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Abstract
Achieving carbon neutrality is a critical yet elusive goal for many cities, hindered by limited
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understanding of the relationship between building emissions and their surroundings. To ad-
dress this challenge, we present a generalizable open science framework that integrates building
energy consumption data, multi-modal geospatial inputs, and graph deep learning to quantify
building operating emissions and their links to urban form and socioeconomic factors. Ap-
plying this approach to five cities with diverse climates and planning contexts—Melbourne,
New York City (Manhattan), Seattle, Singapore, and Washington DC—we demonstrate that
our models explain 78.4% of the variation in building operating carbon emissions across cities,
achieving state-of-the-art accuracy for urban-scale energy modeling. Our findings reveal strong
connections between a city’s planning history and its building carbon profile, alongside stark
inequalities where wealthier areas often exhibit the highest per capita emissions. Additionally,
the relationship between urban density and building emissions is complex and city-specific,
with emissions extending beyond dense urban cores into suburban areas. To design effective
decarbonization strategies, cities must consider how their planning histories, urban layouts, and
economic conditions shape current emission patterns.
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Main

Cities are pivotal in the global transition towards a sustainable urban future [1]. To meet
Intergovernmental Panel on Climate Change (IPCC) targets, urgent reforms are imperative for
the built environment, which currently exhausts the largest sectoral share of global emissions
[2, 3]. A collective global initiative is underway to foster a more sustainable and climate-
resilient urban future across cities with over 37% of cities worldwide committing to net-zero
pledges [4, 5]. These pledges are backed by multi-sectoral plans to curtail building energy
consumption by mandating energy-efficient building standards, promoting clean energy gener-
ation, and encouraging sustainable energy consumption behavior. Several countries, including
the US, China, Japan, Australia, and Türkiye, have tightened national building regulations to
mandate zero-energy performance for both new and existing buildings [6]. While promising,
current estimates reveal an insufficient pace and scale in the global clean energy transition to
align the building sector with Paris Climate targets [7]. Notably, nearly half of cities worldwide
continue to lack identifiable emission mitigation targets, and only 3% of cities with net-zero
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commitments meet the starting criteria outlined by the United Nations Framework Conven-
tion on Climate Change (UNFCCC) [5]. The urgent need for a livable and sustainable future
necessitates rapid and extensive changes across all sectors and systems [8].

Despite extensive planning efforts, many cities struggle to decarbonize their built environ-
ments, largely due to a limited understanding of how buildings interact with their urban contexts
[9, 10]. While numerous studies have investigated the relationship between urbanization and
carbon emissions at the city scale, these analyses often emphasize broader urban trends rather
than the fine-grained spatial heterogeneity that exists within cities. For instance, [11] observed
that population growth in large cities drives emissions increases, albeit with diminishing returns
to scale. Similarly, [12] highlighted how compact urban planning and advanced energy tech-
nologies can yield economies of scale in energy savings. At the metropolitan scale, studies on
street networks suggest that many cities are locked into unsustainable development pathways,
requiring drastic action to avoid costly lock-ins and deviate from the status quo [13]. The im-
pacts of urban sprawl on urban-induced warming also vary significantly across regions [14, 15].
However, major data gaps persist within cities, limiting policymakers’ ability to assess policy
impacts, monitor progress, and implement informed adjustments to reduce emissions and build
climate resilience [16, 17, 18].
Urban building energy modeling (UBEM) has significantly advanced our understanding of spa-
tial variability in building energy use at urban scales [19]. Notably, [20] explored end-use en-
ergy patterns by building function, while recent studies have integrated human mobility data to
refine occupancy and energy use estimates at high spatial resolutions [21, 22]. Notwithstand-
ing, city-scale UBEM still confronts key limitations. Models often rely on generalized building
archetypes, which can lead to significant errors at finer spatial scales [19], and they tend to be
location-specific, limiting their transferability across cities with different data inputs and build-
ing typologies [23].
To address these challenges, recent efforts have increasingly turned to machine learning meth-
ods [24]. For instance, [25] developed a multi-stage pipeline that leverages aerial imagery
and building footprints to predict residential energy consumption in American neighborhoods.
Building on this, [26] applied deep learning to combine satellite imagery with urban occupancy
data for estimating building energy use in New York City. Extending this line of work, recent
innovations have highlighted the potential of urban visual intelligence, a framework that in-
terprets city sensing through images, for building energy prediction, with studies showing that
models using street view imagery (SVI) can achieve state-of-the-art performance [27, 28, 29,
30]. More recent studies have explored multi-modal approaches that integrate land surface tem-
perature, street view and aerial imagery, and building footprints to predict the energy efficiency
of buildings in the United Kingdom [31, 32].

To the best of our knowledge, prior studies on urban-scale building energy studies have typ-
ically examined individual cities or specific building types, limiting cross-city insights. Many
depend on proprietary inputs such as Google Street View, mobility traces, or high-resolution
imagery that are often inaccessible in developing cities. The emergence of high-quality open
urban datasets [33, 34] presents new opportunities for scalable, bottom-up modeling of ur-
ban building energy emissions. Our study introduces a highly granular, transferable frame-
work for predicting urban-scale building operating emissions using open and widely available
multi-modal datasets. We encode spatial relationships between buildings and their surround-
ings through a rich set of features, including urban form, infrastructure, population density,
and urban services through a deep graph model that captures the non-linear, localized varia-
tions in emissions across five cities—Melbourne, NYC (Manhattan), Seattle, Singapore, and

2



Washington DC
Building carbon emission consists of operational carbon [35] and embodied carbon [36].

Operational emissions depend on building function, climate, form, materials, and operating
practices, with Heating, Ventilation, and Air Conditioning (HVAC) systems, lighting, and plug
loads as the primary sources. We focus on estimating operational emissions from buildings,
which typically dominate a building’s life-cycle footprint [37]. However, in certain scenarios,
embodied carbon may gain prominence, influenced by factors like building lifespan, climatic
conditions, and regulations, alongside low-carbon electricity grids [38].

Our analysis reveals how planning history, urban form, and economic activity interact to
shape heterogeneous emissions patterns across cities. These findings provide path-dependent
insights into the developmental trajectories of other urban areas. Additionally, we examine the
complex relationship between urban density and emissions within cities by incorporating local
climate zones, urban heat island intensity, and real GDP per capita.

Our study emphasizes the transformative potential of open science and large-scale urban
sensing can guide equitable decarbonization pathways and contribute to achieving sustain-
able urban transitions in alignment with the Sustainable Development Goals (SDGs): Re-
duced Inequalities (SDG10), Sustainable Cities and Communities (SDG11), and Climate Ac-
tion (SDG13).

Results

We implement our task for 595,173 buildings across five cities worldwide in diverse cli-
matic regions—Melbourne, NYC (Manhattan), Seattle, Singapore, and Washington DC. Due
to resource limitations, our analysis in NYC focuses on the Manhattan borough, which is one
of the most urbanized and densely populated areas in the United States.

Each city has a different climate and built typology which presents unique challenges for
city-scale building energy modeling. Singapore, a densely populated tropical city with high
temperatures and humidity, uses most of its energy for cooling buildings, placing significant
demands on systems designed to maintain indoor thermal comfort. Its building stock predom-
inantly consists of high-rise residential structures, which experience significant temperature
variations due to urban heat island effects. Meanwhile, Melbourne and Seattle are coastal cities
with temperate Mediterranean climates, providing a unique opportunity to analyze year-round
energy consumption for heating and cooling across various building types in urban and subur-
ban settings. NYC is an East Coast seaport city located in the Atlantic Ocean coastal zone of
the eastern United States, characterized by a temperate continental climate. Manhattan features
a highly dense mix of residential and commercial buildings. This dense urban form increases its
vulnerability to climate change with exacerbating effects from a widespread urban heat island
effect. Washington DC has a humid subtropical climate with sprawling suburbs and heightened
urban heat risk.

To create a detailed contextual representation of each building and its surroundings, we
gather and harmonize a variety of open urban data sources, as detailed in Table 1. Figure 1
offers a schematic representation of the data sources we used and the experimental setup of our
study.

Graph neural networks utilize message-passing mechanisms to acquire contextual infor-
mation from their neighboring nodes. In our case, each building is represented by a single
node which aggregates information from its surrounding spatial entities such as nearby street
or neighboring buildings. Figure 2 shows the graph generation and model training process.
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Table 1: Description of open data characteristics and building carbon stock across cities.

Cities Availability (%)1 #Bldgs #SVI #Satellite Images2 #POIs # Streets Total Em. (MtCO2) Net Zero3

Melbourne 4.24 111,763 162,545 34,341 29,235 224,646 3.86 2040
NYC (Manhattan)4 17.66 45,164 24,926 14,451 18,606 24,444 12.25 2040
Seattle 1.30 193,314 95,006 26,715 13,020 153,806 4.76 2050
Singapore 7.87 105,911 49,736 66,660 29,235 225,730 19.46 2050
Washington DC 1.89 139,021 195,985 13,870 7,991 104,868 9.42 2045

Bldgs—Buildings; SVI—Street View Images; Em.—Emission; POIs—Points of Interests.
1 Percentage of buildings with reported energy data relative to the total number of buildings highlights data scarcity and drives our use of deep

learning for city-scale building energy modeling. Table S2 offers a detailed breakdown of emission statistics by building type.
2 Satellite images are provided by Mapbox at 512 by 512 pixels resolution at zoom level 19 (approximately 0.149 meters per pixel at the equator).
3 Target years signify each city’s commitment to lowering carbon emissions to a point where the release of greenhouse gases into the atmosphere

is balanced by removal or offset methods.
4 New York City has more than one million buildings. Due to limited resources, we focus on Manhattan borough which accounts for approxi-

mately 40% of building carbon emission for New York City: NYC Decarbonization Compass.
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Figure 1: Schematic illustration of the data and workflow. A) Multi-modal data, including satellite imagery, build-
ing footprints from OpenStreetMap, street view images, population demographics, and urban points of interest,
are harmonized to create feature-rich urban embeddings [59]. B) Our method involves constructing one compre-
hensive city-scale graph for each city, encompassing all nodes and edge information. For training and validation,
computational subgraphs are generated that are centered on each building. These computational subgraphs capture
the connection between buildings and their urban context. For example, a building is connected to its nearest urban
elements, such as neighboring buildings, urban plot, and nearest street. C) Leveraging openly available building
energy data as ground truth, we employ heterogeneous graph neural networks to capture the nonlinear relationship
between building emissions and their surrounding urban context. We then apply these models to generate detailed
maps of the carbon profile for the built environment across entire cities. Sources of the data samples: (c) Open-
StreetMap contributors, Mapillary, Meta. Basemap: OpenStreetMap and Mapbox.

Planning History and Carbon Profiles of Cities
Carbon profile of cities reflect their historical planning context, suggesting path-dependent

insights into emission outcomes. Here we relate planning context to the spatial distribution of
building operating emissions and urban form factors (accounting for individual building and
plot level characteristics). Figure 3A illustrates the cumulative distribution of predicted build-

4

https://sites.google.com/stern.nyu.edu/decarbonizationcompass/home#h.c5csirmy3zk1
https://www.openstreetmap.org/copyright
https://www.mapbox.com/about/maps/


Output

Graph Generation

Node Embeddings

Street

U  U

U  S

S   I

B   B

B   S

B   U

Building Urban plot Intersection

Adjacency Matrices

Resnet-50

Multi-Modal Deep Graph Model

. . .

Meta Population 
Density MapsMapillary

Mapbox 

OpenStreetMap

SAGE
Conv

Feed
Forward

SAGE
Conv

a b

Figure 2: Graph generation pipeline and model training process. A) Node embeddings and adjacency matrices are
automatically generated using the Urbanity Python package. For instance, building features are derived from mor-
phological metrics such as area, shape index, and complexity (refer to SI Appendix, Supplementary Table 1 for a
detailed list of indicators). We use the Urbanity package to construct neighbor links by connecting each building’s
centroid to its three nearest neighbors. The heterogeneous urban graph comprises four node categories—buildings,
urban plots, streets, and intersections—and features six types of edges: 1) building-to-building, 2) building-to-
urban plot, 3) building-to-street, 4) plot-to-plot, 5) plot-to-street, and 6) street-to-intersection. These edges reflect
the spatial relationships among urban entities, such as buildings contained within urban plots and streets con-
nected to intersections. B) The model integrates multi-modal information in two steps. First, an image feature
extraction backbone like ResNet-50 obtains visual features from satellite images centered on building centroids.
Concurrently, the heterogeneous deep graph module receives node embeddings and adjacency matrices as input.
To account for node heterogeneity, different graph convolutional modules are applied for each edge types. The
first graph convolutional layer aggregates features from immediate neighbors, while the second layer captures in-
formation from two-hop neighborhoods. Sources of the data samples: (c) OpenStreetMap contributors, Mapillary,
Meta. Satellite images: Mapbox.

ing emissions relative to footprint area across all buildings in each city. In cities like Seattle and
Washington DC, characterized by a history of low-rise development and urban sprawl, small
buildings dominate carbon emissions. Conversely, Melbourne’s emissions scale proportionally
with building size, reflecting its gradual suburban-to-urban transition over the past century. In
contrast, Singapore and New York City (Manhattan) concentrate most emissions in their largest
buildings. Notably, the top decile of buildings in New York City contributes more than half of
total building emissions, a finding consistent with external reports that nearly half of New York
City’s building emissions originate from just 2% of its buildings [39]. Our findings suggest
that decarbonization efforts, such as data reporting and retrofitting, must focus on the building
sizes that contribute most to emissions in each city. A context-sensitive, targeted approach will
maximize resource efficiency and accelerate progress toward decarbonization goals.

To support understanding of how urban form influences citywide emissions, we quantified
emissions across local climate zone (LCZ) categories. Figure 3B reveals a consistent pattern:
compact high-rise and heavy industrial zones exhibit significantly higher average emissions,
often exceeding those of low-rise areas by an order of magnitude or more (e.g., in Melbourne,
emissions are over 10 times higher). However, substantial variation within each LCZ category
underscores the importance of targeting top emitters. In contrast, compact low-rise zones dis-
play markedly lower average emissions per plot, highlighting the role of local characteristics in
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shaping emission profiles and the need for tailored decarbonization strategies.
Our findings align with the spatial distribution of building carbon emissions in each city.

From Figure 3C, we observe that emissions are highest on average in urban cores and follow
a far-right-tailed distribution in cities with significant suburban development. A notable ex-
ception is Singapore, where emissions exhibit a balanced, normal distribution, concentrated
around the urban periphery. This unique pattern aligns with Singapore’s polycentric develop-
ment model and diversified land use strategy, emphasizing the influence of urban planning on
emission distributions.
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Figure 3: (A) Cumulative distribution of total predicted building operating carbon emissions and its relation-
ship with increasing building footprint size. (B) The grouped plot shows average building operational carbon
emissions across local climate zones, omitting estimates with fewer than 30 samples. Sample sizes for each
zone and city are as follows: Compact Highrise (Melbourne=409; NYC=1,299; Seattle=471; Singapore=76),
Compact Lowrise (Melbourne=244; NYC=42; Seattle=220; Singapore=639; Washington DC=971), Open High-
rise (Melbourne=331; NYC=330; Seattle=60; Singapore=5,083; Washington DC=83), Large Lowrise (Mel-
bourne=2,866; NYC=51; Seattle=1,377; Singapore=334; Washington DC=631), and Heavy Industry (Mel-
bourne=153; NYC=115; Seattle=141; Singapore=1,526; Washington DC=50). Each bar in the plot is color-
coded by city, with the centerline indicating the median and whiskers representing the 10th and 90th percentiles.
(C) Spatial distribution of predicted mean building carbon emissions across cities aggregated across 250-meter
grid cells.

Urban Density and Building Emissions
Urban density and building carbon emissions have a complex relationship. Although com-

pact, high-density development is often associated with lower emissions, some studies also
highlight increased energy consumption due to urban heat island effects in densely built areas.
From Figure 4A, we observe a consistent, scale-invariant negative relationship between emis-
sions per unit area and larger, more complex building footprints. In addition, this relationship
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remains consistent even after accounting for building verticality. Specifically, we observe a
significant negative correlation between building volume (height multiplied by footprint area)
and emissions per unit area across all cities studied. For example, the correlation coefficients
are as follows: Melbourne (r = –0.116), NYC–Manhattan (r = –0.470), Seattle (r = –0.822),
Singapore (r = –0.475), and Washington DC (r = –0.793). These results suggest that taller
buildings—with greater volume—tend to exhibit lower emissions per unit area, likely due to
differences in operational energy demands and the technical systems employed. The varying
strength of this relationship across cities indicates that local building design, usage patterns, and
energy infrastructures play a key role in shaping emissions from tall buildings. This finding in-
dicates that emission intensity does not grow proportionally with building size and complexity,
suggesting economies of scale and significant carbon savings in bigger buildings.

Our results also imply that reducing building sizes without considering land-use intensity
may not effectively lower overall carbon emissions; in fact, doing so could shift building func-
tions elsewhere and potentially increase emissions across the broader built environment. Fur-
thermore, as higher population density and urbanization trends push toward more high-rise
construction in cities, it is crucial for cities to monitor the energy loads of their high-rise build-
ing stock.

At the urban scale, Figure 4B illustrates the complex, city-specific relationship between
building footprint coverage and average building emissions, primarily influenced by urban form
compactness. In cities with significant suburban development—such as Melbourne, Seattle,
and Washington DC—higher overall building footprint coverage typically comes from fewer
but larger structures, making building height a critical factor in determining emissions. Our
results suggest that, in Melbourne, increases in building height outpace increases in footprint
area, causing larger buildings to have higher emissions. However, in Seattle and Washington,
DC, larger footprints are not matched by comparable increases in height, resulting in lower av-
erage carbon emissions per building. In contrast, compact cities like Singapore and Manhattan
maintain consistently high building heights regardless of footprint coverage.

Across all cities, we observe a consistent negative association between population density
and average building emissions. This pattern aligns with previous studies reporting a negative
correlation between population density and building emissions [12]. Densely populated areas
often contain more, but smaller, housing units that require less energy for heating, cooling, and
maintenance, leading to lower per-building emissions [40]. Moreover, population density has
been shown to more strongly affect on-road transportation emissions than building emissions
[41]. Additionally, LCZ diversity (see Methods for computation details) shows a significant
positive relationship with emissions in Melbourne and Seattle. This finding makes intuitive
sense, as suburban areas with homogeneous LCZ patterns tend to have buildings with lower
emissions, whereas areas with greater LCZ diversity usually contain buildings with more varied
functions and a wider range of emissions. These findings align with the positive relationship
between urban heat island intensity and emissions, further confirming that denser built-up areas
correspond to higher average emissions for buildings.

Overall, the relationship between urban density and building emissions is multifaceted,
shaped by each city’s unique development patterns. Our findings highlight the need to extend
decarbonization efforts beyond dense urban cores to include suburban areas, especially in cities
with extensive suburban development.
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Figure 4: Relationship between urban density, microclimatic conditions, and building emissions. (A) Economies
of scale are observed across all cities with building emissions per unit area decreasing with increasing building
footprint area and shape complexity. The relationship between emissions per unit area and building height provides
insights into how building footprint area changes with height in cities such as Melbourne, Seattle, and Washington
DC. (B) We report the two-sided Pearson correlation coefficients and corresponding p-values between building
emissions and four key urban variables: building coverage, local climate zone diversity, population density, and
urban heat island intensity. While population density consistently shows a negative correlation with average
building emissions, the relationship between building density and emissions is more complex. This variability is
largely influenced by the unique urban form of each city.

Equitable Decarbonization
Decarbonization efforts must equitably benefit all societal groups. To assess how the bur-

den of decarbonization varies across communities, we map the relationship between real GDP
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per capita [42] and predicted per capita building operating emissions across cities. While ear-
lier nighttime light-derived GDP estimates suffered from considerable noise and uncertainty,
recent satellite programs provide higher-resolution estimates which have shown strong asso-
ciation with human activity [43, 44]. Collectively, these advancements demonstrate that inte-
grating high-resolution nighttime lights with detailed population estimates effectively captures
local socioeconomic variability and gridded GDP datasets are increasingly employed in diverse
urban research domains.

Figure 5A shows a consistent trend across all cities where building emissions per capita rises
with an increase in real GDP per capita. In Melbourne, suburban development contributes to
higher per capita emissions in areas with lower real GDP per capita. This aligns with the dom-
inance of detached single-family homes in the suburbs, one of the least energy- and resource-
efficient building types. In addition, building emissions are markedly higher (more than ten
times) for the wealthiest urban areas (90th and 100th percentile) for all cities.

Figure 5B reveal the complex relationship between urban economic activity and building
emissions. Areas with both high real GDP and high emissions per capita are typically concen-
trated in urban cores, though this pattern is not strictly linear. High-emission, low-GDP areas
and low-emission, high-GDP areas also constitute significant portions of cities, highlighting
substantial heterogeneity in the spatial distribution of emissions. This heterogeneity between
urban economic activity and emissions highlights the need for spatially tailored supply-side
policies, such as carbon taxes, to prevent imposing disproportionate economic burdens on vul-
nerable communities.

Decarbonization will affect high and low income communities in different cities to varying
degrees. To better understand the extent, Figure 5C shows the relationship between cumulative
building emissions and real GDP per capita deciles. In an egalitarian situation where emis-
sions are distributed uniformly across the population, cumulative emissions will rise in tandem
with real GDP per capita. However, we observe that urban areas with lower real GDP per
capita account for a large percentage of the total emission for cities like Melbourne, Seattle,
and Washington DC. For example, urban areas consisting of the bottom 20 percentile of real
GDP per capita comprise 60% of total emissions in Melbourne. These emissions are largely
driven by educational and civic buildings—many of which are large facilities serving institu-
tional functions. Although such buildings contribute substantially to citywide emissions, their
impact is not directly captured through conventional measures of economic activity. Our find-
ing shows that on the whole, decarbonization policies would mostly affect urban areas with
lower real GDP per capita and it is important to consider measures to reduce economic burden
on vulnerable communities.

Discussion

Our study introduces a multi-city, graph deep learning-based framework to understand the
complex and spatially heterogeneous building carbon profile of cities. Understanding the un-
derlying drivers of building emissions is not only critical to support actionable and equitable
decarbonization strategies but also reveals the potential for transferable, path-dependent in-
sights for other cities.

In line with previous research [45, 12], we find that urban density plays a significant role in
shaping building emissions across cities. Higher population density, larger building footprints,
and greater building volumes are associated with lower emissions per unit of built-up area, re-
flecting economies of scale in energy use. Our analysis reveals that density-related efficiencies

9



T3

T2

T1

T10 T2 T3Em
is

si
on

 T
er

til
es

Real GDP per 
capita Tertiles

Melbourne NYC (Manhattan) Seattle

Singapore Washington DC

5 KM 5 KM

5 KM10 KM

2 KM

B-22.6%
P-27.7%

B-8.6%
P-29.3%

B-18.0%
P-16.6%

B-12.4%
P-13.6%

B-17.0%
P-11.9%

B-10.9%
P-10.1%

B-8.8%
P-7.7%

B-9.8%
P-5.3%

B-9.8%
P-3.7%

B-3.7%
P-1.6%

B-0.9%
P-0.2%

B-13.4%
P-25.3%

B-17.2%
P-16.2%

B-15.5%
P-14.1%

B-13.8%
P-12.0%

B-12.2%
P-10.4%

B-9.9%
P-8.8%

B-9.1%
P-7.0%

B-5.5%
P-4.4%

B-2.3%
P-1.6%

B-1.0%
P-0.2%

B-18.8%
P-25.4%

B-16.8%
P-16.7%

B-18.8%
P-14.5%

B-14.1%
P-11.8%

B-12.4%
P-11.2% B-5.9%

P-8.0% B-4.4%
P-5.6%

B-3.5%
P-3.8%

B-2.3%
P-2.1%

B-3.0%
P-1.0%

B-2.6%
P-1.0%

B-24.2%
P-20.3% B-17.1%

P-14.6% B-12.7%
P-13.0%

B-6.3%
P-11.7%

B-11.3%
P-10.4% B-7.6%

P-9.8%
B-7.5%
P-8.3%

B-5.3%
P-6.8%

B-5.5%
P-4.2%

B-16.0%
P-16.6%

B-11.8%
P-13.8%

B-12.4%
P-10.9% B-7.7%

P-7.8%

B-7.7%
P-6.0%

B-5.6%
P-4.7%

B-3.7%
P-2.4%

B-1.3%
P-0.6%

B-11.0%
P-9.4%

104.8

104.0

103.2

102.4

101.6

106.0

105.4

104.8

104.2

103.6

103.0

105.5

106.0

105.0

105.0

106.0

105.6

105.2

104.8

104.4

104.0

104.5

104.0

103.5

103.0

102.5

104.5

104.0
Seattle

Singapore

Washington

Real GDP per Capita Deciles

B
ui

ld
in

g 
em

is
si

on
s 

pe
r 

ca
pi

ta
 (k

gC
O

2)

Melbourne

NYC (Manhattan)

0.2D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 0.4

a b

c

0.6 0.8 1.00.0

C
um

ul
at

iv
e 

bu
ild

in
g 

em
is

si
on

s 
pr

op
or

tio
n

Real GDP per Capita Percentiles

Washington DC
Singapore
Seattle
New York (Manhattan)
Melbourne

1.0

0.8

0.6

0.4

0.2

Figure 5: Relationship between income levels and building emissions. (A) The decile plot shows real GDP per
capita against building emissions per capita, with markers indicating the mean and error bars representing the one
standard error range for each decile. Each city is divided into equal-sized bins with the following bin counts:
Melbourne (46), NYC (6), Seattle (27), Singapore (30), and Washington DC (19). Deciles are annotated with
the percentage of buildings (B%) and population (P%) within each city. (B) Spatial distribution of real GDP per
capita [42] and building emissions per capita, aggregated at 1 km by 1 km grid cells. Grids without population
are excluded, and marker sizes reflect the estimated population [64] within each cell. (C) Cumulative relationship
between building emissions and real GDP per capita.

manifests differently across geographies, particularly when accounting for additional contex-
tual factors like the composition and arrangement of building typologies. In cities like Singa-
pore, New York City (Manhattan), and Washington, DC, areas with higher building coverage
show clear emissions savings, as energy efficiencies from scale reduce the average emissions
of buildings in high-density zones. Yet in Melbourne and Seattle, areas with higher building
coverage exhibit elevated emissions due to local climate zone (LCZ) diversity and urban heat
island (UHI) intensity factors, suggesting that micro-climate factors can offset the gains from
density. These findings highlight that high-density development is not a one-size-fits-all solu-
tion and that the combination of contextual factors like building typology mix and arrangement
creates complex emissions patterns that cannot be addressed through density-based planning
alone. Instead, effective emissions mitigation in dense urban environments requires a nuanced,
place-based approach that co-optimize compactness and climate-sensitive urban design.

Our findings build on prior research highlighting the significant contribution of suburban
emissions to overall urban carbon footprints [46]. Specifically, we show that suburban building
emissions can, in many cases, rival those of urban cores, creating substantial carbon hotspots
that are often overlooked in decarbonization planning. Moreover, emissions do not scale lin-
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early with economic activity. Several high-emission areas exhibit relatively low real GDP per
capita, pointing to underlying drivers such as inefficient building practices, outdated infrastruc-
ture, poor land-use planning or functional mismatches, and unsustainable consumption pat-
terns. This disconnect between emissions intensity and economic affluence reveals a critical
equity concern for modern carbon pricing policy. Uniform carbon pricing—commonly imple-
mented across cities—often places a disproportionate burden on lower-income communities
and under-resourced small businesses already operating on thin margins, effectively penalizing
rather than supporting those most in need of assistance. Rather than supporting an equitable
transition, such one-size-fits-all approaches risk excluding the very actors most in need of assis-
tance by imposing costs they are ill-equipped to bear, ultimately constraining their capacity to
invest in energy-efficient upgrades. To advance a just and sustainable urban transition aligned
with the Paris Agreement’s call to tailor climate action to local capacities [47], cities must de-
sign strategies that reflect local social and spatial disparities shaping both emissions and the
ability to mitigate them [48, 49].

Our research enhances the contextual understanding of building operational carbon dy-
namics in cities by leveraging the increasing availability and quality of emerging open urban
datasets. Notwithstanding, we highlight several caveats underlying our approach. Although
we employ consistent citywide estimates of fuel and electricity intensities, the lack of high-
resolution grid data limits the precision of our evaluations. Moreover, cities with a favorable
overall energy mix may mask inefficiencies in building performance, highlighting the need to
consider each city’s energy composition as a key lever for policy and infrastructure interven-
tions. In addition, our analysis does not account for temporal trends in emissions, which could
provide valuable insights into long-term decarbonization pathways. A further consideration is
that our method relies on the availability of annual building energy data—which remains scarce
or restricted in many cities. Even where such data exist, benchmarking laws may exclude por-
tions of the building stock, introducing inherent modeling biases. Where building energy data
are available, our approach transfers readily and adapts robustly to diverse data conditions in
other cities. Recent policy shifts—such as new benchmarking mandates in Boston, Montréal,
and Berlin, and expanded data-access initiatives in the UK—offer promising avenues to ex-
tend this work. For cities lacking building-level energy data, we demonstrate the feasibility of
cross-city model training and the development of a unified model applicable across contexts.
Building on this foundation, future research should aim to develop a global, task-specific urban
model for estimating emissions in cities lacking building energy data. Lastly, the emergence
of carbon hotspots beyond traditional urban cores suggests new opportunities for redefining
city boundaries based on the spatial distribution of emissions [50]. Together, these advances
can help close critical knowledge gaps and deepen the global understanding of urban carbon
dynamics.

Methods

Our work introduces a graph deep learning model that integrates open data on building
energy usage and crowdsourced geospatial information to predict building operating carbon at
the city-scale. We apply our framework to multiple cities characterized by diverse geographical
contexts and regional climates—Melbourne, New York (Manhattan), Seattle, Singapore, and
Washington DC. Our method involves constructing one comprehensive city-scale graph for
each city, encompassing all nodes and edge information. To overcome memory constraints
associated with training on large graphs, we implement a graph sub-batching technique. This
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approach involves sampling neighborhood subgraphs based on node indices, which are then
iteratively utilized during model training.

Numerous studies show the importance of interactions between buildings and their neigh-
bors in determining building energy performance [51, 52, 53, 54]. For instance, buildings
within the same area may be subject to similar management policies or zoning regulations,
and their proximity and morphological characteristics can influence urban heat island effects.
We account for this relationship by explicitly modeling the structural connections between
buildings and their urban context, which allows our model to better capture non-linear spatial
relationships and enhances the accuracy of building energy predictions.

Measured Building Emissions
Our study uses reported site energy use data, which captures the total annual energy con-

sumed by each building, including all energy sources—such as electricity from the grid, on-site
renewables, fuel oil, propane, steam, and natural gas. In New York City, annual reported build-
ing energy data is accessed through the NYC OpenData portal (https://opendata.cityo
fnewyork.us/), specifically under the NYC Building Energy and Water Data Disclosure for
Local Law of 2009 (LL84). Similarly, modeled building energy consumption data for Mel-
bourne is obtained from the city’s open data portal (https://www.data.vic.gov.au/),
collected by the Commonwealth Scientific and Industrial Research Organization (CSIRO) un-
der a liberal CC BY license. Seattle provides annual reported building energy data through
its open data platform (https://data.seattle.gov/) as per the Seattle Energy Bench-
marking Law. Washington DC’s annual reported building energy data, mandated by the Clean
and Affordable Energy Act of 2008, is accessible through (https://opendata.dc.gov/),
collected annually by the Columbia Department of Energy and Environment (DOEE). Singa-
pore’s reported building energy data, obtained from the 2021 Building Energy Benchmarking
Report (BEBR) by the Singapore Building Construction Authority (BCA), is released under
the Singapore Open Data License (https://beta.data.gov.sg/open-data-license/).
We enhance this dataset by incorporating residential building energy data obtained from two
sources: the Singapore Housing and Development Board (HDB) and the real estate platform
"99.co" (https://www.99.co/singapore/). Our estimation method employs a bottom-up
approach that aggregates average consumption across various household types in each planning
area.

Some cities provide total annual energy consumption data while other cities provide data
in annual energy usage intensity (EUI). We obtain total annual energy consumption by mul-
tiplying EUI by the building’s reported gross floor area (GFA). We then determine the an-
nual operating carbon of each building by applying a constant carbon intensity of energy
factor [55]. Energy mix is different across different cities, resulting in different carbon in-
tensities. In the United States, energy-related CO2 emissions are typically associated with
fossil fuels (petroleum, natural gas, and coal). To address the significant variability in car-
bon intensities among American states [56], we use state-level carbon intensity of energy
production factors sourced from the United States Energy Information Administration (EIA)
(https://www.eia.gov/environment/emissions/state/). For each city, we apply
the most up-to-date conversion factor available, measured in kilograms of CO2 per kilowatt-
hour—Melbourne (0.533034), New York (0.15559), Seattle (0.12079), Singapore (0.44876),
and Washington DC (0.17470). Notably, we employ carbon intensity of electricity factors for
Melbourne and Singapore, as the reported building EUI figures are reported in terms of elec-
tricity generation rates.
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Since contextual features of building morphology are derived from OSM building foot-
prints, it’s crucial to link each building and its energy data to its corresponding OSM building
entity. To achieve this linkage, we employ a two-step approach. First, we establish the spatial
representation of buildings by utilizing their centroids or footprints. In cases where no spatial
information is available, we utilize Google’s Geocoding API to geocode each building and ob-
tain its spatial location, although other geocoding APIs are also viable options. Subsequently,
we match each building with its unique OSM building footprint identifier. It’s important to note
that the spatial matching process can be complex due to potential one-to-many and many-to-
one relationships. To ensure one-to-one matching, we first check for self-overlapping instances
between buildings polygons in both the OSM building and building energy benchmark datasets.
This significantly reduces the occurrence of duplicate matches between subsets. Next we spa-
tially overlay building polygons between the two building polygon sets and exclude buildings
with multiple matches or no matches from further analysis. Supplementary Table 2 presents a
comprehensive overview of the final energy benchmarking dataset along with carbon emission
statistics for various building types.

Heterogeneous City Graph
Cities are complex systems with non-linear dynamics between urban elements [57]. To

capture the non-linear relationship between buildings and their context, we represent the re-
lational relationship through a heterogeneous graph of urban elements—buildings (B), urban
plots (P), streets (S), and street intersections (I). Our network extends from the traditional pri-
mal planar network representation [58] where nodes and edges represent street intersections
and non-intersecting street segments, integrating building and urban plot nodes as additional
node types. Building nodes and plot nodes are derived from the representative points of their
respective footprints. Edge relations between node types are determined by their proximity
and topologic relationship to one another. For example, we define neighboring buildings as
the three nearest neighbors by Euclidean distance between building centroids. Without loss of
generality, we define a heterogeneous network as G = {N, E,R,T }:

ni ↑ N

ni, r, nj ↑ E

T (ni)

r ↑ R

where N, E, R, T, refers to the set of nodes, set of edges, edge relation type, and node
relation type respectively. In our case, node types correspond to T = {B, P, S , I} and edge types
R = {BB, BS , BP, PP, PS , S I}.

We employ the Urbanity Python package [59] to construct a richly attributed representation
of each network node and its spatial connections. A comprehensive list of computed urban in-
dicators is provided in Supplementary Table 1. Supplementary Table 3 summarizes the number
of nodes and edges for each city.

Remote Sensing
High-resolution satellite and aerial imagery are sourced from Mapbox’s global raster tile-

set, which compiles imagery from multiple providers including NASA, USGS, Maxar, and
Nearmaps (https://docs.mapbox.com/help/glossary/mapbox-satellite/). For
each study area, we retrieve zoom level 19 image tiles encompassing the full urban extent.
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Building-level satellite chips are extracted by locating each building’s centroid and isolating
the corresponding pixels.

We incorporate Local Climate Zones (LCZs) [60], a global urban classification system that
divides landscapes into 17 standardized urban and rural types based on physical and land cover
attributes. Our analysis uses the 100-meter resolution global LCZ dataset [61], which is openly
available under the CC BY 4.0 license. To capture LCZ heterogeneity, we compute Shannon
entropy:

Ci = ↓
K∑

i=1

P(xi)(logbP(xi)) (1)

where P(xi) is class probability for i-th class over K possible local climate zone categories.
We also incorporate global, scale-corrected estimates of real GDP per capita derived from

2019 nightlight data at 1-kilometer resolution [42].
To evaluate localized warming, we use the Urban Heat Island Indicator (UHII), which quan-

tifies the average temperature difference between urban areas and their surrounding reference
areas. Specifically, we employ global all-sky surface UHII estimates at 1-kilometer resolution,
derived from the 2020 seamless all-sky land surface temperature product [62].

Crowdsourced Street View Images
We leverage imagery from Mapillary, a globally crowdsourced street-level image platform

with extensive spatial coverage across cities. Licensed under CC BY-SA 4.0, Mapillary allows
free use and adaptation, unlike proprietary alternatives. We apply spatial filtering to isolate
city-level SVI and subsequently extract visual features through a segmentation pipeline [63].

Population Density Maps
To estimate population distribution, we use high-resolution (1-arcsecond) global population

maps from Meta’s machine learning–derived datasets, which are trained on satellite imagery
from Maxar [64]. Data is accessible via Humanitarian Data Exchange (HDX) and Amazon
Web Services (AWS), available in both CSV and GeoTIFF formats.

Estimated Building Heights
Building height is a key variable for accurately modeling the relationship between urban

density and carbon emissions. We use the global 3D building footprints dataset by [65], which
estimates building heights by integrating multi-source remote sensing data with morphological
features and machine learning. This dataset demonstrates robust predictive performance with
reported R2 values between 0.66 and 0.96 and root-mean-square errors (RMSE) ranging from
1.9 to 14.6 meters across 33 subregions. Additionally, the selected dataset closely aligns with
manually validated reference datasets provided by established entities such as ONEGEO Map,
Baidu Maps, the United States Geological Survey (USGS), Microsoft Building Heights, and
EMU Analytics (England).

OpenStreetMap
OpenStreetMap (OSM) provides foundational geospatial layers, including roads, building

footprints, and points of interest. The data, distributed under the Open Database License
(ODbL), is accessed through the Pyrosm API, which pulls regularly updated extracts from
GeoFabrik. For analysis, we: (1) simplify road networks into planar graphs, (2) validate and
relabel points of interest, and (3) ensure that building footprints are converted into valid poly-
gon geometries.
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Multi-Modal Model Architecture
Our prediction task involves node-level graph regression, specifically aiming to predict

building operating carbon emissions using multi-modal geospatial data, including aerial and
street-view imagery as well as tabular features such as population counts, points-of-interest
(POI) categories, and road network characteristics.

To achieve this, we design an end-to-end deep learning architecture comprising two pri-
mary modules: an aerial imagery branch and a graph convolution branch. The aerial imagery
branch processes top-down building images using a ResNet-50 backbone, generating 1000-
dimensional embedding which we then pass to a 128-dimensional fully connected layer. Si-
multaneously, the graph convolutional branch employs a two-layer heterogeneous GraphSAGE
model [66] which integrates building features (16 dimensions), plot features (45 dimensions),
street features (11 dimensions), and intersection features (8 dimensions).

To capture the multifaceted ways in which the urban context can influence building emis-
sions, we compute a comprehensive set of urban analytical features encompassing network
topology, building and plot morphology, street view indicators, local climate zones, population
density, and urban points of interest. Studies have demonstrated that street view features are
strongly linked to pedestrian thermal comfort and the urban heat island effect—both of which
affect buildings’ cooling loads [67]. Similarly, street network metrics and points of interest
(e.g., street intersection centrality and the availability of urban services) have been consistently
associated with building energy profiles [68]. Urban form factors—such as local climate zones
[60] and building morphology [69]—influence key building characteristics, including use in-
tensity and land use interactions, all of which play critical roles in shaping building energy
consumption.

Each GraphSAGE layer aggregates information from neighboring nodes based on adja-
cency relationships to produce a 128-dimensional embedding. We extract the final building
node 128-dimensional embedding and 128-dimensional aerial imagery embedding and con-
catenate them into combined 256-dimensional feature vector, which is passed through two
fully connected 1024-dimensional layers to produce the final prediction of building operating
carbon emissions.

For model training and evaluation, we shuffle and split our dataset into training (70%),
validation (15%), and test (15%) subsets. To evaluate and mitigate the risk of spatial data
leakage, we conduct a k-nearest neighbor (kNN) regression analysis, comparing a model using
only spatial coordinates with one using the full set of independent variables. The results (see
Supplementary Table 4) indicate that predictive performance is not driven by spatial proxim-
ity or building similarity, supporting the robustness of our data split. Explanatory features are
standardized, and a logarithmic transformation is applied to the target variable to handle the
skewed distribution of building energy measurements. All model configurations are trained for
50 epochs with hyperparameter tuning across graph feature embedding sizes (64, 128, 256),
learning rates (10↓3, 10↓4, 10↓5), and batch sizes (16, 32, 64). We utilize the Adam optimizer
with default beta parameters (0.9, 0.999). During training, masks are applied to prevent mes-
sage passing and aggregation from validation and test nodes. All models are implemented using
the PyTorch Geometric deep learning framework [70]. We select the best-performing model
based on the lowest mean squared logarithmic error (MSLE) to predict building operating car-
bon emissions across all buildings. We train and evaluate our models with one NVIDIA RTX
4090 GPU running on Ubuntu operating platform.

15



Baseline Benchmarking and Feature Ablation
To demonstrate the effectiveness of our proposed model architecture and multi-modal fea-

ture sets for building energy prediction, we evaluate model performance on various input fea-
ture combinations and machine learning algorithms, as detailed in Supplementary Table 5.

Our feature ablation study shows that building form features—such as height, footprint
area, and volume—are the strongest predictors across models. Machine learning models rely
heavily on these features and show little performance loss when other inputs are removed,
indicating limited capacity to learn from more complex contextual data like POIs or street
networks. In contrast, deep learning models remain robust even without building form data and
perform especially well when using satellite imagery. This aligns with previous findings that
satellite imagery is valuable for capturing urban-scale building emission patterns. These results
point to a trade-off: machine learning models are efficient when building data is available, but
deep learning models offer greater flexibility and generalization across varied urban contexts
by learning complex and non-linear spatial connections.

We maintain a consistent data split across both the feature ablation study and benchmarking
experiments to ensure comparability of performance. An additional goal of the feature abla-
tion study is to identify the minimal subset of features required to achieve robust predictive
performance, thus supporting practical applications in cities where data availability is limited.

Error Analysis of Model Uncertainty
To support interpretation of model findings and robustness, we quantify prediction uncer-

tainty at the urban scale. As shown in Supplementary Figure 1, our model demonstrates robust
performance, with low average errors across different groups of buildings in each city, support-
ing its consistency in estimating building emissions at the urban scale. We further validate our
building-level emissions estimates by examining their correlation with real GDP per capita at
the urban scale. Our findings align with empirical studies [71] and demonstrate strong corre-
lations between predicted emissions and real GDP per capita in Melbourne (R = 0.519, p <
0.001), NYC-Manhattan (R = 0.459, p < 0.001), Seattle (R = 0.717, p < 0.001), Singapore (R
= 0.787, p < 0.001), Washington DC (R = 0.459, p < 0.001), and across all cities combined (R
= 0.457, p < 0.001). The linear scaling of urban emissions with GDP per capita at high spatial
resolution highlights the strong alignment between our model predictions and socioeconomic
patterns at the urban scale. Supplementary Figure 2 illustrates the spatial association between
building emissions and GDP per capita within 1 km grid cells, highlighting how emissions
patterns mirror economic activity at finer spatial scales.

Cross-city Model Performance
Against the trend of task-specific urban foundation models, we explored the feasibility of

training a combined model across multiple cities. Our cross-city approach yielded promising
results—Melbourne (RMSE = 0.670, R2 = 0.835); NYC-Manhattan (RMSE = 0.738, R2 =

0.550); Seattle (RMSE = 0.758, R2 = 0.507); Singapore (RMSE = 0.590, R2 = 0.680); Wash-
ington DC (RMSE = 0.868, R2 = 0.377). Overall, the cross-city model demonstrates strong
performance, explaining 78.4% of the variance across all cities with a root mean squared error
(RMSE) of 0.699. Although the cross-city model performance do not exceed the city-specific
models, it shows the possibility of training a global, task-specific urban foundation model for
building energy prediction with our approach. Notably, a primary drawback we noticed with
the cross-city approach was the significantly increased computational demand: the model re-
quired more than twice as many training epochs as the city-specific models to reach a learning
saturation point.
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Data Availability

The datasets in this study are publicly available as follows or can be obtained from Google
Earth Engine. The benchmarking mandate data for each city is available at: Melbourne (ht
tps://discover.data.vic.gov.au/dataset/property-level-energy-consumpti

on-modelled-on-building-attributes-baseline-2011-and-b-2016-2026), NYC
(https://data.cityofnewyork.us/d/5zyy-y8am), Seattle (https://data.seattle
.gov/d/teqw-tu6e), Singapore (https://www1.bca.gov.sg/buildsg/sustainabili
ty/regulatory-requirements-for-existing-buildings/bca-building-energy-b

enchmarking-and-disclosure), and Washington DC (https://opendata.dc.gov/ma
ps/10f4f09fc5684d9988ae83ae4cca8b70). The OpenStreetMap daily data extracts are
available at https://www.geofabrik.de/data/download.html. The crowdsourced street
view imagery can be obtained via Mapillary API with a registered developer key at: https:
//www.mapillary.com/developer/api-documentation. Users can register for a Mapbox
satellite imagery API access key at: (https://docs.mapbox.com/help/glossary/mapbox
-satellite/). Global 3-D Building Footprint are available at: Americas, Africa, and Oceania
(https://zenodo.org/records/15459025), Asia (https://doi.org/10.5281/zenodo
.11397014), and Europe (https://doi.org/10.5281/zenodo.11391076). The Meta High
Resolution Population Density Maps are available at https://data.humdata.org/organiz
ation/meta?dataseries_name=Data+for+Good+at+Meta+-+High+Resolution+Popu

lation+Density+Maps+and+Demographic+Estimates. The Global Map of Local Climate
Zone is available under Google Earth Engine API at: https://developers.google.com/ea
rth-engine/datasets/catalog/RUB_RUBCLIM_LCZ_global_lcz_map_latest

Code and Software Availability

The analysis was conducted using Python. We provide accompanying datasets, download
instructions, and source code at the project GitHub repository (https://github.com/winstonyym/open-
building-energy-prediction).
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