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Abstract 

Window views significantly influence residential quality and real estate value, 
particularly in high-rise residential buildings. Previous studies have predominantly 
focused on water and green views, resulting in a lack of clarity regarding the influence 
of other types of views on house prices. In this study, we quantified and analyzed the 
impacts of 9 window view elements, including sky, high-rise buildings, low-rise 
buildings, trees, grass, water, hard ground, roads, and barren land, on housing prices 
using online real estate images and computer vision techniques. Focusing on high-rise 
buildings constructed in the past five years, our findings, based on spatial hedonic 
pricing models, reveal that an increased proportion of water views through windows 
has a significant positive effect on property prices. Conversely, the presence of grass 
and hard ground is associated with significant negative impacts. This study examines 
the influence of various window view elements on apartment prices, offering valuable 
insights for urban planning, architectural design, and property development. 
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1. Introduction 

Modern urban dwellers spend approximately 80-90% of their time in enclosed 
buildings (Park and Nagy, 2018). Consequently, windows acquire critical importance 
for both the physical and mental health of occupants, serving as a bridge between indoor 
and outdoor landscapes (Elsadek et al., 2020), providing visual, auditory, and tactile 
sensory stimulation (Hasegawa et al., 2022), and facilitating a connection with nature 
(Schmid and Säumel, 2021; Sheng et al., 2024). The quality of window views is pivotal 
in urban sustainability, influencing neighborhood contentment, health and well-being, 
architectural design, and urban planning. For example, high-quality window views are 
deemed effective in increasing residents' satisfaction and alleviating loneliness (Chang 
et al., 2020; Bi et al., 2022), lessening stress and improving concentration in students 
(Li and Sullivan, 2016; Lindemann-Matthies et al., 2021; Vásquez et al., 2019), 
reducing discomfort among office workers (Aries et al., 2010), and improving mental 
health recovery, thereby expediting recuperation rates in hospital patients (Ulrich, 1984; 
Raanaas et al., 2012).  

The expansion of urban areas has led to a significant influx of populations into cities, 
intensifying challenges related to land scarcity and demographic pressures. To 
accommodate these growing populations, high-density urban environments often rely 
on the construction of high-rise buildings, perceived as a more “sustainable” solution 
(Wang and Shaw, 2018). However, high-rise buildings may isolate residents from green 
spaces, reducing their access to nature and creating an inequitable distribution of green 
space (Elsadek et al., 2020). This phenomenon also holds for views from windows, as 
buildings in high-density cities are characterized by tall upper floors, high street canyon 
height-to-width ratios, and high floor area ratios (Biljecki and Chow, 2022). 
Consequently, apartments in high-density cities have vastly different views from 
windows depending on the floor, location, and other factors (Li et al., 2022). Some 
studies have explored the influence of window view elements at smaller scales, such as 
campuses, hospitals, and individual neighborhoods (Lin et al., 2022; Raanaas et al., 
2012; Hasegawa et al., 2022; Schmid and Säumel, 2021), the link between different 
landscapes and window views at the urban scale and encompassing a variety of 
scenarios remains to be further explored. 

The view through a window can influence the value of real estate, which has been 
confirmed by numerous hedonic price studies based on the real estate market (Sander 
and Polasky, 2009; Yamagata et al., 2016). However, there is significant variation in the 
attention given to different landscape elements. The focus of the majority of studies lies 
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on water views and green views, which have been shown to command higher premiums 
for residences with views of water and greenery (Luttik, 2000; Jim and Chen, 2006; 
Jim and Chen, 2009; Yamagata et al., 2016; Wu et al., 2022). Although some studies 
have employed street view images to measure the visibility of buildings and the sky, 
assessing their impact on housing prices (Yang et al., 2023; Qiu et al., 2022), the 
representation of buildings and sky visibility in street environments does not equate to 
that from high-rise residential window views. Consequently, the roles that the sky, 
buildings, and more infrequent landscapes like roads, grass, and barren land play in 
window views in high-density cities warrant further investigation. 

Addressing the limitations of previous studies, and taking Wuhan as a case study, our 
research obtains real window view images of high-rise residential buildings from a real 
estate online platform. Using computer vision, we aim to accurately segment the 
window view images of apartment samples and analyze the indices of 9 window view 
elements, including sky, high-rise buildings, low-rise buildings, grasses, hard ground, 
trees, water, roads, and barren land. Based on this approach, we intend to explore their 
effects on apartment prices using spatial hedonic price models, while simultaneously 
focusing on nonlinear relationships through the application of XGBoost regression and 
SHapley Additive exPlanations (SHAP) methods. Specifically, we seek to expand this 
area of inquiry by exploring the following two questions: 

1. How can we obtain urban-scale window view data of high-rise residential 
buildings and construct a workflow for semantic segmentation? 

2. How do different window view elements impact the prices of high-rise residential 
apartments in Wuhan? 

2. Literature review 

2.1 Quantitative evaluation of window views 

Representing window views through quantitative methods is an essential prerequisite 
for incorporating window views into mathematical models. Earlier researchers 
primarily utilized dummy variables to represent window views. After reviewing 35 
papers published between 1973 and 2003 that quantified the impact of views on housing 
prices using dummy variables, Bourassa et al. (2004) found that most of these studies 
only examined the influence of water views, while other types of landscapes were 
largely neglected. Therefore, they chose to simultaneously investigate the impact of 
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water views, other views, and the appearance of landscaping in the neighborhood on 
housing prices. Similarly, Jim and Chen (2006, 2009) investigated the impact of 
window views on real estate values in Guangzhou and Hong Kong, employing dummy 
variables for green views, mountain views, and water views, respectively. In recent 
years, Li et al. (2020) determined that a window view of a polluted river diminishes 
house prices, by using a dummy variable for river visibility. Potrawa and Tetereva (2022) 
employed deep learning to recognize window views. They also used dummy variables 
to represent landscapes. However, the dummy variable merely quantifies the presence 
or absence of a landscape and fails to measure the proportion of the landscape outside 
the window. Additionally, this method only describes rarer landscapes, posing 
challenges in quantifying common landscapes like buildings and sky. 

The development of Geographic Information System (GIS) has introduced a novel 
approach to quantifying window views. Numerous studies have quantified landscape 
visibility employing digital elevation modeling (DEM) alongside visual field analysis 
(Sander and Polasky, 2009; Mittal and Byahut,2019; Dai et al.,2023). Acknowledging 
that DEM data may ignore the height of buildings and landscapes (Mistick et al.,2023), 
some researchers developed a digital surface model (DSM) to assess a property's view 
using LiDAR(Hamilton and Morgan, 2010). Yamagata et al. (2016) further 
incorporated aerial photos to quantify the window view of Yokohama Bay. While GIS-
based viewshed analysis effectively analyzes landscape visibility at a larger scale, 
Yamagata et al. (2016) also noted that visibility does not fully represent visual quality, 
which is significantly influenced by structure, color, and contrast. 

The emergence of city information models (CIM) has enabled high-precision 
reproduction of window views (Li and Samuelson, 2020). Turan et al. (2021) quantified 
the effects of daylight and views on office rents through ray tracing and a 3D model of 
Manhattan. Li et al. (2022) employed 3D CIM to batch-generate window views of 
buildings in the model and quantified the window views using semantic segmentation. 
Swietek and Zumwald (2023) expanded the assessment of visual capital across 
Switzerland on a building-by-building basis. However, considering that not every city 
has an available CIM, this approach continues to exhibit specific constraints. Moreover, 
this method’s limitations include its inability to capture aesthetics and the potential for 
overlooking details in the window view (Li et al., 2022; Swietek and Zumwald, 2023). 

2.2 Value of window views 

Of all the studies that have explored the connection between window views and house 
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prices, water views have garnered the most attention (Bourassa et al., 2004). These 
studies have verified the positive impact on house prices of having a water view from 
a window, whether it is a river, lake, or bay (Luttik, 2000; Jim and Chen, 2009; 
Yamagata et al., 2016), barring a few instances of polluted water (Li et al. 2020). There 
are slightly fewer studies involving green views compared to water views, and most of 
them yield positive conclusions regarding green views (Jim and Chen, 2006; Wu et al., 
2022). However, some argue that poor or excessive green views may also have negative 
impacts (Yamagata et al., 2016). Meanwhile, few studies have delved into the 
distinctions in the potential impacts of various types of green landscapes, such as trees 
and grasslands. 

Sky and buildings are two of the most common landscapes in cities, however, they are 
rarely studied because they are difficult to quantify. To the best of our knowledge, only 
two hedonic studies have discussed sky views or building views. One of them, 
conducted by Swietek and Zumwald (2023), explores the interactive effects of sky and 
building views on cities through 3D city modeling. They observe that building views 
negatively impact house prices when the proportion of sky is low, but positively 
influence prices when the proportion of sky is high. Another study by Park et al. (2024), 
also employing 3D modeling, reveals a positive correlation between the proportion of 
sky and the price of house transactions. However, they also note that this correlation 
may be attributed solely to elevated floor levels. Additionally, several urban landscapes, 
such as roads, hard ground, barren ground, etc., have not been noticed by any research.  

2.3 Computer vision methods relevant to this study 

In recent years, advances in computer vision have facilitated the widespread application 
of semantic segmentation for quantitative studies of landscapes. From the early FCN 
(Long et al., 2015) and SegNet (Badrinarayanan et al., 2017) to recent models such as 
DeepLab (Chen et al., 2018) and SegFormer (Xie et al., 2021), full convolutional layers, 
self-attention, and other mechanisms have further improved the accuracy of semantic 
segmentation. These models have been used to quantify landscapes in various types of 
image data, such as street view imagery, remotely sensed imagery, unmanned aerial 
vehicle imagery, or self-taken photographs, enabling further analyses (Sun et al., 2022; 
Fan et al., 2023; Luo et al., 2022; Li et al., 2021; Ito and Biljecki, 2021). 

The quantity of training data significantly influences the outcomes of deep learning 
algorithms (Xu et al., 2024). However, due to the constraints posed by the limited 
training dataset developed in this study, various data augmentation techniques are 
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essential for broadening the dataset. Data augmentation constitutes a pivotal phase 
within the deep learning model training process, generating supplementary training 
samples through the transformation and enhancement of the original dataset (Xu et al., 
2024; Su et al., 2021). Additionally, addressing obstructions in images, such as railings 
in window views, is crucial for accurate segmentation. Image inpainting techniques 
based on deep learning have been widely applied to reconstruct missing or obscured 
parts of an image, enhancing the overall quality of the segmentation results (Quan et 
al., 2022). 

3. Materials and methods 

3.1 Window view data profile 

The window view data required for the study was obtained from Lianjia (lianjia.com). 
In recent years, many real estate online platforms have introduced virtual tours (or 3D 
tours) to cater to the demand of homebuyers who wish to view properties remotely. 
These platforms offer panoramic photos of the interior, including balcony window 
pictures. As shown in Figure 1(a), when the server receives a client request for a virtual 
tour, it provides panoramic views from 6 images hosted on the server: up, down, left, 
right, front, and back, each with a resolution of 2048*2048 pixels. These images are 
combined to form a cubemap, which can then be projected as an equirectangular image. 
The server configures the 3D rendering pipeline based on parameters provided by the 
HTTP request to map the cubemap or equirectangular image to the cubemap model, 
providing users with a central, undistorted fisheye image similar to Figure 1(c). Users 
can zoom in and out using the mouse wheel. Figure 1(d) demonstrates this, showing an 
image generated from an isometric rectangular image with a smaller focal length and a 
higher distortion factor. The fisheye image in Figure 1(c), while achieving distortion-
free in the central portion, exhibits significant distortions at the edges. In the 
equirectangular images, distortion is more pronounced in the top and bottom sections, 
whereas it is less pronounced in the middle portion containing the window view. 
Therefore, after thorough consideration, we opted to directly use the equirectangular 
image for segmentation, as this could be the optimal choice to reduce distortion-induced 
errors. In compliance with the website robots.txt protocol, we utilized a Python crawler 
program to locate all the house balconies required for our study and collected the 
cubemap provided by the balcony window view. 
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Fig.1. Example of images used in this research and their processing: (a) The cubemap 
of 6 images obtained from the website; (b) The equirectangular image obtained from 
the cubemap based on equirectangular projection; (c) The fisheye image is obtained 
from the equirectangular image using the Field of View camera model with a focal 
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length of 300 and a distortion coefficient of 0.0001; (d) The fisheye image has a focal 
length of 200 and a distortion coefficient of 0.5 

3.2 Study area 

China underwent significant housing system reform over a period of approximately six 
years from 1993 to 1998. This reform marked the discontinuation of the traditional 
welfare housing system and the introduction of a commercialized housing system. The 
photograph in Figure 2(c) illustrates a representative example of a Chinese urban 
community following commercialization. It features one or multiple high-rise 
apartment buildings, internal roadways, landscaped areas, and recreational spaces, all 
enclosed within a perimeter wall. Consequently, the factors influencing apartment 
prices in China can be categorized into two levels: inter-community differences and 
intra-community differences. 

Wuhan, our study area, is a city located in central China and it is the core city of the 
Yangtze River Economic Belt. With rapid economic development in the past decades, 
the resident population of Wuhan has grown significantly, reaching 13.64 million by 
the end of 2021 (Wuhan Municipal Bureau of Statistics, 2022). This growth has resulted 
in a vibrant real estate market. The presence of numerous water bodies contributes to 
Wuhan's diverse landscape, but also limits available land for urban planning and 
construction, leading to high population density. With over 1,500 super-tall residential 
blocks, defined as those exceeding 30 stories, Wuhan ranks second in the country after 
Chongqing (Beike Research Institute, 2020). The abundance of supertall residential 
buildings and diverse landscapes in Wuhan offers a wide array of window views, 
making it an ideal choice for our study. 

3.3 Data collection and processing 

In August 2022, we collected sample data of apartments listed for sale in subdivisions, 
built in Wuhan within the last 5 years. We chose to limit the completion time to 5 years 
for several reasons. Firstly, the total number of apartments listed for sale in Wuhan on 
this platform exceeds 100,000, making it impractical to crawl through all of them. 
Additionally, manual screening at a later stage would be too time-consuming. Secondly, 
super-high-rise buildings constitute a relatively high proportion of those built in the last 
5 years, providing a richer diversity of window views. Thirdly, most homebuyers 
choose to seal their balconies with glass during the apartment decoration process. The 
effect of glass shading may impact semantic segmentation accuracy in the later stage. 
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Houses whose balconies are not closed offer a higher quality data source. 

The collected data include 6 cubemap shots taken at the balcony, the listing price of the 
apartment, the total number of floors in the building, the specific floor level 
(categorized as low, medium, and high floors), the property fee, and other apartment 
and community attributes (Figure 2) (Table A.1). We collected data from 9,722 
apartments for sale in 598 communities built in Wuhan in the past five years, 
constituting the initial dataset. 

 

Fig.2. Relevant data of this study in the website: (a) virtual tour module, (b) apartment 
attribute webpage, (c) community attribute webpage. 

As illustrated in Figure 3, we initially obtained 6 cubemap images with a resolution of 
2048×2048 pixels for the living room balconies of 9722 apartments. These images were 
subsequently converted into equirectangular images with a resolution of 6400×3200 
pixels. To ensure the quality of the semantic segmentation, we manually screened the 
photos to remove any low-quality images that could potentially affect the outcomes. 
Figure 3(a-e) highlights some of the common issues found in the excluded photos. 

To address potential bias introduced by the removal of low-quality images, we 
conducted tests on the retained and removed samples across several variables. Our 
analysis revealed that the window views of undecorated samples generally performed 
better, making them more likely to be retained. This introduced some price differences 
between the two groups. However, for geographic variables, the Mann-Whitney U test 
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results for Longitude (p-value > 0.05) and Latitude (p-value > 0.02) indicate no 
significant difference in geographic distribution between the retained and removed data 
at the 1% significance level. The detailed methods and results of these analyses are 
provided in the Supplementary Material. 

Following the screening process, we obtained 3041 usable apartment window view data 
points, forming the dataset for semantic segmentation. To facilitate subsequent manual 
annotation and accelerate deep learning training, we further reduced the image 
resolution, as outlined in Figure 3(3-4). Finally, Figure 3(5) illustrates the spatial 
distribution of the sample communities, which is crucial for understanding the 
geographic context of the retained data. 
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Fig.3. The processing flow of the window view dataset and the distribution of 
community samples. Source of the basemap: (c) ESRI.  

3.4 Semantic segmentation of the window view dataset 

The study conducted by Li et al. (2022) utilized transfer learning based on the 
Cityscapes dataset to semantically segment the simulated window views. However, 
transfer learning did not perform as expected in our dataset, likely due to the presence 
of both indoor and outdoor scenes in our real window views. While the sky and green 
space in most of the images can be effectively recognized, the weights based purely on 
outdoor environments in Cityscapes are insufficient for accurately identifying railings 
and indoor walls. 

As a result, we chose to segment the window view dataset by manually labeling a 
portion of the data for training. We randomly selected 300 images from the dataset and 
performed pixel-level manual labeling using EISeg (Xian et al., 2016).  

Li et al. (2022) categorized window views into four types: Green, Water, Sky, and 
Construction, while Hasegawa et al. (2022) further differentiated Construction into 
“Build” and “Traffic”. In our study, the landscapes in the window views were classified 
into 11 distinct categories, with each classification label and definition detailed in Table 
1. Given the characteristics of window view samples in Wuhan, where high-rise 
buildings and trees can obstruct views, we further refined our categorization by 
subdividing “Buildings” into “High-rise buildings” and “Low-rise buildings”, and 
“Green” into “Trees” and “Grasses”. 

Table 1. Classification labels and definitions 

Labels Definitions 
Sky Sky 
High-rise buildings Buildings with equal or more than 7 floors 
Low-rise buildings Buildings with less than to 7 floors 
Grasses Grasses 
Hard ground Hard ground, including roads within the community, 

sidewalks, parking lots and hard surfaces for recreation  
Trees Trees or shrubs 
Water Water landscapes outside the window such as rivers, lakes, 

etc. 
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Roads Main avenue or railway outside the community 
Barren land Non-hardened barren land without any cover 
Railings Different styles of railings 
Building interior All landscapes of the interior of the apartment other than the 

window view, including the façade of this building in the 
window view 

Note: The rationale for using 7 floors as the demarcation line between high and low 
buildings is based on the “Design code for residential building” in China (Ministry of 
Housing and Urban-Rural Development of the People's Republic of China, 2011). This 
code divides buildings into two categories based on whether they must be equipped 
with accessible elevators: buildings with less than seven floors, and buildings with 
seven or more floors. 

Our approach encompassed a spectrum of data augmentation methodologies, including 
gamma transformation, random gamma transformation, rotation, blur, and noise 
addition. These augmentation strategies served to bolster the volume of our training 
dataset, consequently yielding notable enhancements in the accuracy of semantic 
segmentation. Through data augmentation, we obtained 1800 images available for 
training, of which 90% were classified as the training set and 10% as the validation set.  

We chose SegNeXt as our semantic segmentation model (Guo et al., 2022). SegNeXt 
has redesigned convolutional attention and employs an efficient encoder-decoder 
semantic segmentation architecture, which achieved better results than DeepLab V3+ 
and SegFormer in both indoor ADE20K and outdoor Cityscapes datasets (Guo et al., 
2022). We performed 120,000 iterations to obtain training weights using the 
segnext.large model and calculated Pixel Accuracy (Acc) and Intersection over Union 
(IoU) for all indices of elements after training and evaluated the overall accuracy of 
training using Mean Accuracy (mAcc) and Mean Intersection over Union (mIoU). After 
completing the learning to obtain the model weights, we semantically segmented all 
3041 images and calculated the proportion of pixels occupied by different labels for 
each image. 

3.5 Preparatory work before window view quantification 

Before quantifying the window view, several issues need to be addressed. First, the 
angles at which the window view images were taken are not uniform, and it needs to be 
experimentally verified to what extent the shooting angle affects the presentation of the 
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window view. Second, equirectangular images exhibit significant distortion at the top 
and bottom, and it is necessary to ascertain whether this distortion affects the statistics 
of the window view. Finally, the styles of railings in different window view images vary, 
and the obstruction caused by railings may also lead to quantification errors. In this 
section, we need to verify or resolve the impact of these factors through various 
methods. 

Our experiments demonstrate that the shooting angle and the distortion of the 
equirectangular images do not have a significant impact on the quantification of the 
window view. Due to space constraints, the details of these experiments are provided 
in the supplementary materials. The obstruction caused by railings essentially results in 
a loss of information, so we considered using generative artificial intelligence to address 
this issue. After semantic segmentation, we extracted the masks of the railings and used 
the DeepFill v2 model to inpaint the areas covered by the railings (Yu et al., 2019), as 
illustrated in Figure 4. However, although the initial inpainting made the railings thinner, 
it did not completely eliminate the railings. Therefore, we dilated the mask of the 
railings outward by 20 pixels and performed a second inpainting using the LaMa model 
(Suvorov et al., 2022).  
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Fig.4. Inpainting process for the railings. 

 

3.6 Calculation of window view indices 

We quantified the composition of the sample window views using the Window View 

Index (WVI). For element 𝑖 in the window view, its 𝑊𝑉𝐼! can be calculated as follows 

(Li et al. 2022; Domjan et al. 2023; Bolte et al. 2024): 

𝑊𝑉𝐼! =	
𝑝!

1 − 𝑝"#!$_!& − 𝑝'(!)!&*	
(1) 

Where 𝑝!  is the proportion of pixels of the element 𝑖  after segmentation and 
inpainting. The types of elements 𝑖  include Sky, High-rise buildings, Low-rise 
buildings, Grass, Hard ground, Trees, Water, Roads, and Barren land. 𝑝"#!$_!& is the 
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proportion of pixels segmented as Building interior, and 𝑝'(!)!&* is the proportion of 
pixels segmented as Railing. 

 

3.7 Spatial hedonic price model 

3.7.1 Variable selections 

We choose the variables in Table 2 to form the hedonic price model based on two 
considerations. Initially, to address endogeneity concerns, we incorporated all potential 
factors that might influence the variables related to the WVI into the model. For 
instance, the window size could vary depending on factors such as the building's 
construction year and apartment area. Similarly, the landscape outside the window 
could be intricately linked to the floor level and geographical location of the apartment. 
Secondly, factors such as school districts and subway proximity significantly influence 
housing prices in China (Wen et al., 2017; Duan et al., 2021). Therefore, based on 
previous research on hedonic price analysis in Wuhan, we collected a total of 511 points 
of interest (POIs) and areas of interest (AOIs) data closely related to housing prices 
(Liu et al., 2020). 

The area, age, floor, total floor, decoration situation, elevator-to-apartment ratio, and 
property fee were obtained from lianjia.com. Distance variables and shop convenience 
variables were calculated in ArcGIS Pro using POI data obtained from Baidu.com and 
AOI data obtained from OpenStreetMap. Additionally, WVI variables were calculated 
using the formula described in section 3.6. 

Table 2. Variables, definitions and descriptive statistics. 

Variables Definitions Min Mean Max 
Dependent variable 
Price Price per m2 of the apartment 

(CNY /m2) 4005 17,697.68 79,639 
Structural variables 
Area Total area of the apartment (m2) 21.57 112.95 378.67 
Age Year of the building construction 

(year) 0 4.67 5 
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Floor The apartments are on the low, 
middle and high floors of the 
building, assigned as 1 (n=1113), 2 
(n=1102) and 3 (n=826) 
respectively - - - 

Tot_floor Total floors of the building where 
the apartment is located 3 33.08 58 

Decoration Dummy variables for apartment 
decoration state: decorated for 1 
(n=1176); undecorated for 0 
(n=1865) - - - 

E2A_ratio Elevator-to-apartment ratio: The 
ratio of the elevator number in the 
building where the apartment is 
located to the number of 
apartments on each floor 0.14 0.56 2.00 

Prop_fee Property fees for the community 
where the apartment is located 
(CNY/m2/month) 0.55 2.85 7.80 

Neighborhood variables 
Dis_pri Euclidean distance between the 

apartment and the nearest key 
primary school (m) 208.45 8051.94 32,365.19 

Dis_mid Euclidean distance between the 
apartment and the nearest key 
middle school (m) 223.06 4036.13 19,747.24 

Dis_uni Euclidean distance between the 
apartment and the nearest 
university (m) 14.13 720.78 4569.81 

Dis_hos Euclidean distance between the 
apartment and the nearest 3A 
hospital (m) 205.03 3754.69 18,336.22 

Dis_sub Euclidean distance of the 
apartment from the nearest subway 
station (m) 44.39 1091.94 6576.49 

Dis_aero Euclidean distance between the 
apartment and Wuhan Tianhe 
Airport (m) 2895.50 20,874.39 34,940.16 
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Dis_train Euclidean distance of the 
apartment from the nearest train 
station (m) 512.69 9920.50 34,798.96 

Dis_rail Euclidean distance of the 
apartment from the nearest railroad 
(m) 40.88 2467.32 21,221.68 

Dis_road Euclidean distance of the 
apartment from the nearest 
highways and overpass (m) 14.13 774.86 4569.81 

WVI variables 
WVIsky Window view index of sky 0.00 0.35 0.81 

WVIhigh 
Window view index of high-rise 
buildings 

0.00 0.39 0.94 

WVIlow 
Window view index of low-rise 
buildings 

0.00 0.05 0.46 

WVIgrass Window view index of grasses 0.00 0.02 0.46 
WVIhard Window view index of hard ground 0.00 0.04 0.34 
WVItree Window view index of trees 0.00 0.14 0.96 
WVIwater Window view index of water 0.00 0.00 0.28 
WVIroad Window view index of roads 0.00 0.01 0.19 
WVIbarren Window view index of barren land 0.00 0.01 0.34 
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3.7.2 Model strategy and diagnostic 

 

Fig. 5. Modelling strategy and purposes (OLS: Ordinary Least Square, VIF: Variance 
Inflation Factors, SAC: Spatial Autoregressive Confused) 

The strategy of our hedonic price model is shown in Figure 5. First, we separate OLS 
models based on structural, neighborhood, and WVI variables, which are used to 
compare the explanatory power of each set of variables for house prices. Considering 
the long-tailed distribution of house price variables and neighborhood variables, we 
logarithmically transform these two types of variables to reduce the heteroscedasticity 
in the models. The formulas for the grouped models are as follows: 



 

20 

 

ln(𝑃𝑟𝑖𝑐𝑒) = 𝛼+ + 𝛽+𝑆𝑡𝑟𝑢 + 𝜀+ (2) 

ln(𝑃𝑟𝑖𝑐𝑒) = 𝛼, + 𝛽, ln(𝑁𝑒𝑖𝑔) + 𝜀, (3) 

ln(𝑃𝑟𝑖𝑐𝑒) = 𝛼- + 𝛽-𝑊𝑉𝐼 + 𝜀- (4) 

Where ln(𝑃𝑟𝑖𝑐𝑒) donates the log of apartment price, 𝛼1 , 𝛼2 , 𝛼3 are the constants, 
𝑆𝑡𝑟𝑢 , ln(𝑁𝑒𝑖𝑔) , 𝑊𝑉𝐼 represent the structural variables, the log of neighborhood 
variables, WVI variables respectively. 𝛽+  , 𝛽,  , 𝛽-  are the coefficients to be 
estimated, 𝜀1 , 𝜀2 , 𝜀3 are the error terms.  

Subsequently, we constructed full-variable Ordinary Least Squares (OLS) models and 
assessed their Variance Inflation Factors (VIF), which revealed the existence of 
multicollinearity issues within the model (Table A.2). Therefore, we first deleted the 
variable Dis_uni and Dis_road, followed by removing the variables WVIhigh and 
WVIsky from two different models, named as Model I and Model II, respectively: 

ln(𝑃𝑟𝑖𝑐𝑒) = 𝛼 + 𝛽+𝑆𝑡𝑟𝑢 + 𝛽, ln(𝑁𝑒𝑖𝑔) + 𝛽-𝑊𝑉𝐼 + 𝜀 (5) 

3.7.3 Spatial regression model 

Another pertinent issue necessitating our attention involves spatial dependence. The 
house prices and window views, along with other features that are factored into the 
error term, exhibit a close association with the geographic location of the apartment. 
Disregarding spatial dependence and non-stationary effects within the model could 
result in biased estimations of coefficients when employing OLS, thereby potentially 
reporting spurious significance (Qiu et al., 2022). In this case, spatial regression models 
that can eliminate the influence of spatial relationships would be a better choice. 

As the most complete spatial interaction model, the Manski model covers three spatial 
interactions, including a lagged dependent term (𝑊𝑌), an autocorrelated error term 
(𝑊𝜇), and exogenous spatial interaction terms (𝑊𝑋), which can be represented as 
(Manski, 1993):  

𝑌 = 𝜌𝑊𝑌 + 𝛼𝑖1 + 𝑋𝛽 +𝑊𝑋𝜃 + 𝜇
𝜇 = 𝜆𝑊𝜇 + 𝜀 (6) 

Where 𝑌 is the vector of apartment prices (which is ln(𝑃𝑟𝑖𝑐𝑒) in this study), 𝜌 is 
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the spatial autoregressive parameter (spatial lag), 𝑊 is the spatial weight matrix, 𝑋 
is the matrix of exogenous explanatory variables, 𝛽  is the matrix of parameter 
coefficients associated with explanatory variables, 𝜃  is the matrix of parameter 
coefficients for lagged explanatory variables, 𝜇 is the vector of spatially correlated 
disturbance terms, 𝜆 is the spatial autocorrelation (error) parameter, and ε is the vector 
of independently and identically distributed error terms. When	 𝜃 = 0, Manski can 
degenerate into a spatial autoregressive confused (SAC) model: 

𝑌 = 𝜌𝑊𝑌 + 𝛼𝑖1 + 𝑋𝛽 + 𝜇
𝜇 = 𝜆𝑊𝜇 + 𝜀 (7) 

We constructed the distance spatial weight matrix on the assumption that each sample 
has at least one neighbor. Lagrange multiplier (LM) tests are used to detect the spatial 
dependence of the dependent variable and the error term in OLS models (Anselin, 1988). 
The outcomes of LM tests indicated the presence of spatial dependence within both the 
dependent variable and the error term in the OLS model (Table A.3). Specifically, 
neither 𝜌 nor 𝜆 ≠ 0, indicating that the SAC model cannot further degenerate. 

Therefore, the SAC and Manski forms of Model I and Model Ⅱ are named as Model Ⅲ, 
Ⅳ, Ⅴ, and Ⅵ, respectively, to further elucidate the impact of the WVI variables on 
apartment prices. The coefficients are estimated by the "sacsarlm" function based on 
the maximum likelihood estimation in the "spatialreg" package of R (Bivand et al., 
2021). 

3.7.4 XGBoost and SHapley Additive explanation method 

Given the potential for a non-linear relationship between WVI and apartment prices, 
which spatial hedonic price models may not capture., we integrated the XGBoost 
regression with the SHapley Additive explanation (SHAP) method to model the 
unaccounted nonlinear relationship within Equation (5). The SHAP method is based on 
the Shapley value theory of cooperative games in game theory. It allows for the 
application of the Shapley value to the contribution of features, thereby calculating the 
contribution of each feature to the prediction result (Lundberg and Lee, 2017; Sun et 
al., 2022). This non-parametric approach enhances our understanding of the intricate 
relationship between WVI and apartment prices by providing insights into the 
contribution of each feature to the prediction result. 
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4 Results 

4.1 Semantic segmentation and image inpainting results 

Figures 6(a) and 6(b) present the mAcc and mIoU for both the original and augmented 
data, as well as the Acc and IoU for each label. The results demonstrate that data 
augmentation has effectively enhanced the accuracy of semantic segmentation, 
particularly for labels that had poor classification performance in the raw data, such as 
low-rise buildings, hard ground, roads, and barrier land. Specifically, the mAcc 
improved from 68.72% to 86.33%, while the mIoU increased from 59.17% to 78.71%. 
Compared to other analytical papers involving semantic segmentation (Luo et al., 2022; 
Wang et al., 2021), this level of accuracy is sufficient for further analysis. 

Figure 6(c) shows the proportion of each label after semantic segmentation of the 
images without inpainting, the proportion after inpainting, and the percentage change 
in the average values for each label. It can be observed that, in addition to railings and 
indoor parts, the sky, high-rise buildings, and trees are the most common landscapes in 
the window view of high-rise residential apartments in Wuhan. Low-rise buildings, 
grasses, hard ground, and roads are next in prevalence. As a "city of thousands of lakes", 
although the water area of Wuhan accounts for 25.73% of the total urban area, water 
landscapes are not widely visible in residential window views, with only 16.80% of 
views containing water bodies. 

Examining the rate of change in the average values of each label before and after 
inpainting, the proportion of railings decreased by 96.67% after image inpainting. 
Significant increases were observed predominantly in ground-level landscapes that are 
easily obstructed by railings, including barren land (69.58%), water (40.04%), and tree 
(35.63%). Conversely, the proportion of sky, primarily situated in the upper part of the 
window view and less obstructed by railings, exhibited a modest increase of 5.49%. 
These results confirm that image inpainting effectively reduces railing obstructions and 
appropriately restores landscapes obstructed by railings.  
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Fig.6. Semantic segmentation and image inpainting results: (a) mAcc and Acc of each 
label in original data and data after augmentation, (b) mIoU and IoU of each label in 
original data and data after augmentation, (c) the proportion of each label after semantic 
segmentation of the images without inpainting, the proportion after inpainting, and the 
rate of change in the average values for each label.  

4.2 Results of OLS 

Table 3 presents the outcomes detailing the explanation of apartment prices by 
structural variables, neighborhood variables, and WVI variables, respectively. All 
variable groupings pass the F-statistic test (p < 0.01), suggesting their collective 
capacity to elucidate apartment prices as distinct variable groups. However, substantial 
discrepancies exist in their respective levels of explanatory power. Specifically, 
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neighborhood variables can explain 64.3% of the variance in apartment prices, followed 
by structural variables at 38.8%, while WVI variables lag significantly with an 
explanatory power of 2.3%. 

Table 3. OLS modeling with different variable groups. 

 
Structural variables Neighborhood 

variables 
WVI variables 

No. of variables 7 9 9 

Adjusted R2 0.388*** 0.643*** 0.023*** 

S.E. of regression 0.334 0.255 0.422 

***significant at p < 0.01. 

Table 4 displays the outcomes of the OLS Model I and II. The coefficient estimations 
for structural and neighborhood variables align closely with findings from the previous 
study of Wuhan (Peng et al., 2023). Factors such as area, floor, decoration, elevator-to-
apartment ratio, and property fees have a positive impact on selling prices. Key primary 
schools, hospitals, metro stations, and train stations positively influence nearby 
apartment values, while airports and railroads exert negative effects. However, we do 
not interpret the WVI variable further due to potential spatial dependence issues within 
the OLS model. 

 

 

Table 4. Estimated coefficients of OLS models. 

Models Model I Model II 
Constant 10.907*** 10.908*** 
Structural variables 
Area 0.001*** 0.001*** 
Age 0.002 0.002 
Floor 0.013* 0.013* 
Tot_floor -0.003*** -0.003*** 
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Decoration 0.026*** 0.026*** 
E2A_ratio 0.067** 0.067** 
Prop_fee 0.144*** 0.144*** 
Neighborhood variables 
ln(Dis_pri) -0.249*** -0.249*** 
ln(Dis_mid) -0.006 -0.006 
ln(Dis_hos) -0.015** -0.015** 
ln(Dis_sub) -0.042*** -0.042*** 
ln(Dis_aero) 0.136*** 0.136*** 
ln(Dis_train) -0.076*** -0.076*** 
ln(Dis_rail) 0.026*** 0.026*** 
WVI variables 
WVIsky -0.002 – 
WVIhigh – -0.002 
WVIlow -0.072 -0.073 
WVIgrass -0.362*** -0.363*** 
WVIhard -0.118 -0.120 
WVItree 0.039 0.038 
WVIwater 0.298 0.297 
WVIroad -0.048 -0.047 
WVIbarren -0.494*** -0.495*** 
Adjusted R2 0.725 0.725 
AIC -439.233 -439.233 
*Significant at p < 0.1; ** Significant at p < 0.05; ***significant at p < 0.01. 

4.3 Results of spatial regression models 

Table 5 summarizes the coefficient estimates of the SAC model and Manski model. In 
this section, our focus lies primarily on the impact of WVI variables, so the coefficient 
estimates for structural variables and neighborhood variables are omitted. The spatial 
error terms (λ) are significant in all spatial models, while spatial autoregressive terms 
(ρ) are only significant in the SAC model. This suggests that in Manski models, the 
lagged explanatory variables 𝑊𝑋𝜃 serve as substitutes for the explanatory power of 
the spatial autoregressive term 𝜌𝑊𝑌. The significance revealed by the likelihood ratio 
(LR) test implies that none of the four spatial models could be reduced.  

Regarding goodness of fit, two Manski models outperform the SAC models, as 
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indicated by an increase in the Nagelkerke Pseudo R2 from 0.861 to 0.874 and the 
reduction in the Akaike Information Criterion (AIC) from -2499.3 to -2735.7. Therefore, 
the following discussion will focus primarily on the results of the two Manski models. 
Additionally, it should be noted that in Manski models, the coefficient of individual 
spatial interaction term 𝑊 ∗WVI2 is closely related to the configuration of the spatial 
weight matrix 𝑊 . Thus, we focus solely on determining the direction (positive or 
negative) of its influence, rather than delving into detailed interpretations of the 
coefficient values. 

Table 5. Estimated coefficients of spatial models. 

Models Model Ⅲ Model Ⅳ Model Ⅴ Model Ⅵ 

 SAC SAC Manski Manski 
Constant 6.315*** 6.274*** 18.067*** 15.722*** 
     
Structural variables YES YES YES YES 
Neighborhood variables YES YES YES YES 
     
WVIsky -0.024  -0.028  
WVIhigh  0.024  0.028 
WVIlow -0.128** -0.104 -0.068  0.041 
WVIgrass -0.269*** -0.245*** -0.327*** -0.300*** 
WVIhard -0.169** -0.145* -0.166** -0.138* 
WVItree -0.025 -0.002 -0.040 -0.012 
WVIwater 0.987*** 1.010*** 0.782*** 0.810*** 
WVIroad 0.215* 0.39* 0.124 0.151 
WVIbarren -0.184* -0.161 -0.151 -0.124 
W*WVIsky – – -0.748  
W*WVIhigh – –  0.749 
W*WVIlow – – 1.518 2.267 
W*WVIgrass – – -8.590*** -7.842*** 
W*WVIhard – – 0.355 1.104 
W*WVItree – – -0.278 0.470 
W*WVIwater – – -9.134* -8.385* 
W*WVIroad – – -14.444*** -13.694*** 
W*WVIbarren – – 3.716  1.584 
     
ρ 0.391*** 0.391*** -0.261 -0.261 
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λ 0.941*** 0.941*** 0.986*** 0.986*** 
     
LR test value: 2064.1*** 2064.1*** 2344.5*** 2344.5*** 
Pseudo R2 0.861 0.861 0.874 0.874 
AIC -2499.3 -2499.3 -2735.7 -2735.7 
*Significant at p < 0.1; ** Significant at p < 0.05; ***significant at p < 0.01. 

4.4 XGboost and SHAP results 

The outcomes from our application of the XGBoost regression and the SHAP method 
to Equation (5) are illustrated in Figure (7). The XGBoost regression yielded an R2 of 
0.948 and an RMSE of 0.098, indicating that our model achieved a good fit in XGBoost 
regression. Similar to the results obtained from the OLS models, the structural variables 
and the neighborhood variables manifest a greater impact on apartment prices, whereas 
the window view variable exhibits comparatively lesser importance. Elevated values 
associated with schools, metro, and hospitals correspond to lower SHAP values, 
indicating that apartments situated farther from these amenities tend to have lower 
prices. Conversely, being situated at a greater distance from the airport is viewed as a 
positive factor. Furthermore, the influences of property fees, total area, and renovation 
align closely with the findings from the OLS models. This consistent alignment 
underscores the reliability and robustness of machine learning and SHAP methods in 
understanding the factors influencing apartment prices, similar to traditional regression 
methodologies. 
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Fig.7. Result of XGBoost and SHAP method 

Figure 8 presents scatter plots of the nine WVI variables against their SHAP values, 
with a LOWESS regression curve fitted to the data. In summary, Moderate values of 
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WVIsky are associated with higher SHAP values, while extremely low or high values 
correspond to decreased SHAP values. Notably, SHAP values tend to exhibit 
predominantly positive trends for WVIgrass below 0.05, while values above 0.05 tend 
to display negative trends, where WVIhard does not exhibit a discernible trend. 
Additionally, SHAP values for WVIwater demonstrate a linearly positive correlation 
with this variable.  

 

Fig.8. Scatter plot of SHAP values for window view variables 

5 Discussion 

5.1 Applicability of window view data 

In this study, we developed a window view dataset from the virtual tour module of a 
real estate online platform, which provides a new and available data source for window 
view and cityscape-related studies at a large scale. We also checked some real estate 
online platforms in other countries and found that such data exists on a large scale 
(Figure 9a, 9b), affirming the potential for extending our dataset to encompass cross-
city and even cross-country scales. 
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The approach can potentially offer benefits for studies involving window views and 
cityscapes. As shown in Figure 9, aside from the reflection on the glass and the bokeh 
sky in Figure 9(d), our training weights performed well in segmenting the window view. 
We suggest that when applying our training weights to other window view datasets, 
cropping the images to reduce noise unrelated to the window view can enhance 
segmentation performance. This noise reduction technique can be particularly effective 
when applying our training weights to datasets from different regions. 

 

Fig. 9 Results of window view data from other countries and semantic segmentation 
using the weights from the experiments: (a) window view image of Singapore from 
https://buycondo.sg/; (b) window view image of Los Angeles, USA from 
https://www.zillow.com/; (c) semantic segmentation result of image (a); (d) semantic 
segmentation result of image (b). 

Previous methods for quantifying window views, such as the dummy variable method, 
GIS-based viewshed analysis, or virtual window views generated from 3D CIM, have 
relied on virtualization to quantify window views, which entails inherent limitations. 
These shortcomings include challenges in accurately simulating the real shapes and 
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sizes of windows (Yamagata et al., 2016), difficulties in capturing the aesthetic qualities 
of specific views (Li et al., 2022; Swietek and Zumwald, 2023), potential oversights in 
minor yet significant landscapes such as neighborhood trees (Sander and Polasky, 2009), 
and the inability to capture internal views, which are important for how people perceive 
a space (Turan et al., 2021). In contrast, our approach utilizes real window views, 
partially overcoming the limitations of previous virtualization methods. It covers a wide 
spatial scale and provides easy accessibility, a substantial volume of data, and authentic 
photography. This method effectively captures the cityscape as viewed through 
residential windows, providing a more realistic representation compared to previous 
virtual methods. 

Despite the potential advantages of our method, we also recognize some limitations.  
Similar to other still photographs, this data does not capture dynamic elements outside 
the window, such as puffy clouds, leaves swaying in the wind, moving vehicles, and 
crowd activity (Lin et al., 2022). Therefore, for future research endeavors, the 
integration of various methods is anticipated to enhance both the accuracy and 
comprehensiveness of window view analysis (Turan et al., 2021). Additionally, 
exploring dynamic elements using technologies like virtual reality (VR) may provide 
new perspectives and deeper insights into window view research (Ko et al., 2023; Van 
Renterghem et al., 2023). We are optimistic that this amalgamation of diverse 
methodologies will usher in new perspectives and deeper insights into the field of 
window view research. 

5.2 The value of the window view elements 

Another focus of our study is to assess the value of window views, specifically by 
investigating the significant impact of different types of window view elements on 
apartment prices in Wuhan using hedonic price models. In the following sections, we 
delve into the categorization of the landscapes considered in this study. 

5.2.1 Sky and Buildings 

Due to the multicollinearity arising from the highly negative correlation between 
WVIsky and WVIhigh, we estimated their coefficients in separate groups of models. 
Although the coefficients of WVIsky and WVIhigh were consistently opposite in 
direction across all groups, none of the models demonstrated statistical significance for 
either variable. These findings suggest the proportion of sky or high-rise buildings in 
the window view does not exert a significant linear effect on house prices. 
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However, the SHAP method brings some insights that the regression method failed to 
uncover. The effect of the sky is not linear but shows an inverted U-shape. Limited sky 
views might signify obstructed vistas and diminished daylight, while an excessive sky 
view could indicate isolated locations with scant commercial amenities. A more 
moderate view of the sky is preferable (Yao et al., 2024). In other studies, the sky 
elements also presented ambiguous characteristics. Some studies argue that the sky is 
the most popular landscape viewed from windows, and dynamic features such as clouds 
and birds in the sky promote attention recovery (Ko et al., 2022; Orquin and Loose, 
2013). However, in some street view studies, the sky has been found to have a negative 
impact on perceptions, as a large exposure to the sky on the street can create a sense of 
insecurity (Rossetti et al., 2019; Xu et al., 2022).  

WVIhigh and WVIlow are not significant in the Manski model, and in the SHAP results, 
they only exhibit a relatively weak trend. As buildings are the most common landscape 
in urban areas, the impact they cause may require further detailed research. Some 
studies on the subjective perception of window views have found that in high-density 
urban environments, views obstructed by tall buildings can make people feel oppressed 
(Chung et al. 2022). However, other research has found that 27% of participants prefer 
to see buildings from their window views (Lin et al. 2022). Additionally, the presence 
of distinctive structures like landmarks, skyscrapers, and buildings of historical or 
cultural significance can positively impact people's assessment of window views 
(Damigos and Anyfantis, 2011). 

5.2.2 Natural landscapes 

In all regression models, WVItree did not exhibit a significant influence on apartment 
prices in Wuhan. Considering the low SHAP values associated with high WVItree 
indices (exceeding 0.4) as per the SHAP methodology, it can be inferred that a limited 
number of trees visible from the window exert an insignificant impact on house prices, 
while an excessive tree presence might even yield a negative effect. A moderate 
quantity of trees in the window view is perceived favorably, whereas a dense tree cover 
may suggest lower apartment floors and reduced natural light, potentially evoking 
feelings of isolation or seclusion (Cao and Huang, 2023).  

In all regression models, WVIgrass was found to exert a significant negative impact on 
apartment prices in Wuhan. In the two Manski models, for every 1% increase in 
WVIgrass, apartment prices decrease by 0.327% and 0.300%, respectively. Moreover, 
the spatial interaction term W*WVIgrass in Manski models also exhibited a significant 
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negative coefficient. Correspondingly, the SHAP values for WVIgrass showed a rapid 
decline as WVIgrass increased. These findings collectively suggest that both the 
presence of grasses in the immediate window view and the broader vicinity are 
perceived negatively in the real estate market of Wuhan. This conclusion aligns with 
the observations made by Liu et al. (2020) in their Wuhan study, where they argue that 
an overabundance of grassland may impede the development of other types of land, 
thereby diminishing residents' convenience. Furthermore, few public grass landscapes 
exist in the urban area of Wuhan. Most of the grass observed in window views manifests 
as the paving of green landscapes within neighborhoods. This phenomenon might lead 
to higher visibility of grass predominantly in only window views from lower floors. 

In Manski models, WVIwater is consistently identified as a positive factor, with a 1% 
increase in WVIwater leading to a 0.782% and 0.810% enhancement in apartment value. 
This positive impact is further validated by the linear increase in the SHAP value of 
WVIwater with its augmentation. Intriguingly, the endogenous spatial interaction term 
W*WVIwater in Manski's model exhibits a significant negative effect on property value. 
These findings suggest that while direct visibility of a water landscape from an 
apartment window commands a significant premium, its presence in the view of nearby 
samples may detract from the property's value. This could indicate that the 
attractiveness of blue spaces is more dependent on direct visibility rather than mere 
proximity. The value of visible water features is echoed in various studies: Damigos 
and Anyfantis (2011) highlight the high valuation of ocean views by real estate experts, 
and Hasegawa et al. (2022) argue the positive impact of window water features in 
mitigating the psychological distress associated with otherwise unappealing views. 
Conversely, for apartments without direct water views but situated nearby, potential 
drawbacks include mosquito breeding (Irwin et al., 2008), flood risks, and 
contamination concerns (Tang et al., 2020; Li et al., 2020), suggesting that proximity 
to water might not always be advantageous. 

5.2.3 Other landscapes 

In the spatial models, WVIhard has a negative impact. Specifically, a 1% increase in 
WVIhard leads to a 0.166% and 0.138% reduction in apartment prices. The lack of 
sensory appeal associated with hard surfaces may indicate a scarcity of green spaces in 
the vicinity, potentially diminishing the area's attractiveness. 

WVIroad demonstrates a significant negative impact in the SAC model, yet this effect 
is not mirrored in the Manski model. Interestingly, the spatial interaction term 
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W*WVIroad shows a significant positive influence. The visibility of a road from an 
apartment might suggest undesirable traffic noise (Chung et al., 2019), whereas its 
presence in a neighboring view may be interpreted as enhanced accessibility (Seo et al., 
2014). Therefore, proximity to roads is valued more due to enhanced accessibility, 
whereas visibility of roads from apartments may be perceived as less beneficial or even 
detrimental, possibly due to concerns about traffic noise. 

WVIbarren did not prove significant in any spatial models, so as its spatial interaction 
term, W*WVIbarren. The SHAP method indicated an overall negative impact of 
WVIbarren. Predominantly, barren land in Wuhan represents undeveloped areas. Its 
visibility from an apartment might carry negative connotations, but a high concentration 
of such land in the surrounding area could suggest that the region is undergoing rapid 
development, potentially leading to higher future property values (Wen and Tao, 2015). 

6 Conclusion 

Our study employed computer vision to quantify the window views of residential 
apartments in Wuhan using data from real estate websites, and examined the impact of 
different window view elements on house prices through a spatial hedonic price model 
and an explainable machine learning approach. This analysis yielded several key 
findings. The results of semantic segmentation highlighted the effectiveness of data 
augmentation in improving accuracy for small datasets. In Wuhan, the most common 
landscapes visible from apartment windows were the sky and high-rise buildings, while 
water views were relatively rare. Moreover, the hedonic pricing model revealed that 
water views positively influence apartment prices, whereas views of grass and hard 
ground tend to have a negative impact on property values. 

The main contributions of our study are as follows. Firstly, we developed a previously 
unexplored urban-scale window view dataset, providing a valuable new data source for 
researchers studying window views and their implications. In essence, we also 
introduced a new application for images scraped from real estate platforms. Secondly, 
while most previous studies on window views use various methodologies to simulate 
and reconstruct authentic window views, our study stands out by accurately calculating 
the composition of window views through real window view photos using computer 
vision and WVI. This approach not only enhances the accuracy of our analysis but also 
facilitates a deeper understanding of the association between each WVI and house 
prices. Finally, we made the semantic dataset used in the study openly available under 
the permissive Creative Commons Attribution 4.0 International license (CC BY 4.0) on 
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Github to support subsequent related studies. 

However, our study is not without limitations. Our sample was limited to high-rise 
community residences built within the past five years. This selection may not fully 
reflect the diversity of window view characteristics found throughout the city, 
especially in older low-rise buildings. Additionally, while we primarily focused on the 
window views from living rooms, this approach does not account for the potential 
impact of views from other rooms, such as bedrooms, which could also influence house 
prices. Furthermore, the influence of waterscapes on house prices, as observed in 
Wuhan—a city known for its abundant water resources—may not be generalizable to 
cities with water scarcity. Future research could address these limitations by conducting 
comparative studies across multiple cities to further validate and expand upon these 
findings. 

Our findings can be extended to the fields of urban planning, architectural design, and 
property development. For example, in Wuhan, water is still a scarce landscape, valued 
more for its visibility than proximity. Therefore, for waterfront areas, stepped-height 
building designs may be preferable to a large number of high-rise buildings. These 
designs optimize views, avoid overshadowing, and ensure that more households can 
enjoy the water view (Xue et al., 2022). For real estate developers, buildings in the 
waterfront area should be staggered, with a reasonably planned layout and spacing of 
high-rise buildings, allowing more households to enjoy the high-quality landscape. 
Additionally, developers can enhance the overall environmental quality of the 
neighborhood by incorporating trees and diverse greening elements. This not only 
reduces the negative impact of grass and hard landscaping but also effectively increases 
property sales prices. 

 

 

 

Appendix 

Table A.1. Summary of apartment and community attributes 
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Attribute 
Type 

Item Range/Types Unit 

Apartment 
Attributes 

Price 200,000 to 24,600,000 CNY 

 
Price per m² 4,005 to 79,639 CNY  
Bedrooms 0 to 6 units  

Living Rooms 0 to 4 units  
Kitchens 0 to 2 units  

Bathrooms 0 to 5 units  
Floor Low floor, Middle floor, High floor N/A  

Total floors 1 to 64 floor  
Building area 21.57 to 376.67 m2  

Layout structure Split-level, Single-level, Duplex, 
Data Not Available 

N/A 

 
Inner area 16.29 to 262.89, Data Not Available m2  

Building type Slab, Slab-Tower Combination, 
Tower, Bungalow, Data Not 

Available 

N/A 

 
House orientation South, East, West, North, Southeast, 

Southwest, Northeast, Northwest, 
Multiple Orientations 

N/A 

 
Building structure Steel-Concrete, Unknown, Frame, 

Mixed, Brick-Concrete, Steel 
N/A 

 
Decoration 
condition 

YES/NO Boolean 

Communit
y 

Attributes 

Elevator-to-
apartment Ratio 

2:1 to 20:32 N/A 

 
Equipped with 

elevator 
YES/NO Boolean 

 
Transaction 
ownership 

Commercial Housing, Price-Limited 
Housing, Demolished and 

Reconstructed Housing, Affordable 
Housing, Funded Housing 

N/A 

 
Property age Over 2 Years, Under 2 Years, Data 

Not Available 
N/A 

 
Community name - N/A 
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Reference 

average price 
4,127 to 90,139 CNY 

 
Year of 

construction 
2016 to 2022 N/A 

 
Property fee 0.1 to 7.8 CNY/m2/

month  
Total number of 

buildings 
1 to 229 Buildings 

 
Total number of 

apartments 
3 to 11,093 Apartmen

ts  
Longitude 114.014 to 114.626 °E  
Latitude 30.305 to 30.895 °N 

Note: “N/A” stands for “Not Available” or “Not Applicable”. 

Table A.2. VIF of OLS models 

Variable VIF for baseline model VIF for model Ⅰ VIF for model Ⅱ 
Area 1.34 1.316 1.316 
Age 1.006 1.006 1.006 
Floor 2.04 2.038 2.038 
Tot_floor 1.47 1.45 1.45 
Decoration 1.062 1.061 1.061 
E2A_ratio 1.353 1.352 1.352 
Prop_fee 1.719 1.679 1.679 
Dis_pri 3.577 2.795 2.795 
Dis_mid 1.839 1.754 1.754 
Dis_uni 14.936 - - 
Dis_hos 1.541 1.532 1.532 
Dis_sub 1.379 1.315 1.315 
Dis_aero 1.826 1.803 1.803 
Dis_tra 4.527 3.804 3.804 
Dis_rail 1.558 1.528 1.528 
Dis_road 14.832 - - 
WVIsky 1,490,352.00 2.009 - 
WVIhigh 2,277,566.00 - 3.07 
WVIlow 244,538.20 1.183 1.911 
WVIgrass 104,949.80 1.147 1.266 
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WVIhard 96,186.21 1.239 1.231 
WVItree 1,036,564.00 1.575 2.611 
WVIwater 14,818.36 1.1 1.176 
WVIroad 38,407.27 1.104 1.259 
WVIbarren 45,983.99 1.064 1.191 

 

Table A.3. LM tests for model Ⅰ and model Ⅱ 

 Model Ⅰ Model Ⅱ 
LM test (error) 31,755 *** 31,755*** 
LM test (lag) 3,281*** 3,281*** 
Robust LM test (error) 28,869*** 28,869*** 
Robust LM test (lag) 394.61*** 394.61*** 
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