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Abstract

Urban areas face significant c hallenges f rom e xtreme h eat a nd u rban h eat islands 

(UHIs), which often interact and intensify each other at multi-spatial scales. However, 

most existing studies examine extreme heat and its interaction with UHIs at the city 

scale, overlooking the spatial heterogeneity of temperature responses within local ar-

eas. Extreme heat does not manifest uniformly across the entire city, and the UHI is 

a typically localized phenomenon influenced by changes i n l ocal c limate and urban fac-

tors. To address this gap, this study defines l ocal e xtreme h eat ( LEH) a t t he local 

scale based on 1 km and examines surface urban heat island (SUHI) response to local 

extreme heat (LEH) in Singapore, a tropical city experiencing more frequent extreme 

heat events. Using multi-year temperature datasets, we calculated the di!erence in SUHI 

intensity (SUHII) between LEH and non-LEH conditions, referred to as ωSUHII. Our 

findings r evealed t hat SUHII r esponses t o LEH d i!ered by  daytime and ni ghttime and 

local areas. Daytime ωSUHII peaked at 3.2↑C in the northeast, while nighttime ωSUHII 

reached 0.6↑C in other regions. To identify the dominant drivers of SUHII responses to 

LEH, we employed the spatial Random Forest (spatialRF) model. Our results showed 

that the spatialRF model achieved R-squared values exceeding 63% for predicting day-

time ωSUHII and 45% for nighttime ωSUHII. LEH, land use, and vegetation dominantly 

contributed to daytime ωSUHII, while socioeconomic factors mostly influenced nighttime 

ωSUHII. Furthermore, we applied SHAP to interpret the spatialRF model. Hotspots of
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both daytime and nighttime ωSUHII were driven by socio-economic factors. Finally, non-

linear associations showed that the cooling e!ect of vegetation reached saturation, as the

SHAP values remained positive, while water bodies, as indicated by a U-shaped SHAP

pattern followed by a decline, were more e!ective in mitigating SUHII increases under

LEH conditions.
Keywords: Local extreme heat, Surface urban heat island, Building and environmental

factors, Socioeconomic factors, Local scale

1. Introduction

Urban areas are experiencing overheating caused by both the challenges of urban

heat islands (UHIs) and extreme heat nowadays. Specifically, extreme heat occurs more

frequently due to global climate change, and UHIs are considered to be one of the major

problems posed to humans in the 21st century (Rizwan et al., 2008). Urban overheating

caused by either UHIs or extreme heat has led to serious dual damage to human health

and the environment, causing heat-related deaths (Dai and Liu, 2022; Ho et al., 2023;

Shahmohamadi et al., 2011; Tan et al., 2010) and excessive energy consumption (Singh

and Sharston, 2022; Hirano and Fujita, 2012).

The urban heat island (UHI) and extreme heat can interact at multi-spatial scales,

showing amplification, reduction, or no change in UHI intensity (UHII). Most studies have

investigated city-scale UHI intensity (UHII) changes by extreme heat events (Zhao et al.,

2018; Li and Bou-Zeid, 2013; He et al., 2020; Rizvi et al., 2019; Syed Mahbar and Kusaka,

2024). For example, UHII increases during extreme heat during the day in U.S. cities

(Zhao et al., 2018) and at night in Australian cities (Rogers et al., 2019), but decreases in

inland cities of Paris (Shreevastava et al., 2021) and remains unchanged in the city of Di-

jon, France (Richard et al., 2021). Typically, UHI is the localized phenomenon influenced

by changes in local climate and urban factors such as land use, built structures, green

and blue infrastructure, and construction materials (Oke et al., 2017; He et al., 2021;

Cui et al., 2023). Some studies have explored intra-UHII variations during extreme heat

periods compared to non-extreme heat periods. For example, weather stations located in

high-rise building areas in Guangzhou, China, revealed significant interactions between
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temperature and UHI, with shading playing a key role (Luo et al., 2023). Similarly, urban

parks were found to have the lowest UHII during the extreme heat period in Hannover,

Germany (Kabisch et al., 2023). However, these studies typically identified extreme heat

events at the city scale, overlooking the spatial heterogeneity of temperature responses

within cities, as extreme heat does not always uniformly occur across the entire city.

Extreme heat has been mostly explored at the regional (Perkins-Kirkpatrick and Gibson,

2017) and city (He et al., 2025; Su et al., 2025). Especially, extreme heat can vary signif-

icantly across di!erent local areas within a city, as few studies have highlighted Yu et al.

(2023); Cui et al. (2023). For instance, Yu et al. (2023) provided evidence that extreme

heat events occurred more frequently in the northeastern areas of Singapore. Another

study of (Cui et al., 2023) showed that di!erent LCZs exhibit various characteristics of

intensity, frequency, and duration of extreme heat events found in Beijing, China. This

highlights the need to consider the spatial heterogeneity of extreme heat within a city.

By considering that the UHI is typically a localized phenomenon, and it is essential to

consider extreme heat at the local scale, to address this, local extreme heat (LEH) is de-

fined in this study based on 1 km spatial units. Furthermore, extreme heat and UHI may

interact at the local scale, potentially leading to amplified intra-UHII under LEH con-

ditions; however, the localized synergies between UHI and extreme heat remain unclear.

Most previous studies on UHI and extreme heat interactions rely heavily on weather sta-

tion data (He et al., 2021; Hathway and Sharples, 2012; Cui et al., 2023), which limits

spatial coverage and makes it di"cult to fully capture intra-urban heterogeneity in UHI

and extreme heat patterns. Satellite data provides the advantage of complete spatial cov-

erage, enabling the generation of seamless near-surface air temperature and land surface

temperature datasets. This o!ers a valuable opportunity to comprehensively explore the

spatial patterns of localized synergy between UHI and extreme heat. Accordingly, this

study focuses on surface urban heat island (SUHI) and investigates SUHII responses to

LEH, which is defined as the di!erence in SUHI intensity (SUHII) between LEH and

non-LEH conditions.

In addition, most studies have employed physical numerical weather prediction (NWP)
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models to explore the drivers of UHI–extreme heat interactions (Chen et al., 2023; Mag-

naye and Kusaka, 2024). A key component of NWP is the urban canopy model (UCM),

which requires detailed datasets (e.g., LULC, building height, satellite/LiDAR data) and

substantial computational resources (Lauer et al., 2023; Li et al., 2019; Rajeswari et al.,

2024). However, data scarcity and high computational demands often limit their ap-

plication (He et al., 2020; Li and Bou-Zeid, 2013). Statistical methods have also been

used for their e"ciency and generalization (Luo et al., 2023), but conventional regression

and correlation cannot fully capture the complexity of the interactions between variables.

Recently, interpretable machine learning (ML) techniques have emerged as e"cient and

generalizable alternatives (Yang et al., 2022; He et al., 2024). SHapley Additive Explana-

tions (SHAP) quantify the contribution of each feature to model predictions, and models

such as Random Forest (RF) and XGBoost have been widely applied. However, these

conventional models do not account for spatial autocorrelation. SpatialRF addresses

this limitation by incorporating spatial structure, reducing residual autocorrelation, and

providing more reliable variable importance scores (Benito, 2021a; Yang et al., 2024).

Building on this, our study applies an interpretable SpatialML framework to the

study area of Singapore, a high-density tropical city, to identify the dominant drivers of

SUHII responses to LEH. We conceptualize LEH as not simply treated as a background

climatic factor; rather, variations in LEH, such as intensity, frequency, and duration

of LEH, can impact SUHII in local areas. Urban factors serve as preexisting factors

that can modulate the level of UHII changes caused by LEH. Accordingly, this study

examines urban morphology, land use, socioeconomic conditions, and LEH characteristics

to identify the key drivers of SUHII responses. Specifically, this study addresses the

following questions:

• What is the spatial pattern of daytime and nighttime SUHII responses to LEH in

Singapore?

• What are the key drivers of daytime and nighttime SUHII responses to LEH for

Singapore?
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• What are the dominant drivers of daytime and nighttime SUHII responses to LEH

in di!erent areas of Singapore, and what spatial patterns do they exhibit?

By addressing the above research questions, this study proposes an analytical frame-

work for exploring SUHII responses to LEH and its underlying drivers from global and

local perspectives. The developed framework can be applied to other cities, o!ering

insights into sustainable urban planning and environmental policymaking for tropical

high-density cities facing increasing heat challenges.

2. Material and methodology

This study proposes an analytical workflow to investigate the spatial pattern and

drivers of SUHII responses to LEH, as shown in 1. The framework contains five cores:

the first core is to identify LEH conditions and then calculate SUHII responses to LEH,

which is the di!erence of SUHII between LEH and non-LEH conditions; the second core

is feature engineering for the built and environmental, socioeconomic, and LEH features;

the third core is to construct the spatial RF model; the fourth core is to identify dominant

drivers for the city; and the fifth core is to employ the SHAP model to interpret spatialML

to identify dominant drivers in local areas. The following sections introduce methods of

the first core in Section 2.2 and Section 2.3, the second core in Section 2.4, the third and

fourth cores in Section 2.5.1, and the fifth core in Section 2.5.2 and Section 2.5.3 in detail.
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Figure 1: A proposed framework for investigating the spatial pattern and drivers of SUHII responses
to LEH. The first part involves selecting LEH conditions and calculating the di!erence in SUHII be-
tween LEH and non-LEH conditions. The second part focuses on feature engineering, incorporating
non-multicollinear features of 2D and 3D building metrics, natural indicators, land use types, socioe-
conomic variables, and LEH metrics. The third part constructs a spatial Random Forest (RF) model,
where the SUHII response to LEH is the dependent variable, and non-multicollinear features serve as
independent variables. The fourth part explores global feature importance to assess the key drivers of
SUHII variation under LEH conditions for both daytime and nighttime. The fifth part investigates local
feature importance through clustering and nonlinear analyses, aiming to reveal spatial heterogeneity in
the influence of di!erent features.
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2.1. Study area and dataset

Singapore—a high-density tropical city—is selected as the case area to illustrate the

proposed framework in this study. Singapore is located between 1°09’ N and 1°29’ N and

103°36’ E and 104°25’ E. Its climate type is a tropical rainforest climate (Köppen classi-

fication: Af)(Peel et al., 2007), characterized by no distinctive seasons, consistently high

monthly average temperature (26–27.7°C), and an annual rainfall of approximately 2300

mm. Singapore’s climate is characterized by two monsoon seasons separated by inter-

monsoonal periods. The Northeast Monsoon, occurring from December to early March, is

associated with the highest monthly rainfall and weaker winds. The Southwest Monsoon,

from June to September, corresponds to a relatively drier period (Meteorological Service

Singapore, 2023). In Singapore, the diurnal temperatures and precipitation are more pro-

nounced than the annual variation. The daily mean temperature typically ranges from a

minimum of 23°C to 25°C to a maximum of 31°C to 33°C. Influenced by complex urban

topography and the urban heat island e!ect, the di!erence in microclimate results in a

significant spatial and temporal variation of ambient temperatures across Singapore, with

di!erences reaching up to 3°C during daytime hours and 7°C at night (Yu et al., 2023).

This study utilized multiple datasets for Singapore. In order to identify LEH condi-

tions, maximum near-surface air temperature (Tmax) data was derived from the global

gridded dataset of daily near-surface air temperature (Ta)1 (Zhang et al., 2022), which

provides daily observations at a 1 km resolution. To ensure comprehensive spatial cov-

erage Tmax across Singapore, we selected Tmax for the years 2003, 2005, 2008, 2012, and

2019. Additionally, the land surface temperature (LST) data for daytime (1:30 pm) and

nighttime (1:30 am) were obtained from the MODIS Gap-filled long-term land surface

temperature dataset2 (Zhang et al., 2021), with a spatial resolution of 1 km. We se-

lected the daytime and nighttime LST for 2003, 2005, 2008, 2012, and 2019 to calculate

the SUHII responses to LEH. Additionally, for factors considered in this study, Landsat

images used in this study are USGS Landsat 8 Level 2, Collection 2, Tier 1 in 2019;

1https://gee-community-catalog.org/projects/airtemp/
2https://gee-community-catalog.org/projects/daily_lst/
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USGS Landsat 7 Level 2, Collection 2, Tier 1 in 2012; and USGS Landsat 5 Level 2,

Collection 2, Tier 1 in 2003, 2005, and 2008 for Singapore, which were retrieved from the

Google Earth Engine. The 2019 Master Plan of Singapore and gross plot ratios (GPR)

data were obtained from the Urban Redevelopment Authority. We used the Singapore

2019 Masterplan to retrieve land use types. Night-time light (NTL) data for 2003, 2005,

2008, 2012, and 2019 were sourced from global 500-meter resolution “NPP-VIRS-like”

datasets (Chen et al., 2020), available from the National Earth System Science Data

Centre, National Science & Technology Infrastructure of China. The building dataset,

containing building shapes and height information extracted from digital surface model

(DSM) data, was obtained from a previous study (ETH Zurich, 2024). Road data for

Singapore was retrieved from OpenStreetMap. Additionally, the Global Artificial Imper-

vious Area (GAIA) dataset (Version 2022) was used to extract impervious surface areas

(Gong et al., 2020), and population density data at a 1 km resolution was acquired from

the open-access WorldPop dataset.

2.2. Local extreme heat (LEH) and non-local extreme heat (non-LEH) conditions defini-

tion

To identify LEH occurrences, we employed percentile-based thresholds based on multiple-

year historical daily air temperature. The use of percentile-based thresholds is more e!ec-

tive than fixed absolute temperature thresholds when considering di!erent urban thermal

regimes within a city. The LEH condition is defined as the period lasting a minimum of

three consecutive days during which the maximum air temperature (Tmax) exceeds 90th

Tmax percentile of the multi-year Tmax collection in each 1 km grid. This definition builds

on concepts used to identify extreme heat events at weather station (Cui et al., 2023),

block (Castro et al., 2024), and citywide scales (Coughlan de Perez et al., 2023; Wu et al.,

2023). Correspondingly, the non-LEH condition is the days of LEH non-occurrence. A

showcase of the schematic for identifying the LEH condition for one 1 km grid cell is

shown in Fig. 2. Accordingly, LEH and non-LEH identification have been implemented

in each 1 km grid cell within a city.
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Figure 2: A showcase of the schematic of identifying LEH conditions based on daily Tmax (denoted by
the blue line) and its corresponding 90th percentile values (denoted by the orange line) in one 1 km grid
cell. LEH conditions are the days of Tmax exceeding its corresponding 90th percentile value (denoted by
red dots). Conversely, non-LEH conditions refer to days without the occurrence of LEH conditions.

2.3. Surface urban heat island intensity (SUHII) calculation and SUHII responses to LEH

To explore the SUHII responses to LEH, the di!erence of SUHII between LEH and

non-LEH conditions for each urban grid is calculated. Specifically, there are three main

steps.

1. The daytime (or nighttime) SUHII under LEH conditions is calculated using Equa-

tions (1) and (2):

SUHIIt = LSTt →
1

M

M∑

j=1

LSTj,t (1)

SUHIILEH =
1

T

∑

t↓T

SUHIt (2)

Where LSTt is the daytime (or nighttime) LST on the day t, j represents rural grids, M

is the total number of rural grids, and T is the number of days of LEH conditions.

2. The daytime (or nighttime) SUHII under non-LEH conditions is calculated using

Equations (3) and (4):
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SUHIIt = LSTt →
1

M

M∑

j=1

LSTj,t (3)

SUHIInon-LEH =
1

T ↔

∑

t↓T →
i

SUHIIt (4)

Where LSTt is the daytime (or nighttime) LST on the day t, j represents rural grids, M

is the total number of rural grids, and T ↔ is the number of days of non-LEH conditions.

3. The di!erence in daytime (or nighttime) SUHII between LEH and non-LEH con-

ditions is calculated using Equation (5):

!SUHIILEH = SUHIILEH → SUHIInon-LEH (5)

Where SUHIILEH is the SUHII under LEH conditions, SUHIInon-LEH is the SUHII under

non-LEH conditions.

Following the studies of Chew et al. (2021), Jiang et al. (2019), and Chen et al. (2021),

urban areas are defined according to the International Geosphere-Biosphere Programme

(IGBP) definition of “Urban and Built-up Lands,” which refers to areas with “at least 30%

impervious surface area, including building materials, asphalt, and vehicles”. And rural

areas are defined as outside urban areas with at least 65% vegetation cover. Accordingly,

in the context of Singapore, we identified urban areas as 1 km grids with the built-up

percentage exceeding 30%, and rural areas as areas with tree cover greater than 80%.

2.4. Feature engineering

To identify the driving factors of SUHII responses to LEH, we considered urban in-

dicators, including building morphology, natural environment, land use, socioeconomic

factors, and LEH metrics. The spatial unit of calculating urban indicators is 1 km.

2.4.1. LEH metrics

We derive seven metrics to quantify frequency, intensity, and duration of LEH con-

dition (Wang et al., 2022; Russo and Domeisen, 2023). These metrics include average
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temperature (AVT), average intensity (HWI), average anomalies (AVA) of LEH condi-

tion, total number of LEH condition occurrences (HWN), sum of all participating LEH

days (HWF), average LEH condition duration (AHD), and cumulative LEH (HEATcum)

(Table 1).

Table 1: Summary of type, short name, full name, definition, and unit of LEH metrics.

Type Short name Full name Definition Unit

Intensity AVT Average Temperature of LEH Average daily max temp.
calculated over LEH days

℃

Intensity HWI Average Intensity of LEH Sum of the di!erences
between the daily max temp.
and the daily 90th percentile
max temp. on LEH days,
divided by the number of LEH
conditions

℃

Intensity AVA Average Anomalies of LEH
days

Average of the di!erences
between daily max temp. and
the daily 90th percentile max
temp. for LEH days

℃

Intensity HEATcum Cumulative LEH Sum of the max temp.
anomalies exceeding the 90th

percentile threshold (Tr90d)
over LEH days

℃

Frequency HWN Total Number of LEH
conditions

Total number ofLEH
conditions

Events

Frequency HWF Sum of LEH Days Total number of LEH days Days
Duration AHD Average LEH Condition

Duration
Average duration of LEH
conditions

Days

2.4.2. Building morphology parameters

According to previous studies (Zheng et al., 2018; Li et al., 2021; Xi et al., 2023; Joshi

et al., 2022; Biljecki and Chow, 2022), various urban morphology parameters were taken

into account, as shown in Table 2. A showcase area of building morphology parameters

at 1 km grid cells in the southern region of Singapore is shown in Fig. S1 in Appendix A.
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Table 2: Summary of building morphology indicators calculated in the study.

Metrics (Abbreviation) Expression Definition Unit

Building height (BH) BH =
∑n

i=1 Hi
n

where Hi = height of the building i; n = num-

ber of the buildings in a grid cell

Average of building height

(Zheng et al., 2018)

m

Building surface fraction

(BSF)

BSF =
Abuilding

Agrid

where Abuilding = total areas covered by build-

ings; Agrid = the area of the grid cell

Fraction of total area covered

by buildings within a grid cell

(Zheng et al., 2018)

-

Sky view factor (SVF) The SVF is calculated by the SVF calculation

tool in SAGA GIS with input data of building

height and Digital Elevation Model (DEM)

Ratio of the visible sky area of

a point in space to the total sky

area

-

Building width (BW) BW =
build_fraction↑Res

build_count

where Res = Resolution of a grid cell

Mean of building width within

a grid cell

m

Street width (SW) SW = Res

build_nrow
↗ BW

where build_nrow =
√

build_fraction ↘ Res

BW
,

which assumes that buildings are square-

shaped and evenly distributed in each grid cell

Mean of street width of each

grid cell (Li et al., 2021)

m

Street length (SL) SL =
∑

n

i=1 Li

where Li = length of the street i; n = number

of streets in a grid cell

Sum of street length within a

grid cell

m

Aspect ratio/height width ra-

tio (H/W)

H/W = BH

SW
Ratio of height to width of a

street canyon

-

Frontal area index (FAI) FAI(ω) = Aω
Aplane

where ω is the wind direction angle; FAI(ω)

is the projected area of buildings in a spe-

cific wind direction; Aplane is the calculation

unit area. Here, we only calculate the FAI

for northerly/easterly winds for the inter-city

comparison to highlight the influence of build-

ings; ω is calculated as the product of the

buildheight, buildnrow, and buildnrow in each

grid cell. The grid cell area, namely the square

of grid cell resolution, is taken as Aplane

Frontal area per unit height in-

crement (Li et al., 2021; Joshi

et al., 2022)

-

The volume of the urban

canopy (UCLV)

UCLV = max(hi)↘Abu!er

where hi is the height of the buildings in the

bu!er block; Abu!er is the area of the bu!er

zone. To create the bu!er zone to include the

street, we use half of the street_width of each

grid cell as the bu!er zone for each grid cell

Volume of the urban canopy

(Joshi et al., 2022)

-

Continued on next page
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Table 2: (continued)

Metrics (Abbreviation) Expression Definition Unit

Porosity (Po) Po = (UCLV↓BV)
UCLV

where BV =
∑

n

i=1 Ai ↘ hi; Ai is the area of

the building located in the bu!er zone of the

grid cell

Ratio of the empty volume in

an urban canopy to the vol-

ume of the urban canopy (Joshi

et al., 2022)

-

Average distance between the

adjacent buildings (DB)

Dmin = 1
n

∑
n

i=1 min1↔j↔n↓1(Dij)

where Dij is the distance between one building

and the rest of the buildings; n is the number

of buildings in the grid

Average distance between ad-

jacent buildings in a grid cell,

representing the compactness

or sprawl of buildings within

the grid cell (Joshi et al., 2022)

m

Average distance between the

center of the grid cell and

buildings (DC)

DC =
∑n

i=1 Dc(i)

n

DC_i is the distance from the grid cell’s center

to the building’s center; n is the number of

buildings in the grid cell

Average distance of all building

centers from the center of the

grid cell (Joshi et al., 2022)

m

Open space ratio (OSR) OSR = 1↓GSI

GSI

where GSI =
∑n

i=1 Abu(i)

Abl
; Abu is the area oc-

cupied by the building in the grid cell; Abl is

the area of the grid cell; n is the number of

buildings in the grid cell

Ratio of open areas to the built

area, describing the intensity of

use of non-built ground (Joshi

et al., 2022)

%

Height of roughness elements

(HRE)

HRE =
∑n

i=1 Abu(i)↑hbu(i)

Abu!er

where Abu is the area occupied by the building

in the grid cell; hbu is the height of the building

within the bu!er zone of the grid cell; Abu!er

is the area of the bu!er zone; n is the number

of buildings within the grid cell

Average building height in the

urban canopy (Joshi et al.,

2022)

m

2.4.3. Land use indices

With reference to Singapore’s master plan, we divided land use indices into six cat-

egories, including natural spaces, infrastructure, commercial, industrial, residential, and

special use (see Table. 3).

Table 3: Category of land use types

Category Types

Natural Spaces Open space, Water body, Park, Beach area, Agriculture
Infrastructure Road, Utility, Transport facilities, Mass rapid transit, Light rapid transit, Port

airport
Commercial Commercial institution, Commercial, Business park, White, Business park white
Industrial Business 2, Business 1, Business 2 white, Business 1 white
Residential Residential institution, Residential, Commercial Residential, Residential with

commercial
Special use Sports recreation, Reserve site, Special use, Hotel
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2.4.4. Natural environmental indices

The natural environmental indices considered in this study, including vegetative in-

dices, water index, etc., are shown in Table 4. A showcase area of natural environmental

indices at 1 km grid cells in the southern region of Singapore is presented in Fig. S2 in

Appendix A.

Table 4: Summary of natural environmental indices used in the study.

Short name Full name Definition

NDVI Normalized Di!erence

Vegetation Index

NDVI is defined as the quotient of the di!erence between the reflectivity of

the near-infrared (NIR) and the visible red light channel (RED), calculated

as (Sun et al., 2021):

NDV I =
NIR ↗ RED
NIR + RED

EVI Enhanced Vegetation

Index

EVI is the most common alternative vegetation index that addresses soil and

atmosphere limitations with NDVI (Liu and Huete, 1995; Xue and Su, 2017).

The EVI2 index can be used to produce an EVI-like vegetation index (Jiang

et al., 2008), calculated as:

EV I2 = 2.5↘
(NIR ↗ RED)

NIR + (2.4↘ RED) + 1

MSAVI2 Modified Soil-Adjusted

Vegetation Index

MSAVI2 is a good index for areas that are not completely covered with vege-

tation and have exposed soil surface (Xue and Su, 2017), which is calculated

as:

MSAV I2 =
(2↘ NIR + 1)↗

√
(2↘ NIR + 1)2 ↗ 8↘ (NIR ↗ RED)

2

SAVI Soil Adjusted Vegeta-

tion Index

SAVI is a modification of the NDVI with a correction factor L for soil bright-

ness, which is calculated as:

SAV I =
(NIR ↗ RED)

(NIR + RED + L)
↘ (1 + L)

where the value of L is 0.5, which is the default value and works well in most

situations.

Continued on next page
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Table 4: (continued)

Short name Full name Definition

AVI Advanced Vegetation

Index

AVI is the advanced vegetation index, which reacts more sensitively to veg-

etation quantity and is able to highlight subtle di!erences in canopy density

(Rikimaru et al., 2002). It is calculated as:

AV I = 3
√

((NIR+ 1)↘ (256↗RED)↘ (NIR↗RED))

SI Shadow Index SI is the shadow index, which increases as the forest density increases, and

this shadow pattern a!ects the spectral responses (Rikimaru et al., 2002). SI

is calculated as:

SI = 3
√

(256↗BLUE)↘ (256↗GREEN)↘ (256↗RED)

where BLUE is the visible blue light channel, and GREEN is the visible green

light channel.

BI Bare Soil Index BI is the bare soil index, which enhances the identification of bare soil areas

and fallow lands (Mzid et al., 2021). BI is calculated as:

BI =
(SWIR1 +RED)↗ (NIR+BLUE)

(SWIR1 +RED) + (NIR+BLUE)

where SWIR1 is the shortwave infrared 1 band processed to orthorectified

surface reflectance.

ISF Impervious surface

area fraction

ISF is defined as the area of impervious surface divided by the area of the grid

cell. The impervious surface area data is obtained from the Global Artificial

Impervious Area (GAIA) data (Version 2022) dataset.

NDWI Normalized Di!erence

Water Index

NDWI is developed to characterize surface water cover and to allow for the

measurement of surface water extent(McFeeters, 2013), and calculated as fol-

lows:

NDWI =
(GREEN ↗ NIR)

(GREEN + NIR)

2.4.5. Socioeconomic indicators

We also considered socioeconomic indicators, including population density (PopD)

and the night-time light (NTL) index. The population density at 1 km spatial resolution

was obtained from the open-access WorldPop dataset. WorldPop is a high-resolution pop-

ulation dataset that has been used for disaster management and environmental impact
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assessment (Zhu et al., 2020). The NTL data were obtained from the global 500-meter

resolution "NPP-VIRS-like" dataset (Chen et al., 2020) (National Earth System Science

Data Center, National Science & Technology Infrastructure of China). Then, we pro-

cessed the night light index to the 1 km spatial resolution.

2.4.6. Multicollinearity test

To ensure the explanatory variables were not a!ected by multicollinearity, we assessed

multicollinearity using the variance inflation factor (VIF) and applied a threshold of 10

(Yang et al., 2024; Benito, 2021a). Variables with VIF values greater than 10 were

excluded from further analysis. Only non-multicollinear variables that passed this test

were retained for model development. Table 5 presents the set of explanatory variables

used in the ML model.

Table 5: Dependent variables

Type of indicators Definition VIF

2D Buildings

BW Average building width 1.98
SW Street width 6.76
SL Street length 2.29
BH Average building height 5.93
OSR Open space ratio 6.86
DB Average distance between adjacent buildings in a grid cell 3.18
DC Average distance from the centroid to buildings in a grid

cell
2.93

3D Buildings

H/W Building height to street width ratio 4.26
Po Porosity 3.78
GPR Gross plot ratio 3.04
Vegetation and water indices

AVI Advanced Vegetation Index 9.68
SI Shadow Index 6.90
NDWI Normalized Di!erence Water Index 6.66
Land use types

PctTrees Percentage of trees area 5.24
PctCI Percentage of Masterplan area covered by commercial and

industrial
2.76

PctInfra Percentage of Masterplan area covered by infrastructure 2.41
PctSpecUse Percentage of Masterplan area covered by special use 2.12
PctRes Percentage of Masterplan area covered by residential 3.89
Social-economic indices

PD Estimated population density in a grid cell 2.04
NL Average night light values in a grid cell 3.91
LEH metrics

AVT Average temperature of LEH 5.05
HWN Total number of LEH conditions 1.23
HWI Average intensity of LEH 2.37
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2.5. Global and local feature importance exploration

2.5.1. SpatialRF model construction

To justify the use of the spatial machine learning (ML) model in explaining SUHII

responses to LEH, it is important to examine the spatial autocorrelation of the training

data across di!erent distance thresholds.

We evaluated the spatial autocorrelation of the explanatory and predictor variables at

di!erent distance thresholds in Singapore. The result shows that the spatial autocorrela-

tion of the explanatory and predictor variables was strong, especially in the range of 2 km

to 4 km (see Fig. S3 in Appendix B), which highlights that the SpatialRF model is the

appropriate way to take into account the spatial autocorrelation of the model residuals.

Subsequently, we used the SpatialRF to model SUHII responses to LEH. The advan-

tage of the SpatialRF is minimizing the spatial autocorrelation of the model residuals

by understanding the spatial structure and generating spatial predictors (Benito, 2021b).

The spatial predictors are generated from the distance matrix of the data points, which

are obtained by extracting the latitude and longitude of the centroid of each grid. In addi-

tion, as we build the model for explanatory rather than predictive purposes, all available

samples are utilized for model training.

Furthermore, model performance was evaluated using R-squared and Root Mean

Squared Error (RMSE) metrics, derived from predictions on out-of-bag data, which is

the fraction of data not used for training individual trees (Benito, 2021b). Variable im-

portance was assessed by measuring the increase in mean error on the out-of-bag data

when a predictor is permuted (Benito, 2021b). Additionally, response curves were ana-

lyzed to explore how dependent variables respond to changes in explanatory variables.

2.5.2. Using Shapley Additive exPlanations in Explainable Machine Learning

To investigate the dominant drivers of SUHII responses to LEH in local areas, the

SHAP model was employed to quantify and explain the contribution of individual predic-

tors to the dependent variable. The Shapley value, derived from game theory, provides

a fair allocation of the e!ect of each predictor in the model (Li, 2022; Yang et al., 2024).

The formula for calculating the Shapley value is as follows (#trumbelj and Kononenko,
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2014):

εi(x) =
∑

Q≃S\{i}

|Q|!(|S|→ |Q|→ 1)!

|S|!
(
!Q⇐{i}(x)→!Q(x)

)
. (6)

where εi(x) is the Shapley value that reflects the contribution of the variable i, S denotes

the set with the number of variables i, !Q⇐{i}(x) and !Q(x) represents the model results

with or without the variable i, respectively. In this study, the SHAP model is applied

to interpret the SpatialRF (Molnar and Schratz, 2020). By computing Shapley values,

we can e"ciently determine the contributions of individual features for each prediction.

This approach allows us to uncover the nonlinear e!ects within the model by providing

localized explanations of the relationships between predictors and the SUHII variations.

2.5.3. Clustering process of local importance of features

To identify local areas having similar local feature importance of SUHII responses to

LEH, we applied the clustering method to the local SHAP value of indicators. First, we

categorized the indicators into five main groups: building morphology, vegetation, water,

land use, LEH, and socio-economic indicators. To reduce dimensionality and identify

key contributing indicators, we performed principal component analysis (PCA) on the

local SHAP values for these categories. Clustering was then conducted based on the

first principal component extracted for each of the five categories. When the number of

clusters is unknown, unsupervised classification methods can help reveal similar groups.

In this study, we employed the Agglomerative Hierarchical Clustering (AHC) algorithm,

which is widely used across various fields (Tang et al., 2019). AHC begins with each

data point as an individual cluster and iteratively merges the closest pairs based on

similarity, ultimately producing a hierarchical tree structure (Zhou et al., 2016; Ip et al.,

2010). The similarity between objects is quantified using Euclidean distance, and Ward’s

linkage method is used to combine clusters in a way that minimizes the variance within

each cluster (Govender and Sivakumar, 2020). The output of the AHC algorithm is a

dendrogram, which helps in selecting the optimal number of clusters.
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3. Results

3.1. SUHII responses to LEH and dominant drivers for Singapore

The extreme heat showed spatial heterogeneity within the city, and di!erent areas

exhibited di!erent characteristics of extreme heat. The spatial patterns of various LEH

metrics, including AVT (average temperature of LEH), HWI (average intensity of LEH),

and HWN (total number of LEH conditions), are presented in Fig. 3. In particular,

the spatial pattern of AVT and HWI shows they had a similar representation. The

northeast, southeast, and industrial areas exhibited the highest AVT, around 34.3°C, and

also experienced pronounced extreme temperature anomalies in Geylang and Tampines.

Other areas of the south and central regions, including Queenstown and Clementi, had

the lowest temperature of extreme heat and the lowest extreme temperature anomalies.

By contrast, HWN displayed a di!erent spatial pattern from AVT and HWI. The highest

number of LEH occurrences was concentrated in the northeastern regions (e.g., Pasir Ris

and Sengkang) and the western areas of Jurong West. Overall, extreme heat showed

intra-urban variation in high temperatures, underscoring the importance of considering

local-scale extremes.

(a) AVT (b) HWI (c) HWN

Figure 3: Spatial distribution of LEH metrics for (a) AVT, (b) HWI, and (c) HWN.

The spatial pattern of daytime and nighttime SUHII responses to LEH is displayed

in Fig. 4. Daytime and nighttime SUHII were amplified by LEH in most areas, while

their spatial distributions and intensities of SUHII variations di!ered. Specifically, during

the daytime, the maximum increased SUHII reached approximately 3.2°C, particularly

in the northeastern and eastern regions, including Ang Mo Kio, Hougang, and Tampines.
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In contrast, nighttime SUHII responses to LEH were less pronounced, with the maxi-

mum increase of around 0.6°C, mainly observed in the western and central regions such

as Jurong West, Jurong East, Clementi, Queenstown, and Bukit Merah. These results

demonstrate that LEH had a greater amplifying e!ect on daytime SUHII than on night-

time and revealed distinct spatial patterns between day and night.

(a) Daytime (b) Nighttime

Figure 4: Spatial pattern of (a) daytime and (b) nighttime SUHII responses to LEH.

The SUHII changes may be associated with local climate, urban layout, land use, and

anthropogenic heat. To understand the drivers of SUHII responses to LEH, the spatialRF

model was applied, using SUHII responses to LEH as the predictable variable and non-

multicollinear factors as explanatory variables. The results of model performance show

that the model of daytime SUHII responses to LEH achieved R-square values exceeding

63%, while the nighttime model achieved R-square values exceeding 45% (Table 6). We

further tested whether adding water area percentage, mean HDB resale prices, POIs, and

transport points could improve performance. Data were sourced from OpenStreetMap

and the Singapore Open Data portal. The results in Tables S1 and S2 in the Appendix C

show that these features did not enhance predictive accuracy; in some cases, performance

declined. These align with previous literature indicating that geographic factors account

for about 40% of the variation in urban heat (Bian, 2025). A substantial portion of the

variation remains unexplained, mainly because urban heat is highly sensitive to dynamic

factors such as wind, cloud cover, and anthropogenic heat. It is suggested that our models
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can provide reasonable explanations of the role of geographical features for daytime and

nighttime SUHII responses to LEH.

Table 6: Model performance of daytime and nighttime SUHII responses to LEH.

Models Model performance (median +/- mad)

R-square (oob) Normalized RMSE

Daytime SUHII variations 0.639 +/- 0.0036 0.194 +/- 0.0010
Nighttime SUHII variations 0.451 +/- 0.0053 0.232 +/- 0.0015

The importance scores of factors driving daytime and nighttime SUHII responses to

LEH across the entire city are shown in Fig. 5, revealing the dominant contributors

during both periods. Local extreme heat, vegetation, and land use were identified as the

primary drivers of daytime SUHII variations, whereas nighttime variations were mainly

influenced by socioeconomic factors, vegetation, and water. Specifically, the average

intensity of LEH (HWI) was the key factor of the local extreme heat feature category

during the daytime, while nighttime light (NTL) of the socioeconomic feature category

played a dominant role at night. These findings highlight that the dominant features

governing daytime and nighttime SUHII responses are di!erent.
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(a) Daytime importance scores for feature categories and fac-
tors

(b) Nighttime importance scores for feature categories and
factors

Figure 5: The importance scores of di!erent feature categories and various factors for (a) daytime and
(b) nighttime SUHII responses to LEH.

3.2. Dominant factors of SUHII responses to LEH at local areas in Singapore

We used the SHAP model to interpret the spatialRF model, with the SHAP values of

factors in local areas representing the local importance of each feature. Based on these

local SHAP values, the clustering approach was applied to group the dominant drivers.

The analysis identified feature clusters for both daytime and nighttime SUHII responses

to LEH, as shown in Fig. S4 in Appendix D. The spatial distributions of three clusters of

local feature importance are presented in Fig. 6a and Fig. 6b, for daytime and nighttime,

respectively.

Cluster I is characterized by the lowest SUHII variations under LEH during the day-

time. Building morphology and LEH negatively contribute to SUHII increases, with stan-

dardized SHAP values of -0.6 and -0.7, suggesting that shading e!ects from built form
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and ventilation reduced daytime warming, while water slightly positively contributed to

SUHII increases. At night, the lowest SUHII changes were mainly due to the result that

building morphology and socio-economic factors became important negative contribu-

tors, with standardized SHAP values of -0.9 and -1.1, and water continuously played a

positive role. The cluster I was only distributed in small local areas, while most areas are

characterized by cluster II. The cluster II exhibited SHAP values of most factors close

to zero for both daytime and nighttime, implying a more balanced influence of multiple

factors on SUHII changes. These areas may represent thermally neutral zones within the

city.

Cluster III, associated with the highest SUHII increases, was mainly distributed in the

northeast, including Yio Chu Kang and Serangoon, the east, including Paya Lebar, Bedok,

and Tampines, and the areas of Bukit Timah during the daytime. At night, the highest

SUHII increases were mainly concentrated in the industrial areas of Pioneer and Tuas,

Jurong West in the western region, Queenstown in the south region, as well as Tampines

in the east. Daytime responses are primarily driven by socio-economic and LEH, with

standardized SHAP values of 0.5 and 0.7, reflecting the amplification of local warming

by intensive daytime human activities and extreme heat. At night, socio-economic and

vegetation factors become the leading positive drivers, likely because of higher nighttime

activity levels and thermal storage e!ects in vegetation. These patterns indicate that

socio-economic factors consistently serve as dominant drivers within Cluster III.
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(a) Daytime (b) Nighttime

Figure 6: Spatial clusters and boxplots illustrating the drivers of SUHII responses to LEH during (a)
daytime and (b) nighttime. Bottom panels display standardized SHAP values of six grouped feature
categories across three clusters. Each boxplot shows the median SHAP value (↭ upward for positive, ↫
downward for negative), and the top 2 feature categories with positive (↭ red) and negative (↫ blue)
median SHAP values in each cluster.
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3.3. Nonlinear associations for hotspots of SUHII responses to LEH

The day–night clusters of dominant drivers of SUHII responses to LEH are shown in

Fig. 7. Hotspot areas with the highest increases in SUHII are highlighted, corresponding

to clusters II–III (orange), III–II (blue), and III–III (purple), indicating that these areas

are experiencing overheating in SUHII increases.

Figure 7: Day-night clusters of dominant local drivers of SUHII responses to LEH.

Furthermore, the nonlinear associations between influencing factors and SUHII re-

sponses in hotspot areas are illustrated in Fig. 8. In areas of type II–III, height-to-width

(H/W) ratios between 2.5 and 7.5 exhibited negative e!ects on SUHII for both day and

night. For areas of type III–II, the SI exhibits a slightly inverted U-shaped relation-

ship. When SI exceeded 255.88, the positive SHAP e!ect value declined, and the slope

plateaued. As for the percentage of trees, the SHAP e!ect remained consistently posi-

tive, suggesting that increasing tree coverage had a limited e!ect on reducing SUHII. In

addition, when Po exceeded 0.4, its SHAP e!ect value stabilized, indicating that further

increases in Po led to little change in its contribution. Moreover, the SHAP value of

NDWI displayed a distinct U-shaped pattern, initially increasing and then decreasing. It

peaked at –0.45, representing the point of greatest positive contribution to SUHII. Be-

yond this value, the SHAP e!ect declined, implying that additional water presence helps

mitigate SUHII during both daytime and nighttime. Similarly, in other types of areas,
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higher NDWI values were associated with a decrease in SUHII.

Figure 8: SHAP dependence plots illustrating day–night cluster of SUHII responses to LEH for (a) II–II,
(b) III–II, (c) II–III, and (d) III–III.

4. Discussion

4.1. Uncovering the extreme heat characteristics at local scales

In the context of global climate change, cities are increasingly experiencing extreme

heat events (Perkins-Kirkpatrick and Lewis, 2020; Perkins-Kirkpatrick and Gibson, 2017;

Qiu and Yan, 2020). Combined with the UHI e!ect, urban areas are facing more frequent

and intensified overheating (Tan et al., 2010; Basara et al., 2010). Previous studies have

typically defined extreme heat days at the city-wide scale (Wei et al., 2021; Founda

and Santamouris, 2017), while such approaches overlook the local variations in extreme
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temperature within a city. To consider this, our study introduced the concept of LEH and

examined its spatial patterns and characteristics in Singapore. We found that di!erent

areas exhibited distinct LEH characteristics, including average temperature, intensity,

and frequency. Notably, the highest frequency of LEH occurrence was observed in the

northeastern part of the city, consistent with the findings of Yu et al. (2023), which were

based on weather station data in Singapore. Beyond this, we identified that the highest

intensity and temperature of LEH occurred in the southeastern region, indicating that

local temperatures in this region were not only higher but also had more changes than

in other areas.

4.2. Localized synergies between SUHIs and extreme heat and its underlying drivers

UHI is typically a localized phenomenon driven by microclimate and urban features.

The UHII can be exacerbated by extreme heat at the local scale; however, the spatial

patterns and underlying drivers of this interaction are not fully understood. To address

this gap, we employed an interpretable spatial ML method to identify the dominant local

drivers of the interaction between SUHI and extreme heat. The spatialRF model was

used due to its advantages in analyzing spatially continuous phenomena compared to

conventional ML approaches such as Random Forest and XGBoost (Yang et al., 2022;

He et al., 2024). Furthermore, the SHAP model was innovatively applied to explain the

spatialRF model, extending its typical use beyond traditional ML models and providing a

more reasonable interpretation. Building on the use of an interpretable spatialRF model,

a clustering approach was applied to the SHAP values of local features to identify the

number of groups of local drivers and uncover their spatial patterns.

In our study, we found that local synergies between SUHIs and extreme heat manifest

di!erently during daytime and nighttime in Singapore. The daytime SUHII increases

reached approximately 3 ↑C, while the maximum nighttime SUHII increase was around

0.6 ↑C. This observation aligns with findings from most city-scale studies, which have

reported that UHIs are more intense during the daytime than at night under extreme

heat conditions, such as in cities of Korea (Kim and Baik, 2004) and Shanghai, China

(Tan et al., 2010). The daytime SUHII increases are mostly related to LEH and land use,
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whereas the nighttime SUHII increases are more closely associated with socioeconomic

factors, suggesting that greater anthropogenic heat plays a significant role, which aligns

with previous findings from Beijing at the city scale (He et al., 2020).

At the local scale, di!erent areas exhibit distinct dominant drivers and are associated

with di!erent levels of SUHII variation. The most pronounced daytime SUHII increases

are observed in the northeastern areas, which are primarily composed of LCZ 4 (open

high-rise) (Luo et al., 2023). These increases are mainly driven by socioeconomic factors

and local extreme temperatures. This finding is consistent with previous studies con-

ducted in Beijing (Zong et al., 2021) and Guangzhou (Luo et al., 2023), suggesting that

open high-rise building forms generally provide good ventilation conditions and therefore

do not predominantly drive SUHII increases. The most intense nighttime SUHII increases

occur in the southwestern industrial areas and in the eastern parts of the city, where they

are positively associated with LEH and socioeconomic factors. This indicates that so-

cioeconomic influences are consistently dominant in driving SUHII increases, particularly

during nighttime, likely due to continuous anthropogenic heat emissions from industrial

and transportation activities.

4.3. Potential strategies for mitigating SUHII increases under local extreme heat condi-

tions

As for mitigation strategies to decrease SUHII under LEH conditions, we examined

the nonlinear association between features and SUHII. For the areas with high SUHII

increases, the nonlinear association results show that more vegetation had a limited re-

ducing contribution to SUHII both during the daytime and nighttime. This suggests the

cooling potential of greens tends to achieve saturation in cities with hot and humid cli-

mates, which aligns with the previous study by Rogers et al. (2019). However, we found

that water bodies demonstrated significant cooling potential for daytime and nighttime

SUHII under extreme heat conditions. Also, water management has been shown to be the

cooling solution for mitigating urban heat in other cities, such as Shanghai in China and

Karlsruhe and Berlin in Germany (Du and Zhou, 2022; Walther and Olonscheck, 2016).

Our findings emphasize that for climate-resilient urban planning, measures to mitigate
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daytime and nighttime SUHII under extreme heat conditions in local areas should go

beyond planting more greenery. Introducing or expanding urban water or implementing

water-spraying interventions can be considered an urban cooling practice.

4.4. Limitations and future opportunities

This study comprehensively explored the spatial pattern of local extreme heat and

its impacts on SUHII and examined the key drivers of SUHII responses to LEH by con-

sidering factors related to the environment, building morphology, socioeconomic char-

acteristics, and local extreme heat. While some limitations exist, future studies should

consider the following points. Our spatial RF model explained approximately 63% of

the daytime SUHII variations and 45% of the nighttime SUHII variations, primarily re-

lying on geographical features. A substantial portion of the unexplained variation is

sensitive to dynamic factors such as wind, cloud cover, and anthropogenic heat (Bian,

2025), suggesting that future studies should incorporate additional variables. For in-

stance, meteorological factors such as wind speed, wind direction, and relative humidity

may influence the interactions between UHI and extreme heat. In addition, our study

focused on the impact of local extreme heat on SUHII. Future research could, in turn,

explore the influence of SUHII on local extreme heat occurrences and characteristics.

5. Conclusion

Our study investigated the spatial pattern of SUHII responses to LEH, addressing

the gap in considering the extreme heat at the local scale and identifying the key drivers

using an interpretable spatial RF model. We found that LEH increased SUHII in most

urban areas during the daytime and nighttime. Daytime SUHII increases were higher

than nighttime, around 3 ↑C and 0.6 ↑C, respectively. Besides, the spatial distribution of

SUHII responses to LEH di!ered between day and night. The daytime SUHII increases

were primarily concentrated in northeastern areas, while nighttime SUHII increases were

prevalent in the western areas. To identify the dominant factors, we employed the spa-

tialRF model. The spatialRF model achieved R-squared values exceeding 63% for pre-

dicting daytime SUHII responses to LEH and 45% for nighttime SUHII responses. During
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the day, LEH, vegetation, and land use were the primary drivers of SUHII variation. At

night, socioeconomic factors, vegetation, and water were the main contributors. Notably,

the role of potential human activities became more significant during nighttime, suggest-

ing a shift in dominant influencing factors from day to night. Furthermore, we identified

three clusters of dominant drivers of SUHII variations for daytime and nighttime. For the

hotspots of SUHII increases, socioeconomic factors consistently drove SUHII increases.

Moreover, nonlinear associations between the factor value and its SHAP values in hotspots

showed that the cooling e!ect of planting more trees reached saturation, and increasing

the water body appeared to be a more e!ective way to mitigate the SUHII increase under

LEH conditions.
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The Global Daily near-surface air temperature dataset can be freely accessed at

https://gee-community-catalog.org/projects/airtemp/. The MODIS Gap-filled

Long-term Land Surface Temperature Daily dataset can be freely accessed at https:

//gee-community-catalog.org/projects/daily_lst/. The Landsat 5/7/8/9 images

can be freely accessed at Google Earth Engine. The Sentinel-2 10m land use/land cover

dataset can be freely accessed at https://livingatlas.arcgis.com/landcoverexplorer/.

The Masterplan for 2019 in Singapore can be freely accessed at https://beta.data.

gov.sg/. The nighttime light obtained from global 500-meter resolution "NPP-VIRS-

like" datasets can be freely accessed at the National Earth System Science Data Center,

National Science & Technology Infrastructure of China (http://geodata.nnu.edu.cn/).

The road data can be freely accessed from OpenStreetMap. The Global Artificial Imper-

vious Area (GAIA) data can be freely accessed at https://www.x-mol.com/groups/li_

xuecao/news/48145. The population density at 1 km resolution can be freely accessed

at Worldpop (https://hub.worldpop.org/geodata/listing?id=76).
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Appendix A. The showcase area of calculated building morphology and nat-

ural environmental indices

Figure S1: The showcase area of calculated (a) building height, (b) street width, (c) porosity, and (d)
H/W at 1 ↑ 1 km grids along the southern region in Singapore. Data source: (c) OpenStreetMap
contributors.

Figure S2: The showcase area of calculated (a) NDVI, (b) SAVI, (c) NDWI, and (d) BI at 1 ↑ 1 km
grids along the southern region in Singapore. Data source: Landsat imagery.
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Appendix B. Spatial autocorrelation of the response variable and predictors

across di!erent distance thresholds

Figure S3: The spatial autocorrelation of the response variable and predictors across di!erent distance
thresholds. Low Moran’s I and p-values equal to or larger than 0.05 indicate no spatial autocorrelation
for the given variable and distance threshold.

Appendix C. Model performance of experiments with incorporating addi-

tional features for daytime and nighttime SUHII responses to

LEH

Table S1: Model performance of experiments with additional features for daytime SUHII responses to
LEH.

Experiment (Day-
time SUHII re-
sponses)

Count of
POI

Count of
transport
points

Percentage of
water area

HDB prices R-square (oob)

Baseline 0.639 +/- 0.0036
1 ↬ ↬ 0.638 +/- 0.0024
2 ↬ ↬ ↬ 0.631 +/- 0.0041
3 ↬ ↬ ↬ ↬ 0.635 +/- 0.0043
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Table S2: Model performance of experiments with additional features for nighttime SUHII responses to
LEH.

Experiment
(Nighttime SUHII
responses)

Count of
POI

Count of
transport
points

Percentage of
water area

HDB prices R-square (oob)

Baseline 0.451 +/- 0.0053
1 ↬ ↬ 0.45 +/- 0.0041
2 ↬ ↬ ↬ 0.451 +/- 0.0041
3 ↬ ↬ ↬ ↬ 0.449 +/- 0.0046

Appendix D. Agglomerative hierarchical clustering dendrogram of daytime

and nighttime SUHII responses to LEH

(a) Daytime (b) Nighttime

Figure S4: Agglomerative hierarchical clustering dendrograms of (a) daytime and (b) nighttime SUHII
responses to LEH.
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