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Building roofs are essential for various geographical analyses such as solar potential analysis and urban microclimate simulation.
Despite growing demand, reconstructing detailed 3D roofs remains challenging due to the complexity of roof geometries and
variations in architectural styles. This paper introduces RooFormer, an end-to-end learning framework for reconstructing detailed
and textured 3D roof models in mesh format from high-resolution imagery. RooFormer consists of a MaskFormer branch, which
identifies and focuses on roof features, and a MeshFormer branch, which predicts detailed roof meshes. In the MeshFormer
branch, a local self-attention mechanism is employed to understand mesh features, and a positional embedding layer is designed
to integrate geometric and texture features. In addition, to measure the geometric similarity between predicted meshes and ground
truth, we develop a loss function that integrates terms from both image and mesh spaces. Compared to existing 3D metrics, the
proposed geometric loss term more accurately reflects the geometric differences in meshes. Experiments show that its normalized
height error of 0.014 is lower than the 0.034 error of state-of-the-art methods. Visually, the reconstruction accurately reflects the
geometric contours and structures of roofs, even with slight occlusions. We also demonstrate its generalization by testing it across
various areas. The framework promises to enable richer building modeling and analysis for a wide range of digital city applications.

Keywords: Roof reconstruction, Mesh prediction, Building modeling, Transformer, High-resolution imagery

1. Introduction

3D building models are widely used elements in digital cities,
offering significant analytical value (Lehtola et al., 2022). They
are required for many applications in disaster management and
environmental analysis. Within high levels of detail (LOD)
models, roofs serve as a complex and vital geometric compo-
nent, providing important information for solar potential anal-
ysis, urban microclimate simulation, and energy efficiency as-
sessments (Zhang et al., 2020; Lei et al., 2023; Yu et al., 2024).
Despite increasing demand, reconstructing detailed 3D roofs
remains a challenging task due to the intricate nature of roof
geometries, variations in architectural styles, and the need for
high-resolution data (Dehbi et al., 2021).

The extraction of 2D roof boundaries (i.e., building foot-
prints) has long been an active topic in photogrammetry and
remote sensing (RS) (Guo et al., 2021). Recent advances in
deep learning have facilitated the development of extensive
deep neural networks (DNNs) for extracting pixel-wise foot-
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prints from RS images, significantly enhancing automation (Di-
akogiannis et al., 2020; Li et al., 2021b). Besides pixel-wise
extraction, vectorized roof boundaries and structure lines based
on DNNs have also been explored (Zhao et al., 2022). Multi-
ple datasets of building footprints on national and global scales
have been derived from satellite images using DNNs, such
as GlobalMLBuildingFootprints (Microsoft, 2024) and CBF
(Huang et al., 2024). However, little attention has been paid
to the reconstruction of detailed 3D roof models using DNNs
from RS images.

Various types of RS data, including images (Vallet et al.,
2011; Li et al., 2021a), point clouds (Jiang et al., 2023), and
photorealistic meshes (Yu et al., 2023), have been utilized to
extract 3D geometric information of building models. Among
these, monocular depth estimation uses single-view images to
infer building heights based on depth cues such as texture gra-
dients, shadows, and defocus. However, the extracted heights
must be combined with footprints to generate low-resolution
3D building models lacking roof structures. Points represent-
ing building geometry can be extracted from point clouds to
derive roof structures via template matching or parametric mod-
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eling, but this method requires extensive prior knowledge and
is limited to simple roof shapes (Vallet et al., 2011). Photoreal-
istic meshes offer detailed 3D building models with precise tex-
tures, but high acquisition, processing, and storage costs limit
their frequency and availability of update in many regions (Yu
et al., 2022). In contrast, RS imagery (e.g., satellite and aerial
images) provides wide coverage, frequent updates, and public
accessibility (Dutta and Das, 2023). Thus, integrating single-
view RS images with DNNs has great potential for the efficient
and accurate reconstruction of detailed 3D roof models. To our
knowledge, no studies have yet explored this approach compre-
hensively.

This paper focuses on automatic 3D reconstruction of
roof models from high-resolution RS images. We propose
RooFormer, a deep learning method utilizing Transformer ar-
chitecture to directly predict detailed and textured 3D roof
meshes from single-view images in an end-to-end manner.
Within RooFormer, we introduce a local self-attention mech-
anism for mesh feature identification and a positional embed-
ding layer to capture and integrate geometric and texture fea-
tures, forming the core components of the MeshFormer branch.
Additionally, a MaskFormer branch is designed to identify and
focus on roof texture from images. The loss function incorpo-
rates terms from both image and mesh domains. Our proposed
geometric loss function for meshes, compared to existing 3D
metrics like Chamfer distance, more accurately describes differ-
ences between output and ground truth (GT) meshes. We show
that RooFormer is remarkably effective in 3D roof reconstruc-
tion, both in visual and quantitative evaluations. In summary,
the contributions of this paper can be listed as follows:

• The first attempt to reconstruct detailed, textured 3D roof
meshes from single-view RS images using DNNs in an
end-to-end manner.

• The design of an expressive MeshFormer branch that in-
cludes local self-attention mechanisms for mesh feature
extraction and positional embedding layers for integrating
geometric and texture features.

• A loss function that incorporates terms from both mesh
and image domains to measure the geometric similarity
between predicted and GT meshes.

• Comprehensive evaluation through quantitative metrics,
visual performance, and ablation studies.

2. Related work

2.1. Building geometry extraction using deep neural networks
In the last decade, DNNs have been extensively used to ex-

tract building geometry. Through training, these networks auto-
matically learn the semantic features of buildings from the data
without need for prior knowledge. Existing methods and algo-
rithms can be classified into two main categories: image-based
and point-based approaches.

Image-based DNNs rely on texture or spectral features to
extract building footprints from satellite or aerial RS images

(Nurkarim and Wijayanto, 2023; Liu et al., 2022; Vandita Sri-
vastava and George, 2024). Most studies focus on the seman-
tic segmentation of RS images, where building footprints are
derived by classifying each pixel and identifying those belong-
ing to buildings (Diakogiannis et al., 2020; Li et al., 2021b;
Cheng et al., 2024). These studies are typically based on con-
volutional neural network (CNN) architectures, such as UNet
(Ronneberger et al., 2015) and DeepLab-v3 (Chen et al., 2016).
Recently, transformer-based models and large language models
(LLMs) have also been employed, further enhancing efficiency
and generalization capabilities (Li et al., 2024). Furthermore,
to determine the distribution and number of buildings, many
instance segmentation methods focus not only on identifying
building pixels, but also on classifying individual buildings.
These methods are often based on two-stage object detection
models, such as Mask R-CNN (Chen et al., 2023) and Refine-
Mask (Yang et al., 2023). To further improve extraction per-
formance, many studies develop strategies that integrate DNNs
with multiple data types.

The above segmentation methods typically produce pixel-
wise results with curved and irregular boundaries, requiring
post-processing to generate regular polygonal shapes. To ad-
dress this, many polygonal segmentation methods were de-
signed to produce building footprints in a desirable vector for-
mat. For instance, Polygon-RNN introduced an LSTM-based
architecture to predict the vector of vertex location (Castrejón
et al., 2017). PolyMapper extended the capabilities of Polygon-
RNN by generating multiple vectorized building footprints (Li
et al., 2018). Li (2023) proposed a joint semantic-geometric
learning method for extracting polygonal buildings from remote
sensing images. Furthermore, to extract the inner structures of
building roofs in an end-to-end trainable manner, a fast and par-
simonious parsing method was proposed to generate vectorized
planar roof structures from high-resolution RS imagery (Zhao
et al., 2022).

Point-based DNNs extract 3D points from point clouds to
capture the geometric structure of building facades and roofs.
Jiang et al. (2023) utilized a graph neural network (GNN) to ex-
tract 3D structural points of buildings from point clouds. Addi-
tionally, many DNNs have been designed for the semantic seg-
mentation of point clouds, predicting the category of each point.
These methods can be classified chronologically into four cate-
gories: projection-based networks (Su et al., 2015; Tatarchenko
et al., 2018), voxel-based networks (Riegler et al., 2017), point-
based networks (Charles et al., 2017), and Transformer-based
networks (Zhao et al., 2021). Typically, Transformer-based net-
works achieve higher accuracy but come with increased compu-
tational complexity.

In summary, relative to image-based methods that extract
building footprints, point cloud-based methods can capture the
3D geometric structure of buildings, providing more detailed
information about their shape and structure. However, the col-
lection and processing of point cloud data tend to be more time-
consuming and costly. These methods, whether based on im-
ages or point clouds, can only extract basic building geometry
such as footprints, facades, and roof points. However, addi-
tional complex steps, such as contour extraction and surface re-
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construction, are still required to generate complete 3D building
models (Kölle et al., 2021).

2.2. 3D Building reconstruction from RS data
In the context of 3D building reconstruction, height is a cru-

cial yet often unavailable data element. To address this, numer-
ous monocular depth estimation methods have been proposed.
These methods estimate digital elevation models (DEMs) from
single-view RS images by leveraging depth cues such as texture
gradients, shadows, and defocus. For instance, Amirkolaee et
al. (2019) used a CNN architecture to estimate height values
from aerial images. Madhuanand et al. (2021) utilized a self-
supervised learning approach to jointly learn depth and pose
information. Furthermore, the MTBR-Ne network (Li et al.,
2021a) was designed to learn geometric properties and the re-
lationships between key components of 3D building models
during monocular depth estimation. This allows for the direct
extraction of building footprints and roof heights from single-
view aerial images. More recently, the Building3D network
(Mao et al., 2023) was developed to generate LOD1 3D build-
ing models by predicting elevation and building footprints from
monocular images.

For 3D building model reconstruction based on point clouds,
parametric shape modeling is primarily used. Most buildings
have relatively simple base outlines and roofs, which can be
easily identified from low-density data when roof details (such
as chimneys) are not considered. These simple shapes can then
be used to generate 3D building models through parametric rep-
resentation (Kada and Mckinley, 2009). For example, the bot-
tom outline decomposition method was proposed for modeling
buildings with distinct roof height discontinuities (Vallet et al.,
2011). This method involves creating a slightly larger surface
than the building’s base, decomposing it into cells, discarding
those with low overlap, and template-matching the remaining
cells’ point clouds with a preset roof shape library to generate
the roof. Park et al. (2019) first classify LiDAR data to extract
points reflecting roof surfaces and use these points to estimate
building heights, thereby generating LOD1 3D building mod-
els. Generally, these methods show lower automation in inner-
city and residential areas with complex roof structures and rely
on auxiliary data such as cadastral surveys.

Additionally, some studies focus on the rapid construction of
low-resolution 3D building models at LOD0 and LOD1 based
on 2D vectors (Hongchao Fan and Neis, 2014; Lei et al., 2024).
For example, Goetz et al. (2012) proposed a framework for
automatically creating CityGML models from OpenStreetMap
polygons. Some polygons include height attributes, allowing
the building footprints to be extruded to generate LOD1 build-
ing models with flat roofs directly (Agugiaro, 2016). Based on
this strategy, the VGI3D system was developed to crowdsource
the generation of 3D building models from OpenStreetMap
data, featuring functionalities such as import, reconstruction,
visualization, and modification (Zhang et al., 2021). However,
most footprints in OpenStreetMap do not include height at-
tributes. To address this, Biljecki et al. (2017) used machine
learning methods to predict building heights from footprints
and semantic information, resulting in LOD1 building models

with a mean absolute error of less than 1 meter. For generat-
ing higher LOD models, IndoorOSM was proposed to gener-
ate LOD3 3D building models with windows and indoor lay-
outs from OpenStreetMap data, despite involving many manual
works (Goetz, 2013).

In summary, current studies have not yet attempted to di-
rectly reconstruct detailed 3D roofs from single-view images.
Existing methods that use monocular images and vector data
can achieve large-scale, low-resolution representations for ur-
ban areas, but their accuracy and level of detail remain limited.
Point cloud-based methods show potential for reconstructing
3D building models with fine geometric structures, but they face
challenges such as complex processing workflows and difficul-
ties with texture mapping when applied to the reconstruction of
detailed 3D building models.

2.3. Transformer neural network

Transformer, which utilizes a self-attention mechanism to
capture global information, has revolutionized natural language
processing and large language models (LLMs) (Vaswani et al.,
2017). Recently, transformer has also made strides in image
and point cloud understanding. The ViT splits input images
into 16x16 patches, treating each as a token to encode features
for image classification (Dosovitskiy et al., 2021). Building on
this, the Pyramid Vision Transformer introduces a hierarchical
structure and memory-optimized spatial attention to generate a
feature pyramid for semantic segmentation (Wang et al., 2021).
Furthermore, the Swin-Transformer employs window-based at-
tention in successive Transformer blocks, enabling multi-scale
feature extraction and establishing itself as a versatile backbone
in computer vision (Liu et al., 2021).

Since 3D point clouds with coordinates can be used for po-
sition embedding, the self-attention mechanism is particularly
suitable for them. Point Transformer (Zhao et al., 2021) was
thus designed for classification and dense prediction tasks on
point clouds. This network applies self-attention locally, en-
abling scalability to large scenes with millions of points. Fur-
thermore, the Stratified Transformer (Lai et al., 2022) addition-
ally samples distant points as keys in a sparser manner, enlarg-
ing the effective receptive field and establishing direct long-
range dependencies while incurring negligible extra computa-
tions.

In summary, Transformers have shown great promise in
processing images and point clouds. However, vanilla Self-
Attention in Transformers requires a high computational cost.
To mitigate this, images are typically divided into fewer patches
for attention calculation, while attention in point clouds is com-
puted locally for k-nearest neighbors using k-d trees. In con-
trast, meshes, with their explicit adjacency relationships, are
better suited for local self-attention computation. Therefore,
this paper proposes MeshFormer, which leverages mesh topol-
ogy to aggregate mesh features efficiently.
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3. Methodology

3.1. RooFormer network
The RooFormer network is an end-to-end trainable frame-

work for reconstructing a detailed 3D roof mesh from a single
high-resolution RS image. The overview of RooFormer is il-
lustrated in Figure 1. RooFormer takes two main inputs: an RS
image showing a roof and an initial 3D plane mesh. The image
provides details about the shape and structure of the roof, while
the initial 3D plane ensures a watertight and manifold topology,
along with adjacency information.

RooFormer is a novel transformer-based 3D mesh predictor,
comprising a MaskFormer branch and a MeshFormer branch.
MaskFormer branch first encodes the RS image into perceptual
features, which are utilized by a lightweight decoder to esti-
mate an auxiliary roof mask. The concatenated roof mask and
perceptual features are then cascaded to MeshFormer branch to
infer the 3D roof mesh. MeshFormer branch contains multi-
ple cascaded MeshFormer modules designed to enhance mesh
details gradually.

Both the mesh predicted by each MeshFormer module and
the roof mask are computed as auxiliary losses, weighted along-
side the loss of the final predicted mesh. In the mesh loss func-
tion, we introduce a geometric similarity loss to mitigate in-
flated values resulting from vertex imbalances between GT and
predicted meshes, particularly in cases with similar shapes.

3.2. MaskFormer branch
Unlike images in ShapeNet (Chang et al., 2015), which only

contain the objects to be reconstructed, the RS images include
various non-target pixels such as trees, cars, and impervious
surfaces, alongside roof pixels. These background pixels may
divert the network’s attention away from the roof, making it
ineffective in identifying key features and generalizability.

Thus, we design MaskFormer branch, which consists of a
Transformer encoder and a Lightweight decoder for perceptual
feature extraction and mask prediction, respectively. By back-
propagating an auxiliary loss between the mask and the target
mesh, the extracted perceptual features can focus on the roof
region, significantly reducing the interference of background
pixels.

Transformer encoder. As depicted in Figure 2, given an
image with N×3, we first adopt 4 SwinV2 S layers (Liu et al.,
2021) to encode it into high-dimensional perceptual features
F =

{
N
4 × c1,

N
8 × c2,

N
16 × c3,

N
32 × c4

}
. Notably, other back-

bones, such as Bi-Former (Zhu et al., 2023), can also serve as
the encoder. We observed that they demonstrate similar perfor-
mance for this task.

Decoder consists only of MLP layers with the advantages of
being lightweight and computationally efficient. Its formulation
follows Equation 1:

F′i = MLP(ci, ch, Fi),∀i

F′i = Interpolate
(
N/4, F′i

)
,∀i,

(1)

where MLP(·) refers to a linear layer with ci and ch as the input
and output dimensions, respectively. Interpolate(·) refers to

the spatial interpolation operation. Specifically, each layer Fi

in the multi-layer perceptual features F encoded by the Trans-
former encoder is first expanded to a uniform dimension ch by
MLP(·), and then upsampled to restore the resolution to N/4
using Interpolate(·).

Mask Header is also designed to consist only of MLP pa-
rameters, which predict a roof mask based on features F′i . The
mask is concatenated into each layer of F, thereafter serving
as an input to the MeshFormer branch. Its formulation follows
Equation 2:

F′ = GELU(BN(MLP(4ch, ch,Cat(F′i )))),∀i

Mask = S igmoid(MLP(ch, 1, F′))

F = Cat(Cat(Fi, Interpolate(N/2(i+1),Mask))),∀i,

(2)

where Cat(·) and BN(·) refer to the concatenation and batch nor-
malization operations, respectively. GELU(·) and S igmoid(·)
as activation functions.

3.3. MeshFormer branch

As shown in Figure 1, in MeshFormer Module, positional en-
coding is initially embedded into input multi-layer perceptual
features by the Positional Embedding Layer. It then employs
cascaded Residual MeshFormer Blocks to predict 3D roof mod-
els and refines them using a Subdivision Layer.

Suppose a 3D mesh is represented by a tuple M = {V,T },
where V ∈ Rm×3 refers to vertices, and T ∈ Vm1×3 geometric
refers to primitives. m and m1 denotes the number of vertices
and geometric primitives, respectively. Based on T , the adja-
cency matrix Ai j ∈ Rm×m and the set of edge E ∈ Rm2×2 can be
easily computed, where m2 denotes the number of edges.

(1) Positional Embedding
To infer 3D roof models from RS images, it is necessary

to establish the association between 3D models and perceptual
features F. This is typically achieved by the intrinsic parame-
ters of the camera used to capture RS images, which are often
inaccessible. Therefore, the proposed Positional Embedding
layer embeds vertices of model into perceptual features using
UV mapping, as shown in Figure 3. Its formulation follows
Equation 3:

Fv
i = UVPro ject(V, Fi),∀i

F f usion = Cat
(
Cat(Fv

i ,V)
)
,∀i,

(3)

where F f usion refer to the vector that include both perceptual
and geometric features, with a shape of (|V |, c1+c2+c3+c4+3).

(2) Residual MeshFormer Block
The MeshFormer Block is composed of a Multi-Head Mesh

Self-Attention mechanism and multi feed-forward networks
(i.e., MeshFormer Layer). With thousands of primitives as in-
puts, directly applying vanilla global self-attention mechanism
(Vaswani et al., 2017) incurs a computational cost of O(m2

1).
Multi-Head Mesh Self-Attention. To this end, we design

a topology-based self-attention for 3D meshes. As shown in
Figure 4, instead of attending to all primitives, each query only
needs to consider its adjacent neighbors. It is an element-wise
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Figure 1: Overview of RooFormer network. The overall structure is a cascading architecture. The gray blocks are perceptual features of different stages, and the
colorful blocks are different DNN modules.
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Figure 2: Overview of RooFormer network. The overall structure is a cascading architecture. The gray blocks in the figure are perceptual features of different
stages, and the colorful blocks are different DNN modules.

Figure 3: The illustration of positional embedding.

operation, where each vertex is treated as a token, and the multi-
head attention mechanism acts on each vertex in V . In this way,
the complexity is reduced to O( m

k , k
2) = O(m × k), where k is

the average number of neighbors.
Formally, given that xi is the feature vector of token vi after

positional embedding, the attention coefficient ch,i for the h-th
head on vi is formulated as per Equation 4:

q(h,i) = wqxi, k(h, j) = wk x j, v(h, j) = wvx j

α(h,i, j) = q(h,i) ⊙ k(h, j)

α̂(h,i,...) = so f tmax(α(h,i,...))

ch,i =
∑

j∈N(i)
α̂(h,i, j) × v(h, j),

(4)

where wq, wv, and wk are three trainable weights, qh,i, kh, j, and
vh, j represent the Query, Key, and Value vectors respectively.
⊙ denotes the vector dot product. N(i) represents the set of
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neighboring indices of vi, defined by the adjacency matrix Ai j,
as shown in Equation 5.

N(i) = { j | Ai j = 1}. (5)

Figure 4: Structural illustration of MeshFormer Layer and MeshFormer Block.

MeshFormer Layer can be represented as per Equation 6.
The feature vector xi is first normalized by layer norm ρ. Then,
the multi-head mesh self-attention coefficients are computed.
As shown in the gray block in Figure 4, the layer integrates
multi-head mesh self-attention and a residual connection, pro-
ducing new feature vectors for all tokens as its output. The
residual connection facilitates information exchange between
feature vectors and improves gradient flow.

yi = GELU(ρ(
1
H

H∑
h=1

ch,i + ρ(xi))). (6)

MeshFormer Layer is cascaded N1 times to form Mesh-
Former Block, shown in the box in Figure 4. To make Mesh-
Former Block also cascadeable, two MLP layers are added at
the start and end to adjust the dimensions of inputs and outputs.
The predicted mesh vertices from MeshFormer Block are em-
bedded in the output of last MeshFormer layer to serve as input
for the subsequent block.

(3) Subdivision Layer and Mesh Head
A key function of Subdivision Layer is to increase the details

of meshes as required. To this end, the features F f is processed
by a MLP layer, then the features are mapped onto a higher-
resolution 3D mesh via the half-edge subdivision. As shown
in Equation 7, new vertices are added at the midpoint of each
edge, resulting in the number of primitives changing from m1 to
4 ×m1. Figure 5a illustrates the structure of Subdivision Layer.

γup(Fi, E) = 0.5(F i
f + F j

f ),∀(i, j) ∈ E. (7)

Mesh Head is designed to predict the final 3D mesh at the
specified resolution based on decimation, as illustrated in Fig-
ure 5b. The decimation is represented by Equation 8, where an
edge subset E′ uniformly sampled from E is collapsed at the
half-edge, reducing the number of mesh vertices by |E′| and the
number of primitives by 2|E′|. Meanwhile, we apply an Mesh-
Former Layer to map the feature F f to the final mesh vertices.
Both the subdivision and decimation operations can easily ob-
tain manifold triangle and edge sets.

γdn(F f , E′) = F f \ {F i
f , F

j
f } ∪ 0.5(F i

f + F j
f ),∀(i, j) ∈ E′. (8)

3.4. Loss function
We formulate the training of RooFormer as a regression pro-

cess, in which we minimize the surface difference between the
predicted mesh and the ground truth. As defined in Equation 9,
the loss function consists of the mesh loss lmesh and the image
loss lmask.

L = λ1

N∑
i=1

lmesh(Mi) + λ2lmask, (9)

where, λ1 and λ2 are pre-defined weights, Mi is the predicted
mesh by MeshFormer Block or Mesh Head.

lmask adopts cross-entropy loss to output precise building
footprints and constrain the attention to roof pixels. lmesh con-
sists of the geometric similarity loss for the shape quality of
meshes lgeom and the regularization loss lreg for the topological
quality of meshes, as per Equation 10.

lmesh = λ3lgeom + lreg, (10)

where λ3 is a pre-defined weight.
In CV for 3D, the Chamfer distance (CD) is commonly used

to measure the similarity between two point sets (Yuan et al.,
2021; Wang et al., 2018). As shown in Figure 6a, the predicted
mesh and the GT mesh are very close in terms of geometric
shape and spatial position. However, the number of vertices
(gray points) in the predicted mesh is significantly greater than
that in the GT mesh (blue points). In this case, the CD may
be large even if the two sets are close. Due to the resolution
change of 3D roof meshes after the Subdivision Layer and Mesh
Head, it is hard to maintain an similar quantity to the GT ver-
tices. To avoid the irregular fluctuations of L caused by CD, Our
proposed lgeom measures surface similarity between 3D meshes
rather than vertex similarity. It is defined as the average distance
between two meshes in the Z-direction, as given in Equation 11.

V1 = sample(M1)

lgeom(V1,M2) =
1
|V1|

∑
v∈V1

∥v − I(v,M2)∥2,
(11)

where M1 and M2 refer to the predicted 3D mesh and GT, re-
spectively. sample(·) uniformly sample N3 points on the sur-
face of a mesh. I(·) computes a unique intersection point where
a ray is cast vertically from vertex v to M2, which is a non-
closed and space-continuous. In rare cases where there is no
intersection between v and M2, the position on M2 closest to v
is returned as the value, as shown in Figure 6b.
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Figure 5: Structural illustration of (a) Subdivision Layer and (b) Mesh Head.

Figure 6: Illustration of (a) unbalanced vertices between the predicted and GT
meshes and (b) the proposed lgeom loss.

lreg consists of Laplacian term llap and edge term ledge,
weighted as per Equation 12:

lreg = λ4llap + λ5ledge, (12)

where λ4 and λ5 represent the weights for llap and ledge respec-
tively.

llap is given by Equation 13. It penalizes vertices from
moving too freely, ensuring that adjacent vertices have simi-
lar movement distances to avoid self-intersection of the mesh
and excessive deformation during the training process.

llap(V) =
∑

v∈V
∥δ′v − δv∥

2
2

δv =
∑

k∈N(v)

k
∥N(v)∥

,
(13)

where, N(v) represents the set of vertices topologically adjacent
to vertex v. ledge is given by Equation 14 to prevent the genera-
tion of overly long edges.

lloc(E) =
∑

(i, j)∈E

∥∥∥Vi − V j

∥∥∥2
2 . (14)

4. Experiments

4.1. Datasets and implementation details

We conducted experiments on the image-building paired
(IMP) dataset (Ren et al., 2021) and various publicly available
aerial images (introduced in more detail later) to verify the per-
formance and robustness of the proposed method. The IMP
dataset consists of 3,585 roofs paired with the input aerial im-
age and 3D mesh. The 3D roof meshes, which vary in structure
and complexity, were modeled manually in a semi-automated
manner. Figure 7 shows some example roof meshes and aerial
images. The 3D roof meshes retain only the shape-relevant
edges/vertices by removing duplicates and redundancies. The
number of vertices in all 3D roof meshes ranges from 5 to 34,
and the image sizes range from 95×103 to 1066×848.

After removing 14 roof samples with topological errors, the
dataset was randomly divided into 2,857 training samples and
714 testing samples. By applying horizontal and vertical flips
to the training images and meshes, we obtained a total of 8,571
training samples. To facilitate batch processing during training,
each image was resized to 224×224.

Our method was trained for 100 epochs with a batch size
of 16 using the Adam optimizer on two Nvidia GeForce RTX
3090 devices with 48 GB of memory. The initial learning rate
was set to 1× 10−4, and the final learning rate was 1× 10−7. We
decayed the learning rate using MultiStepLR, with milestones
at [40, 70, 90] and a gamma value of 0.5.

The MeshFormer module count N was 3, with N1 set to 1
MeshFormer block and N2 set to 6 MeshFormer layers. The
number of self-attention heads was set to 4. Feature dimensions
c1, c2, c3, and c4 were 96, 192, 384, and 768, respectively, with
the input and output dimensions of the MeshFormer layers be-
ing 198. The loss weight coefficients λ1, λ2, λ3, λ4, and λ5 were
1, 0.1, 1, 0.5, and 0.1, respectively. The number of sampled
points in the lgeom loss function was set to 7000. The initial
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Figure 7: Example roof meshes paired with the corresponding aerial images (Ren et al., 2021).

3D mesh has 100 vertices, which increases to 361 after the first
subdivision and to 1369 after the second subdivision.

4.2. Evaluation metrics
The output of 3D roof meshes from the considered methods

were evaluated and compared using different metrics. We uni-
formly sampled points from the result meshes and GT meshes
to calculate the Chamfer distance dcd. Additionally, we calcu-
lated the percentage for surface distance threshold pτ and p2τ.
To better understand performance in terms of height, we report
the mean absolute error zL1 and mean squared error zL2 in the
z-axis. For the Chamfer distance, zL1, and zL2, smaller is better.
For pτ and p2τ, larger is better.

The Chamfer distance dcd is defined as the sum of the dis-
tances from each point in a set to its nearest neighbor in another
set, as per Equation 15.

dcd (V1,V2) =
1
|V1|

∑
x∈V1

min
y∈V2
∥x−y∥22+

1
|V2|

∑
y∈V2

min
x∈V1
∥y−x∥22,

(15)
where, V1 and V2 are the points uniformly sampled from the re-
sult mesh and its GT mesh, respectively. The normalized error
zL1 and zL2 on the z-axis are defined as per Equation 16 and 17,
respectively. Where, ẑ and zi are the height of the surface points
from the result mesh and its GT mesh at the same positions,
respectively.

zL1 =
1
m

∑m

i=1

|ẑi − zi|

max(zi) −min(zi)
. (16)

zL2 =
1
m

∑m

i=1

(
ẑi − zi

max(zi) −min(zi)

)2

. (17)

The percentage thresholds pτ and p2τ represent the percent-
age of points on the generated 3D roof mesh surface that are
within a distance τ = 1e − 4 of the same positions on the GT
model surface, as shown in Equation 18.

pτ (V1,V2) =
1
|V1|

∑
x∈V1

∑
y∈V2

δ
(
∥x − y∥22

)
< τ, (18)

where, V1 and V2 are the surface points from the result mesh
and its GT mesh at same positions, respectively. δ(·) is an in-
dicator function that is 1 when the distance is less than τ and 0
otherwise.

5. Results and discussion

5.1. Quantitative analysis
We compared our method with Pixel2Mesh (Wang et al.,

2018), the state-of-the-art, open-source method available for 3D
reconstruction from single images. The training and inference
of Pixel2Mesh rely on the camera intrinsic parameters, which
are not provided in the IMP dataset. To adapt Pixel2Mesh for
IMP, we replaced its Perceptual Feature Pooling Layer with our
proposed Positional Embedding Layer, creating a variant re-
ferred to as P2M PE. Furthermore, for a fair comparison, we
replaced the ellipsoid mesh used in Pixel2Mesh with a plane
mesh, resulting in P2M Plane. To validate the performance
of the proposed geometric similarity loss lgeom, we replaced
the Chamfer distance in Pixel2Mesh with lgeom, resulting in
P2M Geom.

Table 1 summarizes the results and comparisons on the IMP
dataset. RooFormer achieved better performance on all metrics.
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Table 1: Comparison of different P2M variants

Method dcd pτ p2τ zL1 zL2

P2M PE 0.12 9.55 18.97 0.069 0.592
P2M Plane 1.61e-3 24.27 44.34 0.034 0.353
P2M Geom 6.11e-4 46.80 72.25 0.023 0.207
RooFormer 3.57e-4 58.88 83.95 0.014 0.164

P2M PE achieved a p2τ of only 18.97. Even after replacing the
ellipsoid with a plane, p2τ was only 44.34, which is signifi-
cantly lower than the 83.38 achieved by RooFormer. Moreover,
RooFormer achieved a relatively lower dCD of 3.7 × 10−4 com-
pared to other methods, showing the position accuracy of roof
reconstruction. In terms of height errors, RooFormer’s zL1 and
zL2 are 0.014 and 0.164, respectively, about one-third of those
of P2M Plane. This indicates that the average elevation error
of the reconstructed roofs with RooFormer is less than 0.05 me-
ters when the roof height is 3 meters, whereas P2M Plane has
an average error exceeding 1 meter.

Compared to P2M Palne, P2M Geom achieved a p2τ im-
provement of 27.91, confirming that the proposed lgeom loss
is more suitable for 3D reconstruction tasks than point-wise
distance. Furthermore, RooFormer improved p2τ by 11.7 over
P2M Geom, demonstrating the superiority of the proposed net-
work architecture and MeshFormer for this task.

In terms of training costs, RooFormer has a training effi-
ciency similar to Pixel2Mesh but uses twice as much memory
under the same conditions. However, if we replace the proposed
multi-head mesh self-attention with vanilla self-attention, GPU
memory usage increases 18 times. This significant increase is
because it uses a topology-based local self-attention mechanism
instead of a global one. This finding demonstrates the effective-
ness of our designed multi-head mesh self-attention in inferring
geometric features of 3D meshes.

5.2. Qualitative analysis

Figure 8 shows representative 3D roofs reconstructed by
RooFormer and alternative methods on the validation set.
RooFormer can reconstruct fine roof models of buildings with-
out depending on preliminary boundary segmentation and any
hand-crafted constraints. It properly reconstructs the geometric
structures of complex roofs from single RS images. P2M Plane
performs poorly in terms of positional accuracy, boundary
definition, and shape structure. P2M Geom produces rela-
tively finer shape structures, but some incorrect reconstructions
around boundaries still exist. This may be caused by adjacent
non-roof pixels such as impermeable surfaces and cars. In con-
trast, RooFormer reconstructs roof meshes with higher bound-
ary accuracy because the MaskFormer branch predicts the roof
mask to calculate an auxiliary loss.

In Figure 9, we display the normalized error distribution
along the Z dimension for the results of RooFormer and
P2M Plane. Brighter colors indicate larger errors. Compared
to P2M Plane, the 3D roof meshes reconstructed by RooFormer
exhibit smaller errors in the Z dimension. However, it is often

observed that the errors at the ridge are larger than those in the
planar areas.

To evaluate the structural integrity of the results, we com-
puted and map the principal directions of curvature. The prin-
cipal curvatures describe the amount of bending, while the prin-
cipal directions describe the orientation of this bending. Typi-
cally, the structural lines of a roof lie in the areas with the high-
est curvature. In Figure 10, green indicates regions with low
curvature and gentle slopes, while other colors represent areas
with high curvature and significant bending. It is evident that
the meshes reconstructed by RooFormer exhibit clear structural
lines. Therefore, by clustering the principal curvatures, the re-
constructed results can be directly applied to tasks such as the
extraction of the roof structure line.

In addition to better geometric accuracy, RooFormer recon-
structs roof meshes with superior topological quality. With
the same number of primitives, the meshes reconstructed by
P2M Plane have an uneven primitive distribution, with an ex-
cessive concentrated around the roof’s outline. This results in
the sparse appearance of the roof wireframes in the last rows of
Figure 8. In contrast, the wireframes of the roof mesh recon-
structed by RooFormer are denser, reflecting a more uniform
distribution of mesh primitives. Meanwhile, as shown in Fig-
ure 8, the input RS image can be directly mapped to the tex-
ture of the reconstructed mesh through the Positional Embed-
ding Layer, without additional post-processing steps required
by Pixel2Mesh.

Furthermore, we tested the proposed network on open
aerial images obtained from the OpenAerialMap platform
(https://openaerialmap.org, last accessed August 2024) for a
qualitative evaluation of generalization. We used the model
trained on the IMP dataset and directly inferred these aerial im-
ages without fine-tuning. As shown in Figure 11, the model
trained on IMP data generalizes well to open aerial images from
various countries.

5.3. Performance analysis
Table 2 presents the training and inference performance of

RooFormer. On a single GPU, RooFormer can infer more than
225 images per second and generate the corresponding meshes.
With two GPUs, a batch size of 8 enables training of more than
14 images per second, with 100 epochs taking nearly 4 hours
and requiring a total of 9.43-17.68 GB of GPU memory. The
input image size does not affect the inference efficiency, but
significantly impacts the GPU memory usage during training.
Furthermore, we evaluated the performance of the proposed
Multi-Head Mesh Self-Attention. As shown in Figure 12, with
an increase in the number of mesh vertices, the proposed Self-
Attention outperforms Vanilla Self-Attention in both floating
point operations per second (FLOPs) and GPU memory usage,
with a more favorable growth rate.

5.4. Ablation studies
5.4.1. Ablation studies on at the network architecture level

We conduct controlled experiments to analyze the impor-
tance of key parameters and components in RooFormer, includ-
ing the number of heads (MLH) and feature dimension (MLD)
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RS Image Reference P2M_Plane
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Wireframe ModeP2M_Geom
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Figure 8: Comparative evaluations against competing methods on the validation set. From left to right: RS Image, Reference, P2M Plane, P2M Geom, and the
wireframes and texture visualization modes of RooFormer.

in the MeshFormer layer, the number of MeshFormer layers
(MLN), and the number of MeshFormer modules (MMN). Ta-
ble 3 reports the performance under different settings used in
the experiment.

As MLH, MLD, and MLN decrease, the parameter volumes

and the evaluation metrics dcd, pτ, p2τ, zL1, and zL2 decrease
correspondingly. For example, when MLD is 118, the value
of p2τ is 81.94%, which is nearly a 2% decrease compared to
its value when MLD is 198. However, MMN has a significant
impact on reconstruction results. With the same number of out-
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Figure 9: Visualization example of the normalized error along the Z-axis for the results of RooFormer and P2M plane. Brighter colors indicate higher errors, as
shown in the legend..

Figure 10: Visualization of the principal directions of curvature of the reconstructed meshes.

Table 2: Performance metrics for different input image sizes

Metrics 112×112 224×224 448×448

Training Time (hours) 3.71 3.95 4.30
Training Throughput (images/s) 16.00 15.92 14.08
Training Memory Usage (GB) 9.43 11.54 17.68
Inference Throughput (images/s) 227.67 223.23 229.31

put faces set to 2592, p2τ decreases by 9.54% when MMN is 1,
compared to the result with 3 MMNs. As shown in Figure 13,
the reconstructed roofs with 3 MMNs have a more precise ge-
ometry and regular boundaries compared to those with 1 MMN.

5.4.2. Ablation studies on at the loss level

To investigate the effects of different loss terms on recon-
structed results, we evaluate the function of key loss terms:
lgeom, lmask, lreg, and the subterms of lreg (i.e., llap and ledge).
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Figure 11: Qualitative results of real-world aerial images from OpenAerialMap online.

Table 3: Table 3: Quantitative comparison using different network architectures

Method Total Params dcd pτ p2τ zL1 zL2

MLH 1 53.6 M 3.84e-4 57.34 82.67 0.0154 0.166
MLH 2 55.7 M 4.11e-4 57.96 83.19 0.0149 0.153
MLD 118 54.0 M 3.85e-4 56.11 81.94 0.0160 0.170
MLD 158 56.6 M 3.74e-4 58.30 83.39 0.0150 0.159
MLN 1 52.8 M 3.93e-4 56.57 82.12 0.0155 0.165
MLN 3 55.7 M 3.72e-4 57.46 83.06 0.0149 0.151
MMN 1 52.4 M 5.03e-4 48.40 74.54 0.0217 0.206
Full 4 198 6 3 58.8 M 3.57e-4 58.88 83.95 0.0140 0.144

Figure 12: Performance metrics for Mesh Self-Attention and Vanilla Self-
Attention.

As shown in Figure 14, removing the mesh regularization term
lreg and its subterms llap and ledge from the loss function re-

Figure 13: Visualization comparison of the results with MMN=1 and MMN=3
under the same number of output faces.

sults in excessively long and uneven edge lengths of the recon-
structed geometric primitives. The issue of excessively long
edges caused by the llap term is more severe than that caused
by the ledge term. Removing the mask term lmask from the loss
function impairs the accuracy of reconstructed roof meshes at
their boundaries, leading to issues such as incomplete roof re-
construction and the inclusion of non-roof areas. This problem
is particularly severe when there are objects that interfere with
roofs, such as vehicles and shadows, as shown in the red re-
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gions of Figure 14. These results highlight the importance of
each loss term in contributing to overall performance.

We evaluated three key loss weight coefficients: l2, l4, and
l5. Table 4 highlights how changes to these coefficients affect
reconstruction results. Selecting optimal values is a combina-
torial optimization challenge. The coefficients used in Section
4.1 were derived from extensive experimentation and are rec-
ommended for this task.

5.5. Discussion

The proposed network enables the reconstruction of detailed
and textured 3D roof meshes from single-view RS images. We
have conducted quantitative analysis, qualitative analysis, and
ablation studies on the IMP dataset and open aerial images. The
following observations are worthwhile for further discussion.

Roof structure and color The proposed network performs
well on roofs with various structures, as shown in Figure 8.
For low complexity roofs, such as those with fewer than eight
roof ridges and hips, the reconstructed meshes exhibit clear and
precise structures. However, for roofs with numerous ridges
and hips, the reconstructed meshes occasionally show a decline
in structural accuracy, particularly in small roof hip areas. This
may be due to the smaller regions contributing less significantly
to the loss gradient during backpropagation. Additionally, we
observed that the proposed method is not sensitive to roof color,
producing satisfactory results on roofs of different colors.

Occlusion In RS images, some roofs may be occluded by
nearby tree canopies. Theoretically, occluded areas are difficult
to reconstruct due to the loss of contextual texture. However, in
practice, the proposed method achieves satisfactory reconstruc-
tion results in areas mildly occluded by vegetables, as shown
in the blue box in Figure 15a. This is primarily because roofs
typically have regular shapes, allowing the model to infer miss-
ing parts after being trained on extensive data. Similarly, hu-
mans can identify the actual roof boundaries from occluded RS
images. Nevertheless, as illustrated in the red box in Figure
15b, when the occluded area is substantial, the reconstruction
by RooFormer deviates from the actual roof extent. Further-
more, Figure 16 shows the reconstruction results of synthetic
images with varying levels of occlusion by vegetables, where it
can be observed that significant occlusion along structural lines
impacts the reconstruction performance of RooFormer.

Roof appendages As shown in the red box and curvature
mapping in Figure 15c, the reconstructed meshes do not in-
clude small roof appendages such as chimneys and dormers.
There are two main reasons for this. First, the features and ge-
ometric structures of tiny objects are difficult to capture. Sec-
ond, tiny roof appendages are not modeled in the GT meshes
used in training, leading the trained model to interpret these
appendages’ texture features as part of the roof’s flat surface.
These are areas that need to be optimized in future data sets.

6. Conclusions

As crucial elements of buildings, 3D roof models are es-
sential for various analyses, including solar potential analysis,

urban microclimate simulation, and energy efficiency assess-
ments. The diversity and complexity of roof structures has for
a long time presented significant challenges for accurate and
efficient 3D roof reconstruction. RS images provide wide cov-
erage, frequent updates, and easy public access. However, little
attention has been given to the reconstruction of detailed 3D
roof models using DNNs from RS images.

In this work, we propose an end-to-end learning framework
named RooFormer for reconstructing detailed and textured 3D
roof models in mesh format. Given an input high-resolution
remote sensing image containing a complete roof, RooFormer
can automatically infer a 3D roof model. RooFormer con-
sists of a MaskFormer branch, which identifies and focuses on
roof features, and a MeshFormer branch, which predicts de-
tailed roof meshes. In the MeshFormer branch, a local self-
attention mechanism is developed to interpret mesh features,
and a positional embedding layer is designed to integrate geo-
metric and texture features. In addition, to measure geometric
similarity between predicted and GT meshes, the loss function
incorporates terms from both image and mesh domains. The
proposed geometric loss term, compared to existing 3D metrics
like Chamfer distance, more accurately reflects the geometric
differences in meshes.

After evaluation and ablation experiments, the height er-
rors of RooFormer are 0.014, approximately one-third those
of state-of-the-art methods. Visually, the reconstruction accu-
rately reflects the geometric contours and structures of roofs,
even under slight occlusion. We tested the trained RooFormer
on publicly available online aerial images and achieved promis-
ing results, demonstrating its generalization capability. In ad-
dition, we discussed the proposed model in terms of occlusion
and roof appendages, roof structure, and color.

We consider this work a step forward for 3D roof reconstruc-
tion from RS data, and potentially the basis for 3D building
reconstruction from RS imagery. Our framework promises to
enable richer building modeling and analysis for broad digital
city applications. The framework could be improved from the
following perspectives for future work: 1) introducing multi-
source data fusion to predict complete 3D building models; 2)
extending the framework to predict small roof attachments; 3)
exploring the use of additional data, such as DEMs or multi-
view imagery. Furthermore, we will explore a network with
more parameters based on RooFormer to predict 3D roofs at a
national scale.
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Figure 14: Qualitative results from ablation studies reflecting the contribution of each loss term.

Table 4: Quantitative comparison using different loss weight coefficients

Metrics Base λ2 λ4 λ5

0.01 1 0.05 5 0.01 1

dcd 3.57e-4 3.93e-4 4.33e-4 3.75e-4 4.26e-4 3.82e-4 3.91e-4
pτ 58.88 58.23 53.07 58.11 57.21 58.18 57.89
p2τ 83.95 83.04 79.14 83.12 82.54 83.35 83.16
zL1 0.0140 0.0143 0.0183 0.0148 0.0161 0.0151 0.0155
zL2 0.1442 0.1509 0.1953 0.1587 0.1814 0.1596 0.1683

Curvature Mapping

(a) (b) (c)

Curvature Mapping

(a) (b) (c)

Figure 15: Example results of occlusion and failure cases: (a) Results in mildly occluded areas. (b) Results in largely occluded areas. (c) Results and primary
direction of curvature for small roof appendages.
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Figure 16: The reconstructed roof meshes under different levels of occlusion by vegetables: the green box indicates areas with artificial occlusion at varying levels,
while the red box highlights regions with significant errors.
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