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Abstract 

Cities are supported by multiple, interacting networks, most prominently 
streets, which channel movement and economic exchange, and, in many con- 
texts, waterways, which regulate flows of goods, people, and environmental 
amenities. Conventional quantitative studies of urban form have tended to 
privilege streets alone, limiting their ability to capture the full spatial logic 
of the urban fabric. This paper introduces a Heterogeneous Graph Autoen- 
coder (HeterGAE) that jointly embeds street and waterway systems, provid- 
ing a unified, graph-based representation of urban form. Using Singapore 
as a case study, we train HeterGAE embeddings and employ them in two 
downstream tasks: predicting daytime and night-time land-surface temper- 
ature (LST) and estimating resale prices of public housing. Relative to a 
baseline model that encodes streets only, the dual-network embeddings im- 
prove predictive accuracy by about 20% for both tasks, confirming that nat- 
ural and built infrastructures make complementary contributions to urban 
socio-environmental processes. By capturing the interaction between street 
junctions and waterway nodes within a single latent space, the proposed ap- 
proach provides a flexible template for GeoAI-assisted urban analytics in di- 
verse settings. The results underscore the value of integrating heterogeneous 
urban networks in evidence-based planning and highlight the potential of 
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graph-neural techniques for developing more nuanced and sustainable urban 
strategies. 

Keywords: Urban Form, Neural Embedding, Graph Neural Network, 
Urban Climate, Socio-economics 

 

 
1. Introduction 

Urban form is shaped by a complex interplay of both engineered and nat- 
ural networks, primarily street systems and, in many contexts, waterways 
(Gandy, 2004). In many urban contexts, waterways function as essential ar- 
teries, facilitating the flow of resources into and out of urban centres. Conse- 
quently, they often form the backbone of a city’s infrastructure, influencing 
the location of industries, residential areas, and commercial districts, and 
hence, dictating the layout of the cities’ structures (Haeffner et al., 2017). 

Other than waterways, street networks are widely recognised as funda- 
mental and often primary carriers that shape and define the structure and 
identity of cities (Boeing, 2022; De Sabbata et al., 2023). These networks 
serve as another artery through which the lifeblood of the city (i.e., its peo- 
ple, goods, and services) flows, influencing everything from the placement of 
buildings to the patterns of daily movement and interaction (Wang et al., 
2012). Therefore, both waterways and street networks are crucial for a com- 
prehensive understanding of urban form, as they are interconnected and in- 
teract in ways that support urban activities (Cai et al., 2018) and create a 
dynamic infrastructure where roads often intersect with or run parallel to 
waterways, facilitating seamless connectivity across urban landscapes (Bell 
et al., 2021). 

Quantitative analysis of urban form has traditionally focused on street 
network analysis, utilising various predefined measures to understand the 
structure and functionality of cities. Common approaches include topological 
measures, such as connectivity and centrality (Boeing, 2022), which evaluate 
the network’s accessibility and the significance of individual streets within the 
broader urban fabric. Geometric measures, including street length, width, 
and intersection density, are also employed to understand how these physical 
characteristics influence urban commute patterns (Xie and Levinson, 2007). 
In recent years, there has been a notable shift towards integrating advanced 
artificial intelligence (AI) methods into urban form analysis. Graph neural 
networks (GNNs), in particular, have gained prominence for their ability to 
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model street networks as graphs, capturing both the spatial proximity and 
the intricate interconnections among roads. These AI techniques have been 
widely adopted to study urban form (De Sabbata et al., 2023) and function 
(Zhang et al., 2023), the built environment (Lei et al., 2024), and the spatial 
homogeneity of road networks (Xue et al., 2022), offering deeper insights into 
the complexities of urban systems. 

However, although street networks have provided critical insights into the 
structural dynamics of cities, the significant influence of waterways is often 
overlooked in urban analysis (Peng et al., 2024). Recognising street junc- 
tions as pivotal anchors within their local networks, which serve as crucial 
nodes in the flow of urban movement and activity (Batty, 2013; De Sabbata 
et al., 2023), our research seeks to address this gap by integrating water- 
ways as an essential component. This integration transforms street junctions 
into multi-dimensional spaces that reflect a richer understanding of urban 
spatial dynamics. We employ a heterogeneous graph autoencoder (Heter- 
GAE) that integrates both street and waterway networks, allowing us to 
capture the complex interplay of these key urban infrastructures. By learning 
node embeddings that reflect network connectivity and spatial relationships, 
HeterGAE enables a more comprehensive view of how roads and waterways 
jointly shape urban form. Throughout this paper, we show how these embed- 
dings can predict land surface temperature (LST) and public housing prices, 
thereby illustrating the approach’s versatility in real-world urban analytics. 

To summarise, this paper: 

• introduces a heterogeneous graph framework for representing the urban 
physical environment, capturing the multi-layered nature of cities; 

• develops a neural embedding technique using HeterGAE, which simul- 
taneously encodes street and waterway connections to enrich our un- 
derstanding of urban form; 

• demonstrates the embeddings’ utility in downstream tasks—specifically, 
LST prediction and public housing price estimation—showing their 
practical value in complex urban analyses. 

 
2. Background 

2.1. Urban Form, Networks, and Junctions 

Urban form, the physical structure of cities, has been a subject of exten- 
sive study, evolving from early morphological investigations to more compu- 
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tationally driven analyses. Early work in urban morphology focused on how 
historical forces shape built environments by examining town plans, build- 
ing fabrics, and plot patterns (Conzen, 1960; Moudon, 1997). As scholars 
sought more systematic ways to quantify spatial relationships, the devel- 
opment of space syntax introduced graph-based measures (e.g., integration, 
choice) to describe how the configuration of interconnected urban spaces in- 
fluences pedestrian movement, land use, and social interaction (Hillier et al., 
1976; Van Nes, 2014). By situating movement and visibility at the heart 
of urban form, space syntax builds on morphological principles, bringing 
a network-oriented lens that highlights how spatial structure reflects and 
guides socio-economic processes. Hence, networks have long been central in 
understanding the city’s form (Sevtsuk and Mekonnen, 2012). 

Among the urban networks, street systems have been widely recognised 
as the primary frameworks through which cities are organised (Sharifi, 2019; 
Boeing, 2022). By providing essential routes for transportation and circu- 
lation, streets not only affect land-use patterns and real estate values but 
also serve as carriers of population flow, shaping how people navigate and 
experience urban spaces (Fleischmann and Arribas-Bel, 2022; Balsa-Barreiro 
et al., 2021). Within this framework, street junctions, points where multi- 
ple roads intersect, stand out as pivotal nodes of interaction (Ahmed et al., 
2013), frequently becoming hubs of economic and social activity due to their 
accessibility and visibility (Bird, 2001). Major intersections often host com- 
mercial centers, public squares, and transit nodes, acting as anchors of place 
that influence both local and city-wide spatial organisation (Whitelegg, 1994; 
Batty, 2013). 

In addition to street networks, waterways form another vital, though com- 
parably less studied, type of network within cities, significantly contributing 
to our understanding of urban structure and layout (Haeffner et al., 2017). 
Streets often align with or intersect waterways, forming crucial junctions that 
serve as nodes of urban activity. These intersections frequently become hubs 
of commerce, industry, and social interaction, playing a central role in shap- 
ing the overall structure and vitality of the city (Luo et al., 2022). Although 
manifest in various forms, the intertwined connections between streets and 
waterways create integrated networks that enhance urban mobility, economic 
activity, and spatial organisation. For instance, bridges or overpasses where 
roads cross rivers or canals transform the adjacent junctions into critical 
nodes supporting vehicular and pedestrian traffic (Kondolf and Pinto, 2017). 
Similarly, parallel connections occur where roads run alongside waterways, 
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such as riverside roads or canal towpaths, with junctions providing access 
points to recreational spaces or waterfront amenities (Gobster et al., 1998). 
Such integrated networks are essential for understanding how cities func- 
tion and thrive, illustrating the importance of considering both street and 
waterway connections in urban planning and design. 

Building on the interplay between street networks and waterways, our re- 
search proposes a spatial modelling approach that integrates these two critical 
urban elements to study how street junctions function as key urban forms 
and structure determinants to facilitate our understanding of the underlying 
socio-economic patterns and environmental conditions. 

2.2. Graph Theory and Neural Embedding 

Graph theory has long been a foundational tool in the computational 
modelling of urban flows and networks, offering a framework for analysing the 
complex interconnections that define urban spaces (Thomson and Richard- 
son, 1995; Anderson and Dragi ćevi ć, 2020). By representing cities as graphs, 
where nodes correspond to intersections or significant points and edges repre- 
sent the connections between them, graph theory allows researchers to quan- 
titatively assess the structure and efficiency of urban networks (Marshall 
et al., 2018) and examine how different components of a city’s infrastructure, 
such as streets and waterways, interact to shape urban form (Boeing, 2018, 
2022). 

Recent years have witnessed increasing interest in adopting GNNs for 
urban-related studies (Liu and Biljecki, 2022). The key driver behind the 
adoption of GNNs is the fact that they allow the creation of spatially-explicit 
models (Mai et al., 2023) due to their ability to algorithmically process graph- 
structured data. As street networks can be represented in graph formats, and 
GNNs can be used to learn numerical representations (embeddings) of nodes 
(or graphs), GNNs hold the potential to enable a numerical analysis of urban 
form through the encoding of the street network graph into an embedding 
space (Fan et al., 2024). A recent study by De Sabbata et al. (2023) is a 
fundamental inspiration for our research, which proposed an unsupervised 
graph representation learning framework, specifically using Graph AutoEn- 
coder (GAE) models, to generate numerical embeddings of street junctions 
that capture the urban form of cities. The study demonstrates the frame- 
work’s effectiveness through a case study of Leicester by training the model 
on a sample of street junctions from various UK cities. The results showed 
that these embeddings can represent the transition from urban to suburban 
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forms and capture meaningful spatial patterns related to, but also different 
from, traditional metrics. 

Based on their research, our paper explores new urban modelling and 
analysis methods that can integrate the interplay among urban networks 
within a HeterGAE framework. 

 

Figure 1: An overview of the framework. Basemap data source: Esri, HERE, Garmin, 
INCREMENT P, © OpenStreetMap contributors, and the GIS user community. 

 

 

3. Methods 

Figure 1 presents an overview of the proposed framework, which consists 
of two main components: a spatial graph modelling of urban networks and 
a HeterGAE processing the input graph into output neural embeddings for 
downstream analytics. More details are provided in the following subsections. 
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3.1. Spatial Graph Modelling of Urban Networks 

As illustrated in Figure 1, our spatial modelling of the urban environment 
integrates two key urban networks: the street network and waterway con- 
nections. It is important to note that our analysis focuses on the structural 
connectivity of urban networks; that is, the topological and spatial configura- 
tion of nodes and edges, rather than on their functional characteristics such as 
traffic volume or pedestrian counts. Following the methodology outlined by 
De Sabbata et al. (2023), we sourced the street network data from the Global 
Urban Street Networks dataset (Boeing, 2020), which is annually updated. 
In constructing the street network, we represented street junctions as nodes 
within the graph, while the street segments that connect these junctions were 
modelled as edges, as shown at the top of Figure S1 in the Supplementary 
Material. This graph-based representation captures the essential structural 
elements of the urban street network, allowing us to analyse the topological 
closeness centrality (the average shortest distance from each node to each 
other node), betweenness centrality (quantifies how often a node acts as a 
bridge along the shortest path between two other nodes), and degree cen- 
trality (the number of direct connections a node has with other nodes in the 
network) within the city. These metrics, which are widely used in urban net- 
work analysis (Boeing, 2022), are each encoded as node-level features within 
the model, thereby enabling it to learn from the inherent structural roles of 
different junctions. By incorporating these measures, the graph modelling 
process takes into account not only the physical layout of the network but 
also the relative importance of each node in facilitating overall connectivity. 
In addition, consistent with the approach used in De Sabbata et al. (2023), 
we enriched our model by assigning the lengths of the streets as features for 
the edges in the graph. 

Meanwhile, the waterway data was sourced from OpenStreetMap1, which 

provided comprehensive information on the various water-based elements 
within the urban environment. The dataset includes not only the primary 
waterways, such as rivers and canals that traverse the city, but also coast- 
lines that define the city’s boundaries. To represent these features accurately 
within our spatial model, we constructed a graph depicting each waterway 
as an edge, as shown at the bottom of Figure S1. These waterways’ end- 
points, typically junctions where one waterway connects with another, were 

 
1https://www.openstreetmap.org 

http://www.openstreetmap.org/
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represented as nodes within the graph. For the coastlines, depending on the 
dataset that we have, the coastline is divided into a number of sections. The 
connecting points of those sections are also nodes in the graph, and the lines 
between them are the edges. They all form a part of the waterway connection 
graph. In line with our approach to street networks, we assigned topological 
metrics, closeness centrality, betweenness centrality, and degree centrality as 
features to the nodes within the waterway connection network. Additionally, 
the length of each waterway was incorporated as an edge feature in the graph, 
providing an analytical framework for studying the structural and functional 
roles these water-based networks play in the urban landscape. 

Beyond simply integrating street networks and waterway connections into 
our spatial modelling, we introduced a crucial step to capture and analyse 
the spatial interactions between these two networks by creating an addi- 
tional spatial graph. As illustrated in Figure 1, we implemented a method 
to model these interactions by establishing connections between street junc- 
tions and nearby waterways. Specifically, for each street junction in the city, 
we generated a 50-metre buffer zone around the junction to capture immedi- 
ate, meaningful interactions (Carthy et al., 2020). Within a 50-metre radius, 
waterways and street networks are close enough to experience direct environ- 
mental or social impacts, such as pedestrian access to the waterway or flood 
risk areas around street infrastructure. If a waterway intersects this buffer, 
we create connections between the street junction and the two endpoints of 
the waterway. The distance between the junction and the endpoints is as- 
signed as the edges’ features. Consistent with the previous steps, closeness 
centrality, betweenness centrality, and degree centrality of this artificially 
created network were used as nodes’ features. Such an approach not only 
models the direct spatial proximity between streets and waterways but also 
simulates the potential for interaction and influence between these networks. 
It is also worth mentioning that the choice of 50 meters is a hyperparameter, 
subject to changes depending on the specific modelling tasks. 

After creating spatial graphs of the urban networks, we fed the con- 
structed graphs into a HeterGAE network. 

3.2. Heterogeneous Graph Autoencoder 

A Heterogeneous Graph Autoencoder (HeterGAE) is an advanced neu- 
ral network architecture designed to learn representations from graphs that 
consist of multiple types of nodes and edges, capturing the complexities of 
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heterogeneous networks. Unlike traditional graph autoencoders, which typ- 
ically operate on homogeneous graphs with uniform node and edge types, 
a HeterGAE can handle the diversity of entities and relationships that ex- 
ist within heterogeneous graphs, which allows us to simultaneously integrate 
and analyse different types of networks, such as street networks, waterway 
connections, and their interplay network in this study. 

For the street network introduced in the previous section, let Vs denote 
the set of nodes representing street junctions, and Es the set of edges repre- 
senting streets. The graph is associated with an adjacency matrix Als , where 
each entry corresponds to the scalar edge attribute ls as a feature represent- 
ing the street length for the respective connection. Additionally, nodes Vs 

are characterised by features Xs such as degree centrality Cd, betweenness 
centrality Cb, and closeness centrality Cc. Together, the street network graph 
Gs is formally defined as: 

 

Gs = (Vs, Es), Xs, Als (1) 

Similarly, the waterway connection network Gw in the city is denoted as: 
 

Gw = (Vw, Ew), Xw, Alw (2) 

where Vw represents the set of nodes corresponding to waterway endpoints, 
and Ew denotes the set of edges representing waterways. The adjacency 
matrix Alw encodes the connectivity between nodes, with Lw specifying the 
waterway length as an edge feature. Nodes Vw are also characterised by 

centrality measures denoted by Xw, which are similar to those used in the 
street network. 

The interplay network captures the interactions between street junctions 
and waterways. Nodes in this network comprise both street junctions (Vs) 

and waterway endpoints (Vw), while edges Esw represent the connections as 
processed as introduced in Section 3.1. The interplay network is formally 
defined as: 

 

Gsw = (Vs ∪ Vw, Esw), Xsw, Alsw (3) 

where Alsw represents the adjacency matrix of the interplay network, with 
scalar edge features lsw denoting the distances between street junctions and 

waterway endpoints. The nodes in Vs ∪ Vw are characterised by centrality 
measures computed within the context of the interplay network denoted as 
Xsw. 
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The HeterGAE uses an encoder-decoder structure where the encoder 

learns to compress the information from these heterogeneous graphs into 
a lower-dimensional latent space, capturing the relationships within and be- 
tween the different types of networks. The decoder then reconstructs the 
original graph from this latent representation, ensuring that the learned em- 
beddings preserve the structural and feature-based properties of the urban 
networks. 

The encoding process for a heterogeneous graph is represented as: 

 
H = GATstreet(Gs) + GATwaterway (Gw ) + GATinterplay (Gsw ) (4) 

where GATstreet(Gs), GATwaterway(Gw), and GATinterplay(Gsw) correspond to 
single-layer Graph Attention Network (GAT) operations (Velickovic et al., 
2017) applied to the street, waterway, and interplay networks, respectively. 
Each GAT layer computes a latent representation for its input graph, pro- 
ducing feature embeddings with a dimensionality of 32 for the nodes in the 
respective graph. The resulting embeddings from the GAT layers are aggre- 
gated using a summation operation, combining information from the street 
network, waterway network, and their interactions into a unified intermediate 
latent representation for each node type. 

The encoder consists of two layers of GAT operations. The first layer 
performs GAT convolutions separately for each graph, producing intermedi- 
ate latent representations of dimension 32 for the nodes. Then, the second 
layer re-applies GAT operations using the intermediate latent features as 
input, integrating information across the three graphs into the final latent 

representation H, which has a dimensionality of 16. 

The decoder part of the HeterGAE is implemented as an inner product 
decoder, designed to reconstruct the graph structure from the latent space 
embeddings: 

Â u v  = σ(HT · Hv) (5) 

where u and v represent pairs of nodes in the graph; Â u v  is the adjacency 

matrix of the reconstructed graph; Hu and Hv are the latent embeddings of 

nodes u and v, respectively. HT · Hv represents the inner product between 

the embeddings of nodes u and v, and σ is a non-linear activation function, 
typically a sigmoid function, which ensures that the reconstructed adjacency 
values are between 0 and 1. The goal of the HeterGAE is to minimize the 
reconstruction loss, Loss, which measures the difference between the original 
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three graphs and the reconstructed ones from the latent embeddings: 

 

𝐿𝑜𝑠𝑠 = ∑ ∑ |𝐴𝑢𝑣
𝑔
− �̂�𝑢𝑣

𝑔
|

(𝑢,𝑣)∈𝑔𝑔∈𝐺

 (6) 

where Auv is the adjacency matrix of the original graph; G is the set of 
graphs, and g denotes each graph (i.e., street network, waterway connection 
and the interplay network). 

After the neural network’s learning process, we extracted the latent em- 
bedding H for our further downstream tasks. Model implementation can be 
found in the Model Implementation section of the Supplementary Materials. 

 
4. Case Study 

We selected Singapore as our study area; the reasons and introductions 
to the downstream tasks can be seen in the Case Study Area section of the 
Supplementary Materials. 

 
5. Results 

The results of this research are organised into three key sub-sections. 
First, we present a visual analysis of the embeddings produced by the Het- 
erGAE, offering insights into the latent patterns captured by our proposed 
heterogeneous graph-based spatial modelling approach. This visualisation 
helps to illuminate the underlying structure and relationships within the ur- 
ban environment as identified by the model. Next, we demonstrate how these 
embeddings can be effectively utilised in downstream tasks, specifically for 
predicting LST and estimating the resale prices of HDB flats. 

5.1. Neural Embedding 

To demonstrate the effectiveness of our proposed neural embedding, we 
included a baseline method that focuses exclusively on the road network, 
providing a comparative analysis against our more comprehensive approach. 
In this baseline scenario, we employed a standard GAE model, which utilises 
a two-layer graph convolutional network (GCN) (Kipf and Welling, 2017) 
as its encoder and a deterministic inner product setup as its decoder. This 
GAE processes the street network introduced in Section 3.1, where the nodes 
represent street junctions, and the features consist of topological metrics such 
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as degree centrality, betweenness centrality, and closeness centrality. The 
edges in this network correspond to the streets, with their lengths serving 
as the feature of the edges. By isolating the street network in this baseline 
model, we aim to highlight the additional value provided by incorporating the 
interplay between street networks and waterways in our HeterGAE approach. 

Figure S2 in the Supplementary Material provides a comparative anal- 
ysis of the embeddings generated by the GAE and HeterGAE models for 
street junctions, with the results categorised using the K-means clustering 
algorithm. This comparison shows that the HeterGAE embeddings capture 

a more nuanced urban representation than those generated by GAE, as evi- 
denced by their respective Silhouette Scores (Rousseeuw, 1987) of 0.73 versus 
0.31. Specifically, the HeterGAE model, which integrates both street and 
waterway networks, offers a more detailed characterisation of street junc- 
tions by incorporating the influence of major waterways within the city. The 
embeddings result in clusters that reflect the underlying urban structure, 
particularly in areas where the presence of waterways significantly impacts 
the organisation and function of the surrounding streets. 

While the clustering algorithm provides initial evidence that the embed- 
dings can capture the underlying geographic patterns of urban networks, 
relying solely on clustering results may not be sufficient to fully assess the 
effectiveness and practical utility of the embeddings. Therefore, we incor- 
porated two downstream tasks: LST prediction and estimating HDB resale 
prices, which test how the embeddings can be applied in different urban con- 
texts and assess their ability to capture relevant urban features and patterns 
beyond what is evident from clustering alone. 

5.2. Land Surface Temperature Prediction 

The daytime LST data, integrated from 2015 to 2020, was extracted from 
Landsat 8 OLI via the Google Earth Engine (GEE) platform. The statisti- 
cal mono-window model (SWM) was applied to retrieve LST from Landsat 8 
OLI’s band 10 (Ermida et al., 2020). Furthermore, fractional vegetation cover 
derived from the normalised difference vegetation index (NDVI) was used to 
refine the calculation of emissivity, addressing the issue of vacant emissivity 
data in the original algorithm (Wang et al., 2020). This LST data was then 
resampled to a resolution of 1 km using bilinear interpolation. Meanwhile, 
the nighttime data, due to the lack of a nighttime Landsat data source in- 
tegrated from 2015 to 2020, was produced from Level 2 Gridded Moderate 
Resolution Imaging Spectroradiometer (MODIS) intermediate LST product 
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Figure 2: Results for LST predictions using HeterGAE vs. GAE. Reported metrics (e.g., 
R2, RMSE, MAPE, and Pearson’s τ indicate that HeterGAE-based predictions (left) gen- 
erally align more closely with observed LST than do GAE-based predictions (right). 

 

at a resolution of 1 km. Both data obtained were in the form of raster data; 
we then vectorised the raster data into polygons for the ease of further anal- 
ysis, as shown in the example of the daytime data process in Figure S3 in 
the Supplementary Material. 

The generated embedding output by HeterGAE was mapped and aggre- 
gated into each polygon in the map. Then, a random forest (RF) model 
with 500 forest trees was implemented for the regression task on the Day- 
time LST prediction. The data was split into conventional 7:3 training-test 
data ratio; that is, 70% percentage of the polygons were randomly sampled 
as the training data, and the remaining 30% data was the test data. The 
same process was also applied to the nighttime LST predictions, and results 
are summarised in Figure 2 with compared results of the same RF model 
using GAE embedding as input. 

As demonstrated in Figure 2, the regression tasks performed by the RF 
model using latent embeddings from HeterGAE outperform those using em- 
beddings from GAE. Moreover, the nighttime LST predictions are more ac- 
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Figure 3: Spatial autocorrelation analysis for the prediction residuals. Areas shaded red 
indicate contiguous high-valued residuals (hot spots), whereas blue regions highlight con- 
tiguous low-valued residuals (cold spots). 

 

curate than those for daytime LST, aligning with previous findings on LST 
predictions in tropical cities (Hua and Ping, 2018; Harshan et al., 2018). 
However, the results also reveal that the model struggles to accurately pre- 
dict extreme temperatures, both high and low, across the city. Instead, it 
tends to produce more conservative predictions, which are clustered closer 
to the median of the temperature distribution. Such an issue is not un- 
common for machine learning regression predictions (Fouedjio and Klump, 
2019), where the bias-variance trade-off often leads to an underestimation of 
extreme values. 

To better understand these discrepancies, we conducted a spatial analysis 
of the model’s residuals. Using the trained RF model, we re-predicted LST 
across all polygons in Singapore and computed the spatial autocorrelation 
of the residuals, comparing predicted values against ground truth measure- 
ments. Figure 3 reveals that, for daytime LST predictions, the residuals ex- 
hibit weak global spatial autocorrelation, suggesting that the RF model with 
HeterGAE embeddings may not fully capture the complex spatial hetero- 
geneity of LST distributions across the city. Notably, these mis-predictions 
are concentrated in industrial areas (shown on the left and top of the figure), 
near the airport (right section), and in downtown regions (bottom-right sec- 
tion). These areas are characterised by distinct microclimatic factors and 
urban heat island effects, which may not be adequately represented by the 
model’s latent features. Thus, future research may need to include additional 
microclimatic features to enhance the model’s performance. 
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In contrast, the nighttime LST predictions do not show significant global 

spatial autocorrelation. However, local Moran’s I analysis highlights specific 
clusters of mis-predictions, particularly around the Pandan Reservoir in the 
western part of Singapore. This area, known for its large water body and 
surrounding recreational spaces, likely introduces local microclimatic varia- 
tions that are challenging for the model to capture using embeddings that 
focus on urban networks. 

5.3. Public Housing Price Estimation 

 

Figure 4: The mapping of HDB flat prices to the buildings’ footprints and the results 
summarised using the proposed HeterGAE-generated embedding with RF and baseline 
methods; bar inset reports test-set accuracy (R2, RMSE, MAPE). SGD in the figure 
refers to Singapore Dollars. ∗ ∗ ∗ denotes for p < 0.01. 
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HDB resale price data from 2022 to 2024 was sourced from Singapore’s 

open data platform2 and spatially linked to building footprints using poly- 

gon data retrieved from OpenStreetMap, as depicted in Figure 4. The resale 
prices of HDB buildings were aggregated by calculating the mean resale price 
of all flats within each building as the target values (i.e., dependent variable), 
forming the basis for building-level predictions in the regression task. HDB 
resale prices represent a complex socio-economic indicator shaped by multi- 
ple factors, such as the flats’ location, average floor area, and construction 
year (lease commencement year in the Singapore context). In Singapore, 
a particularly critical factor is the remaining lease years, as HDB flats are 
limited to a 99-year lease. To enhance the accuracy of public housing price 
predictions, we integrated not only the embeddings generated by HeterGAE 
but also additional building-specific features, including the aforementioned 
factors, which aim to better capture the nuances that influence resale prices, 
providing a better predictive model. 

For the experiments, we utilised the same RF model implemented in the 
previous section but tested six different input configurations: (1) HeterGAE 
embeddings combined with building-specific features (such as average floor 
area, remaining lease years, and construction year), (2) GAE embeddings 
combined with the same building-specific features, (3) building-specific fea- 
tures only, (4) HeterGAE embeddings alone, (5) GAE embeddings alone, and 
(6) Geographically Weighted Regression (GWR) (Fotheringham et al., 2009) 
with building-specific features. The RF’s out-of-bag error (tracked during 

training) differs by < 10% from the held-out test-set error, suggesting min- 

imal over-fitting with all embeddings employed. For experiments involving 
either HeterGAE or GAE embeddings, we represented each HDB building 
by summing the embeddings of the 15 nearest road junctions (set as a hy- 
perparameter that can be adjusted based on urban settings) to the building, 
thus enriching the feature set with spatial context from the surrounding ur- 
ban network. Note that the predictions are at the building scale; therefore, 
buildings are not part of the graph. Instead, road junction embeddings pro- 
duced by the GNNs are used as part of building features. All numerical 
performance metrics reported below are computed on a 30% hold-out test 
set that was not used during model training. 

The results summarised in Figure 4 demonstrate that both the Heter- 

 
2https://data.gov.sg/ 
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GAE and GAE embeddings, when combined with building-specific features, 
outperform models using only building-specific features or embeddings alone, 
underscoring the value of integrating urban form with building characteristics 
for housing price predictions. Notably, HeterGAE, combined with building- 

specific features, yielded the highest accuracy in price estimation (R2=0.74), 

validating the hypothesis that incorporating waterway-influenced urban form 
improves the model’s ability to capture local socio-economic patterns. This 
confirms that the spatial interactions between street networks and water- 
ways contribute meaningfully to understanding housing market dynamics in 
urban environments. It is worth highlighting that the RF models leveraging 
HeterGAE and GAE embeddings performed poorly when building-specific 
features were excluded. In contrast, the RF model, which relies solely on 

building-specific features, delivered reasonable performance (R2 = 0.65), un- 

derscoring the importance of incorporating spatial context in housing price 
predictions (Soltani et al., 2021). Although building-specific features alone 
provide a solid baseline, the lack of urban network information limits the 
model’s overall accuracy. 

Additionally, we employed GWR with the same building-specific features 
as a classic spatial baseline. Interestingly, GWR achieves a predictive perfor- 

mance (R2=0.73) comparable to the RF model using HeterGAE embeddings, 

suggesting that a coordinate-based location approach can likewise capture lo- 
cal market variations. Nevertheless, the heterogeneous graph-based perspec- 
tive of HeterGAE encodes the connectivity and topology of multiple urban 
networks (e.g., streets and waterways), offering a network-centric lens that 
extends beyond housing price estimation to other tasks, such as environ- 
mental or socio-economic analyses. In principle, HeterGAE can be adapted 
to broader or multiple regions if a sub-graph training strategy is adopted 
(De Sabbata et al., 2023), a flexibility not easily matched by GWR. Hence, 
while building-specific attributes remain essential, integrating them with a 
heterogeneous, network-structured representation of urban form remains a 
promising avenue for more comprehensive housing market modelling. 

After the model evaluation, the best predictive model trained on the 70% 
training portion was applied to the full dataset to generate the predictions 
shown in Figure S4 in the Supplementary Material. Figure S4 presents a 
two-part visual analysis of the HDB price prediction task. The left panel 
maps predicted resale prices across the entire city, derived from applying the 
trained HeterGAE-based model to all buildings. This output illustrates the 
spatial variability in housing prices and highlights general trends captured 
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by the model. The right panel shows a local spatial autocorrelation map of 
prediction residuals, revealing statistically significant clusters of over- and 
under-prediction. Visual inspection of the residual indicates that systematic 
under-predictions are concentrated in the city’s network-dense or centrally 
located precincts, which suggests that while the model successfully encodes 
structural connectivity, it may not fully account for localised premiums asso- 
ciated with accessibility, amenity concentration, or historically valued urban 
character. 

 
6. Integrating Urban Blue and Green Networks 

Beyond urban road and waterway networks, green spaces are key drivers 
in shaping urban forms (Zhang et al., 2022). We further included a study 
on integrating urban blue and green networks into understanding the urban 
form. Details can be seen in the Integrating Urban Blue and Green Networks 
section of the Supplementary Materials. 

 
7. Discussion and Conclusion 

In this study, we underscore the value of integrating additional urban nat- 
ural environments, such as waterways, alongside street networks for a more 
holistic understanding of urban environments and their socio-economic and 
environmental outcomes. Our HeterGAE framework captures the interplay 
between road junctions and waterways, offering deeper insights into how ur- 
ban form shapes phenomena like land surface temperature and housing resale 
prices. However, it is worth noting that waterways are only one example of 
how natural or alternative infrastructure can complement conventional roads. 
In cities lacking extensive water-based infrastructure, such a multi-network 
approach can be adapted to include other relevant systems, ensuring both 
flexibility and wide applicability. 

The first key outcome was the usefulness of the proposed embedding 
in LST prediction. By incorporating waterway networks, we were able to 
accurately capture temperature variations across the city. Waterways com- 
plement street networks in contributing to urban cooling, mitigating the UHI 
effect by lowering surface temperatures in their vicinity. This cooling effect, 
particularly during the daytime, is crucial for urban environments nowadays, 
facing the increasing challenges of global warming, where managing heat is 
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a major concern for urban sustainability and livability. Including waterway- 
related features enhanced the model’s ability to predict LST, illustrating the 
value of integrating both natural and built environments in environmental 
modelling (Batty, 1976). 

The second important result concerns housing resale price estimation. 
Our findings showed that proximity to water not only influences urban tem- 
peratures but also determines housing values. The HeterGAE model, which 
integrates waterway influences, demonstrated higher accuracy in predicting 
housing resale prices than models that only used building-specific or street 
network data. Such a finding reinforces the idea that urban form, shaped 
by both streets and waterways, has a profound impact on socio-economic 
dynamics, particularly in real estate markets (Walsh et al., 2011). Interest- 
ingly, while the HeterGAE embeddings alone did not perform as well without 
building-specific features, models using only building-specific data achieved 
reasonable performance. Such a finding highlights that, while spatial con- 
text provided by urban networks is critical, intrinsic building characteristics 
are equally fundamental in predicting housing prices. However, the supe- 
rior performance of models that integrated both spatial and structural data 
underscores the importance of combining diverse data types for more com- 
prehensive urban analysis. 

Additionally, we demonstrated the generalisability of our method by ex- 
tending HeterGAE to include an urban green space network, thereby creating 
a cohesive framework that links urban blue (waterways) and green spaces. 
This integrated approach allows for a more comprehensive understanding of 
urban forms, capturing the interplay between these two vital environmental 
elements. By jointly considering the roles of both blue and green spaces, the 
model exhibits enhanced performance in housing price estimation, highlight- 
ing the close relationship between greenery and urban socio-economics (Dai, 
2011). 

Several directions will be pursued in our future studies. First, future 
research will expand this framework by incorporating additional urban net- 
works, such as public transportation systems, to offer a more comprehensive 
view of urban environments. Public transportation networks, including bus 
and rail systems, often shape the spatial structure of cities and influence pat- 
terns of mobility, accessibility, and land use. Incorporating these networks 
may hold the potential to provide deeper insights into how transport con- 
nectivity interacts with urban form, influencing socio-economic factors such 
as housing prices and the distribution of economic activities. Second, to test 
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the robustness and generalisability of the HeterGAE framework, we aim to 
apply it to cities with diverse geographic and climatic conditions. Urban ar- 
eas in different climates, such as temperate, arid, or cold regions, may exhibit 
distinct interactions between natural and built environments. Applying the 
HeterGAE framework across multiple cities will help determine whether the 
inclusion of waterways, street networks, and other urban features leads to 
consistent patterns in LST prediction and housing price estimation, which 
allows us to identify specific regional factors or variations that may influence 
the model’s performance and provide insights into how urban form adapts 
to different environmental challenges. Third, we plan to refine our predic- 
tive models by incorporating temporal data. The dynamic changes in urban 
infrastructure, housing markets, or environmental conditions can be inte- 
grated into the model, allowing us to predict how urban form evolves and 
assisting urban planners in forecasting future urban growth patterns, miti- 
gating climate risks, and making long-term decisions that foster sustainable 
urban development. Last but not least, one overarching limitation of most 
advanced predictive models, including ours in this paper, is their limited ex- 
plainability and interoperability, which are the key factors contributing to 
ethical and responsible urban AI systems (Liu et al., 2024). Our future work 
intends to address this gap by developing techniques that make our models 
more transparent and readily interpretable for researchers, policymakers, and 
the general public. 
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