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Abstract.

High-resolution microclimate maps are critical for advancing urban climate resilience
strategies by providing detailed spatial insights into environmental variables. This study
evaluates the performance of using a random forest regressor with single and multiple features
to fit interpolated environmental data, including solar radiation, temperature, humidity, and
wind speed. Using regression kriging on observations from 42 weather stations distributed on
the campus of the National University of Singapore (NUS), spatial environmental variables
were mapped at a 5x5 meter resolution. The interpolation process uses various geospatial
layers to refine the results and the fine-scale spatial resolution. As a result, this model captures
the localized variability of environmental variables. This work contributes to urban climate
modeling by advancing the methodological frameworks for microclimate mapping and addressing
the growing need for reliable high-resolution environmental data to inform thermal comfort
assessments and resilience strategies.

1. Introduction
The intensifying impacts of climate change have led to a steadily increasing global temperature,
resulting in more frequent and severe heatwaves, as well as other extreme weather events [1].
These changes are escalating health risks and contributing to increased mortality rates, with
heat already recognized as one of the deadliest natural hazards [2]. Addressing these challenges
requires the development of climate-resilience strategies that mitigate health risks, particularly in
urban areas where populations are most vulnerable [3, 4]. To effectively design such strategies,
a detailed understanding of microclimate conditions in the built environment at fine spatial
scales is essential. Microclimates exhibit disproportionate impacts on individuals [5] as localized
environmental variations can have varying degrees of impact on thermal comfort and perception
[3]. Consequently, creating thermally comfortable and livable urban environments requires a
comprehensive approach that integrates high-resolution spatial data with more human-centric
considerations. This enables the identification of localized temporal and spatial differences.
The study of microclimates relies on various methodologies to capture environmental
variations at fine spatial scales. These approaches are shaped by data availability, computational
resources, and the desired spatial and temporal resolution of results, each with inherent strengths
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and limitations [6]. Spatial interpolation techniques are commonly employed to estimate
environmental variables where direct observations are unavailable. These methods can be
broadly categorized into deterministic approaches (e.g., Inverse Distance Weighted (IDW), Trend
Surface Analysis, and Spline Interpolation), geostatistical methods (e.g., Kriging), and hybrid
techniques such as Regression Kriging (RK) [6, 7]. Among these, IDW, Kriging, and RK are the
most widely used [8]. RK, in particular, combines regression models with geostatistical kriging
to capture both large-scale trends and residual spatial autocorrelation. However, its resolution
is inherently constrained by the density and spatial distribution of input data, often limited by
the scale of available observations. Then, model validation typically relies on cross-validation
techniques, comparing predicted values against observed data to assess accuracy [9].

Empirical sensor-based methods and computational modeling techniques, including
Computational Fluid Dynamics (CFD) and urban climate models, are widely used in
microclimate studies to simulate airflow, heat transfer, and solar radiation, though they are often
limited by high computational demands and simplified urban geometries [10]. Recent machine
learning and deep learning approaches offer alternatives by capturing nonlinear environmental
dynamics and emulating numerical models, enabling high-resolution predictions but requiring
substantial computational resources and extensive training data [11, 12]. A persistent challenge
is balancing model complexity with computational feasibility to accurately represent fine-scale
urban microclimates [13]. Moreover, these methods typically rely on weather station data
and often lack pedestrian-level ground-truthing, limiting their ability to account for localized
microclimatic conditions relevant to human thermal comfort.

Thermal walks have gained increasing attention as traditional urban climate studies, which
rely on fixed weather stations or large-scale datasets, often fail to capture localized microclimatic
variations [14, 15]. Given the heterogeneity of thermal conditions in urban environments, human-
centered measurement approaches are essential for understanding how pedestrians experience
temperature fluctuations in real-world settings. These studies reveal significant spatial and
temporal variability in meteorological conditions and human thermal perception, influenced by
factors such as Mean Radiant Temperature, solar radiation, humidity, wind speed, and urban
morphology, including shading and vegetation. Recent advancements have introduced mobile
and stop-and-go measurement techniques to monitor thermal conditions along pedestrian routes,
highlighting the role of urban features like built density and greenery in shaping thermal comfort
[14, 15, 16]. Mean Radiant Temperature is widely recognized as one of the most complex,
influential, and challenging variables to measure and assess in relation to thermal comfort [17, 18].

While regression kriging enables high-resolution interpolation of environmental data, it does
not fully capture local microclimatic variations experienced by pedestrians, especially between
measurement points. This study expects to use thermal walks to provide valuable ground-truth
data to enhance the accuracy of these interpolations.

2. Methodology

This pilot study uses a network of 42 stationary weather stations with 3 meteorological towers
capturing various environmental variables at a minutely interval. This study interpolates them
using regression kriging to a 5x5 meter grid and fits each individual variable using the gathered
thermal walk data of 10 total walks and random forest regressor depicted in Figure 1.

The weather stations are on the National University of Singapore (NUS) Campus, which
covers an area of about 2 km? with various environments like densely built urban areas, as well
as public open spaces or greatly and partly vegetated spaces. Singapore is typical in that there
are lots of outdoor spaces, as well as semi-outdoor spaces, which are sometimes solely beneath
or inside buildings but are fully exposed to environmental hazards. This study uses the same
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Figure 1: Simplified overview of the experimental setup utilizing environmental variables from
the thermal walk and interpolation: Air Temperature (AT), Humidity (HUM), Radiation
(RAD), and Wind Speed (WS) to fit the interpolated data.

data as described in this study by Lim et. al. [19]. That model utilized a total of 32 computed
layers of feature information for vegetation, buildings, environmental data, mobility data, and
simulated data, which were then in a multi-step cluster to improve distinctiveness and accuracy
of cluster boundaries. The data was retrieved using available Laserscan data, OpenStreetMap
data and then data computed using Ladybug tools (simulated data), in order to then extract
the features.

A total of 10 thermal walks were carried out at different times throughout the day, from 9
a.m. to 7 p.m., to capture a wide range of climatic conditions across the campus. Environmental
data, including humidity, solar radiation, wind speed, and air temperature, were logged at a 10-
second interval. The experimental setup used for these measurements is identical to the one
employed by Marcel et al. [20].

For interpolation, regression kriging was performed using PyKrige and scikit-learn at a
resolution of 5x5 meters. The following parameters were set for the kriging process: a C-
value of 0.001, a gamma of 5, a radial basis function (RBF) kernel, 50 estimators, a random
state of 4, and a neighborhood size (n) of 8. These settings were applied to each environmental
variable at each timestamp of the thermal walks using the aforementioned campus-wide available
station data.

The thermal walk data was aligned with the interpolated dataset by identifying the closest
time-step neighbors. The dataset was then subjected to 10-fold cross-validation. As previously
depicted in Figure 1, two models were investigated. The first model, ”Single Random Forest”
(SRF), used a Random Forest Regressor trained individually for each environmental variable
to capture the specific relationships between the predictor variables and the target variable. In
this approach, the interpolated Air Temperature served as the base and was fitted to the mobile
weather station’s Air Temperature. The second model, ”Multiple Random Forest” (MRF),
employed a combined approach utilizing all environmental interpolated available variables as
features to train a single target variable. This model was designed to explore the potential impact
of multicollinearity or complex interactions, which could introduce noise or obscure relationships,
potentially reducing model accuracy compared to the single-feature models. Model performance
was evaluated using several metrics, including Mean Squared Error (MSE), Mean Absolute Error
(MAE), and Root Mean Squared Error (RMSE).
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3. Results
Tables 1 and 2 present performance metrics (MSE, MAE, RMSE) for training (A) and test (B)
datasets, comparing single-feature (SRF) and multi-feature (MRF) models.

For Air Temperature and Wind Speed, the MRF model demonstrates lower error differences
between training and test sets, with Test MSE values of 0.33 (Air Temperature) and 0.34 (Wind
Speed), and Test RMSE values of 0.57 and 0.58, respectively, indicating better generalization.
Conversely, the SRF model shows higher discrepancies, with Test MSE values of 1.40 (Air
Temperature) and 0.66 (Wind Speed), suggesting overfitting.

Table 1: Resulting metrics for Model 1 ”Single Random Forest” (SRF), with (A) representing
the metrics for the Training dataset and (B) representing the metrics for the Test dataset.

Measure (A) MSE (B) MSE (A) MAE (B) MAE (A) RMSE (B) RMSE
Air Temperature (°C) 0.19 1.40 0.31 0.85 0.44 1.18

Wind Speed (m/s) 0.10 0.66 0.23 0.60 0.31 0.81
Radiation (W/m?) 4644.62 25693.85  40.46 95.60 68.15 160.21
Humidity (%) 4.14 29.59 1.52 4.11 2.03 5.44

For Humidity, the MRF model significantly outperforms SRF, achieving lower Test MSE
(5.19 vs. 29.59) and RMSE (2.28 vs. 5.44). However, the MRF Test MSE (5.19 vs. 0.73 for
training) highlights potential variability, indicating instability despite mitigating overfitting.

For Radiation, both models exhibit overfitting, with high Test MSE (25,693.85 for SRF;
14,716.55 for MRF) and RMSE (160.21 for SRF; 121.10 for MRF). These results suggest
Radiation’s complexity makes it challenging for both models to generalize effectively.

Table 2: Resulting metrics for Model 2 ” Multiple Random Forest” (MRF'), with (A) representing
the metrics for the Training dataset and (B) representing the metrics for the Test dataset.

Measure (A) MSE (B) MSE (A) MAE (B) MAE (A) RMSE (B) RMSE
Air Temperature (°C) 0.05 0.33 0.13 0.34 0.21 0.57

Wind Speed (m/s) 0.05 0.34 0.16 0.41 0.23 0.58
Radiation (W/m?)  2096.57  14716.55 26.33 70.09 45.79 121.10
Humidity (%) 0.73 5.19 0.51 1.38 0.86 2.28

Figure 2 illustrates an exemplary run for each environmental variable presented as a line
chart, where the interpolated data (Int_) serves as the feature, and the Mobile Weather Station
(mWST_) data represents the target variable. The chart compares the resulting values from
the Single Random Forest (SRF) and Multiple Random Forest (MRF) models over a selected
30-minute timeframe. The SRF model exhibits substantial fluctuations and spikes across all
environmental variables, particularly for Air Temperature and Humidity, when compared to
the MRF model. In contrast, the predictions for Radiation and Wind Speed show only slight
differences between the SRF and MRF models.

Notably, the interpolated data for Air Temperature and Humidity generally displays a stable
trend, with only brief periods of rapid fluctuation. In comparison, the interpolated data for Wind
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Speed and Radiation demonstrates more variability, though the fluctuations are less pronounced
than those observed in the Air Temperature and Humidity data. The mWST data follows a
similar pattern, though significant discrepancies are evident when comparing the mWST values
to the interpolated data—both in terms of absolute values and the timing and duration of certain

fluctuations.
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Figure 2: Results for each environmental variable conducted with (1) the interpolated (Int_)
and mobile weather station data (mWST.), (2) Single Random Forest (SRF), and (3) Multiple
Random Forest (MRF).

4. Discussion and Conclusion
This study integrated regression kriging with Random Forest (RF) modeling to optimize high-
resolution microclimate maps, using ground-truth measurements obtained during thermal walks.
However, the dataset was relatively small and confined to daytime measurements, with no
structured approach to the timing or execution of thermal walks. Additionally, nighttime
thermal variations were not considered. Expanding the dataset to include a greater number
of thermal walks conducted across various times of day, including nighttime data, would offer a
more comprehensive representation of environmental conditions and enhance the generalizability
of the results. Additionally, while regression kriging and Random Forest models produced
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fine-scale predictions, the models exhibited sensitivity to specific environmental conditions.
In particular, Air Temperature and Humidity demonstrated notable overfitting in the Single
Random Forest (SRF) model, with large discrepancies observed between the training and test
datasets and or overfitting.

In contrast, solar radiation—a well-established dominant driver of local thermal variability
that sharply differentiates sunlit and shaded microenvironments and strongly influences
pedestrian thermal comfort—was comparatively better captured against the Mobile Weather
Station (mWST) data. This suggests the models could reflect the fluctuations between shaded
and unshaded conditions, which critically affect thermal perception at the pedestrian scale.
However, sensor lag in mobile measurements may have introduced temporal offsets, reducing
synchronization with spatially interpolated predictions and contributing to some inconsistencies.
The Multiple Random Forest (MRF) model, which integrated multiple environmental features,
demonstrated more robust performance, consistently capturing the complex relationships
between variables and improving prediction accuracy.

During the comparison between interpolated data and Mobile Weather Station (mWST)
measurements revealed significant discrepancies, particularly for Air Temperature and Humidity,
possibly due to overfitting of the interpolation model. Nevertheless. the difference highlights
the challenges of using interpolated data to represent pedestrian-level microclimatic experiences,
where local variations and dynamic factors might not captured by weather stations play a
significant role in thermal comfort, thus underscores the need for more extensive ground-truthing
to enhance reliability and accuracy.

In conclusion, the study highlights the value of accurately modeling pedestrian-level
microclimates for urban planning. By combining regression kriging with Random Forest, it
offers a method to create detailed climatic maps that aid in designing climate-responsive and
resilient environments. While promising, the approach requires further refinement, especially
through the inclusion of nighttime data and more thermal walk measurements, to enhance
predictive accuracy.
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