
 

This is the Accepted Version of the chapter published in the book: X. Huang et al. (eds.), GeoAI and 

Human Geography, Springer Geography, DOI: https://doi.org/10.1007/978-3-031-87421-5_18 

Chapter 18 

GeoAI and Urban Geography 
 

 

Pengyuan Liu, Yujun Hou, Binyu Lei, Xiucheng Liang, and Filip Biljecki 

 

 

 

 

 

Abstract Recognising GeoAI as an emerging and rapidly evolving field that has 

been increasingly adopted in urban geography, this chapter provides an overarching 

overview of the GeoAI methods for urban analytics. It begins by revisiting the the- 

oretical underpinnings of urban theory and mapping the evolution of urban spatial 

analytics, tracing the journey from traditional statistical methods to the cutting-edge 

AI-driven approaches reshaping the discipline today. Beyond examining the current 

state of GeoAI, the chapter also identifies current trending topics and investigates 

future directions for developing human-centric methodologies that prioritise the 

needs and experiences of urban residents. By emphasising the human dimension 

of urban analytics, the chapter seeks to contribute to the ongoing discourse on how 

GeoAI can be harnessed to enhance city governance, urban planning, and the overall 

quality of urban life. 

 

Keywords GeoAI · Urban geography · Spatial analytics · Human-centric 

approaches · City governance 

 

 

18.1 Introduction 

 
Cities are inherently complex systems, characterised by entangled networks of 

people, infrastructure, and natural environments (Batty, 2009). Such urban sys- 

tems are in a state of constant flux, continually evolving as a result of the 
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ongoing interactions between social, economic, and environmental forces (Brenner 

& Schmid, 2015; Pred, 2017). Urban geography, a vibrant and dynamic sub-field 

of geography, seeks to understand the spatial structures, patterns, and processes that 

shape urban environments and people’s lives within them (Hall & Barrett, 2012). 

It offers a spatial perspective on how human activities, infrastructure, and natural 

landscapes interact and shape in tandem with the multifaceted urban systems that 

define contemporary society (Pacione, 2009). As cities continue to expand and 

transform, they face a growing array of challenges, ranging from sustainability and 

resilience (Folke, 2006) to issues of equity and liveability (Ruth & Franklin, 2014), 

which are becoming increasingly complex. Addressing these challenges necessitates 

innovative approaches that capture, analyse, and interpret the vast quantities of 

information generated within urban environments. 

In the era of big data (Kitchin, 2014), thanks to the increasingly accessible 

GPS-enabled devices and equipment, up to 80% of data produced every day 

is geo-referenced (Leszczynski & Crampton, 2016). Traditional approaches to 

studying urban geography have been profoundly transformed by the advent of 

new technologies, with GeoAI (Geospatial Artificial Intelligence) emerging as 

one of the most pioneering advancements. GeoAI harnesses the capabilities of 

artificial intelligence (AI), high-performance computing (HPC), and spatial big 

data (SBD), offering cutting-edge tools that allow for the enhanced and automated 

analysis of urban spaces with unprecedented precision and enhanced accuracy (Li, 

2020; Janowicz et al., 2020; Liu & Biljecki, 2022). Through advanced AI-enabled 

methodologies, GeoAI enables novel use cases and provides invaluable insights into 

urban environments’ complexities, facilitating more informed and effective urban 

planning and management strategies and, eventually, enhancing the quality of life 

for urban inhabitants. 

This chapter offers a comprehensive overview of GeoAI as a cutting-edge 

collection of techniques within the field of urban geography. It begins by revisiting 

the theoretical foundations of urban theory and tracing the evolution of urban 

spatial analytics, from traditional statistical methods to the advanced AI-assisted 

approaches that are redefining the discipline today. The chapter also critically exam- 

ines the uncertainties inherent in GeoAI analysis, highlighting the potential biases, 

limitations, and challenges that must be navigated when applying these technologies 

to urban studies. In addition to addressing the current state of GeoAI, this chapter 

explores future directions for developing human-centric GeoAI methodologies that 

prioritise the needs and experiences of urban residents. By focusing on the human 

dimension of urban analytics, the chapter aims to contribute to the ongoing discourse 

on how GeoAI can be leveraged to improve city governance, planning, and the 

overall quality of urban life. 

 

 

18.2 Quantitative Evolution of Urban Geography 

 
Urban geography has evolved significantly over the past century, with key mile- 

stones marking the development and transformation of this field, influencing both 



 
 

 

what and how geographic knowledge is produced for cities and the people living in 

them. 

In the mostly descriptive and fieldwork-driven works in the early days (Reclus 

et al., [1876–94]; Sauer, 1941, 1952), geographers sought to catalogue instances of 

phenomena, ranging from physical landscape traits, to socioeconomic and cultural 

practices, and associate them with their locations and maps to narrate the distinct 

or similar features of different regions (Cope, 2010). Later, descriptive theories 

and models were developed in the early twentieth century to understand the spatial 

organisation, function, and processes of cities, such as the Concentric Zone Model 

(Burgess, 1925), the Sector Model (Hoyt, 1939), and the Multiple Nuclei Model 

(Harris & Ullman, 1945). 

Meanwhile, much progress had been made in economic geography, spatial 

analysis, and quantitative social science, paving the way for what was later called 

the ‘Quantitative Revolution’ in geography in the 1950s and 1960s (Adams, 2001; 

Barnes, 2001). Influenced by works from other disciplines, such as the Theory 

of Games and Economic Behavior by von Neumann & Morgenstern (1944) and 

Human Behaviour and the Principle of Least Effort by Zipf (1949), quantitative 

techniques such as mathematical and statistical modelling began to gain interest 

among urban geographers to study the spatial arrangement of human activities 

(Garrison, 1959a,b, 1960; Isard, 1960; Burton, 1963). 

The movement saw the re-introduction of location theory, which originated from 

the seminal work of Johann Heinrich von Thu¨nen, ‘The Isolated State’ (1826), 

and laid the foundations for systematically understanding the principles of land 

use (Hoover & Giarratani, 1999). Benefiting from the development of location 

theory, the Central Place Theory developed by Christaller (1933) explained the 

spatial distribution and size hierarchy of human settlements, which were postulated 

to function as ‘central places’ to supply economic services to surrounding areas. 

Such work put forth new research agendas and methods and demonstrated the values 

of quantification to urban geographers—reproducible results, robust foundation for 

theory-testing, understanding and policy-making, and knowledge production that 

was cumulative instead of additive (Adams, 2001). 

Another significant work that profoundly re-shaped the research methods in this 

field was Locational Analysis in Human Geography by Haggett (1965), which pro- 

vided a thorough framework for understanding spatial patterns through quantitative 

methods. Such an exploration marked a milestone that transformed urban geography 

from a primarily descriptive field to one that is analytical, theoretical, and data- 

driven, and set the stage for modern spatial analysis and Geographic Information 

Systems (GIS), which have become important methods and tools to analyse urban 

phenomena. 

Since the Quantitative Revolution, a range of statistical and mathematical 

techniques have been incorporated into the study of urban geography, including 

regression analysis (Barnes, 1998), factor analysis (Clark et al., 1974), and cluster- 

ing methods (Webber & Craig, 1976). These methods enabled urban geographers 

to explore the relationships between different economic, social, and environmental 

variables, uncover their underlying patterns, and investigate their similarities and 



 
 

differences among spatial clusters of communities. Yet, even though the phenomena 

being studied are geographical, these modelling methods often do not take into 

account spatial information (e.g. coordinates, distances, topological relationships, 

interactions, and flows among spatial objects) and could overlook the spatial 

variability underlying the data (De Sabbata & Liu, 2023). 

In 1970, Tobler’s First Law of Geography was introduced. It states that ‘every- 

thing is related to everything else, but near things are more related than distant 

things’ (Tobler, 1970). This pivotal theory gave rise to the now fundamental 

concepts of spatial dependence and spatial autocorrelation, which underpin all 

spatial analysis. A range of spatial modelling and geostatistics techniques were 

developed, such as Inverse Distance Weighting and Kriging. These interpolation 

methods predict the values of unmeasured locations based on known data points by 

considering their distances and relative positions and have been useful in generating, 

from merely a set of sampled locations, detailed maps of certain urban variables 

such as population density (Liu et al., 2008; Wu & Murray, 2005), microclimate 

variables (Han et al., 2024), and air quality variables (Gardner-Frolick et al., 2022; 

Shukla et al., 2020; Jerrett et al., 2001). 

As computers evolved rapidly, more advanced techniques became possible, such 

as agent-based modelling (ABM), cellular automata (CA), and spatial regression 

models. ABM and CA have been used to simulate urban growth, land use changes, 

and transportation systems by modelling the interactions of individual agents and 

cells, offering insights into urban sprawl and traffic dynamics (Batty, 1997; Clarke 

et al., 1997; Batty, 2005; Torrens, 2006; Crooks et al., 2008). Spatial regression 

models help analyse spatial dependencies in housing markets, crime patterns, and 

health outcomes, providing a deeper understanding of urban socio-economic and 

environmental dynamics (Fotheringham et al., 2003; Anselin, 1988; LeSage & Pace, 

2009). Another analytical-computational technique developed in the late twentieth 

century is space syntax (Hillier et al., 1976; Hillier & Hanson, 1984), which is used 

to study the spatial configurations of built environments (e.g. street networks) and 

how these configurations influence societal behaviours within urban areas, such as 

human movement, accessibility, connectivity, and social interactions (Penn et al., 

1998). Collectively, these techniques enable urban geographers to better model, 

manage, and plan urban environments. 

Other than methodological advancements, technological progress has also 

brought forth a multitude of new data sources, ranging from satellite imagery 

to street view imagery, social media, and crowdsourced data. Long gone are the 

days when urban geographers were confined to fieldwork measurements or the often 

limited census survey data. With the advent of the ‘digital turn’ in geography (Ash 

et al., 2018a,b), researchers now tap into a burgeoning volume and variety of urban 

data that provides countless new ways and dimensions to measure human activities, 

urban characteristics, and social interactions. Yet, at the same time, such data is 

increasingly rapid, complex, noisy, and multi-sourced, and traditional modelling 

methods could face challenges in adapting to this era of spatial big data (Evans et 

al., 2014; Lee & Kang, 2015). GeoAI has emerged as a crucial and transformative 

element in urban geography research and applications. By integrating AI with 



 
 

 

spatial (and temporal) aspects, GeoAI offers promising solutions for mining, 

interpreting, and predicting urban and human dynamics (Gao, 2021; Gao et al., 

2023), revolutionising ways to study complex urban systems. 

 

 

18.3 Geospatial Artificial Intelligence 

 
GeoAI is an interdisciplinary field representing the intersection of geography and 

AI (Gao, 2021). It empowers the research to investigate geospatial phenomena and 

enhance the understanding of human habitation (Liu & Biljecki, 2022; Mai et al., 

2022). 

At its core foundation, GeoAI builds on the principles and theories of GIS, 

automating the processing and analysis of vast and intricate geospatial datasets. 

Machine learning is integral to the functionality of GeoAI, providing the analytical 

power needed to handle the complexity and scale of modern geospatial data. 

However, conventional machine learning methods face limitations in interpreting 

the ever-growing and increasingly complex urban data, which often presents 

high-dimensionality and non-linear relationships that characterise the dynamic 

and complex nature of urban-human interactions. The rise of deep learning and 

neural networks has marked a turning point in addressing these challenges (Grek- 

ousis, 2019). Deep learning algorithms, particularly convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), have the ability to automatically 

learn hierarchical features from raw data, rendering them particularly well-suited 

for tasks involving large-scale and heterogeneous geospatial datasets. For instance, 

CNNs are highly effective in image recognition tasks, such as detecting urban scenes 

and objects from street view images (Biljecki & Ito, 2021; Ito et al., 2024), while 

RNNs excel at capturing temporal patterns in time-series data, such as predicting 

traffic flows (Medina-Salgado et al., 2022) or urban growth (Quadri et al., 2024). 

Yet, GeoAI is more than merely applying deep learning methods to geographical 

problems. The emergence of graph neural networks (GNNs) has introduced a new 

dimension to GeoAI by integrating geographic theories directly into the models, 

thereby making them spatially explicit (Liu & Biljecki, 2022). While traditional 

deep learning techniques, such as CNNs and RNNs, have been effective in handling 

grid-based and sequential data, they often struggle to represent and analyse the 

complex, non-Euclidean structures inherent in certain types of geographic data. 

For example, urban networks, transportation systems, and social interactions are 

more accurately represented as graphs, where nodes correspond to entities like 

locations or individuals, and edges denote the spatial relationships or interactions 

between them. GNNs, which are able to process graph data, effectively address 

these limitations by providing a framework specifically designed to accommodate 

the irregular and interconnected nature of geospatial data (Mai et al., 2022). 

By incorporating geographic theories, such as Tobler’s First Law of Geography, 

GNNs allow GeoAI models to account for essential spatial concepts like spatial 

autocorrelation, proximity effects, and network dynamics, allowing for a more 



 
 

robust understanding of geographic phenomena and deeper insights into a variety 

of complex issues (Liu et al., 2024; Lei et al., 2024). 

The field of GeoAI is rapidly evolving, with ongoing advancements and con- 

tinuous expansion of its capabilities. Emerging technologies, such as Large Lan- 

guage Models (LLMs) and other innovative approaches, provide geographers with 

unprecedented tools for analysing urban complexity. In the following sections, we 

offer a scoping review of how GeoAI has been integrated into urban geography, 

highlighting the opportunities that modern technologies present for an in-depth, 

in-situ understanding of urban environments, as well as examining their potential 

limitations. 

 

 

18.4 GeoAI in Urban Geography: Integration 

and Applications 

 
Figure 18.1 provides an overview of the key types of urban data, GeoAI approaches, 

and emerging trends and opportunities in this field. In the following sections, we 

will delve deeper into each of these components and their applications in urban 

geography. 

 

 

 

Fig. 18.1 Overview of key types of urban data, relevant GeoAI approaches, and emerging trends 

and opportunities 



 
 

 

18.4.1 Emerging Urban Data 

 
The evolvement of GeoAI techniques provides powerful tools to analyse complex 

urban spatial data, facilitating insights into urban dynamics and built environments 

that were previously unavailable and improving existing understandings by increas- 

ing spatial and temporal resolution and reliability. This section includes very recent 

examples of various developments, with a focus on novel sources or forms of urban 

data that have been leveraged with AI-assisted spatial analytics to support urban 

geography research. 

Social media data has been spotlighted (Liu et al., 2015). For example, it has 

been used to understand urban park visitation (Wei et al., 2024) and park perception 

(Zhao et al., 2024), infer the design of riverscapes (Yang et al., 2022), predict traffic 

pollution (Zhang et al., 2024), and uncover semantic footprints (Berragan et al., 

2024), among many examples in the past years. 

Another prominent medium for urban studies in the past several years has been 

street view imagery (SVI) (Liang et al., 2024a; Liu & Sevtsuk, 2024). It has been 

used to map greenery and the urban form (Biljecki et al., 2023b), conduct virtual 

audits of dwellings (Yan et al., 2024), and assess walkability (Chen et al., 2024; 

Li et al., 2024). Sensing information on humans, facilitated by SVI, has also been 

the focus of many studies recently. For example, perception studies (Ito et al., 

2024), which will be introduced more in the next section, have been commonly 

conducted in the past years thanks to the ease of reaching users around the world 

and providing the required data. The latest research efforts appear to be focused on 

change detection (Liang et al., 2023; Stalder et al., 2024), contributing to sensing 

the dynamics of cities and understanding the impacts of urbanisation. 

Apart from the continued use of such data sources, there is a continuous trend of 

investigating the usability of latent urban data for urban sensing. For example, Liang 

et al. (2024b) demonstrated that scraping information on the website of a multi- 

purpose indoor arena in New York City can enhance human mobility prediction 

under public events. Such research has been facilitated by LLMs, demonstrating 

how emerging sources of data, coupled with new means to process information, can 

unlock new applications or enhance existing ones. Another relatively underutilised 

data source is real estate ads posted in online marketplaces. For example, they 

have been used to detect new buildings and amenities (Chen & Biljecki, 2022) 

and to understand decoration patterns across neighbourhoods and cities (Liu et al., 

2019). In that space, Wang et al. (2023) have investigated the usability of reviews 

of homestays (Airbnb) to reveal the perception of neighbourhoods across multiple 

dimensions, for example, greenery, noise, and crime. 

We outline a few trends that can be observed recently. First, urban analytics is 

becoming multi-modal, e.g. social media data is being fused with SVI to reveal new 

insights (Wang, 2024). Second, while in the past, a lot of such data was made avail- 

able by governments and companies, now it is being increasingly crowdsourced. 

For example, weather data is progressively available from personal weather stations 

(Brousse et al., 2024), and crowdsourced data on buildings is becoming growingly 



 
 

available thanks to initiatives such as OpenStreetMap (Biljecki, Chow, & Lee, 

2023a). Third, thanks to the wide availability of urban data and their harmonisation, 

research is becoming increasingly global and includes multiple cities (Hou et al., 

2024). Finally, some of these lines of research have started being supported with 

open data, e.g. social media (Poorthuis et al., 2024) and real estate (Rey-Blanco 

et al., 2024), lowering the entry barriers for technical research and simplifying the 

process of obtaining relevant datasets. 

 

 

18.4.2 Current Trends and Applications 

 
The integration of GeoAI techniques has benefitted an array of urban geography 

studies. In particular, it has facilitated notable advancements in applications of rising 

importance, such as urban climate mitigation, circular cities, and urban perception, 

owing to the increasing focus on sustainable and inclusive urban development. 

In the realm of urban climate, deep learning models are being leveraged to anal- 

yse complex environmental data and support decision-making processes (Patel et al., 

2023). A notable development in this area is the use of Multimodal LLMs, which 

offer a comprehensive method for integrating diverse data types, including satellite 

imagery, SVI, and text descriptions, to measure urban environments holistically. 

For example, Fujiwara et al. (2024) developed a multimodal model that combines 

microclimate data with street-level and satellite imagery to predict microclimate 

variables (e.g. air temperature, relative humidity, wind speed, and global horizontal 

irradiance) at high spatial and temporal resolutions. These models allow researchers 

to consider more comprehensive features and depict cities as inherently complex 

systems, enhancing our understanding and management of urban spaces. 

Benefiting from the recent trends of the digital twin and circular economy, 

GeoAI is poised to play a transformative role in advancing the circular digital built 

environment to enhance sustainability, efficiency, and resilience in urban spaces. 

One of the primary ways GeoAI contributes to this is through resource optimisation 

and lifecycle management (Mortaheb & Jankowski, 2023). For instance, it can 

model the potential effects of different urban layouts on energy consumption, 

waste generation, and resource use, enabling planners to design cities that are both 

efficient and resilient (Mortaheb & Jankowski, 2023). Additionally, GeoAI can aid 

in designing flood-resistant infrastructure that not only protects urban areas but also 

incorporates materials and designs that can be easily maintained, repurposed, or 

recycled (Zhou et al., 2023), thus contributing to a more liveable urban environment 

for the commonwealth of its residents. 

While urban living conditions are impacted by external causes such as climate 

change and the increasing focus on circular economy development, human per- 

ception consistently shapes our understanding of the urban environment. Here, 

we feature the urban perception studies that apply perception-based labelling to 

images, providing a quantitative and extensive evaluation of human responses to 

built environments. These studies typically collect subjective impressions from par- 



 
 

 

ticipants using images, categorise the images with perceptual labels, and transform 

these labels into measurable attributes of urban environments (Ito et al., 2024). 

A foundational contribution to this field is the crowdsourced dataset known as 

Place Pulse 2.0, developed by Dubey et al. (2016). This dataset encompasses six 

attributes—depressing, boring, beautiful, safe, lively, and wealthy—and covers data 

from 56 cities, significantly expanding the scope of urban perception research. Not 

only has this dataset enabled extensive subsequent research on human perceptions 

across various regions (Zhang et al., 2018; Liang et al., 2023; Hou et al., 2024), but 

it has also broadened the urban perception framework to encompass other sectors of 

the built environment, such as soundscapes (Zhao et al., 2023), waterscapes (Luo et 

al., 2022), and building facades (Liang et al., 2024a). 

Facing the growing need for comprehensive urban understanding, GeoAI, with 

its powerful capabilities to integrate and analyse multi-source data, is demonstrating 

significant potential in this evolving field. Meanwhile, due to the increasing attention 

on the concept of ‘Technology for Social Good’, which urges the shift from 

traditional top-down technological development that often focuses on big data 

analysis to individual-level ‘small data’ analytics, there is a growing need to bridge 

the technology on the urban-scale analysis to better support individuals’ living 

experiences, thus enabling the GeoAI methods to be human-centric. 

 

 

18.4.3 Towards Human-Centric Integrated GeoAI 

 
The integration of GeoAI with human-centric approaches in urban geography is 

emerging as a crucial direction for future research. This convergence aims to bridge 

the gap between advanced technological capabilities and the nuanced understanding 

of urban systems that geographers and urban planners possess, to bring adequate 

attention to not only the environment, but also more importantly, the people. 

Psychological-integrated urban sensing studies represent an evolving interdis- 

ciplinary field that synergises traditional psychological insights with cutting-edge 

urban sensing technologies. The psychological patterns embedded within urban 

environments offer a deeper understanding of how these patterns influence and 

shape the experiences and well-being of residents. Unlike conventional methods 

that primarily rely on SVI for urban observation, as discussed in the previous 

section, there is a noticeable shift towards incorporating psychological data, which 

underscores the growing recognition of the importance of human perception and 

mental states in shaping urban landscapes, leading to more nuanced analyses and 

interventions that consider both the physical and psychological dimensions of urban 

life (Helbich, 2018). 

Wearable devices like smartwatches with sensors for tracking heart rate variabil- 

ity and skin conductance have become essential in urban sensing studies (Tartarini 

et al., 2023). These tools monitor stress levels as people move through the city, cap- 

turing real-time physiological responses alongside contextual data like temperature, 

noise, and air quality, allowing researchers to understand how urban environments 



 
 

impact well-being and identify stress patterns over time. Beyond stress monitoring, 

these devices evaluate urban design interventions aimed at improving comfort and 

reducing stress (Liu et al., 2023). 

Additionally, sophisticated physiological devices like EEGs are increasingly 

used in urban research (Mavros et al., 2016). EEGs measure brain activity, offering 

insights into cognitive and emotional states in response to urban environments. 

Their portability and ease of use now allow data collection in real-world settings, 

enhancing our understanding of the relationship between the built environment and 

psychological well-being (Aspinall et al., 2015; Bolouki, 2023). 

Through integrating physiological and machine insights, human-centric GeoAI 

approaches prioritise urban citizens’ needs, behaviours, and experiences, ensuring 

that AI-driven analyses and solutions are technically sophisticated and socially 

relevant. A recent example proposed by Liu et al. (2023) constructs the pedestrians 

and their interactions with surrounding environments as human-centric dynamic 

graphs to study outdoor comfort. These graphs account for spatio-temporal vari- 

ations observed in human walking patterns, including changes in sound levels, 

solar intensity, and visual perceptions. This research enables a two-way interaction 

between pedestrians and the GeoAI model, hence, providing individual tailored 

comfort prediction to navigate human outdoor activities. 

 

 

18.4.4 Uncertainties 

 
While the integration of AI with urban geography offers significant potential, it also 

introduces several uncertainties that researchers and practitioners must carefully 

consider. These uncertainties stem from various sources, including data quality, 

model limitations, and the inherent complexity of urban systems, necessitating a 

cautious and informed approach. 

A primary source of uncertainty in GeoAI applications stems from the quality 

and representativeness of the data used (Crampton et al., 2013; Shelton et al., 

2015; Poorthuis et al., 2023). Urban data, particularly when sourced from user- 

generated content or areas with limited digital infrastructure, can be incomplete, 

biased, inconsistent, or unrepresentative of the population. For instance, social 

media users in London are predominantly wealthy, young, and educated (Ballatore 

& De Sabbata, 2018). These limitations not only pose challenges in constructing 

accurate GeoAI models but also risk introducing biases in the interpretation of 

results (Graham et al., 2014). Furthermore, a study of OpenStreetMap’s building 

data completeness reveals significant regional variability, with larger metropolitan 

areas typically having more complete datasets (Herfort et al., 2023). SVI also suffers 

quality and availability issues that are heterogeneous both spatially and temporally 

(Hou & Biljecki, 2022). Such variability in urban data raises crucial questions about 

the generalisability of AI models trained on data from one urban context to other 

cities with differing socio-economic, cultural, or physical characteristics, potentially 

limiting the broad applicability of GeoAI solutions. 



 
 

 

Furthermore, the inherent complexity and unpredictability of urban systems add 

another layer of uncertainty. Cities are dynamic, adaptive systems influenced by 

countless interacting factors, many of which are difficult to quantify or predict. 

These factors include economic shifts, population movements, policy changes, 

and environmental conditions, all of which evolve in non-linear and sometimes 

unexpected ways (Jacobi et al., 2010). AI models, despite their sophistication, 

may struggle to capture the full complexity of urban phenomena, potentially 

overlooking important nuances or emergent patterns. For instance, social dynamics 

such as neighbourhood gentrification are subtle and multi-faceted processes that 

can be inadequately represented in datasets typically used for training AI systems. 

These intricacies challenge accurate modelling, often requiring advanced, context- 

specific adaptations that can complicate the development and scaling of general 

GeoAI solutions. A critical need remains for ongoing refinement of these data 

and modelling capabilities to better understand and capture a richer contextual 

representation of urban environments (Yap et al., 2023). 

Addressing these uncertainties requires interdisciplinary collaboration, robust 

validation techniques, and a commitment to ethical and transparent AI practices. 

A notable effort towards this direction is the development of explainable AI (XAI) 

techniques specifically tailored for urban geographic applications enhancing the 

transparency and accountability of AI-driven urban research (Liu et al., 2024). As 

the field of GeoAI in urban geography continues to evolve, developing strategies 

to navigate these uncertainties will ensure that AI-driven approaches contribute 

positively to urban understanding and development. 

 

 

18.5 Conclusion 

 
The integration of GeoAI into urban geography marks a significant leap forward. It 

reforms the way we study how cities are constructed, governed, and experienced. By 

incorporating advanced computing techniques with domain knowledge, it became 

possible to analyse complex urban data with unprecedented precision, efficiency, 

and scale. Such an advancement facilitates more timely, granular, and data-driven 

insights that can fundamentally improve urban planning and decision-making, and, 

at the same time, enable a more humanistic focus. However, integrating GeoAI 

comes with challenges, particularly in managing the uncertainties inherent in data 

quality, model transparency, and the dynamic nature of urban environments. To 

fully leverage the potential of GeoAI, it is crucial to adopt strategies that enhance 

data reliability, adequately quantify and communicate uncertainty, and ensure that 

AI models are both interpretable and contextually relevant. This will help GeoAI 

provide more accurate and actionable insights, ultimately leading to more informed 

and effective urban planning and policy-making. 
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