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Abstract

Building properties, such as height, usage, and material, play a crucial role in spa-

tial data infrastructures, supporting various urban applications. Despite their importance,

comprehensive building attribute data remain scarce in many urban areas. Recent advances

have enabled the extraction of objective building attributes using remote sensing and street-

level imagery. However, establishing a pipeline that integrates diverse open datasets, ac-

quires holistic building imagery, and infers comprehensive building attributes at scale re-

mains a significant challenge. Among the first, this study bridges the gaps by introduc-

ing OpenFACADES, an open framework that leverages multimodal crowdsourced data to

enrich building profiles with both objective attributes and semantic descriptors through

multimodal large language models. First, we integrate street-level image metadata from

Mapillary with OpenStreetMap geometries via isovist analysis, identifying images that

provide suitable vantage points for observing target buildings. Second, we automate the

detection of building facades in panoramic imagery and tailor a reprojection approach to

convert objects into holistic perspective views that approximate real-world observation.

Third, we introduce an innovative approach that harnesses and investigates the capabil-

ities of open-source large vision-language models (VLMs) for multi-attribute prediction

and open-vocabulary captioning in building-level analytics, leveraging a globally sourced

dataset of 31,180 labeled images from seven cities. Evaluation shows that fine-tuned VLM

excel in multi-attribute inference, outperforming single-attribute computer vision models

1

This is the Accepted Manuscript version of an article published by Elsevier in the journal ISPRS Journal of
Photogrammetry and Remote Sensing in 2025, which is available at:
https://doi.org/10.1016/j.isprsjprs.2025.10.014
Cite as: Liang X, Xie J, Zhao T, Stouffs R, Biljecki F (2025): OpenFACADES: An open framework for
architectural caption and attribute data enrichment via street view imagery. ISPRS Journal of Photogram-
metry and Remote Sensing 230: 918–942.

© 2025, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.isprsjprs.2025.10.014
http://creativecommons.org/licenses/by-nc-nd/4.0/


and zero-shot ChatGPT-4o. Further experiments confirm its superior generalization and ro-

bustness across culturally distinct region and varying image conditions. Finally, the model

is applied for large-scale building annotation, generating a dataset of 1.2 million images

for half a million buildings. This open-source framework enhances the scope, adaptabil-

ity, and granularity of building-level assessments, enabling more fine-grained and inter-

pretable insights into the built environment. Our dataset and code are available openly at:

https://github.com/seshing/OpenFACADES.

Keywords: Building exteriors, Street-level, Volunteered geographic information,

ChatGPT, Multi-task learning, SDI

1. Introduction

Buildings, as prominent artifacts within urban settings, serve as vital indicators of the

management, transformation, and overall dynamism of the built environment. Their phys-

ical characteristics, including geometry, height, function, material, condition, and style,

are the key parameters that not only support sustainable urban development but also re-

flect economic progress and cultural evolution over time (Biljecki et al., 2021). Such rich

building-level data has been instrumental in a range of applications, such as urban climate

simulations for improved environmental planning (Creutzig et al., 2019), building energy

modeling for resource optimization (Kumar et al., 2018; Roth et al., 2020), estimation

of urban material stocks for the circular economy (Raghu et al., 2023), and disaster im-

pact assessments to inform effective response and recovery efforts (Westrope et al., 2014).

Moreover, these data support more nuanced analyses of population distributions (Schug

et al., 2021), socio-economic conditions (Feldmeyer et al., 2020), as well as deeper un-

derstanding of the impact on human behaviors (Wang et al., 2016) and public percep-

tion (Liang et al., 2024). Hence, more comprehensive and openly accessible geospatial

data on building can enable the formulation of nuanced urban planning policies, fostering

locally informed and globally connected approaches to efficiently support urban resilience

and sustainability (Elmqvist et al., 2019).
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Traditionally, obtaining building attributes has involved expert evaluation, government

records, or crowdsourced labeling, which often require field studies. This approach limits

coverage and efficiency, leaving many buildings without detailed information. Although

platforms like OpenStreetMap (OSM) and government databases now contain diverse ur-

ban information, the incompleteness and uneven geographical distribution of global build-

ing features hinder their usability across larger regions (Biljecki et al., 2023; Milojevic-

Dupont et al., 2023; Lei et al., 2023; Herfort et al., 2023; Florio et al., 2025). With their

rapid development, remote sensing-based methods have become a standard approach for

extracting building information from aerial and satellite imagery, including attributes such

as building height (Wu et al., 2023b; Frantz et al., 2021), and types (Du et al., 2015; Zhao

et al., 2019). Remote sensing provides broad coverage, reduces reliance on ground sur-

veys, and enables high-resolution tracking of urban changes over time. In parallel, ma-

chine learning methods that leverage geometric and built environment information have

been widely applied to enhance the coverage and accuracy of building data (Roy et al.,

2023; Nachtigall et al., 2023; Lei et al., 2024; Wang et al., 2024c). Despite the advance-

ments, the top-down perspective poses inherent challenges, as critical vertical details of

structures remain difficult to capture from overhead imagery.

The emergence of easily accessible Street View Imagery (SVI) has transformed the

way buildings are analyzed, providing a ground-level, bottom-up perspective that captures

architectural details often obscured in aerial or satellite imagery (Biljecki and Ito, 2021;

Gaw et al., 2022; Zhang et al., 2024a). Leveraging this capability, numerous studies have

integrated deep learning with SVI to extract and profile various building attributes, includ-

ing height (Yan and Huang, 2022; Fan et al., 2024), type and usage (Kang et al., 2018; Zhao

et al., 2021; Ramalingam and Kumar, 2023), architectural style (Lindenthal and Johnson,

2021; Sun et al., 2022b), and facade materials (Xu et al., 2023; Raghu et al., 2023; Chen

et al., 2024a). Beyond building profiling, these integrations also support a range of practical

applications, including risk assessment (Pelizari et al., 2021; Wang et al., 2021), refinement

of 3D building models (Zhang et al., 2021), and building energy efficiency estimation (Sun

et al., 2022a; Mayer et al., 2023). These advancements have significantly contributed to

SVI-based urban studies, enabling fine-grained, large-scale geospatial analyses.

Despite advancements in SVI-based methods for inferring building attributes, various
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challenges limit scalability and adaptability: (1) existing datasets struggle with uncertainty

due to limited angular coverage in perspective views or distortions in panoramic images,

hindering comprehensive observations; (2) reliance on proprietary data restricts accessibil-

ity, transparency, and adaptability, with ambiguous licensing further limiting research util-

ity and inclusivity (Helbich et al., 2024); (3) while some efforts align visual data with ge-

olocation, annotations often focus on isolated attributes, requiring separate models. Multi-

task learning has been explored (Chen et al., 2022), but class diversity remain constrained,

limiting the ability to capture architectural complexity for more inclusive and interpretable

analyses. Consequently, SVI-based building datasets offering holistic structural perspec-

tives, fully open data, and comprehensive architectural insights remain scarce.

Vision-language models (VLMs), uniting computer vision (CV) and natural language

processing, have demonstrated the ability to interpret complex visual relationships, reason

about scenes, and generate semantically rich descriptions (Li et al., 2024a). In the remote

sensing domain, vision-language tasks have demonstrated promise for multi-scale feature

understanding, multi-task learning, and applications such as visual question answering, im-

age captioning, and semantic segmentation (Zia et al., 2022; Hu et al., 2025; Dong et al.,

2024; Wang et al., 2024a). More recently, multimodal large language models (MLLMs)

have advanced these capabilities by integrating deep contextual and semantic represen-

tations learned from massive, multimodal datasets, thereby enabling more nuanced and

precise interpretations of visual data. This versatility highlights their potential to serve as

foundational instruments in SVI-based building research, by enhancing the characteriza-

tion of building properties, streamlining multi-task learning, and transcending predefined

label sets in the analysis of facade features.

To advance fine-grained, bottom-up observations of buildings, we propose an open

framework, OpenFACADES, that enriches a variety of building properties from a street-

level perspective by leveraging multimodal crowdsourced inputs and open-source MLLMs.

First, we utilize open-source building footprints and SVI to perform visibility simulations

that geospatially align building geometries with corresponding SVI shooting locations.

Second, we introduce an innovative pipeline that detects individual buildings based on

their visible angles and acquires holistic building images using a custom image reprojec-

tion method. Third, we assemble one of the largest global, multi-attribute building image
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datasets by combining crowdsourced building attributes with high-quality text descriptions

generated by state-of-the-art MLLMs. Leveraging this dataset, we are among the first to

introduce tailored MLLMs for building profiling through multi-task learning, encompass-

ing both single- and multi-attribute prediction tasks as well as open-vocabulary captioning.

Furthermore, we present an in-depth comparative analysis of model performance across

various hyperparameter settings, cross-city generalization scenarios, and image quality

variations.

The primary contributions of this work are threefold:

• Developed a reproducible methodology that (1) geolocates, detects, and acquires

holistic building images from crowdsourced SVI; (2) integrates these images with

crowdsourced building data to create an open and structured building image dataset;

and (3) enables future scalability by dynamically retrieving the latest available data

from these sources.

• Compiled an open global building dataset, consisting of (1) 31,180 individual build-

ing images from seven cities across three continents, annotated with attribute labels

from OSM and text descriptions generated by ChatGPT-4o; and (2) large-scale au-

tomated annotations on 1.2 million images covering over half a million buildings.

Each image is linked to its geospatial location and enriched with diverse attributes

(e.g., building type, number of floors, age, and surface material) along with detailed

textual descriptions. This forms the OpenFACADES dataset, one of the largest such

resources, spanning multiple urban morphologies.

• Introduced the first benchmark open-source MLLMs that (1) perform multi-attribute

prediction on buildings, achieving robust and more accurate image labeling perfor-

mance than zero-shot ChatGPT-4o; (2) generate descriptive captions on architectural

features, providing comprehensive information beyond standard building attributes;

and (3) demonstrate enhanced robustness and generalizability relative to prior CV

models.

In summary, this work presents a comprehensive and reproducible framework that

leverages multimodal crowdsourced data to develop a global street-level building dataset

for training multimodal models. This approach enhances the scope, adaptability, and ac-
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curacy of urban analysis, enabling more detailed and interpretable assessments of the built

environment.

2. Related work

2.1. Existing street-level building datasets

With advances in geospatial artificial intelligence technologies, research in recent years

has increasingly leveraged remote sensing datasets such as high-resolution satellite and

aerial imagery, and LiDAR to enhance urban applications. These datasets enable object-

based image analysis, pixel-based classification, and semantic segmentation of urban struc-

tures, providing critical insights for land use mapping, urban morphology analysis, and

spatiotemporal change detection. As key urban components, buildings have spurred the

creation of domain-specific datasets and methodologies to support applications such as ur-

ban sustainability evaluation through rooftop attributes extraction (Wu and Biljecki, 2021),

infrastructure management via automated land cover classification (Boguszewski et al.,

2021), and disaster management through assessing damage (Gupta et al., 2019; Li et al.,

2025a).

SVI, rapidly emerging as a prominent proximal remote sensing data source, has been

leveraged to generate spatially enriched urban datasets that facilitate fine-grained semantic

understanding of complex urban scenes (Biljecki and Ito, 2021). Among these, building-

centric SVI datasets enable facade-level feature extraction, offering images that capture

textural, material, and architectural features of building exteriors for environmental mod-

eling. For example, building age and architectural style have long been studied for their

links to building thermal performance (Tooke et al., 2014; Aksoezen et al., 2015; Nouvel

et al., 2017) and real estate pricing (Zietz et al., 2008; Lindenthal and Johnson, 2021). Re-

cent advances include the work of Sun et al. (2022b), which applies deep convolutional

neural networks (CNNs) to classify buildings in Amsterdam, the Netherlands, into archi-

tectural periodization categories (e.g., revival, postwar). Material characterization (Xu

et al., 2023; Chen et al., 2024a), another aspect critical for building energy simulation

(Nouvel et al., 2017), also supports circular economy objectives by enabling lifecycle ma-

terial tracking (Raghu et al., 2023) and risk assessment (Wang et al., 2021). Among these
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efforts, Raghu et al. (2023) employ a multi-city material categories (brick, stucco, etc.) us-

ing geotagged SVI perspective views, aligning visual patterns with ground-truth material

information for scalable building classification. Combining the aspects of building age and

material, Ogawa et al. (2023) introduced a method to detect and geolocate buildings from

panoramic images, automatically annotating them with objective building data in Kobe,

Japan.

Furthermore, building type or usage, a critical attribute in urban remote sensing and

land use classification, is also central to street-level research (Kang et al., 2018; Zhao et al.,

2021; Lindenthal and Johnson, 2021; Ramalingam and Kumar, 2023; Li et al., 2025b). A

seminal work by Kang et al. (2018) introduces the BIC_GSV dataset, a multi-city geospa-

tial database of 19,658 SVI-derived building facades categorized into eight classes (e.g.,

apartment, church, garage, etc.) across North America. These ground truth labels are

generated through view-direction-aligned spatial joins with OSM building footprints, en-

abling parcel-scale urban pattern analysis. Advancing this, Zhao et al. (2021) developed

the BEAUTY dataset, which extends BIC_GSV by incorporating both SVI-based land use

classification (e.g., residential, commercial, etc.) and multi-class building detection. Other

similar research frameworks have also been applied to large-scale urban studies, integrat-

ing additional building attributes such as floor number estimation, abandoned house detec-

tion, and seismic risk assessment (Iannelli and Dell’Acqua, 2017; Zou and Wang, 2021;

Rosenfelder et al., 2021; Pelizari et al., 2021; Ghione et al., 2022). These workflows not

only enable location-based building retrieval but also demonstrate cross-modal alignment

of SVI with open geospatial building footprints.

However, several challenges still remain in street-level building research, limiting

the scalability and adaptability of current approaches. First, although many efforts have

aligned visual information with building geolocation (Kang et al., 2018; Sun et al., 2022b;

Ogawa et al., 2023), they are often either reliant on perspective views with restricted an-

gular coverage, limiting visibility of upper building elements, or on panoramic images

prone to severe distortions, misaligning with actual observations. Second, while vari-

ous SVI-based building datasets have been established, their dependence on data derived

from proprietary platforms introduces limitations related to accessibility, transparency, and

adaptability. The ambiguous licensing terms of such datasets further constrain their utility
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for diverse research applications and compromise the integrity of work built upon them,

thereby hindering inclusivity within the research community (Helbich et al., 2024). In

a recent trend, crowdsourced SVI platforms have garnered attention in urban studies by

producing diverse, publicly accessible imagery. Examples include annotating points of

interest (Zarbakhsh and McArdle, 2023), image status (Hou et al., 2024), human percep-

tion (Yang et al., 2025), and road surface type (Kapp et al., 2025). Among these, Hou

et al. (2024) curate a manually labeled dataset to assess 10 million crowdsourced SVIs

from 688 cities, enriched with metadata such as platform, weather, and lighting conditions,

while Kapp et al. (2025) utilize OSM tags and ChatGPT-4o to label and amplify underrep-

resented road surface classes, resulting in 9,122 labeled images. These initiatives illustrate

the potential of crowdsourced data for broad, inclusive urban analyses.

2.2. Vision models in urban analytics

With the rapid development of deep learning techniques over the past decade, diverse

methods have been developed to extract urban cues from visual information. In terms of

building facade research, in particular, CNNs have been widely employed due to their

strong feature representation capabilities. Among them, VGG, DenseNet, and ResNet

have been extensively applied to achieve, or serve as benchmarks for, the accurate clas-

sification and evaluation of building functions (Kang et al., 2018), materials (Ghione et al.,

2022; Raghu et al., 2023), architectural styles (Lindenthal and Johnson, 2021; Sun et al.,

2022b; Ogawa et al., 2023), and human perceptions (Liang et al., 2024). Additionally, Vi-

sion Transformers (ViTs) have emerged as powerful alternatives, leveraging self-attention

mechanisms to capture long-range dependencies in building images. Recent studies have

demonstrated the effectiveness of ViTs in urban analytics, achieving state-of-the-art per-

formance in material recognition, and construction period prediction (Raghu et al., 2023;

Ogawa et al., 2023). Beyond that, hybrid models combining various model backbones

have been further developed to consider multi-dimensional features as input, improving

comprehensiveness and generalizability in multi-scale urban analysis (Huang et al., 2023;

Jia et al., 2024; Fujiwara et al., 2024).

However, the annotation of building attributes remains a fundamental limitation in these

approaches. Labels are often restricted to isolated attributes, such as building type or mate-
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rial, necessitating the training of separate models for different objectives. While multi-task

learning frameworks have been explored (Chen et al., 2022), class diversity and model

scalability remain constrained. Moreover, annotation schemes are typically predefined

and rigid due to the availability of data, preventing adaptation to unannotated or emergent

building characteristics, such as mixed-use functions or hybrid architectural materials. This

lack of multi-dimensional, context-aware labels significantly limits the ability to capture

architectural complexity, hindering the development of comprehensive, inclusive, and in-

terpretable approaches for building analysis.

Rapid advancements in LLMs offer new avenues for extracting nuanced insights about

complex urban environments. Notably, VLMs combine visual and linguistic modalities,

leveraging deep semantic reasoning to establish rich connections between visual concepts

and textual descriptions (Wu et al., 2023a; Li et al., 2024a). Building on these capabilities,

recent work in remote sensing demonstrates how VLMs can exceed traditional CV meth-

ods by producing more context-aware and human-like interpretations (Al Rahhal et al.,

2022; Zia et al., 2022; Hu et al., 2025), thereby providing not only precise visual recog-

nition but also a semantic understanding of objects and their relationships within complex

environments. In terms of street-level building research, recent studies have explored the

state-of-the-art models for automated building annotation. For example, Li et al. (2024b)

employed ChatGPT-4o to generate structured multi-label annotations for buildings using

SVIs across multiple cities. Similarly, Zeng et al. (2024) assessed the model’s performance

in zero-shot building age prediction, finding that ChatGPT-4 effectively estimates the con-

struction period of buildings. However, deploying proprietary LLMs such as ChatGPT-4o

at scale presents limitations. Model inference relies on API-based access, which incurs

high computational costs, making large-scale applications financially and computationally

restrictive, which also constrains the efficiency for fine-tuning, limiting their adaptability

for domain-specific urban studies. To address these challenges, recent open-source ini-

tiatives have produced diverse series of LLMs, including Qwen-VL (Wang et al., 2024b),

Llama (Dubey et al., 2024), and InternVL (Chen et al., 2024b), enabling greater customiza-

tion and efficiency in downstream tasks. These models exhibit unified capabilities to pro-

cess multi-dimensional inputs, generating context-aware descriptions informed by their

pretraining on large-scale, diverse datasets. This capability holds significant potential for

9



advancing street-level urban analysis, as their ability to interpret human-centric observa-

tions closely aligns with how individuals perceive and contextualize the built environment.

Hence, we propose a reproducible methodology for integrating open-source multi-

modal building data from global cities into a comprehensive dataset, incorporating objec-

tive attributes and detailed captions. Table 1 provides an overview of existing SVI datasets

related to building attributes, highlighting how our contribution addresses current limi-

tations while significantly expanding the scale, scope, and dimensionality of SVI-based

datasets for building-related research. This advancement not only enhances the accessibil-

ity and adaptability of building datasets but also paves the way for broader, more inclusive,

and scalable applications in urban analytics.

Table 1: Characteristics of existing SVI-based datasets constructed for building-oriented CV and urban re-
search applications, and the features of the dataset we established in this research (GSV: Google Street View).

Studies Purpose Lineage Coverage Category

Task Building attribute
Image
source

Image type
No. of
labeled
images

No. of
cities

Continent(s)

BIC_GSV
(Kang et al.,

2018)

image clas-
sification

type GSV perspective 19,658
More

than 30
North

America
apartment, church, garage, house, industrial,
office building, retail, roof (8 categories)

BEAUTY (Zhao
et al., 2021)

image clas-
sification
and object
detection

type GSV perspective 19,070
More

than 30
North

America

Image classification: residential,
commercial, public, industrial (4
categories);
Multi-class detection: apartment, church,
garage, house, industrial, office building,
retail, roof (8 categories).

Lindenthal and
Johnson (2021)

image clas-
sification

age GSV perspective 29,177 1 Europe
Georgian, early Victorian, late
Victorian/Edwardian, interwar, postwar,
contemporary, revival (7 categories).

Raghu et al.
(2023)

image clas-
sification

surface material GSV perspective 985 3
Asia, North
America,
Europe

brick, stucco, rustication, siding, wood,
metal, other (7 categories)

SVI4BuildingFunc
(Li et al.,
2025b)

object
detection

type GSV panoramic 15,400 4
North

America,
Europe

varies by city (e.g., high residential, low
residential, commercial, office, walk-up
buildings, mixed-up buildings; 5 to 6
categories per city)

OpenFACADES

Image
labeling

and
captioning

type, age, floor,
surface material,

feature
description

Mapillary
individual
building
images

31,180 7

North
America,
Europe,

Asia

Type: apartments, house, retail, office, hotel,
industrial, religious, education, public,
garage (10 categories);
Surface material: metal, glass, brick, stone,
concrete, wood, plaster (7 categories);
Age: numeric value;
Floor: numeric value.
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3. Methodology

In this study, we introduce OpenFACADES, a comprehensive framework for acquir-

ing building images from SVI and automatically annotating them with crowdsourced data.

This framework facilitates the development of large multimodal models tailored for archi-

tectural attributes question-answering and captioning. The framework is structured into

three main steps, as illustrated in Figure 1:

(1) Integrating multimodal crowdsourced data. Initially, crowdsourced SVI metadata

and building data are collected for research areas. Then, isovist analysis is performed to

simulate the theoretical angles of view (AOV) from each camera location to the target

structures. SVIs with optimal visibility are then retrieved and filtered by image features to

ensure that only high-quality candidates are retained for subsequent analysis.

(2) Retrieving building image data. Based on the geospatial AOVs simulated, we map

the relative viewing angles and detect target buildings within the image space. This process

enables us to precisely identify associate building information with their visual representa-

tions. Then, based on the coordinates of bounding boxes, building images are reprojected

from panoramic to perspective view, generating holistic building images. These images

further undergo a filtering process to identify high-quality and suitable building views.

(3) Establishing dataset and multimodal models. Building images with available

crowdsourced data form a dataset with four label types: single-attribute label, single-

attribute Q&A, multi-attribute Q&A, and captioning. Single-attribute labels are derived

from building information, while single-attribute Q&A append those attribute labels to

targeted questions, generating concise question-to-label pairs. Multi-attribute Q&A and

captioning labels are generated using ChatGPT-4o, enabling detailed textual descriptions

and structured annotations for comprehensive building attribute analysis. The last three

label types are utilized to fine-tune vision-language models, enabling a versatile model for

multi-attribute building labeling and captioning with enhanced contextual understanding.

3.1. Integrating multimodal crowdsourced data

The workflow of integrating multimodal crowdsourced data for building analysis is

illustrated in Figure 2. The process includes:
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Figure 1: General framework for integrating multimodal crowdsourced data to establish a street-level build-
ing dataset and develop multimodal models. Data: (c) Mapillary and OpenStreetMap contributors.

Image data preparation. At the first stage, the raw metadata of street-level im-

age data from crowdsourced platform is obtained within study areas before request-

ing the images. Here, Mapillary is chosen for its extensive global coverage, high-

quality user-generated content, and open-access policies that enable reproducible and

scalable urban research (Hou and Biljecki, 2022; Kapp et al., 2025; Danish et al.,

2025). Specifically, the metadata, comprising image type ( is_pano ), location coordi-

nates ( computed_geometry ), compass angle

( computed_compass_angle ), capture time ( captured_at ), and quality indicator

( quality_score ), is utilized to structure sorting and quality assessments. Filtering op-
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erations select panoramic imagery ( is_pano=True ), remove images captured outside the

defined study area, exclude multiple images from the same spatial point to prevent redun-

dant viewpoints, and discard those with poor resolution or quality defects. The output of

this phase is a curated set of image metadata, with their corresponding unique image IDs,

coordinates, and compass angles, prepared for subsequent spatial analyses.

Figure 2: Workflow for obtaining and integrating suitable multimodal crowdsourced data, combining street-
level imagery from Mapillary and building information from OpenStreetMap, along with external sources
such as Overture Maps and government data, to harmonize building dataset. Data: (c) Mapillary and Open-
StreetMap contributors.

Building data preparation. In parallel, building geometries and associated metadata

are retrieved from OpenStreetMap (OSM)1. Data harmonization is then conducted to sup-

plement missing building footprints and insufficient building attributes from other data

sources, such as Overture Maps2 and government datasets. Attributes include unique iden-

tifiers, building type, facade material, number of floors, construction dates, and polygon

1https://openstreetmap.org/
2https://overturemaps.org/
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geometries. Inconsistencies and outliers, such as footprints representing insignificant or

extraneous structures (e.g., roof and underground structures), duplicates introduced by

overlapping contributions, or buildings located outside the target region, are systematically

removed. The remaining dataset delivers a precise, consistent, and high-quality represen-

tation of the built environment, ready for geometric calculations and alignment with the

image data.

Isovist analysis. With both image and building datasets prepared, isovist analysis is ap-

plied to compute theoretical AOV from each camera location to the target structures, build-

ing on previous studies (Lindenthal and Johnson, 2021; Ogawa et al., 2023; Fan et al.,

2025). This analysis identifies each building’s perimeter segments that fall within the cam-

era’s potential field of view and evaluates the observation efficiency of buildings from

specific vantage points. First, a search radius (e.g., 50 meter) is established to identify

surrounding buildings from the SVI capture points. Second, sampling points are gener-

ated along the polygonal geometries of buildings within the distance threshold, and lines

of sight are constructed towards all sampled points of the target buildings. Third, lines

of sight intersecting with surrounding building footprints are filtered out, leaving only the

largest angular span between the unobstructed lines, which represents the AOV to a build-

ing from a given image shooting point. Additionally, the left and right boundaries of the

AOV are recorded as azimuth angles relative to the true north, providing detailed spatial

orientation for subsequent tasks. This process identifies which buildings are potentially

visible from each image capture point, thereby aligning the building information with the

corresponding imagery metadata.

Candidate image selection. Based on the theoretical visibility of buildings, the final

stage identifies candidate images most likely to provide reliable observations. Criteria

derived from the absolute AOV values are used to eliminate images taken from excessive

distances, extreme viewing angles, or redundant perspectives. The remained imagery IDs

are then used to retrieve image data from Mapillary. Given that crowdsourced SVI can

vary in quality and may contain various errors (Hou and Biljecki, 2022), these images are

further assessed using quality metrics such as brightness, sharpness, and visual complexity
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to determine their suitability for inclusion. Images captured under unsuitable conditions

(e.g., nighttime, severe overexposure) or containing excessive visual clutter are removed

based on the CV models released in NUS Global Streetscapes (Hou et al., 2024). The result

is a curated set of candidate street-level images, optimized for integration with building

data in subsequent object detection workflows.

3.2. Retrieving building image data

Figure 3 demonstrates the pipeline for extracting and selecting building images from

street-level imagery. The process consists of three main steps: Building detection, image

reprojection and image filtering.

Building detection. Azimuth angles derived from isovist analysis are first used to map

the relative viewing angles of a building within the image space. This conversion defines

a focused AOV for the target building before applying object detection. To determine the

position of buildings within panoramic imagery, their relative horizontal coordinate ratios

are computed as follows:

Pn,i
{l,r} =

(An,i
{l,r} − Hi +C) mod 360

360
(1)

where P, which ranges from 0 to 1, represents the left (l) or right (r) horizontal coordinates

ratio of building n in the panoramic image i. The term H denotes the yaw angle when

the SVI image token, and C is an adjustable calibration constant that ranges from (0-360),

depending on the part of the image the view is oriented towards. Typically, C is set to 180

in Mapillary, indicating that the center of the image is the focal direction.

After determining the relative position of buildings in the SVI, images are cropped

using the calculated horizontal coordinate ratios to isolate the AOV focused on the target

buildings. Within the focused view, object detection is performed to identify buildings. To

accomplish this, we employ GroundingDINO, a model equipped with pre-trained weights

capable of detecting various objects using human inputs such as category names or refer-

ring expressions (Liu et al., 2023). Specifically, we use the “GroundingDINO-B” model

checkpoint, which is trained on several widely-recognized object detection datasets, in-
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Figure 3: Pipeline demonstrating the extraction and selection of building images from street-level imagery,
involving object detection, pixel coordinate transformation and reprojection, and feature-based filtering.
Data: (c) Mapillary contributors.

cluding COCO, O365, and OpenImage. By assigning the category name “building” to this

open-set detector, we generate bounding boxes around the buildings in each cropped im-

age area. This process constrains the observation area to focus on each building footprint,

enabling the association of visual observations with 2D building geometries. Addition-

ally, it facilitates the object detection model in isolating target buildings from surrounding

elements, such as adjacent structures and environmental noise.

Image reprojection. Panoramic images are formed by mapping the 3D environment onto

a 2D sphere, which causes straight lines and familiar shapes to appear curved or distorted.

After retrieving the bounding box information from the object detection, the reprojection

process is designed to correct these inherent distortions. The objective of the reprojection

is to take the portion of the panoramic image identified by the bounding box and present

it as if it were photographed by a standard pinhole camera, providing a more intuitive and

distortion-free representation of the detected object.

First, we interpret the bounding box region in terms of pixel coordinates within the

panoramic imagery, obtaining the box center as (cu, cv), along with its width and height,

which are essential for subsequent tasks. Second, a virtual pinhole camera model is con-
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structed based on the specified AOV to a target building and the bounding box width. The

focal length f and principal point (cx, cy) in camera coordinate are computed as:

f =
width

2

tan
(

AOV
2 ·

π
180

) (2)

cx =
width − 1

2
, cy =

height − 1
2

(3)

These values are used to construct the intrinsic camera matrix K, which encapsulates

the intrinsic parameters of the virtual pinhole camera. For each pixel (x,y) in the virtual

panel, the transformation from the 2D pixel location to a 3D direction in the camera’s

coordinate system is achieved by applying the inverse of K:

K =


f 0 cx

0 f cy

0 0 1

 ,

X′

Y′

Z′

 = K−1


x

y

1

 (4)

where resulting vector vcam = (X′,Y′,Z′)T represents the direction of a ray emanating from

the camera center through the corresponding pixel on the virtual image plane.

Third, to determine the approximate view direction of the bounding box, we use the

center coordinates (cu, cv) of the bounding box in panoramic coordinate system and com-

bined rotation matrix R to align the camera’s direction to the rotated direction in 3D space:

θ = (cu − 0.5) · 360, ϕ = (0.5 − cv) · 180 (5)

R = Rx(ϕ)Ry(θ) (6)

vrot = Rvcam (7)

where cu and cv are normalized to a range of [0, 1], with cu as the horizontal center and cv

as the vertical center of the bounding box region. The yaw angle θ defines the horizontal
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rotation of the camera and spans from −180◦ to 180◦. The pitch angle ϕ defines the vertical

rotation of the camera and spans from −90◦ to 90◦. The combined rotation matrix R is

formed as the product of two individual rotation matrices based on Rodrigues’ formula:

Ry(θ), which rotates the coordinate system around the y-axis (yaw), and Rx(ϕ), which ro-

tates the coordinate system around the x-axis (pitch). vcam is the original direction vector

in the camera’s coordinate system, while vrot is the new direction vector after applying the

rotations, pointing toward the desired region of the spherical panorama.

Lastly, the rotated 3D direction vector vrot = (X,Y,Z) is normalized and converted into

spherical coordinates, where longitude λ and latitude φ are calculated based on:

λ = arctan 2(X,Z), φ = arcsin(Y) (8)

The corresponding pixel coordinates (Ximg, Yimg) in the original panoramic image (equirect-

angular format) are then derived as:

Ximg =

(
λ

2π
+ 0.5

)
(Wpano − 1), Yimg =

(
φ

π
+ 0.5

)
(Hpano − 1). (9)

At these coordinates, pixel values are sampled from the original panoramic image,

and reprojected to generate the rectified perspective view using the remap function

from OpenCV library. This transformation eliminates the spherical distortions inherent

in panoramic imagery, producing a visually intuitive and geometrically corrected view

aligned with the detected object. As examples demonstrated in Figure 4, this correction

is crucial not only for preserving essential structural details for model interpretation but

also for mitigating distortions that could otherwise misalign architectural features. This

preprocessing step enhances the model’s ability to accurately analyze building attributes.

Image filtering. The features of the detected individual building images are further an-

alyzed to refine and enhance the image dataset. ZenSVI (Ito et al., 2025), an open-source

library for street-level imagery analysis, is integrated into the framework to facilitate the

extraction of image features. We analyze image features across four key dimensions: blur-

riness, brightness, semantic segmentation, and scene classification. These dimensions are

utilized to identify high-quality and suitable building images for inclusion in the dataset.

18



Figure 4: Examples of different types of building images used as input to the vision-language model, resulting
in varied responses. By generating a holistic view of individual buildings, our method facilitates a more
authentic analysis and interpretation. Data: (c) Mapillary contributors.

Blurriness is evaluated using the OpenCV Laplacian operator to filter out images with

motion blur or poor focus, while brightness assessment removes those with suboptimal

illumination. A pre-trained Place365 model (Zhou et al., 2017) excludes indoor scenes,

and semantic segmentation is applied to detect and minimize occlusions (e.g., trees, vehi-

cles, walls), ensuring that selected images predominantly showcase building facades and

maintain high visual quality.
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3.3. Establishing dataset and multimodal models

Street-level building dataset. Following the previous process, building information is

assigned to the detected buildings in the imagery. In this study, we focus on building

type, facade material, construction year (age), and number of floors, which have been

identified as essential attributes in prior studies and are supported by relatively suffi-

cient data for model training and evaluation. Specifically, we utilize labels from building

data corresponding to the categories: building , building:material , start_date ,

and building:levels in OSM alongside supplementary datasets, as mentioned in Sec-

tion 3.1. Here, building type and facade material are treated as categorical variables, while

construction year and number of floors are represented as numerical values.

From the full set of building data, we sample buildings with available category labels

to construct the dataset for subsequent model development. The dataset is assembled and

divided into training, validation, and test sets based on the following three principles: (1)

ensuring sufficient labels across all classes to avoid biased predictive accuracy; (2) main-

taining a balanced geospatial distribution across cities to represent the diversity of archi-

tectural designs; and (3) preventing the same building from appearing in both different sets

to minimize data leakage.

The dataset contains four types of labels: single-attribute label, single-attribute Q&A,

multi-attribute Q&A, and captioning labels. Single-attribute labels are used to fine-tune

CV models, serving as the baseline for evaluating the performance of common practices.

Single-attribute Q&A labels are derived from those single-attribute labels by appending

the label to specific questions about the four building attributes, thereby generating concise

question-to-label pairs based on building information. Multi-attribute Q&A and captioning

labels are generated using the state-of-the-art multimodal large language model, ChatGPT-

4o , through the OpenAI API3. This task involves prompting the model to annotate or

describe the building features visible in the images, thereby creating an image-text dataset.

Figure 5 provides detailed indication of data sources and examples of these labels.

Among these labels, the single- and multi-attribute Q&A outputs share a consistent,

structured format constrained by predefined vocabulary, whereas the captioning task pro-

3https://www.openai.com/
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vides a free-form textual description that often embeds the same attributes in more expres-

sive language, forming a hierarchical relationship with the Q&A formats. For example,

a building labeled as “brick” (material), “1920” (age), “3” (floors), and “house” (type) in

the Q&A tasks might be described in the captioning output as “a three-story house with

visible brickwork, built in the early 20th century”, reflecting increased richness in narrative

form. Inconsistencies can arise between OSM ground truth labels and ChatGPT-generated

labels that slight discrepancies (e.g., differing building floor or age estimates) occur when

ChatGPT assigns different labels to buildings with ambiguous features.

Figure 5: Different label types and data collection approaches for developing a street-level building dataset.
Data: (c) OSM and Mapillary contributors.
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Vision-language models. To address the limitations of traditional CV models in build-

ing attribute analysis, we leverage InternVL3 (Zhu et al., 2025), an open-source MLLM

designed for unified visual-language reasoning. As depicted in Figure 6, InternVL3 is

built on the “ViT-MLP-LLM” paradigm by integrating a scalable vision encoder (Intern-

ViT) (Chen et al., 2024c), a multi-layer perceptron (MLP) projector, and a large language

model (LLM). The vision encoder is InternViT-300M-448px-V2.5, a distilled variant of the

6B-parameter model optimized via dynamic high-resolution training and next token pre-

diction (NTP) loss (Chen et al., 2024b). This architecture processes 448×448 pixel image

tiles through a pixel unshuffle operation, reducing 1024 visual tokens to 256 for efficient

cross-modal alignment.

The model is selected for its general-purpose captioning and open-vocabulary clas-

sification capabilities, critical for capturing the multifaceted attributes of buildings (e.g.,

material, style, type) within a unified framework. Unlike conventional models restricted

to predefined labels, InternVL’s contrastive vision-language pretraining enables seman-

tic reasoning over diverse facade characteristics, aligning with our goal of holistic building

profiling. Full-model tuning is conducted through optimizing three components (Figure 6):

(1) InternViT-300M Vision Encoder: Retrained on street-level building images to enhance

facade feature extraction, leveraging dynamic high-resolution (448px) inputs; (2) MLP

Projector: Adjusted to align building-specific visual tokens with textual embeddings in the

LLM space; (3) LLM Head: Fine-tuned using the corpus of building characteristic descrip-

tions to generate structured captions. Here, we recast façade profiling as a multi-attribute

text prediction task: all attributes and captions are encoded in a fixed-template prompt,

and the MLLM is fine-tuned to generate that structured output. A single token-level cross-

entropy loss implicitly handles both attribute prediction and free-form captioning, without

requiring custom loss functions.

4. Experimental settings

4.1. Implementations

To implement methods mentioned in Section 3.1, we manually select cities that have

a sufficient number of panoramic images available through the Mapillary online inter-

22



Figure 6: The overall framework of the InternVL series model architecture for building-centric tasks. Data:
(c) Mapillary contributors.

face, and that also have a considerable amount of objective building attributes openly.

Ultimately, seven cities from three continents are chosen, including Amsterdam, Berlin,

Helsinki, San Francisco, Washington D.C., Houston and Manila, balancing the dataset

across both selection aspects. Among them, Helsinki is selected due to its rich availability

of building material data from the Buildings in Helsinki data4, while Amsterdam provides

diverse data on building age, to add sufficient data on according aspects.

The metadata for panoramic SVIs is first downloaded within the defined city boundaries

using the Mapillary Python Software Development Kit5, while building data is retrieved

using OSMnx (Boeing, 2017) and Overture Maps. Subsequently, the data undergoes the

process described in Section 3.1 to calculate the angle of view, evaluate observation quality,

and identify candidate images. These selected images are then utilized for building detec-

tion, image reprojection, and filtering, as detailed in Section 3.2, resulting in a collection

4https://hri.fi/data/en_GB/dataset/helsingin-rakennukset
5https://github.com/mapillary/mapillary-python-sdk
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Table 2: Image filtering criteria used for selecting building images in this study.

Feature Description Selection Rule

Mapillary metadata

Image Type Select only panoramic images is_pano = True

Location (Duplicate) Remove images taken at the same location Filter duplicates based on coordinates

Image Quality
Use Mapillary quality score ∈ [0, 1] to retain
images with valid or no score

quality_score ≥ 0.2 or
quality_score = 0

Building metadata

Building Area Retain buildings with sufficient spatial footprint area > 20 m2

Underground Exclude buildings fully underground
building:levels ≥ 0 (OSM) or
is_underground = False (Overture)

Isovist analysis

Angle of View (AOV) Exclude extreme observation angles 10° ≤ AOV ≤ 120°

Observation Coverage
Ensure valid building visibility within search
radius

At least one building within 30m

Max. Images per Building Cap the number of images per building ≤ 5 images/building

Image-based filters

File Size Remove corrupted or very small images size ≥ 20 KB

Semantic Segmentation Check for sufficient visible building surface
building_ratio ≥ 0.2, wall_ratio ≤
0.3, and vegetation_ratio ≤ 0.75

Scene Classification Exclude indoor or irrelevant content environment_type = outdoor

Blurriness Estimate clarity via Laplacian variance blur_score ≤ 30

Brightness Filter overly dark or overexposed images 20 ≤ brightness ≤ 200

of individual building images for each city.

To ensure the collection of high-quality building images, the filtering criteria we ap-

plied are detailed in Table 2. We acknowledge that stringent filtering may inadvertently

exclude images from certain regions, e.g., areas where dense greenery obstructs building

facades. To address this and support broader applicability, we have made our code flexible,

allowing users to adjust filtering thresholds to accommodate different urban contexts and

mitigate potential geographic bias. Additionally, other image features, such as distance

between the building and the vantage point, visibility coverage of the building perimeter,

and other indicators derived from semantic segmentation and scene classification, are gen-

erated during the processing pipeline. These features can be further integrated into filtering

criteria in future implementation.
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4.2. Baselines

Models. To evaluate the effectiveness of large VLM, we compare it against a set of estab-

lished CV architectures. These models span both classical CNNs and Transformer-based

models to serve as baselines across various tasks. All models are implemented using the

PyTorch library and initialized with pretrained weights from ImageNet-1K.

• VGG: A deep convolutional network characterized by its straightforward architec-

ture of stacked convolutional layers with small receptive fields (Simonyan and Zis-

serman, 2014). We employ the VGG16 variant in this study, which has previously

been applied to building classification tasks (Kang et al., 2018).

• DenseNet: Featuring dense connectivity between layers, DenseNet facilitates feature

reuse and improves gradient flow while reducing the number of parameters compared

to traditional CNNs (Huang et al., 2017). We adopt DenseNet201 as a benchmark

model, which has demonstrated effectiveness in building material prediction (Ghione

et al., 2022).

• ResNet: We include three variants, ResNet18, ResNet50, and ResNet101, which

utilize residual learning through skip connections to enable deeper architectures (He

et al., 2016). These models are widely used in building-related recognition

tasks (Gouveia et al., 2024; Liang et al., 2024).

• ViT: Vision Transformers (ViT) divide images into fixed-size patches and use Trans-

former encoders to capture global context through self-attention mechanisms. Here,

we evaluate ViT16, ViT32 and Swin Transformer (Swin_b), which have shown

strong performance in previous building classification studies (Raghu et al., 2023;

Ogawa et al., 2023).

Each CV model is fine-tuned separately for each building attribute. A systematic grid

search is conducted over a range of learning rates (from 1e-7 to 1e-3), and training is

performed for up to 64 epochs with early stopping based on validation performance. The

checkpoint achieving the best validation metric (accuracy for classification, R-squared for

regression) is selected for final evaluation on the test set and used for comparison with the

VLM.
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Evaluation Metrics. To comprehensively evaluate model performance across different

tasks, we adopt a set of widely used metrics, tailored to the respective output types: cate-

gorical labels, numerical values, and text.

For tasks such as predicting building type and surface material, we report four standard

classification metrics: Accuracy (Acc), macro Precision (Pre), macro Recall (Rec), and

macro F1-score (F1). These metrics have been commonly used in prior works on building

classification (He et al., 2024; Sun et al., 2022b; Liang et al., 2024) to evaluate model

effectiveness. For continuous attributes such as the number of floors and building age, we

use R2, Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root

Mean Squared Error (RMSE). These metrics are standard in evaluating building property

predictions (Lei et al., 2024; Wang et al., 2024c). To enable learning from numerical labels,

we convert construction year into building age by subtracting the year from 2025 (i.e., age

= 2025 – year).

Furthermore, the text generated by ChatGPT-4o on the test set serves as a baseline to

evaluate performance improvements in image captioning. In this study, we adopt three

commonly used metrics in natural language generation: BLEU (Papineni et al., 2002),

METEOR (Banerjee and Lavie, 2005), and ROUGE_L (Lin, 2004). BLEU evaluates n-

gram precision, while METEOR considers precision, recall, synonym matching, and para-

phrase alignment to capture semantic relevance more effectively. ROUGE_L measures the

longest common subsequence between generated and reference texts, highlighting fluency

and textual overlap. These metrics are widely adopted in remote sensing vision-language

tasks (Li et al., 2024a), providing a comprehensive assessment of the accuracy and quality

of generated descriptions.

4.3. Generalizability and robustness

To align more closely with real-world building profiling practices, we further conduct

comparative assessments involving both VLMs and CV models of their generalizability

and robustness. These comparisons target two main objectives: (1) assessing their gen-

eralizability to unseen data, and (2) evaluating robustness to heterogeneous noises and

degradation.
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Generalization to unseen city. Generalizing CV models to unseen cities remains a sig-

nificant challenge due to the diverse and unique architectural features across cities (Sun

et al., 2022b). VLMs, pretrained on extensive, high-quality image-text datasets, demon-

strate promising potential to overcome these limitations by leveraging their pre-acquired

semantic reasoning and contextual understanding capabilities. To investigate this potential,

we conducted an experiment on building imagery collected from Brussels, comparing the

performance of established CNN and ViT architectures against our fine-tuned VLM. For

this evaluation, we retrieve a dataset of 3,687 labeled building images by integrating OSM

attributes with buildings detected from Mapillary SVI. The dataset is composed of 3,348

images for building type, 186 for surface material, 1,234 for the number of floors, and 106

for building age. The supplementary material provides the detailed class distribution of

this dataset. Due to the limited number of surface material labels across classes, we focus

our analysis on the remaining three attributes.

Robustness to varying image quality. Crowdsourced SVI, unlike standardized remote

sensing imagery, frequently exhibit diverse quality issues (Hou and Biljecki, 2022). To

systematically evaluate the robustness and stability of the model under such conditions,

we adopt the methodology proposed by Hendrycks and Dietterich (2019), which assesses

model performance in the presence of common image corruptions and perturbations. Fol-

lowing the image quality criteria defined by Hou and Biljecki (2022), we algorithmically

generate four types of corruption to the test set: occlusion, motion blur, Gaussian noise, and

brightness alteration, as illustrated in Figure 7. We acknowledge that these distortions are

simulated rather than naturally occurring, but they provide a controlled and reproducible

way to benchmark model behavior under common visual degradation scenarios.

We then evaluate each model’s performance under these degraded conditions using

Relative Corruption Errors (Relative CE) (Hendrycks and Dietterich, 2019). First, the

baseline error rate Em
clean is determined for model m on the uncorrupted data. Next, we

compute the error rate Em
c,s for each corruption type c at severity level s (1 ≤ s ≤ 3). In

classification tasks (building type and surface material), the error rate is defined as 1 −

Accuracy, whereas for numerical values (predicting number of floors and building age),

it is defined as 1 − R2. Finally, to account for the varying difficulties introduced by each

27



corruption, we normalize these error rates by dividing by the ResNet50 baseline error.

Relative CE is calculated as:

RelativeCE f
c = (

3∑
s=1

E f
s,c − E f

clean)/(
3∑

s=1

EResNet50
s,c − EResNet50

clean ) (10)

This normalization provides a clearer measure of how much each model’s performance

declines under different corruptions. Averaging these Relative CE from four types of cor-

ruptions results in the Relative mCE, which represents the overall relative performance

degradation when the models encountering corruptions.

Figure 7: Examples of image corruption and perturbation for robustness experiments, consisting of four
categories of algorithmically generated images based on common quality issues in crowdsourced imagery.
Each type of corruption has 3 levels of severity (except for brightness which has twice 3 levels of severity),
resulting in a total of 15 corruption levels. Data: (c) Mapillary contributors.
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4.4. Ablation experiments

As one of the very first studies to apply fine-tuned open-source VLMs to the task of

building profiling, we conduct a series of ablation experiments to explore and identify

effective fine-tuning strategies.

Fine-tuning settings. To determine optimal training configurations, we first compared

two fine-tuning strategies: full fine-tuning, where all model parameters are updated, and

parameter-efficient fine-tuning using Low-Rank Adaptation (LoRA). LoRA introduces

trainable rank-decomposition matrices into the model while freezing the original weights,

enabling more efficient training. This comparison allowed us to evaluate the trade-offs

between flexibility, performance, and training cost under different optimization schemes.

We then performed a systematic grid search over learning rates and the number of

training epochs. The default learning rate of 4e-5 is used as a baseline, and we evaluat

additional values (e.g., 8e-6, 4e-6, and 4e-4) within a predefined range to observe their

effects on model stability and performance. We also vary the number of training epochs

from 1 to 5 while keeping all other hyperparameters fixed. For each setting, the model is

evaluated on a held-out validation set.

Model size. We compare multiple model variants to assess how model capacity influ-

ences performance in the context of building profiling. Specifically, we evaluate InternVL3

models with 1B and 2B parameters, as well as InternVL2.5 model which has 4B parame-

ters avaliable. These experiments are conducted to understand the scalability of different

VLM sizes and to determine whether increase model complexity leads to substantial gains

across all building profiling tasks.

Data size. To assess the impact of training data volume, we conduct an ablation study

by fine-tuning InternVL3-2B on varying proportions of the complete image-text dataset.

We evaluate performance on both attribute prediction and image captioning tasks. This

analysis quantifies how model accuracy scales with additional data and offered insights

into the marginal benefit of increased data volume in multimodal learning.
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5. Results

5.1. Street-level building dataset

Table 3 provides a detailed breakdown of the number of buildings and SVI images re-

trieved, individual buildings detected with associated images, and the ratio of completeness

for each city. While completeness varies among cities due to differences in the availability

and quality of Mapillary images uploaded for specific locations, around 50% of buildings

in city centers can be observed and analyzed.

Table 3: Summary of building footprints, image retrieval, and detection completeness across cities and re-
gions in the building dataset.

City Total building
footprints

Total images
retrieved

Total
individual
building
images

Buildings with
images

Percentage
detected

City center
completeness

(2.5km×2.5km)

Europe

Amsterdam 195,188 203,570 330,235 120,154 61.6% 83.6%

Helsinki 63,972 20,035 20,479 8,930 14.0% 42.5%

Berlin 497,703 408,166 287,065 137,930 27.7% 46.7%

North America

San Francisco 160,659 62,521 91,874 34,510 21.5% 39.4%

Houston 399,883 304,030 238,934 91,774 23.0% 53.8%

Washington D.C. 161,190 269,420 201,955 86,144 53.4% 57.4%

Asia

Manila 105,904 68,706 48,951 23,911 22.6% 22.7%

Total 1,617,019 1,414,288 1,219,493 503,353 31.1% 49.4%

As discussed in Section 3.3, building images with available attributes are sampled to

construct a class-sufficient dataset for model development, resulting in a total of 31,180

images. Figure 8 illustrates the distribution of images across categories for each attribute,

comprising 17,530 images for building type, 2,871 for surface material, 7,228 for floors,

and 5,927 for age.

The dataset is split into training, validation, and test sets in a 6:1:3 ratio. As detailed

in Table 4, the training set comprises 20,056 OSM-sourced labeled samples from 19,443
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Figure 8: The distribution of the building images categorized by objective building attributes—type, age,
floor, and surface material—selected for each city in dataset.
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Table 4: Summary of training, validation, and test data used in this study.

Data Type Source Train Validation Test

Image label

Single-attribute label OSM 20,056 2,737 9,190

Image-text pairs

Single-attribute Q&A OSM 20,056 – –

Multi-attribute Q&A ChatGPT-4o 19,443 – 9,016

Captioning ChatGPT-4o 19,443 – 9,016

Total pairs 58,942 – 18,032

unique images (some buildings carry multiple attribute labels). Those same 19,443 images

are used to generate 19,443 multi-attribute Q&A pairs and 19,443 descriptive captions via

ChatGPT-4o (2024-08-06 release), yielding a total of 58,942 image–text pairs for VLM

training. The held-out validation set guides checkpoint selection and hyperparameter tun-

ing for both CV and VLM models based on their performance on multi-attribute prediction

tasks. The test set, consisting of 9,016 images with ChatGPT generated Q&A and captions,

is reserved for final model evaluation and comparison. To better capture ambiguous archi-

tectural features, we also include an auxiliary classification setup by introducing prompts

such as “alternate_building_type” and “alternate_surface_material”, which elicit the top-

two predictions from the MLLMs.

We acknowledge that the current dataset has limitations, particularly in terms of geo-

graphic diversity across continents and the availability of data for certain attributes, such as

surface material and building age. Nevertheless, to the best of our knowledge, this dataset

is both large and comprehensive compared to previous efforts highlighted in Section 2. Ad-

ditionally, the reproducible framework established in this study enables future expansion

of the dataset as more building images and their associated attributes become available

through crowdsourced platforms. This iterative refinement could progressively enhance

the dataset’s scope and utility for broader applications.
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5.2. Model performance

5.2.1. General performance

After we fine-tuned the baseline models mentioned in Section 4.2, we compare their

performance with that of the zero-shot ChatGPT and fine-tuned InternVL3-2B on four

building characteristics, as summarized in Tables 5a and 5b. To facilitate a fair comparison,

we integrate GPT-generated data to supplement the missing OSM data in the training set

for the CV models.

The fine-tuned InternVL3-2B achieves the highest overall performance, particularly

in predicting building type and number of floors. Although CV models slightly outper-

form the VLM in surface material classification and building age estimation, they require

attribute-specific architectures and domain-specific tuning. In contrast, VLMs provide a

unified and adaptable framework, delivering comparable or superior results across multiple

prediction tasks. Notably, zero-shot ChatGPT also demonstrates strong capability across

all tasks, achieving performance close to that of some fine-tuned CV models. This suggests

its potential as a practical tool for supplementing building data when labeled samples are

limited. This advantage of VLM can be attributed primarily to the semantic reasoning and

contextual understanding inherent in pretrained VLMs, which significantly enhance their

generalization across diverse tasks. Moreover, VLMs can simultaneously infer multiple

target variables and implicitly model correlations among tokens associated with different

tasks, whereas the CV baselines considered here are independently fine-tuned for each

attribute. The combination of robust predictive performance and enhanced functionality

makes VLMs a compelling alternative to traditional approaches in future applications.

5.2.2. Performance by cities

Figure 9 presents the performance of three model variants: (1) the InternVL3-2B model

before fine-tuning and (2) after fine-tuning, as well as (3) a ChatGPT-4o reference base-

line, on seven cities and four building attributes. In general, the fine-tuned InternVL3-

2B outperforms its non-fine-tuned counterpart, showing consistent gains in predicting all

four attributes. These improvements are particularly notable in Berlin and San Francisco,

where building type, material, and floor performance improve substantially. Amsterdam

and Helsinki also exhibit moderate but still positive gains for different tasks.
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Table 5: Validation performance comparison among zero-shot ChatGPT, fine-tuned InternVL3-2B and CV
models.

(a) Performance on classification tasks of building type and surface material

Attribute Model LR Epoch Acc (%) mPre mRec mF1 Acc@2 (%)

Building
type

ChatGPT
(zero-shot)

- - 57.69 0.649 0.566 0.571 75.06

DenseNet 1e-5 14 53.42 0.540 0.529 0.529 69.39
VGG 5e-4 9 47.66 0.492 0.470 0.462 62.03

ResNet18 1e-4 19 50.59 0.509 0.499 0.493 66.28
ResNet50 1e-4 24 52.20 0.526 0.512 0.504 65.98

ResNet101 5e-5 13 53.58 0.543 0.527 0.524 68.52
ViT16 5e-6 7 53.60 0.549 0.532 0.530 69.35
ViT32 1e-5 5 52.24 0.519 0.515 0.507 67.93

Swin_b 5e-6 17 56.11 0.562 0.558 0.554 73.14
InternVL3-2B 8e-6 3 61.27 0.661 0.602 0.609 77.31

Surface
mate-
rial

ChatGPT
(zero-shot)

- - 65.41 0.581 0.614 0.553 79.07

DenseNet 1e-4 5 65.92 0.575 0.610 0.566 81.45
VGG 1e-5 12 57.02 0.504 0.529 0.494 74.06

ResNet18 1e-5 23 63.78 0.560 0.587 0.554 79.57
ResNet50 5e-5 30 65.79 0.601 0.610 0.578 81.08

ResNet101 5e-5 25 66.67 0.608 0.627 0.582 79.70
ViT16 5e-5 18 64.79 0.571 0.587 0.564 81.20
ViT32 1e-5 13 60.15 0.538 0.554 0.511 77.07

Swin_b 5e-6 33 69.17 0.623 0.655 0.612 85.84
InternVL3-2B 8e-6 3 68.05 0.598 0.634 0.588 81.70

(b) Performance on prediction tasks of number of floors and building age.

Attribute Model LR Epoch R2 (↑) MAE (↓) MAPE
(%) (↓) RMSE (↓)

Number
of floors

ChatGPT
(zero-shot)

- - 0.721 2.36 38.66 5.01

DenseNet 5e-5 5 0.774 2.53 41.91 4.51
VGG 5e-5 12 0.689 3.10 42.43 5.28

ResNet18 5e-5 16 0.741 2.82 38.81 4.82
ResNet50 5e-5 23 0.768 2.48 41.74 4.56

ResNet101 5e-5 14 0.777 2.48 41.97 4.48
ViT16 5e-6 6 0.765 2.63 46.47 4.59
ViT32 1e-6 22 0.727 2.83 45.08 4.95

Swin_b 1e-5 10 0.773 2.41 41.48 4.52
InternVL3-2B 8e-6 3 0.789 2.13 36.93 4.35

Building
age

ChatGPT
(zero-shot)

- - 0.645 31.63 58.79 57.07

DenseNet 1e-5 21 0.720 31.31 78.36 50.68
VGG 1e-4 7 0.559 42.55 121.31 63.59

ResNet18 5e-5 23 0.714 32.63 74.44 51.23
ResNet50 1e-4 18 0.721 32.26 85.92 50.55

ResNet101 5e-5 18 0.738 30.61 78.77 49.01
ViT16 5e-6 29 0.719 30.89 80.02 50.77
ViT32 1e-5 23 0.675 33.82 71.89 54.61

Swin_b 5e-6 27 0.723 32.72 93.77 50.40
InternVL3-2B 8e-6 3 0.710 28.06 58.27 51.50
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Figure 9: Model performance on building attributes across different cities before and after fine-tuning the
InternVL3-2B model, compared to the baseline performance of ChatGPT-4o. Building type and surface
material are evaluated using classification accuracy (Acc.), while number of floors and building age are
assessed using R-squared (R2). “NA” indicates cities with insufficient data for model evaluation (ground-
truth instances fewer than 20 in test set).

Despite the overall upward trend, improvement magnitude varies across cities and at-

tributes, which may due to several reasons. First, the availability of diverse and distinct

samples plays a crucial role: cities with a richer variety of building facades (e.g., Am-

sterdam, Berlin) yield more pronounced performance boosts. Conversely, location with

more homogeneous or ambiguous building styles (e.g., Manila) shows relatively smaller

gains. Second, crowdsourced labels in certain cities may be incorrect or insufficient, which

can adversely affect the model’s ability to learn reliable city-specific patterns, restraining

potential performance gains.

Nevertheless, when benchmarked against the zero-shot ChatGPT-4o baseline, the fine-

tuned InternVL3-2B model demonstrates generally competitive or superior performance.

These results confirm that open-access VLMs can achieve near-state-of-the-art perfor-

mance at no additional licensing cost once adequately fine-tuned on relevant datasets.

This highlights the effectiveness of VLMs in predicting multiple building attributes across

global cities, providing a cost-effective solution for a wide range of urban remote sensing

applications.
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5.2.3. Performance by categories

Figure 10 presents the confusion matrices illustrating the performance of our VLM

on building type and surface material on different categorical labels. Overall, the model

demonstrates robust performance for most classes. In terms of well-predicted labels, vi-

sually distinctive building types such as apartments and houses show consistently high

accuracies. These categories often have defining features (e.g., apartment blocks char-

acterized by uniform facades and repetitive windows) that the model effectively captures.

Similarly, for surface material, high-frequency and visually salient classes like brick, wood,

and glass yield strong performances. Conversely, certain labels are harder to classify, yield-

ing relatively lower accuracies. For building type, hotel or public categories are frequently

misidentified as office, suggesting significant overlap in their institutional architectural ap-

pearance (e.g., multi-stories, ordered elements). Likewise, plaster and concrete exhibit

misclassifications due to shared grayscale tones and blank textures.

Figure 10: Confusion matrices illustrating the performance of the InternVL3-2B model on classifying differ-
ent categories of building type and surface material. Darker cells indicate higher prediction accuracy (%).

Figure 11 illustrates the model’s ability to predict the number of floors and build-

ing age. The heatmaps provide a detailed visualization of prediction accuracy relative

to ground-truth values, with darker colors indicating higher frequencies of accurate pre-
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dictions within each bin. For the number of floors (left), the heatmap demonstrates strong

prediction performance for lower-rise buildings. As the number of floors increases beyond

five, prediction performance start to decline. High-rise structures (stories beyond 15) ex-

hibit more frequent errors, highlighting the challenge in distinguishing floor count for taller

buildings from single viewpoint images.

For building age (right), the heatmap reveals stronger predictive performance for more

recent buildings (post-1900), reflecting their typically more distinctive and recognizable

architectural characteristics. Conversely, older buildings (pre-1900) exhibit larger errors,

with significant overlaps between adjacent historical periods. The subtle external distinc-

tions, combined with modifications such as renovations and retrofits, contribute to the dif-

ficulty in accurately classifying older structures based solely on visual appearance (Sun

et al., 2022b). Additionally, the model’s performance is likely influenced by the limited

representation of older building periods within the original training dataset. Nevertheless,

the overall R-squared above 0.7 confirms the model’s capability in capturing broad tempo-

ral patterns of floor count and building age from images.

Taken together, these results suggest that the model is capable of inferring attributes

across various ranges. However, inherent visual ambiguities, particularly among struc-

turally or stylistically similar categories, contribute to overlaps in predictions. Enhancing

the quality, diversity, and coverage of crowdsourced data would be a valuable step toward

improving the dataset and the model’s performance.

5.3. Generalizability and robustness

Generalization to unseen city. CV models with good performance are selected for ex-

periments in this section. Tables 6a and 6b show that the VLM model exhibits superior

generalizability compared to commonly used computer vision models, particularly in the

tasks of building type and age prediction. This improved performance can be attributed to

the VLM’s ability to leverage semantic reasoning and contextual understanding from large-

scale image-text pretraining, allowing it to adapt more effectively to diverse architectural

features. While the performance on number of floors prediction is comparable across mod-

els, the lower accuracy of Swin_b on other attributes suggests a reliance on localized visual

features, which limits its generalization capability. Despite these strengths, the VLM’s low
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Figure 11: Heatmaps illustrating the performance of the InternVL3-2B model in predicting the number of
floors (left) and building age (right). Darker colors indicate a higher frequency of predictions within each
ground-truth bin.
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macro-F1 score for building-type classification highlights persistent challenges, notably

the underrepresentation of minority classes and ambiguity in building features. To ad-

dress these issues, assembling a more balanced and diverse building imagery dataset and

incorporating domain-specific fine-tuning are recommended. Collectively, these findings

underscore the potential of VLMs to enhance robustness and generalizability across varied

urban contexts.

Table 6: Validation performance comparison of different models on building images in Brussels.

(a) Performance on classification task of building type

Attribute Model Acc (%) mPre mRec mF1

Building type

DenseNet 31.12 0.25 0.33 0.21
ResNet101 31.20 0.24 0.34 0.21

ViT16 32.54 0.26 0.32 0.21
Swin_b 24.58 0.26 0.33 0.20

InternVL3-2B 63.80 0.44 0.50 0.42

(b) Performance on prediction tasks of number of floors and building age

Attribute Model RMSE (↓) MAE (↓) MAPE
(%) (↓) R2 (↑)

Number of floors

DenseNet 1.82 1.13 30.20 0.610
ResNet101 1.90 1.15 33.46 0.576

ViT16 1.79 1.15 33.10 0.624
Swin_b 1.74 1.08 29.39 0.645

InternVL3-2B 1.73 0.90 26.20 0.645

Building age

DenseNet 55.50 43.22 74.89 0.200
ResNet101 51.55 39.83 172.65 0.166

ViT16 51.44 38.85 168.38 0.157
Swin_b 54.92 42.27 195.16 0.170

InternVL3-2B 44.67 30.76 66.66 0.600

Robustness to varying image quality. As described in Section 4.3, we evaluate the ro-

bustness of the VLM against image corruptions by testing it on a perturbed dataset derived

from the test set. Figure 12 illustrates the model’s performance under varying severity lev-

els of occlusion, motion blur, Gaussian noise, and brightness distortions. In general, the
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Figure 12: Error rates of the VLM under different severity levels of image corruption. The dotted line
represents the clean error obtained from the original test set, serving as a baseline for comparison.

model demonstrates resilience, with performance dropping by less than 10% under most

mild and moderate image corruptions. In particular, the model remains significantly sta-

ble in handling lighting variations and occlusion, both of which are common challenges

in crowdsourced image datasets. However, the model experiences a significant perfor-

mance drop when confronted with moderate to severe noise and blurriness. In particular,

the model is most affected by motion blur, where the error rate for the number of floors

prediction increases from 0.21 (clean error) to 0.48, and the error rate for building age

prediction rises from 0.29 (clean error) to 1.45. These findings emphasize the necessity of

image preprocessing techniques to filter out degraded images during the image selection

stage.
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Furthermore, the Relative mCE is computed for different models using ResNet50 as the

baseline. Table 7 presents the relative error rates across different building attribute predic-

tion tasks, indicating each model’s stability compared to the baseline. In general, different

models demonstrate various capability in handing corruption data. Multi-attribute predic-

tion VLM (InternVL3-2B) demonstrates superior stability compared to single-attribute CV

models in most cases, having lowest mean Relative mCE among all attributes. Especially,

when distinguishing building type and building age when encountering occlusion, motion

and brightness variations, VLM demostrate well stability. CNN models’ stability performs

comparably to more advanced models in the tasks of number of floors prediction, while

ViT model performs superior in handling data with Gaussian noise. This outcome im-

plies that additional domain-specific constraints or specialized training strategies might be

required to enhance performance on crowdsourced image data.

In conclusion, building on insights from CV baselines, VLMs not only demonstrate

robust and generalizable features for tackling diverse tasks based on crowdsourced data,

but they also represent a promising framework for large-scale or cross-regional implemen-

tations that demand multi-feature prediction and flexible adaptation.

5.4. Ablation experiments

Fine-tuning settings. As shown in Table 8, we compare model performance across dif-

ferent settings, including LoRA, full fine-tuning, number of epochs, and learning rate.

We summarize overall performance using two aggregate metrics: Overall Accuracy (OA),

computed as the average of accuracies, and Overall R2 (OR), computed as the average R2.

In general, full fine-tuning consistently outperforms LoRA across most tasks. Although

LoRA offers parameter efficiency and retains the original checkpoint’s general capabili-

ties, it typically yields lower performance. Therefore, we adopt full fine-tuning for further

investigation.

We further investigated the effect of training epochs under the default learning rate of

4e-5. Performance generally improves from epoch 1 to 3, with diminishing or unstable

gains beyond that point. For example, at epoch 3, full fine-tuning achieves strong and

balanced results, including a peak OA of 64.02% and competitive OR. Although epoch 4

yields a slightly higher OR (0.725), the improvements are marginal and come at the cost of
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Table 7: Relative prediction error compared to ResNet50 under different corruptions and perturbations for
different objective attributes.

Attribute Model Occlusion Motion Noise Brightness Relative mCE

Building
type

ResNet50 1.00 1.00 1.00 1.00 1.00
DenseNet 2.10 0.98 0.86 0.78 1.18

ResNet101 0.89 0.95 0.61 0.54 0.75
ViT16 0.76 0.83 0.29 1.22 0.78

Swin_b 0.88 1.12 0.30 0.47 0.69
InternVL3-2B 0.51 0.42 0.39 0.46 0.44

Surface
material

ResNet50 1.00 1.00 1.00 1.00 1.00
DenseNet 1.26 1.09 1.20 1.16 1.18

ResNet101 1.49 0.98 1.25 1.02 1.19
ViT16 0.48 0.72 0.50 1.48 0.80

Swin_b 0.99 1.11 1.03 0.70 0.96
InternVL3-2B 0.59 0.66 0.64 0.47 0.59

Number of
floors

ResNet50 1.00 1.00 1.00 1.00 1.00
DenseNet 2.01 1.62 0.86 1.24 1.43

ResNet101 0.80 1.19 0.31 0.69 0.75
ViT16 1.07 1.41 0.46 1.61 1.14

Swin_b 0.66 1.87 0.49 0.84 0.97
InternVL3-2B 0.63 0.78 0.42 0.54 0.59

Building
age

ResNet50 1.00 1.00 1.00 1.00 1.00
DenseNet 2.65 0.94 0.99 1.43 1.50

ResNet101 1.04 0.78 0.48 1.10 0.85
ViT16 0.50 0.78 0.27 1.80 0.84

Swin_b 0.67 1.11 2.90 1.43 1.53
InternVL3-2B 0.30 0.69 0.48 0.54 0.50
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Table 8: Validation performance across epochs and learning rates for LoRA and full-tuning schemes.

Epoch LR
Acc (%) mF1

OA
R2 MAE

OR
Type Material Type Material Floor Age Floor Age

LoRA

1 4e-5 60.29 60.29 0.583 0.513 60.29 0.739 0.524 2.64 40.44 0.632

2 4e-5 60.66 62.50 0.593 0.532 61.58 0.729 0.560 2.60 38.01 0.645

3 4e-5 60.52 63.24 0.592 0.537 61.88 0.745 0.595 2.52 35.79 0.670

4 4e-5 60.11 64.34 0.583 0.548 62.22 0.741 0.593 2.52 35.73 0.667

5 4e-5 60.34 64.86 0.586 0.553 62.60 0.757 0.571 2.51 35.97 0.664

Full-tuning

1 4e-5 62.64 63.97 0.608 0.538 63.31 0.719 0.637 2.50 33.25 0.678

2 4e-5 62.02 64.71 0.599 0.542 63.37 0.735 0.672 2.40 30.95 0.704

3 4e-5 63.32 64.71 0.618 0.542 64.02 0.734 0.680 2.38 30.44 0.707

4 4e-5 62.09 65.07 0.605 0.545 63.58 0.748 0.701 2.31 29.03 0.725
5 4e-5 62.41 64.34 0.608 0.541 63.38 0.741 0.696 2.39 29.14 0.719

3 4e-4 10.31 16.54 0.030 0.085 13.43 -0.291 -0.060 7.88 79.28 -0.176

3 8e-5 62.36 63.24 0.609 0.546 62.80 0.736 0.646 2.43 31.73 0.691

3 4e-5 63.32 64.71 0.618 0.542 64.02 0.734 0.680 2.38 30.44 0.707

3 8e-6 63.43 63.97 0.619 0.540 63.70 0.762 0.665 2.19 31.63 0.714
3 4e-6 63.39 62.50 0.620 0.532 62.94 0.748 0.653 2.33 31.91 0.701

additional computation. Thus, epoch 3 is selected as the most efficient convergence point.

We also experimented with several learning rates, including the default 4e-5 and

smaller values such as 4e-6. A learning rate of 8e-6 offers improved stability and slightly

better OR. In addition, our observations suggest that smaller learning rates are especially

beneficial for fine-tuning on relatively small datasets, as they help retain general-purpose

capabilities such as open-ended reasoning and semantic alignment. Based on these com-

parisons, we adopt full fine-tuning with 3 training epochs and a learning rate of 8e-6 as

our final configuration. This setting provides the best trade-off between predictive perfor-

mance, training efficiency, and the preservation of the pretrained strengths of large VLMs.
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Model size. We further compare the performance of VLM variants with different model

sizes under both zero-shot and fine-tuned settings, as shown in Tables 9a and 9b. In the

zero-shot setting, larger model sizes or more recent pretrained weights generally yield

better predictions.

The results confirm that fine-tuning is essential for domain adaptation, consistently

improving performance across all building profiling tasks. For example, classification

accuracy improves by 7–15 percentage points over zero-shot baselines, while R2 values

for floor and age prediction also increase significantly. After fine-tuning, model perfor-

mance becomes more comparable across sizes, though task-specific variations remain.

InternVL2.5–4B achieves the highest accuracy in classifying building type and surface

material, whereas InternVL3 variants perform better on floor count and age prediction.

These findings suggest that models in the 1–2B parameter range are generally sufficient for

building profiling, particularly when training on relatively small datasets.

Table 10 presents captioning evaluation metrics for various models. As with the

labeling task, pretrained models already exhibit reasonable performance relative to the

ChatGPT-4o reference captions, while fine-tuned models incorporate domain-specific

knowledge and produce more coherent, better-structured captions. We also observe that

performance generally improves with model size, but doubling the parameter count yields

diminishing marginal gains, which is likely a consequence of the dataset’s limited scale

and the inherent noise in OSM derived ground truth labels. To balance computational cost

and accuracy, we therefore select the InternVL3 model with 2 billion parameters for this

study.

Data size. To assess the impact of training set size on performance, we trained

InternVL3-2B on varying fractions of the 58,942 image–text pairs listed in Table 4. The

left panel of Figure 13 reports accuracy for material and type predictions, while the right

panel shows R2 values for floor and age predictions at each dataset proportion. Table 11

presents BLEU, METEOR, and ROUGE-L scores relative to GPT-generated captions un-

der each condition.

These ablation experiments reveal several important insights. First, in multi-attribute

prediction tasks (Figure 13), performance peaks early in both scenarios of adjusting ei-

44



Table 9: Validation performance of VLM variants with different model sizes under both zero-shot and fine-
tuning conditions.

(a) Building type and surface material classification in zero-shot and fine-tuned settings.

Attribute Model Size Acc (%) mPre mRec mF1 Acc@2 (%)

Building
type

Zero-shot
ChatGPT-4o – 57.69 0.64 0.58 0.57 75.06

InternVL3
1B 44.31 0.60 0.41 0.41 50.60
2B 46.99 0.58 0.46 0.46 61.38

InternVL2.5 4B 47.82 0.61 0.46 0.46 63.06
Fine-tuned

InternVL3
1B 60.87 0.65 0.60 0.60 77.37
2B 61.27 0.66 0.60 0.61 77.31

InternVL2.5 4B 62.41 0.67 0.61 0.62 76.69

Surface
material

Zero-shot
ChatGPT-4o – 65.41 0.58 0.61 0.55 79.07

InternVL3
1B 56.64 0.62 0.48 0.43 62.16
2B 61.65 0.55 0.55 0.52 69.55

InternVL2.5 4B 60.65 0.51 0.53 0.50 76.15
Fine-tuned

InternVL3
1B 67.79 0.61 0.64 0.59 81.20
2B 68.05 0.60 0.63 0.58 81.33

InternVL2.5 4B 68.55 0.61 0.64 0.59 81.95

(b) Building floors and building age prediction in zero-shot and fine-tuned settings.

Attribute Model Size R2 (↑) MAE (↓) MAPE (↓) RMSE (↓)

Building
floors

Zero-shot
ChatGPT-4o - 0.721 2.36 38.66 5.01

InternVL3
1B -3.071 8.82 105.22 19.04
2B 0.624 3.38 50.41 5.81

InternVL2.5 4B 0.548 3.68 44.30 6.53
Fine-tuned

InternVL3
1B 0.778 2.16 37.69 4.46
2B 0.789 2.13 36.92 4.35

InternVL2.5 4B 0.771 2.32 35.83 4.53

Building
age

Zero-shot
ChatGPT-4o - 0.645 31.63 58.79 57.07

InternVL3
1B 0.091 57.93 77.44 91.19
2B 0.560 41.05 77.10 63.30

InternVL2.5 4B 0.242 51.93 85.25 84.12
Fine-tuned

InternVL3
1B 0.713 28.09 58.15 51.36
2B 0.710 28.05 58.27 51.50

InternVL2.5 4B 0.707 29.11 63.73 51.85
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Figure 13: Model performance across varying dataset sizes by adjusting full training data (solid line) and
GPT-generated data (dashed lines). The left plot shows accuracy for building type and surface material
classification, while the right plot presents R-squared values for floor and age predictions, benchmarked
against ChatGPT baselines.

46



Table 10: Captioning performance metrics (%) in zero-shot and fine-tuned settings, evaluated against
ChatGPT-4o-generated reference captions.

Model Size BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Zero-shot

InternVL3 1B 46.99 29.55 19.64 13.09 36.56 29.64
InternVL3 2B 36.47 22.61 15.16 10.21 28.28 27.13

InternVL2.5 4B 44.14 28.81 20.27 14.39 37.99 31.13

Fine-tuned

InternVL3 1B 56.60 41.62 32.65 25.99 44.46 43.31
InternVL3 2B 56.91 41.91 32.93 26.25 44.91 43.55

InternVL2.5 4B 52.32 37.68 29.00 22.64 41.02 40.43

ther OSM data (single-attribute Q&A) or GPT-generated data (multi-attribute Q&A and

image captions). Even smaller datasets (around 5–10% of the full corpus) yield notable

performance gains, highlighting the VLM’s ability to learn effectively in data-constrained

scenarios. This behavior can be attributed to the pre-trained semantic relationships em-

bedded in the VLM’s latent space from its foundational training. Fine-tuning on lim-

ited data stabilizes outputs by aligning task-specific features with the model’s pre-existing

knowledge distribution. Second, performance rises gradually when adding OSM ground

truth data for most attribute prediction tasks, while GPT-generated data slightly dimin-

ishes performance gains. One possible explanation is that OSM data encodes structured,

human-validated geographic knowledge, whereas GPT-generated samples may introduce

inaccuracies or hallucinated features. Mitigating such noise by refining annotation pro-

cedures or excluding low-quality samples could improve overall accuracy and robustness

(Chen et al., 2024b). Third, integrating single-attribute Q&A data derived from OSM la-

bels appears to constrain descriptive richness across tasks (Table 11). This trade-off likely

reflects task interference in a multi-task learning setup, where optimizing for structured at-

tribute prediction can suppress the model’s ability to generate diverse captions. To address

this limitation, one could increase model capacity, curate high-quality OSM–GPT hybrid

datasets, or employ techniques such as knowledge distillation to balance structured output

with generative expressiveness.

In summary, our ablations show that (1) full fine-tuning of open-source MLLMs deliv-
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Table 11: BLEU, METEOR, and ROUGE-L evaluation across OSM and GPT splits.

Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
OSM GPT

- - 36.35 22.54 15.11 10.16 28.32 27.11
5% 100% 57.17 42.09 33.03 26.31 44.97 43.53

10% 100% 57.50 42.40 33.33 26.59 45.29 43.74
25% 100% 57.25 42.17 33.12 26.39 45.07 43.63
50% 100% 56.71 41.73 32.75 26.09 44.62 43.35
75% 100% 56.97 41.92 32.89 26.18 44.88 43.39

100% 5% 53.48 37.78 28.57 21.87 41.12 39.25
100% 10% 54.36 38.62 29.37 22.64 41.67 40.02
100% 25% 54.06 38.75 29.71 23.08 41.78 40.65
100% 50% 55.24 40.13 31.13 24.50 43.02 41.92
100% 75% 55.92 41.26 32.08 25.59 44.09 42.84
100% 100% 56.84 41.82 32.81 26.13 44.81 43.40

ers stronger domain adaptation than adapter-based methods, with fewer epochs and smaller

learning rates achieving comparable knowledge gains; (2) small-scale models strike the

best efficiency–performance balance, while larger models maintain an edge in free-form

captioning; and (3) a modest, well-curated dataset captures most of the benefits of large-

scale pretraining, although over-emphasis on structured labels can modestly reduce gen-

erative richness. Together, these findings underscore the importance of harmonizing fine-

tuning scope, model capacity, data quality, and training objectives when extending vi-

sion–language models to building-specific tasks.

6. Discussion

6.1. Image labeling and captioning

Detected buildings across seven global cities, introduced in Section 5.1, are subse-

quently processed by the fine-tuned VLM to generate objective attributes and captions.

Overall, data for half a million buildings are enriched using 1.2 million images, each linked

to its geographical location. For buildings with multiple observations, the most frequently

assigned categories are retained. Figure 14 compares the availability of building properties
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before and after enrichment in Washington, D.C. The proposed approach effectively en-

hances building-level information, particularly for surface material and building age. The

supplementary material presents the distribution of class labels for each attribute across the

1.2 million-building dataset.

Beyond the predefined labels, our dataset includes text annotations for each building

image, providing a richer source of information for categorizing architectural features.

These captions capture intricate details beyond standard classifications, including facade

styles, structural elements, and mixed-use characteristics, offering a more nuanced under-

standing of urban form. By extracting key descriptors, Figure 15 showcases examples

of mixed-use buildings and diverse facade styles identified in Washington, D.C., and San

Francisco. This methodology introduces additional dimensionalities for architectural fea-

ture analysis, allowing for more detailed characterizations of urban landscapes. Moreover,

it facilitates fine-grained comparisons across cities, helping to reveal and interpret regional

architectural trends and stylistic variations.

6.2. Application of building image dataset

Despite the centrality of objective building attributes in urban analytics, their scarcity

still persists across cities (Biljecki et al., 2023). Our open-source framework OpenFA-

CADES addresses this gap by combining SVI, which captures pedestrian-scale visuals,

with building data to train an MLLM for unified attribute extraction and semantic descrip-

tion. The methodology begins by integrating crowdsourced SVI metadata with geometrical

building data using isovist analysis to identify relevant images. Buildings are then detected

based on their angles of view within image space, followed by an automated process of re-

projecting and filtering them into individual building images. Lastly, a subset of this dataset

is used to construct an image-text dataset designed for three tasks for VLM fine-tuning:

single-attribute Q&A, multi-attribute Q&A, and captioning. Our experiments indicate that

the fine-tuned VLM demonstrates strong performance in multi-attribute prediction, sur-

passing CV models and outperforming zero-shot ChatGPT-4o baselines. Deploying the

VLM at scale, we annotate and release data of half a million buildings with both objective

attributes and textual descriptions, derived from 1.2 million images across seven global

cities, contributing to a scalable and automated approach for building property enrichment.
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Figure 14: Comparison of OSM building data (left) and the building attributes inferred using our method
(right) in Washington D.C., illustrating attributes: building type, surface material, number of floors, and age.
Data: (c) OpenStreetMap contributors.
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Figure 15: Spatial distribution of mixed-use buildings (top) and facade styles (bottom) in different cities.
Data: (c) OpenStreetMap contributors.
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Our study directly features three main contributions to building research. First, our

methodology detects holistic building facades and reprojects them into undistorted indi-

vidual images, ensuring comprehensive visual coverage while reducing the uncertainty

inherent in panoramic imagery. This pipeline can be integrated with existing methods to

detect buildings from diverse viewing angles and associate them with geolocation, enabling

nuanced and holistic observation for exterior modeling (Zhang et al., 2021), facade mate-

rial segmentation (Tarkhan et al., 2025), and window-to-wall ratio calculation (De Simone

et al., 2024). Second, this work introduces an inclusive and efficient pipeline to utilize

both crowdsourced data and open-sourced LLMs for street-level research. This pipeline

not only overcomes the challenge of relying on proprietary datasets, but also circumvents

the high costs and limited adaptability associated with proprietary LLM APIs, making ad-

vanced analytical techniques more accessible and reproducible to the research community.

Future studies might adjust the pipeline to customized tasks to incorporate fine-grained

visual information with tailored building data based on their objectives, such as building

conditions (Zou and Wang, 2021; Zhang et al., 2024b), human perceptual indicators (Liang

et al., 2024) and seismic structural types (Pelizari et al., 2021).

Third, we present unified benchmark VLMs that perform multi-task learning on build-

ing facades, generating descriptive captions while maintaining robust multi-class predic-

tions of objective attributes. In particular, we:

• Demonstrate that full fine-tuning of a open-source VLM backbone yields state-of-

the-art multi-attribute extraction. It surpass zero-shot ChatGPT and matching or

exceeding specialized CNN/ViT baselines on building type, material, floor count

and age, simultaneously generating coherent captions within one unified framework.

The model delivers consistent performance across categories and cities.

• Reveal generalizability and robustness. In cross-city evaluations and synthetic cor-

ruption tests, our fine-tuned VLM surpasses CV models by maintaining high accu-

racy on unseen urban contexts and showing resilience to occlusion, blur, and lighting

distortions, underscoring its suitability for heterogeneous, crowdsourced SVI.

• Investigate efficient training paradigms. Through systematic ablations, we show that
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(i) full fine-tuning of open-source VLMs with a low learning rate over a few epochs,

(ii) the use of a small-scale backbone, and (iii) a well-curated, balanced dataset to-

gether capture most benefits of large-scale pretraining by minimizing data, compute,

and architectural complexity while preserving accurate multi-attribute prediction and

high-quality captioning.

Finally, we apply the pipeline at scale by generating labels and captions for half a mil-

lion buildings in seven cities, laying a foundation for future urban analyses. For instance,

integrating these labeled data with geospatial information can add new dimensions to ur-

ban functional zone classification (Zhang et al., 2023), including potential insights into

3D functional zoning (Lin et al., 2024). The unified model also infers multi-dimensional

building properties relevant for applications such as modeling building electricity con-

sumption (Rosenfelder et al., 2021), estimating material stocks (Raghu et al., 2023), and

assessing structural risk (Wang et al., 2021). Additionally, captions offer an extra layer of

information about building facades, enabling the identification of mixed-use buildings or

stylistic variations. This linguistic data holds promise for exploring urban identity, sup-

porting text-image-based generative design, and serving as an additional feature layer in

multimodal model training.

6.3. Limitations and future work

Despite the advancements presented in this study, limitations remain. First, while this

study incorporates captioning data for fine-tuning VLMs, these captions are generated us-

ing commercial state-of-the-art LLMs rather than human-labeled ground truth, leaving

their accuracy and reliability unverified. A systematic human evaluation would be valu-

able for future research to assess captioning quality, consistency, and semantic accuracy.

Additionally, leveraging open-access models offers a more sustainable approach for scal-

able dataset expansion in future studies. Knowledge distillation, in which a smaller model

learns from a larger teacher, offers a promising self-supervised approach to improve gen-

eralization across urban contexts.

Second, while the fine-tuned model exhibits strong generalizability across cities, the

quality of crowdsourced data remains a crucial factor (Biljecki et al., 2023; Hou and Bil-

jecki, 2022). Although multiple strategies were employed in this study to mitigate data
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quality issues, several challenges persist. These include incorrect or incomplete build-

ing labels, inconsistent geometric information, non-standardized image formats, and mis-

aligned image coordinates, each contributing to various uncertainties. Additionally, as no

manual image selection was performed in this study, potential biases in data collection

remain unaddressed. Future work should focus on enhancing dataset reliability through

improved data filtering mechanisms. Automated repetition detection, heuristic rule-based

filtering, and uncertainty-aware sampling could refine image selection and minimize in-

consistencies in building attribute annotations (Chen et al., 2024b).

7. Conclusion

This comprehensive study advances spatial data infrastructures and urban data science

by introducing a novel framework, OpenFACADES, which leverages volunteered geo-

graphic information to enrich building profiles on a global scale using street-level imagery

and multimodal large language models. We harvest multimodal crowdsourced data and

apply isovist analysis, object detection, and a tailored reprojection method to geolocate

and acquire holistic building images, thereby establishing a comprehensive global build-

ing image dataset. A selection of this open dataset is then utilized for fine-tuning VLMs,

enabling large-scale enrichment of building profiles through multi-attribute prediction and

open-vocabulary captioning. This framework provides a scalable solution for capturing

multi-dimensional fine-grained architectural details and urban morphological characteris-

tics.

Our findings also demonstrate that VLMs generally outperform conventional CNN-

based models and zero-shot GPT-4o baselines in predicting building attributes while gener-

ating linguistically grounded descriptions. This methodological advancement has enabled

the creation of a large-scale dataset covering half a million buildings across seven global

cities. The enriched dataset further facilitates a more nuanced and expansive exploration of

urban environments, with potential applications in energy modeling, risk assessment, and

sustainable development.

Beyond its immediate applications, we envision this framework as a foundation for

comprehensive building profiling, capturing not only physical attributes but also the socio-
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economic and cultural narratives embedded within the built environment. This advance-

ment has significant implications for urban research, including large-scale built environ-

ment analysis, building simulation, and policy-driven planning strategies.
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