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Abstract

Despite recent advancements in surface reconstruction,
Level of Detail (LoD) 3 building reconstruction remains
an unresolved challenge. The main issue pertains to the
object-oriented modelling paradigm, which requires geo-
referencing, watertight geometry, facade semantics, and
low-poly representation – Contrasting unstructured mesh-
oriented models. In Texture2LoD3, we introduce a novel
method leveraging the ubiquity of 3D building model pri-
ors and panoramic street-level images, enabling the re-
construction of LoD3 building models. We observe that
prior low-detail building models can serve as valid pla-
nar targets for ortho-rectifying street-level panoramic im-
ages. Moreover, deploying segmentation on accurately tex-
tured low-level building surfaces supports maintaining es-
sential georeferencing, watertight geometry, and low-poly
representation for LoD3 reconstruction. In the absence
of LoD3 validation data, we additionally introduce the
ReLoD3 dataset, on which we experimentally demonstrate
that our method leads to improved facade segmentation ac-
curacy by 11% and can replace costly manual projections.
We believe that Texture2LoD3 can scale the adoption of
LoD3 models, opening applications in estimating building
solar potential or enhancing autonomous driving simula-
tions. The project website, code, and data are available
here: https://wenzhaotang.github.io/Texture2LoD3/.

1. Introduction

Photogrammetry and computer vision researchers have al-

ways seen detailed semantic 3D building reconstruction as

a fundamental challenge [17, 50]. Recent developments

in open source and proprietary software have shown that

reconstruction using 2D building footprints and aerial ob-

servations enables country-wide reconstruction up to the

Figure 1. Texture2LoD3 proposes leveraging ubiquitous street-

level images and low-level building models for accurate ortho-

texturing (left): Enabling accurate semantic segmentation (center)

and facade-rich level of detail (LoD)3 reconstruction (right).

LoD2 displaying complex roof shapes and simplified fa-

cades [17, 46, 60]. Unlike the mesh-oriented models, the

semantic 3D building models defined by the international

CityGML standard [15] are georeferenced, watertight, and

have low-poly boundary representation (B-Rep), enabling

multiple applications [4]. Remarkably, such models remain

under-explored modality for methods development, given

their ubiquity, e.g., open data on 215 million buildings in

Switzerland, the Netherlands, the US, or Poland [60, 61].

Unlike low-detail LoD1 and LoD2, LoD3 models are

characterized by additional detailed facade representation

and remain scarcely available despite novel methods pres-

ence [21, 24, 39, 57, 59]. One of the main issues pertains to

the source data availability, assuming either accurate mo-

bile laser scanning (MLS) observations or ortho-rectified

textures, which in practice are often unavailable.

Despite worldwide availability of panoramic street-level

images such as Google Street View (GSV) or Mapillary

[23] and the growth in image-based training datasets, fa-

cade elements remain frequently unlabeled and limited to

ortho-rectified image views [29, 56, 57, 59]. Applying such

training sets to perspective and panoramic images remains

unfeasible due to drastic geometry representation changes

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2016



in facade elements, e.g., the closer rectangular windows are

to the vanishing point, the more they resemble lines.

As we exemplify in Fig. 1, our Texture2LoD3 pro-

poses a method harnessing the potential of widely avail-

able panoramic street-view images and ubiquitous low-level

semantic 3D building models. We leverage the georefer-

encing of two modalities for their global matching while

low-poly planar representation of 3D models for the im-

age ortho-rectification target. By utilizing prior low-poly

models, we satisfy requirements of georeferencing, water-

tightness, low-poly representation, and geometrical consis-

tency for LoD3 reconstruction: Formulating it as a refine-

ment strategy [59] of low-level models to high-detail LoD3

models by reconstructing only the required facade elements,

segmented from a projected image onto a planar surface.

Our main contributions are as follows:

• We propose the effective projection of panoramic images

to ortho-rectified images by leveraging ubiquitous seman-

tic 3D building models as targets

• We improve facade semantic segmentation performance

on 3D surfaces by accurate texturing: Enabling accurate

LoD3 facade element reconstruction

• We introduce the first-of-its-kind open texturing bench-

mark dataset, ReLoD3, comprising synchronised LoD3

models, panoramic images, and manually textured low-

level LoD2 building models

2. Related Works
3D Facade Segmentation The recent years have witnessed

a surge in semantic 3D facade segmentation methods both

on point clouds, images, and in combination with prior 3D

models. Since the current research suggests that street-level

and drone-based point clouds accurately depict 3D facade

geometry, multiple point-cloud-based methods have been

proposed [14, 35, 40, 52]. Recent benchmark data results,

such as ZAHA [62] and ArCH [35], imply that the challenge

is still unsolved and remains challenging due to under-

represented classes, sparsity of objects in point clouds, and

frequently indistinct 3D geometry features [45, 49].

Other approaches rely only on image-based input, cap-

italizing on rich optical features and 2D image grid repre-

sentation. Various methods have been proposed to tackle

this challenge, such as non-learning [37, 50], gramma-based

[5, 36], and recently deep learning approaches [7, 20, 24,

32, 57]. Owing to the ubiquity of image training data,

even the standard Mask-RCNN [19] proves relatively ef-

ficient after the subsequent fine-tunning on the facade im-

age databases [59]. However, these methods perform well

only under the assumption that an image is ortho-rectified;

it makes generalization challenging since facade elements

are prone to the dire geometry change under perspective

and barrel distortions. This applies to classical methods

as well which explicitly concentrate on line and point ex-

traction for matching images with models for texturing

[22, 25, 26, 51]. In practice, ortho-rectified images are rare

and limited just to a few benchmarks or manual projections,

yielding unsatisfactory results on non-rectified real-world

data [6, 11, 27, 29, 44, 56].

An alternative approach is to exploit information from

3D models, optical images, and laser scanning point clouds

to achieve accurate 3D facade segmentation [55, 59]. For

example, Scan2LoD3 [59] introduces a method where

uncertainty-aware ray analysis of laser points with 3D mod-

els yield conflict maps indicating openings, which can serve

as evidence for late-fusion of 3D segmented point clouds

and 2D segmented optical images. However, the availability

of such multi-modal setups is currently limited and assumes

their heterogeneous accurate projection onto the model sur-

face.

LoD3 Building Reconstruction Semantic 3D building re-

construction is a long-standing challenge in photogramme-

try and computer vision [50]. For years, the international

standard CityGML [3, 16] has been defining the formal de-

scription of such models, where LoD1 stands for simple

cuboid models, LoD2 for polyhedral models with detailed

roof shape, and LoD3 for detailed roof shapes comple-

mented with a detailed facade representation. The primary

difference to the standard mesh models is that semantic 3D

building models are georeferenced; comprise object-level

geometry and semantics; have a hierarchical data model that

also describes the object-to-object relationship; display wa-

tertight and low-poly geometry facilitating volumetric space

interpretation by integrating externally observable surfaces

within a boundary representation (B-Rep) [16, 28, 60].

Despite recent advancements in LoD3 building recon-

struction, LoD3 models remain scarce [18, 20, 38, 39, 47,

57, 59]. One of the main remaining issues is the robust-

ness of methods when deployed at scale. Most of the meth-

ods assume that a specialized method of acquisition is re-

quired: It sets a high requirement for the practical meth-

ods’ deployment, as these methods assume targeted accu-

rate co-registration of multiple subsequent images and com-

plete object coverage without adjacent buildings, e.g., sin-

gle house acquired by a 360-degree drone flight [24, 39].

Alternatively, the above-mentioned Scan2LoD3 [59] can

mitigate such issues by introducing additional conflict maps

of the ray-to-prior-model analysis.

3. Method
As shown in Fig. 2, our Texture2LoD3 method commences

with the image-to-object matching of widely-available geo-

referenced panoramic images and ubiquitous low-level se-

mantic 3D building models (Sec. 3.1). This process is

followed by 3D model B-Rep surface simplification (top-

branch), while panoramic images are rectified (Sec. 3.2) and

building facades are segmented (bottom-branch) (Sec. 3.3).
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Figure 2. Overview of the proposed Texture2LoD3 method: The method commences with global matching of georeferenced panorama

images and low-level 3D models. In the top branch, 3D target facade surfaces are simplified, while in the bottom branch panoramic images

are rectified and building facade instances are extracted. Subsequently, fine object-to-object matching and projection is performed to the

simplified 3D model surface. Quadrilateral fitting and image-to-plane ray casting ensure accurate ortho-rectified 3D texture, enabling

accurate facade elements segmentation and LoD3 reconstruction.

The fine quadrilateral fitting of the facade instance shall en-

sure complete facade depiction (Sec. 3.4), followed by ray-

casting-based projection onto the simplified 3D model pla-

nar surface (Sec. 3.5); Enabling accurate facade elements

segmentation and LoD3 reconstruction.

3.1. Matching Panoramic Image to 3D Model

In this work, “matching” refers to aligning geo-referenced

ground-level panoramic images with corresponding 3D

building models. Specifically, the goal is to associate the

facade observed in a ground-level image with its counter-

part in the 3D model, thus establishing a coherent mapping

between image pixels and 3D geometry.

Camera Parameters We assume that each panoramic im-

age is accompanied by a set of camera parameters that are

essential for the matching process. In particular, the cam-

era parameters include: a) Position: The geographic coor-

dinates (latitude and longitude) of the camera; b) Heading:

The azimuth angle indicating the direction the camera faces,

measured in degrees clockwise from North; c) Field-of-view
(FOV): The angular extent of the scene captured by the cam-

era in degrees; d) Generic parameters: Any extra available

parameters, e.g., the camera’s height above ground level.

Due to the imprecision of geo-referenced data, the avail-

able 2D sensor positions and 3D model vertices in the B-

Rep only provide a coarse association. Moreover, seman-

tic 3D building models often subdivide a single facade into

multiple small triangular faces—a phenomenon we refer to

as facade subdivision. This subdivision complicates texture

mapping because it prevents a straightforward correspon-

dence between image features and continuous facade re-

gions. To overcome these issues, we propose a unified ray-

casting-based approach that leverages camera parameters to

detect facade regions and simplify the 3D model, thereby

facilitating a robust matching between the panoramic image

and the 3D building model.

3D B-Rep Model and Camera Integration We first ex-

tract the camera parameters (position, heading, FOV, and

the manually set camera height) from the geo-referenced

panoramic images and project them into the global build-

ing coordinate reference system. In our framework, the

3D building model is represented as a boundary representa-

tion (B-Rep), i.e., a collection of vertices, edges, and faces

that define the surfaces of the building; We assume the fol-

lowing information is available: a) Ground surface defini-
tion: The model explicitly delineates the building’s base,

from which the building height can be extracted, e.g., via

the minimum and maximum Z-coordinates adhering to the

CityGML GroundSurface definition [16]; b) Altitude and
orientation: The model’s global orientation (altitude) is in-

herently defined within a global coordinate reference sys-

tem, ensuring that facade orientations are consistent; c)

Height: The vertical extent of the building is provided or

can be computed from the B-Rep, enabling precise place-

ment of the camera.

Ray-Casting-Based Facade Detection For each camera,

multiple rays with varying horizontal and vertical angles

are cast against the 3D model’s triangular mesh. The ray-

casting process records the intersected faces and their spa-

tial distribution. We then select the camera view that yields
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Figure 3. (Left) Original surface with multiple triangular faces.

(Right) Fitted quadrilateral representation with re-triangulation

along the diagonal (dashed purple), preserving facade shape.

the highest number of valid intersections and best aligns the

camera position with the centroid of the hit points. Note that

here, ray-casting is used to robustly detect the facade region

by identifying the contiguous set of faces corresponding to

the building’s facade, even in the presence of fragmentation.

This detection step is crucial for the subsequent matching

process, as it determines which part of the 3D model corre-

sponds to the observed image.

Local Plane Fitting and 3D B-Rep Model Simplification
The set of intersected triangular faces from the optimal view

is aggregated and fitted to a local plane via principal com-

ponent analysis (PCA), which yields a centroid c and two

in-plane basis vectors u and v. Each vertex p on the de-

tected facade is then projected onto this plane:

x = 〈p− c,u〉, y = 〈p− c,v〉 (1)

From the 2D projections, a minimum area bounding

rectangle is computed, resulting in four corner points

{(xi, yi)}4i=1. These corners are mapped back into 3D

space:

qi = c+ xi u+ yi v, i = 1, . . . , 4 (2)

The quadrilateral defined by {qi} is subsequently re-

triangulated into two triangles, thereby replacing the frag-

mented original representation with a simplified mesh that

preserves critical geometric features while reducing compu-

tational complexity (Fig. 3).

It is worth noting that the literature offers a wide variety

of methods for geometric simplification and for converting

between triangular and quadrilateral representations, such

as those available in the CGAL library [10]. In contrast, our

approach relies solely on the consistency of plane normals

computed via PCA, which is robust under the assumption

that the facade region is locally planar—a reasonable as-

sumption for most urban building facades and semantic 3D

city models that shall adhere to this assumption.

FOV Calculation Based on Building Geometry To com-

pute the effective camera field-of-view (FOV) for each

building, we define a buffer region around each camera ob-

servation point to identify nearby structures. The exterior

boundaries of the building are sampled to determine the an-

gular directions (bearings) from the camera. By evaluating

occlusion effects—ensuring that each building vertex is vis-

ible without interference from adjacent structures—we de-

termine the effective angular extent of the building facade.

These FOV metrics aim to exclude occlusion-induced noise

and the target building’s facade view.

3.2. Panoramic Image Auto-rectification
We utilize an automatic rectification approach for

panoramic images consisting of three stages inspired by

Zhu et al. [67]: a) tile extraction and local rectification;

b) consensus estimation of zenith and horizontal vanishing

points; and c) global re-projection. This part of the method

aims to effectively rectify panoramic images by combin-

ing local tile analysis, a robust SVD-based consensus, and

global re-projection. It shall provide a consistent geometric

basis for subsequent facade segmentation and texturing.

Tile Extraction and Local Rectification We partition the

input panorama image into multiple overlapping tiles via a

ray-casting strategy. Local features and edges within each

tile yield estimates of the horizon line h, horizontal vanish-

ing points {vi}, and a local zenith vector z. Importantly,

the local zenith vector z is computed independently from

the horizontal vanishing points. Specifically, while both are

derived from the same set of local edge features, the zenith

vector is estimated via a robust SVD-based process on the

normalized edge directions, which directly captures the pre-

dominant vertical direction in each tile. These local param-

eters serve as geometric cues for subsequent global align-

ment. Although the image is already rectified, semantic

information does not drive the rectification process. Con-

sequently, when a building’s facade is particularly wide, in-

dividual tiles may only capture a portion of the facade (even

if that portion is rectified). In such cases, subsequent image

tile stitching (Section 3.2) is necessary to produce a more

complete representation of the facade.

Consensus Estimation We aggregate all normalized zenith

vectors {zi} and compute a consensus zenith z∗ via SVD:

z∗ = SVD({zi}) (3)

From z∗ = (zx, zy, zz)
�, the pitch φ and roll θ angles are:

φ = arctan
(zz
zy

)
, θ = − arctan

( zx

sgn(zy)
√
z2y + z2z

)

(4)

We define standard rotation matrices Rroll(θ), Rpitch(φ) (and

optionally Rheading(ψ)) to align the vanishing points. A his-

togram of horizontal angles can further refine these esti-

mates if necessary.

Global Re-projection With the consensus rotation deter-

mined, we re-project the entire panorama image into a rec-

tified view. For a pixel with spherical coordinates (θ, φ), its

3D direction vector v(θ, φ) is rotated back by Rroll(−θ) and
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Rpitch(−φ). The result is then mapped to image coordinates

via an inverse equirectangular projection:

x =
(

θ′
360◦ + 1

2

)
W, y =

(
φ′

180◦ + 1
2

)
H (5)

Image Tile Stitching In cases where a single rectified tile

cannot capture the entire building facade, we stitch multiple

overlapping tiles into one image. We detect SIFT keypoints

in each tile, match them across overlaps, and estimate a ro-

bust homography via RANSAC [31]. The source tile is then

warped accordingly, and a smooth blending operation miti-

gates seam artifacts.

3.3. Building Facade Segmentation
To accurately isolate and extract building facades from

complex urban scenes, we adopt the pipeline illustrated

in Fig. 4. Our approach integrates an automatic instance-

level segmentation (Semantic-SAM [30]) with semantic fil-

tering via CLIP [41], thus allowing building facades to

be selectively retained while discarding irrelevant objects

(e.g., cars, trees, people). We choose Semantic-SAM ow-

ing to its outstanding performance in instance segmentation

tasks [30]. Given that many of our input images feature

multiple adjacent building facades, Semantic-SAM’s robust

segmentation capability is essential for reliably distinguish-

ing individual facade instances.

Instance Generation via Semantic-SAM Given a rectified

panoramic image I , we employ the Semantic-SAM auto-

matic mask generator to produce a set of unlabeled instance

masks {Mi}. These masks aim to cover all salient regions

in the scene, ranging from building surfaces to smaller ob-

jects like cars or trees. Although the mask generator pro-

vides instance-level segmentation, no semantic labels are

assigned.

CLIP-Based Label Filtering To determine which instance

masks correspond to building facades, we process each

masked image region using a CLIP [41] encoder (ViT-

L/14). Specifically, we compute an image embedding and

compare it via cosine similarity to text embeddings de-

rived from a predefined set of text prompts (typically 2–3

prompts, e.g., ”building facade”, ”vehicle”, and ”pedes-
trian on the street”). An instance is retained if its highest-

confidence label is ”building facade” and its similarity

score exceeds a chosen threshold; otherwise, it is discarded.

Additionally, masks identified as ”building eave” are sub-

tracted to ensure that only the primary vertical surfaces of

the building remain. This process also filters out instances

classified as ”vehicle” or ”pedestrian on the street” to ex-

clude dynamic and non-architectural elements from further

processing.

Mask Combination and Noise Removal As multiple fa-

cade masks may be produced for a single building or por-

tions thereof, we unify them via logical OR: Mfacade =

Figure 4. Semantic-SAM generates unlabeled instance

masks, which are then passed to a CLIP encoder for seman-

tic filtering. We retain masks classified as building facade.

Figure 5. Building facade after filtering out extraneous parts, e.g.,

eave masks, and a schematic view quadrilateral fitting extracting

the four corner points based on the refined mask.

∨
i∈I Mi, where each Mi is ”building facade”. Likewise,

all eave masks are aggregated via logical OR and then sub-

tracted from Mfacade. We further remove small connected

components whose area is below a minimum threshold, es-

timated by Amin, to eliminate spurious detections. Mor-

phological opening and closing are then performed using a

kernel of size k × k (with k chosen according to the image

resolution) to fill small holes and smooth the boundaries of

the combined mask.

Final Facade Extraction After noise removal, the result-

ing binary mask accurately outlines the dominant building

facades. As a final step, we align the mask size with the

original panorama image and multiply it element-wise with

the original image Imasked(x, y) = I(x, y) × Mfacade(x, y),
yielding a facade-only color image that is preserved for sub-

sequent morphological adaptation (Sec. 3.4) and texturing

(Sec. 3.5).

3.4. Facade Mask Quadrilateral Fitting
In this step, we refine the facade segmentation mask to pro-

duce a clean, noise-free representation that accurately out-

lines the facade (Fig. 5). The process consists of three

stages: a) mask smoothing via morphological operations;

b) robust quadrilateral fitting to the facade contour; and c)

perspective rectification.

Smoothing via Morphological Operations Given an in-

put binary mask I , we first smooth the mask by applying a

Gaussian blur:

Iblur(x, y) =
∑

(u,v)∈Ω

G(u, v, σ) I(x− u, y − v), (6)
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where G(u, v, σ) is a Gaussian kernel and Ω is the ker-

nel support. This smoothing reduces high-frequency noise.

Next, we perform morphological closing followed by open-

ing to fill small holes and remove spurious regions:

Iclose = (Iblur ⊕B)�B, Iopen = (Iclose �B)⊕B, (7)

with ⊕ and � denoting dilation and erosion, respec-

tively, and B being a rectangular structuring element

of size (15 × 15). From the resulting mask, contours

are extracted and the largest contour, Cmax, is selected:

Cmax = argmaxC∈C Area(C). Its convex hull, H =
convexHull(Cmax), provides a robust boundary for the fa-

cade.

Quadrilateral Fitting To obtain a compact facade repre-

sentation, we fit a quadrilateral to the points of the convex

hull. Let P = {p1, p2, . . . , pn} denote the set of points in

H . We seek a quadrilateral Q with vertices {q1, q2, q3, q4}
that maximizes the Intersection over Union (IoU) with H ,

where:

IoU(H,Q) =
Area(H ∩Q)

Area(H ∪Q)
(8)

Perspective Rectification With the scaled quadrilateral

Qscaled, we compute a homography that maps its vertices

to the corners of a target rectangle. Assuming that the target

image has width W and height H , we define:

T = {(0, 0), (W−1, 0), (W−1, H−1), (0, H−1)} (9)

The homography matrix P satisfies:
⎡
⎣
x′
i

y′i
1

⎤
⎦ ∼ P

⎡
⎣
xi

yi
1

⎤
⎦ , i = 1, . . . , 4 (10)

where (xi, yi) are the coordinates of qscaled
i and (x′

i, y
′
i)

are the corresponding target coordinates. This perspective

transformation matrix is computed and applied to the origi-

nal image: Iwarped = warpPerspective(Iorig, P ).

3.5. Facade Texturing by Ray-Casting
In this stage, we accurately map the texture from the

panoramic image onto the simplified facade geometry. Our

approach uses a ray-casting method that projects rays from

the camera center and computes their intersections with the

facade surface, thus determining the texture coordinates for

each sample.

Ray Generation and Direction Determination Using the

simplified facade (Sec. 3.1), we generate a 3D ray for each

sampling point on the target texture grid. Each pixel in the

panoramic image is first associated with spherical coordi-

nates (θ, φ), from which its 3D direction vector is computed

as:

v(θ, φ) =

⎡
⎣
cosφ sin θ

sinφ
cosφ cos θ

⎤
⎦ (11)

Subsequently, the direction is adjusted using the inverse

of the rotation matrices derived during the panoramic im-

age auto-rectification stage for pitch, roll, and heading

(Sec. 3.2). This step aligns the rays with the actual orienta-

tion of the facade.

Ray-Facade Intersection Each ray, cast from the camera

center o, is tested for intersection with the facade surface.

Since the facade is approximated as a quadrilateral (typi-

cally decomposed into two triangles), the intersection point

is calculated using the standard ray-plane intersection for-

mula:

t =
(p0 − o) · n

v · n (12)

where p0 is an arbitrary point on the facade plane, and n is

the unit normal vector of the plane. The intersection point

is then given by p = o+ tv.

While a homography warp from rectified images could

be used for texture mapping, it assumes that the facade is

perfectly planar and that the rectification is flawless. In

practice, residual geometric distortions and local deviations

from planarity often persist. Our ray-casting method di-

rectly computes the intersection of rays with the actual 3D

facade, thereby accommodating these imperfections and en-

suring a more robust and accurate texture mapping. More-

over, a simple homography warp cannot account for non-

planarities or slight misalignments due to calibration errors,

which our ray-casting approach inherently corrects by lever-

aging the true 3D geometry.

Texture Coordinate Mapping Once the intersection point

p is determined, it is projected onto the local 2D coordinate

system of the facade using the plane parameters obtained

from PCA (centroid c and in-plane basis vectors u and v):

x = 〈p− c,u〉, y = 〈p− c,v〉 (13)

After normalization, the (x, y) coordinates correspond di-

rectly to the texture coordinates in the original panoramic

image.

Texture Sampling and Synthesis The texture coordinates

are used to sample pixel values from the panoramic im-

age, employing bilinear interpolation to ensure pixel re-

projection. These sampled values are then mapped onto the

simplified facade mesh, thereby generating a high-detail,

geometrically consistent texture.

4. Experiments
Our ReLoD3 Texture Dataset Benchmark In the ab-

sence of datasets comprising accurate LoD3 reference data

aligned with extracted opening masks, manual textures, and

street-level images, we introduce the ReLoD3 dataset. The

ReLoD3 comprises 27 unique LoD3 models modeled ac-

cording to the CityGML standard [16] including windows,

doors, and eaves modeled based on high-accuracy MLS
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4-point-manual Texture2LoD3 (Ours)w/o surface rectification 

SegFormer

MaskFormer

Mask2Former

Grounded SAM 2

GT Segmentation Mask LoD3 Model

mIoU: 0.45 mIoU: 0.55mIoU: 0.26

mIoU: 0.57 mIoU: 0.59mIoU: 0.29 

mIoU: 0.48 mIoU: 0.59mIoU: 0.30

mIoU: 0.19 mIoU: 0.25mIoU: 0.20 

Figure 6. Tested facade segmentation baselines on a selected building from the introduced ReLoD3 benchmark dataset across various

texture projection methods. Our Texture2LoD3 is less prone to distortions, hence yielding more accurate segmentation across the baselines.

4-point-manual Texture2LoD3 (Ours)w/o surface rectification 

4906972

4959322

LoD3 Model

mIoU: 0.75  mIoU: 0.72 mIoU: 0.65  

mIoU: 0.75 mIoU: 0.75 mIoU: 0.67

4959323

GT mask
mIoU: 0.30 mIoU: 0.62 mIoU: 0.60 

Building ID

4907518

mIoU: 0.61 mIoU: 0.58mIoU: 0.64

width: 15 m

width: 25 m

width: 29 m

width: 72 m

Figure 7. Texture2LoD3 maintains on-par accuracy with manual texturing even in the presence of increasing facade width, unlike the

method without rectification. Shown on MaskFormer [8] on four width-different facades of the introduced ReLoD3 benchmark dataset.

Table 1. Quantitative comparison of semantic segmentation mod-

els on facade opening detection across two datasets. Performance

is measured using SSIM (↑), IoU (↑), and LPIPS (↓).

w/o surface rectification 4-point-manual Texture2LoD3 (Ours)

Methods SSIM IoU LPIPS SSIM IoU LPIPS SSIM IoU LPIPS

SF[63] 0.84 0.43 0.38 0.86 0.51 0.35 0.87 0.53 0.34
MF[8] 0.83 0.49 0.39 0.86 0.59 0.34 0.84 0.60 0.33
M2F[9] 0.84 0.45 0.37 0.85 0.48 0.35 0.86 0.48 0.36

GS2[30] 0.83 0.40 0.39 0.84 0.44 0.37 0.84 0.42 0.37

point clouds of relative accuracy 1-3 cm [1], manually 4-

point projected perspective terrestrial optical images of the

digital camera (Sony α7), and corresponding GSV Images

[13], located in Munich, Germany. This dataset is part of

the TUM2TWIN initiative [54]. We deem LoD3 open-

ing masks as ground-truth owing to their superior accu-

racy and no distortions present, unlike manually rectified

perspective images. In this experiment, we used 238 win-

dows and 38 door instances captured from various build-

ing facades. The data is available under the project page:

https://wenzhaotang.github.io/Texture2LoD3/.

4.1. Results and Discussion

3D Facade Segmentation as Texture Quality Measure
We evaluate the performance of four state-of-the-art seman-

tic segmentation approaches on the task of facade opening
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detection: SegFormer [63], MaskFormer [8], Mask2Former

[9], and Grounded SAM2 [43] (Segment Anything Model

with semantic capabilities). For the supervised methods,

we leverage the pre-trained on ADE20K [65], fine-tuned on

the CMP dataset [56]; For the open-set experiments, we use

the text prompt ”window” and ”door”.

The quality of facade segmentation serves as an effec-

tive proxy for evaluating texture quality in 3D building

models. We employ three distinct metrics to comprehen-

sively assess segmentation performance: Structural Simi-

larity Index Measure (SSIM) [58], mean Intersection over

Union (mIoU), and Learned Perceptual Image Patch Simi-

larity (LPIPS) [64]. SSIM measures the perceived quality

between images and correlates with human visual percep-

tion, IoU quantifies the spatial overlap accuracy between

predicted and ground truth segments, and LPIPS captures

perceptual similarities using deep feature representations

that align with human judgments of visual similarity.

We compared three texture processing methods: unrec-

tified imagery (w/o surface rectification), manual 4-point

rectification (ReLoD3), and our automatic approach (Tex-
ture2LoD3). While unrectified imagery projection is the

standard projection procedure, manual 4-point rectification

represents the current standard in many practical workflows

and relies on manual corner selection, our Texture2LoD3

uses geometric data from LoD1/2 models for automatic

alignment. All images were captured at a consistent height

(approx. 1.7m) to reduce alignment errors. To ensure fair

segmentation comparison, we apply test-time adaptation for

mask evaluation across all methods (see supplementary ma-

terial for details).

As shown in Tab. 1, all segmentation models benefit

significantly from accurate texture rectification, with con-

sistent performance improvements visible across all met-

rics. The baseline approach without rectification achieves

the lowest scores due to perspective distortions complicat-

ing the segmentation task. The 4-point-manual method de-

livers noticeable improvements, particularly in IoU scores,

demonstrating the value of perspective correction in facade

analysis. Our Texture2LoD3 approach consistently outper-

forms the w/o surface rectification baseline across all mod-

els and metrics and can replace manual projections. Seg-

Former exhibits the most substantial gains, achieving an

SSIM of 0.87, IoU of 0.53, and LPIPS of 0.34 when com-

bined with our method. This result represents improve-

ments of 3% in SSIM and 10% in IoU compared to the un-

rectified baseline and 1-2% improvement over the manual

rectification approach.

The qualitative results in Fig. 7 and Fig. 6 visually con-

firm these quantitative findings. Fig. 7 demonstrates how

our Texture2LoD3 method produces cleaner segmentation

boundaries and more consistent element detection across

various building facades. The improvement is particularly

evident in buildings with complex architectural features and

elongated facades. Fig. 6 highlights performance differ-

ences through visual comparisons of a facade segmented

by various methods. Texture2LoD3 produces results that

align more closely with both the ground truth and geometric

model, as shown by higher mIoU scores. This demonstrates

that geometry-aware texture processing improves segmen-

tation, with Texture2LoD3 outperforming manual methods

without requiring labor-intensive intervention.

Limitations and Future Work The Texture2LoD3 method

leverages the worldwide ubiquity of both semantic 3D

models and panoramic street-view images, which shall

open worldwide availability of so-far scarce LoD3 mod-

els. Yet, caution must be exercised as our rectified im-

ages are obtained from GSV images; there still may be

some occlusions present concealing facades; the image

quality is also highly dependent on the lighting conditions

at the time the GSV images were captured. The iden-

tified hyper-parameters were consistently applied to our

ReLoD3 dataset, yet further experiments must be under-

taken to prove their computational efficiency and scalability,

e.g., in architecturally different scenes of Asia.

5. Conclusion

In this paper, we introduce Texture2LoD3, a method en-

abling LoD3 building reconstruction by accurately project-

ing widely available street-level panoramic images onto sur-

faces of low-detail semantic 3D building models. Our work

has led us to the conclusion that such a method can un-

lock worldwide availability of LoD3 models, as our au-

tomatic results outperform standard projections (by 11%

IoU) and can replace manual texture projections (positive

1% IoU difference). Crucially, we also observe the quali-

tative advantage of our method, as it is less prone to per-

spective distortions when compared to manual perspective

image projection or projecting without any surface rectifi-

cation. Moreover, by employing prior low-detail seman-

tic 3D building models as projection targets, we maintain

the essential requirements of georeferencing, watertight-

ness, and low-poly representation, extended by texture se-

mantics. Owing to the absence of datasets allowing for such

developments, we present the ReLoD3 texturing bench-

mark dataset, which will facilitate further research on LoD3

building reconstruction from images.
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