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Urban visual perception is important for the human experience in cities, shaped by intertwined
characteristics of urban landscapes. By quantifying and explaining these perceptual experiences,
researchers can gain insights into human preferences and support decision-making in planning and
design. However, past studies have shown inconsistencies in survey design and ambiguities in re-
porting, leading to concerns about the reliability and reproducibility of results. This study proposes
the first comprehensive framework to guide image-based survey design for capturing perceptions of
outdoor urban environments across different scenarios, addressing the lack of methodological stan-
dardization in current research. We reviewed existing surveys to identify key parameters, conducted
comprehensive between-subject and within-subject surveys, and performed statistical analyses to
determine best practices for survey design across different contexts. Aiming to set a potential
community standard, our study doubles as a blueprint for a reporting protocol for survey designs.
Based on the results, we recommend: (1) meeting a minimum of 12 and 22 ratings per image for
Likert Scale and Pairwise Comparison studies to reach survey reliability, respectively, and report-
ing these alongside other survey design parameters to enhance transparency and reproducibility;
and (2) when resource allows larger experiments, adopt a ranking method such as Pairwise Com-
parison to achieve firmer rating results; and (3) using perspective (non-panoramic) images more
frequently, as they exhibit comparable overall scores to panoramic images (R mostly > 0.7), while
being more widely available via crowdsourced sources, supporting their use in large-scale visual
perception research.
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1. Introduction

Visual perception refers to the process by which humans interpret visual information from the
external environment, forming an understanding of surroundings (Gibson, 2014; Snowden et al.,
2012; Cornsweet, 2012; Wade and Swanston, 2012). With the accelerating urbanization, more
studies are focusing on the impact of urban environments on human visual perception, evaluating
people’s preferences and needs in them through data such as images and videos (Ito et al., 2024;
Dubey et al., 2016; Zhang et al., 2018). Specifically, understanding human subjective cognition
helps researchers better understand urban environments and leads to more holistic and human-
oriented evaluations of aspects such as environmental safety (Liu et al., 2025; Wang et al., 2022;
von Stülpnagel and Binnig, 2022), physical and mental health (Wu et al., 2024; Chen et al., 2022;
Zhang et al., 2021), and aesthetic preference (Wang et al., 2019b; Gao et al., 2019), providing
crucial information for decision-making in urban planning.

The evaluation of urban visual perception is usually conducted quantitatively. To study it, re-
searchers have traditionally relied on methods such as field observations, questionnaires, and inter-
views (McGinn et al., 2007; Clay and Smidt, 2004; Oku and Fukamachi, 2006; Brush et al., 2000).
These methods are typically straightforward but are time-consuming, costly, and limited in sam-
pling, making them suitable only for small-scale studies. In recent years, with the advancement in
computer vision and the proliferation of image sources such as Street View Imagery (SVI) services
and their accessibility, large-scale online surveys based on visual data became a norm (Ito et al.,
2024; Biljecki and Ito, 2021; Anguelov et al., 2010; Yan et al., 2020). Many such studies show
no sign of relenting, with researchers using automated auditing workflows and ever-increasing vi-
sual data sources to conduct large-scale urban perception surveys (Kelly et al., 2013; Rundle et al.,
2011).

Often constrained by various institutional and budgetary considerations, researchers typically
design such surveys independently. As a result, the criteria and parameters they adopt may appear
arbitrary or, at best, reflect weak coordination within the international scientific community, and
in many cases, the specifics remain rather vague. Key reasons for that are the lack of universally
standardized guidelines and a foundational study that addresses this topic.

Because of this gap, researchers decide several survey parameters separately, such as choices
about the types of images used, the format of survey questions, and the sample size (or number
of images rated). For example, some studies use panoramas to assess urban walkability (Huang
et al., 2023), while others utilize perspective images with limited viewpoints to analyze the same
aspect (Gong et al., 2023). Some studies evaluate each image fewer than 10 times (Kang et al.,
2023; Luo et al., 2022b), while others conduct more than 100 assessments per image (Ogawa et al.,
2024). These decisions introduce flexibility and variations, leading to potentially inconsistent re-
sults. Moreover, the aforementioned parameters themselves are often not clearly defined or remain
ambiguous in publications. Without standardized guidelines, such variations and ambiguities may
yield conclusions that may not be directly comparable or, in some cases, may not be valid.

We call for bridging these gaps by giving attention to the foundation of this research line and
by providing a set of guidelines supported by statistics and comprehensive multi-dimensional ex-
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periments, which would drive future surveys. Given the diverse practices, survey designs, and
parameter choices in studies, we seek to answer the following research questions (RQ), accompa-
nied by multiple subquestions:

How can we develop a set of standardized approaches and protocols for conducting and reporting
robust and effective visual perception surveys in urban studies?

• RQ1: How should the consistency of responses from different raters be evaluated?

• RQ2: To what extent do different survey parameters affect the results?

• RQ3: Is there a minimum sample size setting to ensure robustness?

To answer them, we have established a comprehensive framework backed by statistics to ensure
sound approaches and standardization of image-based perception surveys. We identified common
parameters in visual perception surveys, designed and conducted a comprehensive survey based
on these parameters, and performed data analysis using a statistical framework that encompasses
consistency, discrepancy, and robustness. This framework explores best practices for conducting
effective surveys and the advantages and disadvantages of parameter choices in different circum-
stances. Further, it helps communicate survey designs effectively. The framework aims to help
researchers in related fields reach a consensus on survey design and assist those unfamiliar with
it in understanding common variables and their suitability. When doing so, we have considered a
wide range of strands in urban planning and design for which perception studies with imagery are
employed, from safety and aesthetics to comfort and walkability, intending to render this work as
application-agnostic and as widely applicable as possible.

2. Literature review

2.1. Visual perception survey

In recent years, the development of computer vision, along with the emergence of numerous
image data sources, has led to the gradual replacement of traditional low-throughput surveys and
interviews with efficient large-scale visual perception surveys (Ito et al., 2024; McGinn et al., 2007;
Clay and Smidt, 2004; Oku and Fukamachi, 2006; Brush et al., 2000). These surveys typically use
visual interfaces to display visuals, and raters assess them based on their intuitive feelings, con-
ducting various types of evaluations, depending on the goal of the survey. Driven by technological
advancements and shifting research interests, studies on urban visual perception have proliferated
and cover a wide spectrum of topics, such as perception of street safety, landscape preferences, and
the quality of the built environment (Ito et al., 2024).

While studies tend to collect ratings on their own, there are instances utilizing existing rat-
ings from open datasets. The Place Pulse datasets serve as rare and marquee examples of open
visual perception data, having collected scores from over 80,000 individuals worldwide since the
early 2010s (Salesses et al., 2013; Dubey et al., 2016). These open datasets have enabled many
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researchers to rely on the existing local annotations within these datasets and combine them with
other multi-source data to evaluate the distribution of human preferences on a larger scale, without
having to collect data on their own. Having a set of six dimensions (e.g., scoring safety, beauty),
Place Pulse has shaped the contours of this field, as the same dimensions have been adopted also
by many research groups conducting surveys on their own, independently of this dataset (to be dis-
cussed later in detail). However, as other large-scale crowdsourced data, they lack comprehensive
evaluation of data quality. The heterogeneity (e.g., varying numbers of scores per image) raises
concerns about their reliability, which propagates to the different degrees of robustness, reliability,
and validity of the studies utilizing them.

Besides the aforementioned data, most researchers resort to collecting data independently for
the lack of high-quality open data instances and significant differences in research objectives. In
these studies, the choice of survey parameters, such as number of participants, varies significantly
and is driven by many factors, such as budget, available time and data, scope, and focus of the
study. For example, studies use various SVI types: panoramic images (Zhao et al., 2023; Huang
et al., 2023; Chen and Biljecki, 2023), perspective images (Yao et al., 2019; Navarrete-Hernandez
et al., 2023; Qiu et al., 2023; Wang et al., 2019a), and panoramic mosaic images (Meir and Oron-
Gilad, 2020; Ma et al., 2023). In terms of scoring methods, most studies use the Likert Scale (Lis
et al., 2022; Cui et al., 2023), but some are increasingly adopting Pairwise Comparison for ranking
scoring. Regarding rater settings (Kang et al., 2023; Ye et al., 2019; Ramı́rez et al., 2021), there
is considerable variation in terms of the rater backgrounds, which can include industry experts,
student groups, the general public, or their concoction. Due to the varying number of raters and the
images being evaluated, the number of assessments per image also differs significantly. This can
range from fewer than 10 evaluations (Kruse et al., 2021; Ito and Biljecki, 2021; Luo et al., 2022b),
to between 10 and 100 (Qiu et al., 2023; Luo and Jiang, 2022; Ma et al., 2023; Navarrete-Hernandez
et al., 2023; Zhou et al., 2025), or even exceed 100 assessments per image (Ogawa et al., 2024).
In this context, researchers face the challenge of determining the most effective survey practices to
evaluate rater consistency and decide on different input parameters (such as image types, scoring
methods, and raters). These factors are crucial for the accuracy and reliability of research results
and require further exploration and optimization.

Overall, current urban visual perception research presents structural variability due to numer-
ous both simple and complex factors, posing significant challenges to researchers. They face the
dilemma of identifying the most effective survey methods to evaluate the consistency of the rating
and find the appropriate survey parameters without a foundational set of guidelines grounded in
statistics. There is a need to explore and verify the impact of different survey parameter settings
on perception results to ensure the accuracy and reliability of studies, which we aspire to bridge in
this paper.

2.2. Effective survey design with statistics

On a general scope, surveys are an essential channel for obtaining and analyzing information
from a sample of individuals (Groves et al., 2011; Rea and Parker, 2014; Fink, 2003; Krosnick,
1999). Conducting a comprehensive survey is usually a complex process that includes survey
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design, data collection, data editing, and data analysis, which requires careful consideration and
decision-making. A well-designed survey is fundamental to ensuring data quality, representative-
ness, and the credibility of results (Bethlehem, 2009; Groves et al., 2011; Fink, 2003). Therefore,
guiding effective survey design has long been important.

An effective survey, when designed using appropriate methodologies, can collect accurate data
within the constraints of limited resources, thereby fulfilling the needs of downstream tasks such
as statistical analysis (Taherdoost, 2016; Kasunic, 2005). Survey guidelines provide recommenda-
tions for effective survey design by identifying key aspects such as question formulation, instru-
ment design, and sample selection across different contexts. For instance, Rea and Parker (2014)
and Fink (2003) provided comprehensive survey guides that span from question development and
sample estimation to survey implementation and data analysis optimization. To enhance effective-
ness, some guidelines and exploratory analyses specifically focus on parameters such as survey
reliability and validity (Aithal and Aithal, 2020; Gadermann et al., 2012; Hallgren, 2012), sam-
ple selection strategies (Dell et al., 2002; Eng, 2003; Lenth, 2001) and participation optimization
(Salminen et al., 2025).

Beyond general methodologies, specific fields have developed detailed guidelines tailored to
their unique practices for guiding survey design in particular use cases. For example, in the med-
ical field, Bennett et al. (2011) used literature reviews to emphasize the importance of survey re-
porting, and Artino et al. (2018) provided a reporting protocol of survey rationale, pre-testing, and
implementation. In the field of biological monitoring, the focus has been on survey design options,
cost functions, and the construction of models, highlighting the significance of study planning for
effective survey design (Reynolds et al., 2011). In software engineering, past survey parameters
and related issues, such as target audience, survey tools, data analysis, and reporting, have been
identified, with optimization recommendations based on these findings (Molléri et al., 2016). In
psychology, expert consensus methods have been employed to develop quality checklists for sur-
vey research (Protogerou and Hagger, 2020), and in another study, five guidelines were proposed
to create a more gender-inclusive science, aiming to avoid validity issues stemming from gender
measurement errors (Cameron and Stinson, 2019).

Despite the widespread application of survey guidelines across various fields, the urban vi-
sual perception domain remains underexplored in terms of a unified survey framework. Given the
unique practices in this field — such as image types (e.g., Street View Imagery) and application
contexts (e.g., urban perceived safety) — no comprehensive survey guideline has yet compared
common practices or provided concrete recommendations for future surveys. Addressing this gap,
our study offers a comprehensive framework for identifying common parameters in urban visual
perception research, providing the first reference for the field. Our aim is to guide the research com-
munity toward establishing consensus on selecting, designing, and reporting survey parameters in
this context.
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Figure 1: A framework for study design encompassing the most relevant parameters (A), survey structure (B), three
quantitative metrics addressing the research questions (C), and the overall contributions (D).

3. Methodology

The research framework is illustrated in Figure 1. Initially, we base our approach on existing
practices utilizing outdoor environment image data for surveys, selecting representative param-
eters (Figure 1A) at three levels: Image Types, Scoring Methods, and Subjective Indicators for
comparative analysis. Subsequently, we design a robust survey structure through between-subject
and within-subject design (Figure 1B) to assess inter-rater and intra-rater agreement, respectively.
Finally, we conduct quantitative analyses based on three metrics — Consistency, Discrepancy, and
Robustness — to provide recommendations and establish protocols (Figure 1C).

3.1. Parameters
3.1.1. Image types

According to Ito et al. (2024), images constitute nearly all visual data used in this domain.
We have chosen Street View Imagery (SVI) because it has gained significant momentum thanks
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to services such as Google Street View and Baidu Maps (Anguelov et al., 2010; Biljecki and Ito,
2021). Moreover, SVI encompasses a variety of image types, making it an excellent proxy for other
image types, such as non-geo-tagged photos. We have selected the three most common image types
to compare the influence of this factor.

• Panoramic Images

These are a form of wide-angle representation, commonly provided by commercial street
view services, and are created by stitching multiple perspective images. Panoramic images
contain comprehensive scene information but often exhibit varying degrees of perspective
distortion due to their projection, which leads to local magnification or reduction of certain
elements depending on their distance from the center of perspective.

• Perspective Images

Such images represent scenes as they appear to humans, and are commonly provided by non-
geo-tagged photo sources and crowdsourced SVI platforms (e.g., Mapillary, KartaView) (Hou
et al., 2024; Wang et al., 2024). These images can be captured using different devices or de-
rived from panoramic images by slicing them. Perspective images contain scenes from spe-
cific angles, eliminating the distortion effect, but losing some edge pixels (Beaucamp et al.,
2022), resulting in element proportions that are closer to the real-world observation by the
human eye. In the case of SVI, perspective images with views along the direction of a road
or walking path provide results closer to the overall scene (Biljecki et al., 2023), which we
select in this study.

• Panoramic Mosaic Images

These are created by stitching multiple nearly distortion-free perspective images to form a
complete 360 view. The field of view of a single image is similarly limited to that of per-
spective images, but due to the nature of stitching them, the overall coverage is between that
of single perspective images and that of panoramic ones. In this study, panoramic mosaic
images are set to four directions of SVI (0, 90, 180, 270), with an aspect ratio = 1:1. To
emphasize the differences in image presentation compared to panoramic images while main-
taining the original elements, the stitching order of the four SVIs is adjusted to (180, 270, 0,
90).

3.1.2. Scoring methods
Following the preparation of images, multiple, considerably different, scoring methods are

employed in surveys, often without much reasoning about the choice. The most common scoring
methods are usually divided into rating scoring and ranking scoring (Ak et al., 2021). In these two
common practices, we have selected one method in each as a representative.

• Likert Scale
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This scoring method, proposed by sociologist Rensis Likert in the 1930s (Likert, 1932; Wu
and Leung, 2017), is widely applied in social science (Jebb et al., 2021). In visual perception
surveys, the Likert Scale is commonly employed, where raters select from options ranging
from ‘strongly disagree’ to ‘strongly agree’ to reflect their attitudes on images. This study
uses a five-point Likert scale, the minimum recommended for treating option ordinal scores
as interval data during mathematical and statistical calculations (Harpe, 2015).

The scoring calculation method in the Likert Scale is relatively straightforward. Once the
minimum number of options is met and can be approximated as interval data, the options are
digitized from low to high (e.g., from 1 to 5). The score is then calculated as the mean of all
rating responses, and it is simply termed Mean Score.

• Pairwise Comparison

This ranking method, proposed by psychologist, L. L. Thurstone (Thurstone, 1974), has been
emphasized in recent years in online visual surveys. It involves presenting pairs of images
to raters, who choose the one with a higher intensity of a given attribute or select the ‘equal’
option if they perceive the intensity equally. The results of such comparisons are inherently
relative and hold meaning only within the specific rater pool and dataset from which they
were derived.

According to common practice, Pairwise Comparison scoring calculation involves two com-
mon methods: strength of schedule (SOS) and ranking system algorithms.

The strength of schedule (SOS) method was first introduced to the urban perception domain
by Salesses et al. (2013). The win (W) and loss (L) ratios of image i with respect to question
u are defined as follows:

Wi,u =
wi,u

wi,u + li,u + ti,u
, Li,u =

li,u
wi,u + li,u + ti,u

(1)

where w is the number of times an image was selected over its paired image, l is the number
of times an image was not chosen over its paired image, and t is the number of times when
an image was chosen as equal to its paired image. Using this, we define the score for each
image i and question u as:

Qi,u =
10
3

Wi,u +
1

nw
i

nw
i

∑
j1=1

Wj1u −
1
nl

i

nl
i

∑
j2=1

L j2u +1

 (2)

where nw
i is the total number of images i was preferred over, nl

i is the total number of im-
ages i was not preferred over, the first sum extends over j1, the images that image i was
preferred over, and the second sum extends over j2, the images that were preferred over i.
This method’s score is referred to as the Q Score.

Common ranking system algorithms include the Elo ranking system and the Trueskill rank-

8



ing system. These algorithms share the characteristic of inferring each entity’s score and
corresponding ranking from Pairwise Comparison. We follow the Trueskill ranking system
as the representative method due to its faster convergence, broader applicability, and more
stable evaluations compared to the other common ranking methods such as the Elo system,
with the resulting score termed the Trueskill Score (Herbrich et al., 2006).

3.1.3. Subjective indicators
Since Dubey et al. (2016) first proposed six general indicators of urban perception — safe,

lively, boring, depressing, wealthy, and beautiful — in Place Pulse, these indicators or their subsets
have been consistently used in various studies related to the distribution and preferences of urban
perception indicators (Cui et al., 2023; Kang et al., 2023; Meir and Oron-Gilad, 2020; Hidayati
et al., 2020). While other aspects of urban visual perception studies, such as landscape-centric
(Shayestefar et al., 2022; Suppakittpaisarn et al., 2019; Hung and Chang, 2022; Wang et al., 2019b)
or pedestrian/cyclist-centric indicators (Ito and Biljecki, 2021; Gong et al., 2023; Kang et al., 2013;
Zeng et al., 2024), have been explored, these tend to be highly use-case-specific. In contrast, the
six traditional indicators are characterized by their general applicability, ease of interpretation, and
suitability for representation through SVIs. To enable comparative analysis with prior research and
to establish a consensus for future studies, this research adopts the same six indicators for analysis.

3.2. Survey structure

To assess inter-rater consistency and intra-rater consistency, the survey is structured using a
between-subject design for the former and a within-subject design for the latter.

In the first, questions in the dataset, each featuring one of three image types and one of two
scoring methods, were selected and evenly distributed across different non-overlapping groups.
Within the framework formed by image types and scoring methods, the images and six indicators
in each group were fixed. However, the display order for each rater was randomized to eliminate
potential bias caused by the sequence. Under this setup, it became possible to compare the overall
inter-rater consistency across different groups and evaluate the individual consistency of responses
to the same questions within the same group. To ensure that the scores from different scoring
methods exceed the minimum requirement and converge stably, we set the scoring frequency for
single images using the Likert Scale and Pairwise Comparison to more than double the common
use cases (approximately 60 and 90 ratings, respectively).

In the within-subject design, the survey is divided into two rounds. After completing the first
round, the system records the question type and sequence, including images, scoring method and
indicators assigned to each rater. Ten days later, the raters are invited to complete the second
survey, which is identical to the first, but they do not have access to their previous responses. By
comparing the responses of the same participants across the two rounds, we can evaluate their
intra-rater consistency.

We also collect background information from raters, such as gender, age, nationality, and ma-
jor (Architecture/Urban-related and non-related majors), to investigate their impact on the results.
Information such as survey duration is recorded as well to support the exploratory analysis.

9



3.3. Quantitative metrics

Tackling the three research questions, we perform a comprehensive analysis of three aspects:
Consistency, Discrepancy, and Robustness. This analysis involves evaluating the consistency among
raters, analyzing the impact of different survey input parameters on the results and their variability,
and determining the minimum sample size that ensures robust outcomes.

3.3.1. Consistency
The objective of this section is to examine the inter-rater and intra-rater consistency to evaluate

the reliability of responses under different conditions. Given that our results include both nominal
data (from Pairwise Comparison) and ordinal data (from Likert Scale), we cannot apply common
methods such as the Intraclass Correlation Coefficient (ICC) or other methods designed for inter-
val variables in a unified way. Instead, we employed Cohen’s Kappa and Weighted Kappa methods
which are appropriate for handling these data types. The former measures the categorical agree-
ment between two observers while accounting for chance agreement, whereas Weighted Kappa
extends this by applying differential weights to discrepancies — with penalties increasing as the
difference between responses grows. Notably, quadratic weighting amplifies these differences more
significantly than linear weighting. Together, these complementary methods effectively capture the
subtle response variations and the impact on overall reliability results.

For the inter-rater consistency check, we only consider the results from the first round of the
survey. The survey question set is divided into multiple parts of equal length, and the Weighted
Kappa statistic is calculated to evaluate the consistency of responses from different raters to the
same question set. To estimate consistency among multiple responses, we calculate the Kappa
statistic for each pair of responses and average them to obtain the overall Kappa statistic for the
question set. We then calculate the average Kappa statistic for other sets of equal length and com-
pare their standard deviations. Next, we divide the question set into parts of different lengths,
calculate their standard deviations individually, and compare them to analyze consistency differ-
ences across question sets of varying lengths.

For the intra-rater consistency check, we consider the consistency of responses from the same
rater in two rounds of the survey. We then calculate the mean and compare the differences between
different Kappa statistics from the two scoring methods.

3.3.2. Discrepancy
The aim of this section is to investigate the influence of survey input factors, including rater

background, scoring methods, and image types, on the results. By examining the similarities and
differences in various input data, we seek to gain a better understanding and consensus for param-
eter selection in different scenarios.

First, we examine the impact of different rater backgrounds on the results by focusing on pa-
rameters with significant differences, such as gender and major. Using independent samples t-tests,
we assess whether these different groups significantly influence overall scores.

In comparing scoring methods, we aim to focus on variables that are applicable to both meth-
ods to assess their joint impact on the scoring results. In other words, parameters unique to each
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method, such as the number of scales in the Likert scale, are excluded. Consequently, the indica-
tors we focus on are overall score, scoring duration, scoring stability, and the number of minimum
ratings required. To achieve this, we compare the association between three types of overall scores
(Mean Score, Q Score, and Trueskill Score) using Pearson’s correlation. Additionally, we assess
the differences in survey duration using a t-test. Scoring stability is evaluated based on the vari-
ability of the same method under different parameters. The required number of ratings is examined
in detail in the following section.

To contrast the differences based on the image types, we examine the overall score (the final
score for a single image) and the raw scoring (the collection of original scores for a single image
from different raters) distributions of the images. We calculate Pearson’s correlation to determine
the relationship between the aggregated overall scores based on image types.

Recognizing that the overall image scores represent average scores and may not reflect the
distribution of the raw data, we also use the Mann-Whitney U test, a non-parametric alternative to
the t-test, to evaluate differences between two independent samples without assuming normality.
Considering the large number of parallel groups in the survey, we aggregate the data by image type
and calculate, for each pair of image types, the proportion of parallel groups in which we can reject
the null hypothesis (i.e., no difference in scores between different image types) at a significance
level of 0.05. This proportion reflects the strength of the differences between the two compared
image types.

To further examine the stability of scores across the three image types, we calculate the standard
deviation of scores for each image within each group and compare the differences in these standard
deviations using a t-test. Additionally, we use kernel density estimation to visualize the distribution
of the standard deviations across the three image types.

3.3.3. Robustness
This element primarily investigates the range of scoring frequencies required to achieve the

expected robustness of different scoring methods and evaluates the differences in the efficacy of
these methods.

For the relationship between the number of raters and the robustness of the score, we imple-
mented a more robust method than that of Salesses et al. (2013) through parallel grouping and
repeated calculations. The dataset, which contains a total score count of n for a single image, is
divided into non-overlapping image subsets. The length of the subsets is denoted as v, where v
ranges from 1 to n/2 (since the length of non-overlapping subsets cannot exceed half of the total
count). The total dataset is segmented into subsets of length v, and the corresponding scores for
each subset are calculated. Finally, the robustness metric is calculated as follows:

Robustness(v) =
(

∑i(S1
i (v)−⟨S1(v)⟩)(S2

i (v)−⟨S2(v)⟩)
σ1σ2

)2

(3)

where S1
i (v) and S2

i (v) are the scores of image i under two different scoring methods, ⟨S1(v)⟩ and
⟨S2(v)⟩ are the mean scores, and σ1 and σ2 are the standard deviations of the scores. To minimize
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randomness, the process of dividing into non-overlapping subsets is repeated 200 times.
Using this method, we can assess the impact of scoring frequency on score robustness and

evaluate several characteristics such as stability and efficacy.

3.4. Study data

3.4.1. Image data and preprocessing
This study employs Global Streetscapes, a large open SVI dataset (Hou et al., 2024), which

sources imagery from the Mapillary and KartaView platforms from all over the world and con-
structs semantic indices of images using rich labels (including image type, collection method,
quality, location, etc.). Prioritizing panoramic image data availability for its transformability, we
selected three stylistically distinct cities among those that have the best data availability: Lima
(Peru), Amsterdam (Netherlands), and Athens (Greece). We selected high-quality daytime images
captured in clear weather, free of glare or reflections, taken while cycling or driving, and excluding
winter seasons (Hou and Biljecki, 2022).

Clustering was also done using segmentation data, resulting in four clusters that effectively
represent images dominated by buildings, vegetation, roads, and a mix of these elements in similar
proportions. Ten locations were selected in each city, and 2-3 images were randomly drawn from
each cluster within the city, yielding 30 panoramic images from these cities. Considering the three
image types, the dataset includes a total of 90 images.

Through the aforementioned approach, we ensured both the quality consistency and diversity
of images in the dataset. By combining this image data with the estimated sample size from the
survey design, we can ensure the reliability and validity of the statistical analysis. With 90 images,
two scoring methods, and six subjective indicators, this results in a total of 1,080 combinations.

3.4.2. Survey data
The survey was reviewed and approved by the Institutional Review Board (IRB) of our orga-

nization. The questionnaire link was distributed through the university’s student work system, and
participants — full-time university students — who completed both rounds received cash com-
pensation. Given resource constraints, we selected this specific group because they represent a
younger, high-mobility urban demographic, which is particularly relevant for digital surveys in ur-
ban studies. Previous research has confirmed a strong correlation between students and the general
public’s perceptions of the environment (Yao et al., 2012). Furthermore, this choice aligns with
existing research that often sources participants from campuses or similarly homogeneous groups
(Cao et al., 2025; Lu and Chen, 2024; Qiu et al., 2023; Ye et al., 2019; Kawshalya et al., 2022;
Tang and Long, 2019; Li et al., 2022; Gong et al., 2023; Ma et al., 2023). Each rater was required
to complete 48 questions in an online questionnaire. Considering the number of images and the
required scoring frequency, we estimated that more than 300 participants in the first-round survey
would be sufficient to meet the requirements. The first round of the survey was launched in April
2024, and continued until the required number of responses was obtained. Including the second
round, the entire process spanned approximately 40 days, spanning several nationalities, and ethnic
and cultural backgrounds.
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A total of 309 valid responses were collected in the first round, and 281 valid responses in
the second round, i.e., achieving a retention rate higher than 90%. In the Likert Scale method,
each image received 63 ratings on average, while in the Pairwise Comparison method, each image
was rated an average of 92 times. With this comprehensive campaign, we were able to perform
diverse analyses to meet our research needs. The proportions of the three image types and six
indicators were evenly distributed according to the quota settings in the rating system. Among
the demographic information collected, we selected the more balanced sample sizes for the two
indicators, gender and major, for analysis. In the first round of data collection, the gender ratio
was approximately 1 to 1.2, with 140 males and 169 females. The major ratio was roughly 1 to 5,
with 51 students majoring in Architecture or Urban-related fields and 258 students in non-related
majors.

4. Results

4.1. Consistency

We conducted an inter-rater consistency check by dividing the overall question set into equal
slices of 10 to 15 groups. For each group, we calculated the Kappa statistics among individuals,
evaluated the inter-rater consistency using the average Kappa statistics for the group, and assessed
the standard deviations of the consistency among individuals (Table 1). The results indicate that
both the average Kappa statistics and their standard deviations exhibit high stability across differ-
ent slice groupings, with relatively small score fluctuations. This finding suggests that under any
given combination of questions, different raters reached a similar level of consensus. Consequently,
the random distribution strategy of the survey design proves to be robust, showing consistent data
distribution trends across different non-overlapping subsets, which is suitable for subsequent sta-
tistical analysis. Specifically, the average Kappa statistic for the Likert Scale is 0.448, slightly
lower than 0.589 for Pairwise Comparison. While both methods demonstrated a moderate level
of inter-rater consistency, Pairwise Comparison exhibited greater stability and a higher degree of
agreement among raters.

We further quantified the intra-rater consistency for the two scoring methods, Figure 2 illus-
trates three statistics (Cohen’s Kappa, Linear Weighted Kappa, and Quadratic Weighted Kappa)
and along with a comparison of results after filtering responses based on inter-rater consistency.
Cohen’s Kappa only considers the consistency of answers without accounting for the degree of
scoring differences. For the raw data, this resulted in lower overall consistency under the strictest
conditions (Cohen’s Kappa Median = 0.516 and 0.581 for the Likert Scale and Pairwise Compari-
son). After applying linear and quadratic weighting, the consistency of the Likert Scale improved
significantly, increasing with higher weights (Linear Weighted Kappa Median = 0.710, Quadratic
Weighted Kappa Median = 0.856). Due to the smaller point scale of Pairwise Comparison, the
impact on overall statistics remained minimal (Linear Weighted Kappa Median = 0.638, Quadratic
Weighted Kappa Median = 0.706). Overall, in Weighted Kappa statistics, the consistency of both
scoring methods exceeded 0.6, indicating a substantial agreement level. The Likert Scale method,
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Table 1: Kappa statistics and standard deviation of inter-rater consistency.

Method Group Count Average Mean Weighted Kappa Average Standard Deviation

Likert Scale

10 0.457 0.049
11 0.438 0.062
12 0.444 0.053
13 0.485 0.154
14 0.434 0.075
15 0.430 0.066

Pairwise Comparison

10 0.582 0.064
11 0.579 0.054
12 0.594 0.040
13 0.592 0.050
14 0.594 0.040
15 0.591 0.064

especially with quadratic weighting, showed the highest consistency, suggesting small numerical
fluctuations in the Likert Scale have minimal impact on the overall trend.

Using responses within the same non-overlapping group, we compared each rater’s responses
with those of others to assess individual reliability in the between-subject design. We then filtered
out raters with reliability scores below the 25th percentile. After applying this filtering, we cal-
culated the intra-consistency of responses for the two rounds of surveys and compared the results
with those from the raw data. The consistency improved across all three Kappa statistics, demon-
strating significantly narrower quantile ranges, with all Weighted Kappa statistics exceeding 0.7,
indicating a substantial agreement level. This finding demonstrates that the non-overlapping group
structure in the between-subject design can effectively identify individual noise and enhance data
quality. Consequently, in scenarios where survey resources are limited, and only a single round of
data collection is feasible, this approach provides a practical solution for effectively filtering out
noisy data.

4.2. Discrepancy
We first examine the impact of different raters’ backgrounds on overall scores. Although we

collected data on four demographic indicators, we selected only two — gender and major — be-
cause these had sufficiently large sample sizes for our analysis. Age was excluded, as most par-
ticipants were concentrated in the 20-29 age range, and nationality was excluded, as the majority
of respondents were Singaporean. By focusing on these two variables, we ensured the validity of
our statistical analysis. The kernel density estimate (KDE) distributions and the t-test results of the
combined scores for both scoring methods are shown in Figure 3. The results indicate that at an
α level of 0.1, significant differences are observed across different demographic indicators under
specific conditions. Specifically, differences are noted in the boring and safe dimensions under
the Gender indicator, and in the beautiful and lively dimensions under the Major indicator. This
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Figure 2: Kappa statistics of intra-rater consistency (the higher the better).

suggests that future surveys should carefully consider the diversity of participants to ensure the rep-
resentativeness and fairness of the scores. Additionally, this approach will help to more accurately
identify the preferences of different groups, thereby avoiding biases caused by a homogeneous
demographic background.

Next, Figure 4 compares the correlations of the overall scores (the Mean Score, Q Score, and
Trueskill Score) obtained from the two scoring methods. The different scoring methods show
strong correlations (R > 0.8), indicating robust trends in overall scores across the three scoring
calculation methods. In comparing the Q Score and the Trueskill Score, considering the same raw
data achieves high correlations (R > 0.9) under all parameter settings. In the comparison between
the Mean Score and the other two scores, the correlation for Perspective Image is lower, possibly
due to amplified cognitive differences in rating and ranking scoring within limited perspectives and
scene information.

The t-test results of the survey method duration indicate significant statistical differences in
duration between the two methods. Figure 5 shows that Pairwise Comparison takes longer than
the Likert Scale, likely because raters need to observe two images instead of one for each score.
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Figure 3: Comparison of overall score distribution across different demographic backgrounds.
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Figure 4: Correlation comparisons of three overall scores (Mean Score, Q Score, and Trueskill Score) from two scoring
methods.

Although Pairwise Comparison is typically thought to simplify the decision-making process, this
finding suggests that image quantity may have a more substantial impact on total survey duration.

In the comparison of image types, Figure 6 shows that the overall score correlations were gen-
erally high (R mostly > 0.7). Panoramic Images and Panoramic Mosaic Images show the highest
correlations (R > 0.8), higher than those between Perspective Images and the other two. This
indicates that Panoramic Images and Panoramic Mosaic Images exhibit the most similar percep-
tual experiences. Considering that Panoramic Mosaic Images disrupt the original order of image
elements, this suggests that the restrictions of perspective and content display have a more signifi-
cant impact on overall scores than the order of scene elements. Despite this, the consistent overall
scores imply that the front view in Perspective Image, even with limited perspective, provides a
good representation of scenes.

Specifically, across different parameter settings, the overall scores of the three types of images
achieve relatively consistent results across six different indicators and three different scores. The
overall consistency of the Trueskill score is lower than that of the other two scores. Given that
the raw data for the Trueskill score is the same as that for the Q Score, this discrepancy might be
attributed to the higher sensitivity of the Trueskill algorithm to the same data, resulting in greater
score fluctuations.
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Figure 5: Comparisons of survey duration (seconds) between two scoring methods.

Subsequently, we performed a Mann-Whitney U test, calculating the mean for various image
types and indicators across all 180 groups, as illustrated in Figure 7. Overall, the average signifi-
cance proportion for Pairwise Comparison (P = 0.161, n = 29) is significantly lower than the Likert
Scale (P = 0.313, n = 56), indicating that Pairwise Comparison’s ranking scoring reduced the differ-
ences in image types, focusing more on overall perceptual comparison between images. For image
type averages, the pair of ‘Panoramic Images vs Panoramic Mosaic Images’ has significantly lower
significance proportions (Likert Scale = 0.222, Pairwise Comparison = 0.089), consistent with the
high correlation of their overall scores, while Perspectives Images show greater variability with the
other two types.

In the comparison of different indicators, the Wealthy indicator on the Likert scale exhibits
a significantly higher proportion compared to other indicators (P = 0.411), whereas in the Pair-
wise Comparison, it is significantly lower (P = 0.067). This discrepancy may be attributed to the
challenge of establishing a unified absolute standard for Wealthy among raters, as various fac-
tors influence the Likert Scale scores. Conversely, Pairwise Comparison facilitates a consensus
on which image appears wealthier. Furthermore, the Boring indicator reveals notable differences
in significance proportions. On the Likert Scale, the Panoramic Images and Perspective Images
categories exhibit the highest proportion (P = 0.500), while the Panoramic Images and Panoramic
Mosaic Images categories have the lowest (P = 0.067). This may be due to the limited perspectives
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Figure 6: Correlation comparisons of overall scores among three image types.

either emphasizing or diminishing certain features, such as pedestrians or urban furniture, within a
smaller view.

Finally, we calculated the kernel density estimation (KDE) and t-test statistics for the standard
deviations of raw scores across three image types, as shown in Figure 8. The results reveal sig-
nificant differences between Perspective Images and the other two types (p-values < 0.01), with
Perspective Images exhibiting significantly lower standard deviations. This suggests that Perspec-
tive Images yield more stable subjective scores within limited perspectives and elements. As visual
perception research increasingly emphasizes not only overall image scores but also the distribution
and deviation of scores, the choice of image type and scoring method becomes crucial. Panoramic
and Panoramic Mosaic Images reflect the complete element distribution of a scene, while Perspec-
tive Images provide more stable and reliable subjective scores.

4.3. Robustness

We adopted a consistent robustness calculation strategy for three different scores (the Mean
Score, Q score and Trueskill Score) to facilitate comparison. The number of ratings of Likert Scale
data was slightly smaller than that of Pairwise Comparison, with the maximum number set at 30
and 45 times, respectively. We conducted separate calculations for different locations and image
types, summarizing the average values through each indicator.

We calculated the rating quantity range corresponding to six indicators at a robustness level
of 0.8, setting the minimum value as the conservative value and the maximum value as the stable
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Figure 7: Comparisons of raw scores among three image types. (Pa denotes Panoramic Images, Pe denotes Perspective
Images, and Pm denotes Panoramic Mosaic Images.)

Figure 8: Kernel density estimation of the standard deviation among three image types.

value. As illustrated in Figure 9, the Likert Scale (the Mean Score) demonstrates the fastest con-
vergence speed, with a conservative value of 12 times and a stable value of 19 times. Pairwise
Comparison (the Q Score) shows slower convergence, with conservative and stable values of 22
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and 29 times, respectively. Pairwise Comparison (the Trueskill Score) has the slowest convergence,
with conservative and stable values of 29 and 37 times, respectively. Overall, to achieve the same
standard of robustness, Pairwise Comparison requires significantly more scoring times than the
Likert Scale. Although each scoring in Pairwise Comparison produces scores for two images, the
previously confirmed longer scoring duration means it cannot be simply halved.

It is noteworthy that the stability of the Likert Scale scores is lower than that of Pairwise Com-
parison. Within individual indicators, the variability of robustness is significantly larger for Likert
Scale scores compared to its counterpart. Additionally, there are notable discrepancies in the range
of scores across different metrics. This may be due to the biases in human consensus introduced
by the rating scoring method and the relatively simple scoring calculation method, which ampli-
fies the cognitive differences among raters. In contrast, Pairwise Comparison’s ranking scoring
helps raters form more stable judgments, resulting in smoother and more similar scores. Interest-
ingly, the Beautiful indicator showed the fastest convergence across all scoring methods, indicating
strong human consensus on this attribute. Conversely, for indicators like Wealthy, which are chal-
lenging to establish absolute standards, the Likert Scale had slower convergence, whereas Pairwise
Comparison did not exhibit this bias.

To verify the credibility of our robustness analysis, we conducted a comparable analysis us-
ing another open dataset, SPECS (Street Perception Evaluation Considering Socioeconomics),
which was developed by our research group independently of this project. This dataset spans a
diverse demographic including 1,000 residents across five continents, and captures human per-
ceptions of streetscapes based on ten indicators, six of which are the same in this study (see
https://github.com/matqr/specs). We selected over 50 images, each with more than 30 ratings on
the same six indicators. Since this dataset was obtained via Pairwise Comparison, only the Q score
and Trueskill score were computed. For consistency with our previous analysis, we calculated the
first 15 data points (largest non-overlapping group for 30 ratings) and fitted the subsequent data
points as shown in Figure 10. The validation results closely match our earlier findings. Specifi-
cally, the Q score showed conservative and stable thresholds at 20 and 36 times, respectively, with
a larger range, possibly due to variability in data quality or curve-fitting errors. The Trueskill score
demonstrated nearly identical thresholds at 27 and 34 times. Thus, accounting for some errors, our
proposed conservative and stable number ranges achieve a robustness level of approximately 0.8
across another diverse demographic dataset. This finding not only demonstrates the broader ap-
plicability of our results across different population groups but also provides additional empirical
evidence supporting the consistency of perception patterns between student populations and the
general public.

Based on this finding, we recognize that while many image-based visual perception studies
meet the required conservative number of scoring votes (Lu and Chen, 2024; Ogawa et al., 2024;
Chen and Biljecki, 2023; Qiu et al., 2023), a significant portion still suffers from insufficient raters
or scoring votes (Rui and Cai, 2025; Ito and Biljecki, 2021; Kang et al., 2023; Luo et al., 2022b;
Kruse et al., 2021). Additionally, some studies fail to report the relevant sample size, which hinders
the ability to assess the reliability of the evaluation. This issue can significantly impact represen-
tativeness, especially considering that many studies use survey data as training datasets to obtain
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Figure 9: Robustness of rating number under three scores.
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Figure 10: Robustness of rating number using SPECS.

subjective indicator score distributions widely. If the quality of upstream data is compromised, it
may lead to greater error propagation in downstream tasks. Therefore, we recommend researchers
meet the conservative value recommendations for different methods as much as possible and en-
hance their statistical data validation. Furthermore, considering the widespread use of the Likert
Scale in current visual perception surveys, we encourage a shift towards Pairwise Comparison
whenever there are sufficient resources to secure rater numbers and time, producing more stable
scores and smaller discrepancies between metrics.
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5. Discussion and guidelines

5.1. Main insights and recommendations

Based on the aforementioned insights, we propose future survey design recommendations in
four key areas: survey structure, raters selection, scoring method selection, and image selection.
Additionally, we highlight the importance of applying these recommendations in machine learning
tasks, a critical downstream application of visual perception surveys.

Regarding survey structure, a between-subject design, such as the non-overlapping group strat-
egy, has proven effective in achieving robust survey results and facilitating the filtering of individual
data noise to attain a substantial agreement level (Weighted Kappa > 0.7). In resource-limited sce-
narios, where only a single survey round can be conducted, applying these strategies can enhance
data stability and reliability.

In terms of raters selection, a potential statistical impact was found with the limited number
of raters and subjective indicators. It remains uncertain whether these biases would be amplified
in larger or unbalanced groups. Therefore, to obtain more stable and statistically representative
results, it is recommended to select individuals from diverse backgrounds with balanced quantities
whenever possible. Another crucial parameter is sampling. Researchers are encouraged to estimate
the sample size based on the number of assessed images before conducting the survey. Specifically,
to reach a reliable and reproducible survey, the number of ratings per image should not be less
than the conservative estimates set: for each indicator, 12 times for the Likert Scale (the Mean
Score), and 22 times and 29 times for the Q Score and the Trueskill Score in Pairwise Comparison,
respectively. Notably, a recent study indicates that despite strong alignment between AI models and
human evaluations, significant geographic variations persist. Consequently, human raters remain
essential for such tasks in the foreseeable future (Malekzadeh et al., 2025).

Concerning scoring method selection, both the Likert Scale and Pairwise Comparison exhibit
comparable trends in overall scores (R mostly > 0.7), but each has distinct characteristics suitable
for different contexts. As a rating scoring method, the Likert Scale, despite potential issues with
standardization and data fluctuation in specific scoring options, offers shorter scoring durations
and fewer minimum scoring ratings required. This makes it an efficient scoring method for small
to medium-sized surveys with limited resources and time. Its parametric nature also allows for
various parametric mathematical and statistical analyses of the raw scoring data, providing higher
explanatory power. In contrast, the Pairwise Comparison method, a ranking scoring approach,
demonstrates better inter-rater consistency (Kappa = 0.589). It exhibits a smaller significant pro-
portion of raw scores across various image types (P = 0.161) and similar convergence rates among
different subjective indicators in robustness calculations, indicating a more stable scoring method.
However, it generally requires more ratings and time, making it suitable for surveys with ample
resources and extended timelines. Considering that some large-scale visual perception surveys
currently use the Likert Scale (Fitch et al., 2022; Suppakittpaisarn et al., 2020), it is advisable to
consider adopting Pairwise Comparison in the future, when resources allow, to obtain more stable
scores.
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With respect to image type selection, three common image types — Panoramic Images, Per-
spective Images (front view), and Panoramic Mosaic Images — exhibit different trends. If the goal
is to obtain overall scores of images through surveys, a strong correlation (R > 0.8) indicates that
different image contents exhibit highly similar scoring trends, allowing for a certain degree of inter-
changeability. Considering that current image types are primarily manually taken, non-geotagged
photos, and commercial SVI, these data sources often suffer from long collection times, limited
coverage and potential future restrictions. Shifting to crowdsourced data sources composed mainly
of Perspective Images (such as Mapillary or KartaView) might be a better option. These images
are not confined by coverage and drivable roads and can be collected by different users in alleys,
parks, and even water bodies, greatly expanding the image boundaries (Chen and Biljecki, 2023;
Luo et al., 2022b). Coupled with Biljecki et al. (2023)’s findings that Perspective Images can serve
as good representatives for analyzing objective indicators (e.g., assessing the amount of greenery in
a street), this discovery reaffirms the significant value of crowdsourcing imagery in urban research.
Leveraging survey data or open datasets to train machine learning models now makes it possible
to conduct large-scale assessments of urban visual perception in areas not covered by commercial
SVIs. If considering the raw scoring records of different images, an increasing number of subjec-
tive studies based on SVI are not limited to the overall score of images but explore the distribution,
preferences, and deviation of scoring data of different populations during the process (Cui et al.,
2023; Kang et al., 2023; Meir and Oron-Gilad, 2020; Hidayati et al., 2020). There is a considerable
discrepancy among the three types of images, which is further amplified in the Likert Scale. Per-
spective images have been shown to exhibit greater scoring stability, consistent with the findings
of Beaucamp et al., possibly due to their limited scene elements, whereas the other two types of
images contain more comprehensive scene information. In exploratory data tasks, the choice of
image type requires further consideration and selection.

As an important downstream task in urban visual perception surveys, machine learning tech-
niques are often deployed to map visual perception scores at the city level and analyze the specific
impact of explanatory variables on human perception (Zhao et al., 2023; Zhang et al., 2018; Chen
and Biljecki, 2023; Kruse et al., 2021; Yao et al., 2019; Ye et al., 2019). From this perspective, con-
ducting effective surveys becomes particularly crucial. First, it ensures data quality. For instance,
by meeting the minimum rating threshold, we can ensure robustness across different demographic
groups. The use of robust survey structures such as between-subject design, and more stable scor-
ing methods such as Pairwise Comparison, helps reduce noise and variability in the data, leading
to more consistent and accurate input for machine learning algorithms. These practices contribute
to more representative scores, minimize error propagation, and improve model generalizability
in subsequent analysis. Second, effective surveys facilitate model benchmarking. Since visual
perception is applied in various contexts, such as housing price assessment (Kang et al., 2021),
identifying inconspicuous places (Zhang et al., 2020), cycling volume evaluation (Gao and Fang,
2025), visual environmental quality assessment (Wang et al., 2024) and so on, the previous survey
data collection processes have varied significantly. By standardizing these practices, future models
can be compared more fairly, thus contributing to more reliable benchmarking.
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Table 2: Proposal of survey reporting parameters and examples.

Section Reporting Parameters Example

Survey Struc-
ture

Design, Allocation, Consistency
evaluation

We established between-subject random non-overlapping
subsets to assess rater data consistency across different
groups and to filter noise through confidence intervals.

Raters Demographics, Sample size, Num-
ber of ratings per image, Recruit-
ment process

We recruited 500 undergraduate students from various
majors at our university, all of whom are Singaporean,
with an average age of 20 years and a gender ratio of 1:1.
Each participant completed 100 ratings, with each image
receiving an average of 50 ratings per indicator, fulfilling
the stable rating requirements.

Scoring Scoring methodology, Rationale for
method selection, Evaluative indi-
cators

We selected Pairwise Comparison as the ranking scoring
method due to its proven stability over rating methods
while meeting time and rating needs. Participants in the
graphical interface were asked to choose which of the two
images was safer, more boring, or equally rated.

Image Image type, Image source, Ratio-
nale for image choice, Dataset com-
position

We chose Perspective Images for their reliable subjec-
tive rating stability and easy availability from open data
sources. Using Mapillary as the data source, we used 500
images from Singapore, for subjective ratings in the sur-
vey.

5.2. Reporting protocol
Several key parameters are frequently omitted or underreported in existing studies. For exam-

ple, although the number of raters is commonly provided, the number of ratings per image is rarely
stated. Therefore, in addition to design recommendations, we propose establishing a reporting pro-
tocol that specifies and communicates the key parameters and contributes to the understanding of
survey design. In Table 2, we summarize the four key sections of visual survey design along with
their corresponding parameters and concise examples to illustrate the format for reporting and elab-
orating the motivation for these elements. With this protocol, we hope to encourage researchers to
plainly report these details, thereby promoting more transparent, credible, and reproducible exper-
iments and ultimately setting a standard.

5.3. Limitations and future work
One limitation of this study lies in the selection of survey parameters. To balance survey re-

sources and time, we chose the two most common scoring methods from web-based surveys and
three types of SVI data. However, the field offers additional avenues for valuable insights. Alterna-
tive scoring platforms and techniques such as eye-tracking (Li et al., 2020; Yang et al., 2024), EEG
(Mavros et al., 2022), and wearables (Luo et al., 2024) provide a diverse way to capture human
perception. Even within our chosen scoring methods, variations exist. For instance, an enhanced
TrueSkill algorithm that includes temporal and spatial effects has demonstrated improved relia-
bility in a certain task, potentially reducing the samples required compared to our findings (Qiu
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et al., 2025). Additionally, other visual data formats beyond street road perspectives — such as
waterscapes (Luo et al., 2022a), pedestrian walkways (Chen et al., 2024), and building facades
(Liang et al., 2024) — provide further insights. Future studies could explore these specific pa-
rameters across different tasks while prioritising sampling, parameter justification, and reporting,
as proposed in this study, to enhance the reliability and reproducibility of research findings in the
field. Furthermore, it remains crucial to investigate whether various visual data types and scor-
ing methods accurately reflect human perception in real environments. This will help assess the
representativeness of different methodologies in practical settings.

In terms of sample selection, our survey also has certain limitations. Due to resource con-
straints, we selected a relatively homogeneous group within a university. While we believe the
analysis based on this sample is valid, given that similar practices have never been conducted in
this field, thus it serves as a blueprint and underscores the importance of considering sample se-
lection in ensuring survey reliability. This approach also aligns with many current studies in the
field that focus on specific groups (Qiu et al., 2023; Ye et al., 2019; Kawshalya et al., 2022; Tang
and Long, 2019; Li et al., 2022; Gong et al., 2023; Ma et al., 2023). Although we validated key
factors such as the number of ratings required to reach a robustness level on a diverse dataset, cau-
tion is needed when extending these conclusions to more heterogeneous groups, such as specific
genders (e.g., women) or age groups (e.g., the elderly). In future studies, expanding the diversity of
the sample and conducting comprehensive analyses on the impact of different demographic factors,
such as nationality, income, and personality, on perception research could be a promising direction.

6. Conclusion

Riding the wave of increasing visual data availability, digital connectivity, and computational
advances, perception studies in urban planning and design have scaled and revealed insights pre-
viously out of reach. Now we can better understand human perception of urban environments
and identify potential influencing factors such as demographic characteristics (Kazemi et al., 2023;
Gong et al., 2023), image physical visual features (Kawshalya et al., 2022; Li et al., 2022) and
urban functional layout (Zeng et al., 2024). While the studies are now conducted routinely and
increasing in volume, it seems that they have not fully transcended their formative period — there
is a lack of standards and understanding of the availability, reliability, and validity of approaches.

Using imagery to measure objective information with techniques such as semantic segmenta-
tion, e.g., quantifying greenery, is consistent, not leaving much room for ambiguity. In contrast,
image-based visual perception studies face difficulties in forming unified indicators due to the
diverse goals across different domains, which is compounded by the underlying human subjec-
tiveness. Therefore, researchers typically design their human surveys and recruit raters to collect
perception data based on factors such as budget, time, survey platform, and the availability of vi-
sual data. This melange leads to varying survey parameters and a lack of references for selecting
appropriate parameters.

For the first time, our study offers a comprehensive and domain-agnostic framework, support-
ing the research community in establishing a consensus on survey design and clarifying many
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uncertainties that have long puzzled the field. These parameters cover aspects commonly involved
in visual perception surveys, including structure, raters, scoring methods, and image types, offering
insights and recommendations tailored to different applications. Our study has delivered several
takeaways, among which the three key recommendations are as follows.

Raters: Many previous studies overlooked reporting the number of ratings per image, which is
of utmost importance, while some failed to meet the requirements for robustness (e.g., Mean Score
= 12, Q Score = 22, Trueskill Score = 29). This parameter significantly drives the quality of studies,
with sparse data being deficient in representativeness and introducing bias, possibly propagating
unsound conclusions. Therefore, we encourage researchers to meet the conservative rating values
per image for each indicator we propose to ensure robust ratings and to report this parameter to
enhance credibility and reproducibility.

Scoring Methods: The two typical scoring methods — the rating method and the ranking
method — exhibit similar trends in overall scores. However, each method has different appli-
cations. For example, the Likert Scale is suitable for smaller surveys constrained by resources
(e.g., participants, funding, time) and facilitates parameterized statistical analysis, while Pairwise
Comparison is suitable for abundant surveys and provides more robust scores. We encourage re-
searchers to determine specific scoring schemes based on their objectives and to report detailed
survey designs. Considering that current surveys heavily rely on the Likert Scale, we also encour-
age researchers to consider Pairwise Comparison when possible for stability.

Image Types: Different types of images exhibit comparable trends in representing overall
scene perception, indicating that crowdsourced SVI, primarily composed of non-panoramas (Bil-
jecki et al., 2023), shows great potential for use. Considering that most current imagery is based on
manually obtained non-geo-tagged photos and commercial SVI from companies such as Google
and Baidu, manual image acquisition is time-consuming, and it is uncertain whether commercial
street view data will remain easily accessible to researchers (Helbich et al., 2024). Therefore, in
the context of the rapid development in crowdsourcing, we encourage researchers to consider us-
ing crowdsourced imagery (e.g., see the recent open dataset by Hou et al. (2024)) and expand the
boundaries of urban science.
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