue, Li, & Gao, 2022).

Further complicating matters is that the degree of seasonal bias is 
inherently shaped by geographic context and study objectives. Cities 
near the equator, such as Singapore or Kuala Lumpur, experience min
imal temperature and vegetation fluctuations throughout the year, 
making summer and winter images visually similar. In such settings, 
comprehensive multiseason sampling may not yield significantly 
different results, allowing for more flexible or cost-effective data 
collection without compromising reliability. In contrast, high-latitude 
cities like Vienna or Toronto undergo dramatic seasonal transitions, 
such as snow cover, foliage loss, and daylight shifts, making the timing 
of data acquisition critical for studies involving green coverage, street
scape aesthetics, or pedestrian experience (Liang et al., 2023). As such, a 
‘one-size-fits-all’ strategy to control seasonal bias is rarely appropriate. 
Instead, mitigation efforts should be tailored to the local climate, urban 
characteristics of interest, and research goals. Depending on the study’s 
priorities, solutions can range from basic filtering, excluding or flagging 
images outside a preferred seasonal window (e.g. leaf-on or leaf-off), to 
more advanced methods such as weighting schemes or sensitivity tests 
that assess how seasonal fluctuations impact final metrics (e.g., GVI, 
SVF). If indicators remain robust across seasons, correction may be 
unnecessary; otherwise, researchers may opt for seasonal averaging or 
scenario-based representations to clarify differences between warm and 
cold seasons.

7. Conclusion

The increasing use of SVI in urban research has revealed significant 
challenges related to data consistency and reliability, particularly 
regarding seasonal bias. Ground-level imagery, captured sporadically in 
different seasons, can produce inconsistent estimates of urban form in
dicators such as GVI, BVI, and SVF if sampling time is ignored. To 
address this problem, we developed a systematic approach that in
corporates data filtering, semantic segmentation, and multiscale statis
tical analyses, examining 689,932 images from 40 cities around the 
world. By linking an explicit conceptual model of climatic, geographic 
and data acquisition factors to a two-stage methodological framework, 
we offered a comprehensive procedure to quantify and understand 
seasonal bias in SVI.

Through three major research questions, we revealed that (1) RQ1 
(extent and spatial distribution of seasonal bias): Even in the same 

location, winter and summer SVI can produce significant discrepancies 
in GVI (e.g., an average MAPE is 54 %), while BVI and SVF also register 
detectable bias. Statistically, these biases tend to cluster, as evidenced by 
Moran’s I values exceeding 0.3 in cities such as Toronto and Vienna, 
underscoring the importance of addressing local heterogeneities in 
seasonal phenomena. (2) RQ2 (relationship with climate on a global 
scale): Statistical analyzes indicate a strong correlation between sea
sonal bias and climatic characteristics. High-latitude, low-rainfall envi
ronments manifest more pronounced leaf-on/leaf-off contrasts, 
producing larger biases in GVI. In contrast, equatorial regions (e.g. 
Singapore) exhibit smaller fluctuations. These results are further sup
ported by a clustering of k-means of climate variables, revealing distinct 
patterns of seasonal bias between cities grouped by latitude and tem
perature variability. (3) RQ3 (practical application errors): we validate 
the impact of these biases on real-world tasks by examining an urban 
functional clustering scenario. When data from mismatched seasons 
were combined, the delineation of land use categories was significantly 
altered, illustrating the tangible risk of misclassification errors and dis
torted policy insights if seasonal bias is not adequately addressed.

This study still faces several limitations that open avenues for future 
research. First, although we carefully controlled the spatial distance 
among sampled locations (within 18.83 m) and aggregated data to 
mitigate angular discrepancies, it is challenging to guarantee that SVI 
from multiple seasons shares identical shooting angles or perspectives. 
Future studies could adopt image matching techniques (Tian, Chen, & 
Shah, 2017; Zhu, Yang, & Chen, 2021) or more precise sensor-based 
localization methods to ensure greater alignment of seasonal images. 
Second, urban environments are constantly evolving, and even though 
we restricted our analysis to a 5-year timeframe and focused on rela
tively mature cities, changes such as infrastructure upgrades, new 
building construction, and tree removal can alter the built environment 
in ways unrelated to seasonality. Incorporating remote sensing data (Das 
& Angadi, 2022; Wang et al., 2020) to detect areas with minimal urban 
development could help isolate genuinely seasonal bias from those 
stemming from urban renewal. Third, while this study focuses on city- 
scale analysis of seasonal bias to ensure cross-regional comparability, 
future research could explore point-level mechanisms using more 
granular datasets. Local drivers such as land use types and microclimatic 
variation can reveal fine-scale heterogeneity in seasonal effects, partic
ularly in temperate regions (Hamid et al., 2023). With access to aligned 
multi-season images and city-specific contextual data, microscale 
regression models could offer deeper insights into the relationship be
tween urban microenvironment and seasonal bias of SVI.
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