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Abstract

Urban comfort is a means of measuring the dynamic quality of urban life as an outcome of
the interaction between humans and urban environments, capturing spatio-temporal phe-
nomena in cities. We design a multidimensional urban comfort framework encompassing
44 features, to comprehensively represent urban living environments, based on 3D urban
morphology, socio-economic features, human perception, and environmental factors. We
develop a graph-based approach to measure urban comfort through an index and explain
its driving forces by exploiting spatial relationships between urban comfort and surround-
ing features. Explainable artificial intelligence (XAI) is leveraged to interpret feature
importance and inherent complexity in urban contexts, advancing conventional methods
that are limited to linear relationships. We implement the framework in Amsterdam,
generating a city-wide comfort index. Compared to the baseline random forest model,
our graph-based approach demonstrates competitive performance in measuring the urban
comfort index, achieving an MAE of 1.03, an RMSE of 2.04, and an R-squared value of
93.6%. Meanwhile, we visualise how the urban comfort index changes across quarters,
examining the spatio-temporal dynamics at the neighbourhood level. Furthermore, we
employ XAI to explain the positive and negative impacts of urban features by categoris-
ing neighbourhoods into high and low-comfort groups, indicating the varied contributions
of urban features. Exploring the usability of the urban comfort index, we simulate var-
ious urban strategies in a neighbourhood of interest benefiting from urban digital twins
(e.g. improving air quality to mitigate its negative impact on urban comfort). The urban
comfort study demonstrates the potential to address information gaps by incorporating
multidimensional features in cities, thereby providing insights into understanding and in-
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terpreting local comfort. It can further serve as an instrument to inform neighbourhood
design, suggest feasible strategies, and indicate far-reaching implications for urban health
and wellbeing.

Keywords: Graph neutral networks, Urban complexity, Human-centric planning,
3D GIS, Urban simulation

1. Introduction

The quality of life of urban residents has been broadly studied across multiple
domains, from sociology to urban studies, associated with public health and well-
being (Marans and Stimson, 2011b; Pacione, 2003; Marans and Stimson, 2011a;
Jaroszewicz et al., 2023; Alfaro-Navarro et al., 2024). However, cities today are
facing urban challenges in diverse ways, for example, such as unequal access to
public facilities and unaffordable housing due to extensive urbanisation (Zhang,
2016; While and Whitehead, 2013; Castells-Quintana and Royuela, 2015; Ziogas
et al., 2023; Hu et al., 2023; Yin et al., 2023), as well as the essential to adapt
to climate change and build resilience against natural events and resource fluc-
tuations (Godfrey and Julien, 2005; Lau et al., 2010; Maheshwari et al., 2020;
Aboagye and Sharifi, 2024). The growing interest in the quality of human life in
both academia and practice confirms its multitude of important benefits and long-
term value (Samavati and Veenhoven, 2024; Syamili et al., 2023; Patino et al.,
2023). Urban liveability, as a multidimensional concept to evaluate and monitor
the quality of life in the long term, has been widely adopted by governments and
initiatives as an instrument for facilitating policymaking and city planning (Ley,
1990; Long et al., 2024; Higgs et al., 2019). Various indices and platforms are
developed, such as the ‘Leefbaarometer’1 in the Netherlands, and ‘Liveability for
21 largest cities’2 in Australia. The evaluation of urban life quality most relies
on statistical data (e.g. census survey data) collected by governments, leading
to insufficient resolution, and may not fully capture the dynamics of residents’
life experience and their living environments (Harvey and Aultman-Hall, 2016;
Kovacs-Györi et al., 2020). In fact, a number of social and economic indicators,
such as the accessibility to public transport and social infrastructure, affordable
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housing, and local work opportunities (Higgs et al., 2019), are predominately
used in the assessment, whereas existing approaches overlook humans’ subjec-
tive experiences in cities and a dynamic and comprehensive representation of ur-
ban environments. For example, subjective perception in urban environments is
crucial for understanding city life, including the effects of urban green spaces
on restoration and visual quality (Grahn and Stigsdotter, 2010; Ma et al., 2024),
the relationship between human active mobility and street design (Homolja et al.,
2020), and residents’ sense of place (Zhang et al., 2018; Su et al., 2023). Further,
while studies on characterising urban life quality specific to local contexts vary
in indicators and methods, explanations of the driving forces behind these mea-
surements have not been fully discussed. The proliferation of crowdsourcing and
human-centric analysis opens the door to addressing the limitations embedded in
liveability studies, as well as demonstrates the potential to facilitate the current
research landscape. Hence, we introduce the term urban comfort to describe the
quality of urban life, aiming for a holistic representation of the urban experience
and using it interchangeably with urban liveability in some cases. In this sense,
urban comfort is an outcome of the interplay between humans and urban envi-
ronments. We define urban comfort as a multifaceted concept that captures and
reflects the spatio-temporal dynamics of urban life quality through a lens of human
perspective.

Comfort as subjective reflections at the human scale has been discussed in
multiple domains. For example, many studies in the built environment focus
on improving indoor building environments by understanding human comfort,
such as air conditioning and thermal comfort (Ahmed, 2003; Lei et al., 2024c;
Jayathissa et al., 2020), as well as indoor noise and acoustic comfort (Oquendo-
Di Cosola et al., 2022; Lau and Choi, 2021). The discourse of comfort is further
extended to characterise outdoor conditions and human activities, investigating
the relationships between outdoor environments and human comfort, e.g. walking
comfort (Deng and Wong, 2020; Liu et al., 2023). The state of the art in com-
fort studies demonstrates a consistent trend across various domains, contribut-
ing to a comprehensive dialogue on urban health and human wellbeing (Piselli
et al., 2018; Migliari et al., 2022). Despite these advancements, a significant
gap remains in understanding how various aspects of urban environments col-
lectively impact urbanites’ comfort and life experience, particularly concerning
spatio-temporal changes. Aligning with this line of research, urban comfort is
conceptualised as a collection of urban features in the built environments and hu-
man sensing information, advancing the present discourse of life quality. In this
regard, we take the diversity of urban environments into account, for example,
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environmental factors and urban morphology, aiming to uncover the complexity
and dynamics of cities. Besides the well acknowledged socio-economic aspect of
this topic, we include human perception as an addition, i.e. how people perceive
and sense their living environments. Further, in pursuit of a comprehensive depic-
tion of urban layout, we adopt urban digital twins (Lei et al., 2023c) to advance
the measurement of urban comfort, in particular, 3D buildings as a pillar in urban
digital twins will be leveraged to represent morphology. Urban digital twins refer
to a virtual representation of the urban environment integrated with 3D semantics
and rich information, demonstrating the potential to simulating numerous what-if
urban scenarios and ultimately facilitating city management (Ferré-Bigorra et al.,
2022; Ketzler et al., 2020). However, the current research landscape of urban dig-
ital twins is dominated by technical discourse, overlooking their usability of ad-
dressing socio-economic topics by incorporating human perspectives (Lei et al.,
2023a; Nochta et al., 2021; Lei et al., 2023c). In this sense, this work presents
also an advancement in the adoption of urban digital twins, exploring their role in
facilitating socio-economic issues related to city development. The implementa-
tion of urban comfort can subsequently offer insights and values for emphasising
the socio-technical direction in urban digital twins. In this context, the term ur-
ban comfort takes a further step to investigate yet unstudied aspects of urban life
quality, revealing the interactions between humans and urban environments.

Considering these highlighted innovations, we investigate three research ques-
tions: 1) What features impact urban comfort, and how do they affect the spatio-
temporal dynamics of urban comfort in cities; 2) how do advanced techniques help
understand the interactions between humans and urban environments; and 3) how
an index quantifying urban comfort can be established and adopted to facilitate
urban planning and policymaking.

Defining urban comfort as a holistic and human-centric representation of life
quality, we develop a multidimensional framework to encapsulate urban dynam-
ics, encompassing a variety of criteria from 3D urban morphology, socio-economic
factors, human perception, and environmental factors (as illustrated in Figure 1).
Considering that urban comfort is also a reflection generated from the interplay
between humans and urban surroundings (Batty, 2016; Ortman et al., 2020), spa-
tial relationships are essential to be incorporated into the assessment and interpre-
tation. Therefore, we adopt a graph-based neural network approach to measuring
urban comfort, exploiting the spatial patterns of urban areas and multidimensional
features. Explainable AI (XAI) is further employed to interpret the impact of ur-
ban features on urban comfort, disclosing the non-linear interactions between fea-
tures. This study will bifurcate into two aspects: 1) capturing the spatial and tem-
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poral phenomena of urban comfort and explaining the driving forces with spatio-
temporal variations; and 2) proposing a use case of urban digital twins to substan-
tiate their usability of advancing socio-economic studies. This work is among the
first to 1) propose a multidimensional framework that incorporates not only socio-
economic indicators but also human experience and environmental parameters;
2) leverage crowdsourced and publicly available data (e.g. street view images) to
enhance information richness and facilitate future wide adoption; and 3) integrate
3D data to represent the vertical dimension of built environments, paving the way
for the adoption of urban digital twins in the socio-economic domain. Further, our
research tends to initiate the decision-making process and foster better planning
and design in the long term (Ferré-Bigorra et al., 2022), for example, by serv-
ing as a tool to provide recommendations and solutions for neighbourhoods with
inadequate urban comfort through the simulation of various urban strategies.

Figure 1: A general concept of urban comfort, encapsulating 3D urban morphology, socio-
economic indicators, human perception and environmental factors.

2. Background and related work

Three tendencies are summarised from the literature review for urban comfort
research. First, the present research landscape exploits how socio-economic in-
dicators influence urban life quality, highlighting their importance in developing
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related indexes (Tapsuwan et al., 2018; Musa et al., 2018; Allirani et al., 2024,?;
Mouratidis, 2021). For example, Zhan et al. (2018) conducted a comprehensive
survey in China to assess satisfaction with urban liveability. The findings suggest
that the convenience of public facilities (e.g. healthcare, education and recreation)
and socio-cultural environment (e.g. social inclusion and sense of belonging) are
significant contributors to urban life quality. The accessibility of transport, such
as the provision of active transport and walkability, is another critical indicator in
the life quality assessment (Long et al., 2024; Higgs et al., 2019). While socio-
economic conditions have an impact on local life, urbanites are continuously ex-
posed to a multi-sensory environment that encompasses factors such as noise,
wind, heat, humidity, air pollutants, and various interactions with streetscape (e.g.
buildings, vegetation, and urban furniture). Further, considering the role of spatial
patterns and building form in the cities (Oliveira, 2016; Biljecki and Chow, 2022),
such urban morphology not only features urban functions and accommodates so-
cial activities but also contributes to the visual appearance of cities, associated
with visual quality (Elzeni et al., 2022; Chen et al., 2021; Ito et al., 2024). Such
determinants stemming from the urban environment as a whole influence life qual-
ity, shaping a sense of place and consequently impacting residential mobility and
neighbourhood developments, such as renewal or gentrification (Brown, 2020;
Lee and Perkins, 2023; Emami and Sadeghlou, 2021). Therefore, in this work, we
aim to develop a multidimensional human-centric framework that will be among
the first to encapsulate urban comfort.

Second, the performance of urban liveability indicators is usually discussed to
interpret the results of liveability index. A sensitivity analysis is commonly used
in the literature to explain the contribution structure of the proposed liveability
framework (Cao et al., 2021; Xiao et al., 2022; Benita et al., 2021). However,
sensitivity analysis implies a linear relationship between indicators and outcomes,
which may oversimplify the complexity of cities and can not capture the nonlinear
interactions between urban indicators. Further, sensitivity analysis has limitations
in explaining the dynamics of life quality, for example, missing the combined
effects of multiple interacting urban features (e.g. street design and the sense of
safety), making such a method less flexible in dynamic urban contexts. Thus,
it remains ambiguous how selected urban features promote or downgrade urban
comfort (Martino et al., 2021; Wang and Miao, 2022). In this context, we take
advantage of AI technologies — explainable AI (XAI), in urban analytics (Liu
et al., 2024). XAI offers a promising way to interpret the integrated and dynamic
impact of urban features on urban comfort, which can be considered as an addition
to justifying the inclusion of relevant indicators in many cases. This advancement
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not only provides explanations but also implies potential solutions and suggestions
for enhancing urban comfort. For instance, when urban comfort is recognised
as the outcome of urban planning and design (Xiao et al., 2022; Alijani et al.,
2020), the theoretical impact of planning a neighbourhood with more street trees
is effective in making people feel comfortable, encouraging outdoor activities, and
subsequently supporting urban health and enhancing local vitality as well (Lowe
et al., 2020, 2022).

Third, prior studies on urban comfort often use simple data sources (e.g. tab-
ular data) with limited spatial information (Higgs et al., 2019; Long et al., 2024).
However, the dynamic nature of urban comfort makes a 2D analysis fall short
in altogether representing the surroundings, particularly aspects such as build-
ing scale, visual quality, and vegetation density (Lang et al., 2020; Bruyns et al.,
2020; Raman, 2010). The inherent limitations may introduce biases, propagat-
ing challenges of uncovering the interplay between people and the environments.
Inspired by recent innovations, we apply human-centric urban digital twins in
this work, advancing the current analysis by representing urban environments in
3D and simulating scenarios related to urban comfort variations. The concept of
human-centric urban digital twins, representing physical entities, people, systems,
and real-world interactions in near real-time, has been increasingly adopted in 3D
GIS and urban studies, offering great potential to solve the rising number of ur-
ban issues and challenges (Dembski et al., 2020; Lei et al., 2023c). Benefiting
from the characteristics of urban digital twins, it will aid decision-making and
support urban management for diverse stakeholders. Urban digital twins are thus
considered an innovative technology that can capture the dynamics of urban com-
fort, as well as simulate a variety of scenarios to strategically enhance local urban
comfort.

3. Methodology

We summarise our methodology in Figure 2 and describe details in the sub-
sections.
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Figure 2: The workflow including four main step. First, the urban comfort framework incorporates
four dimensions with 44 urban features: (1) 3D urban morphology, (2) socio-economic features,
(3) human perception, and (4) environmental factors. Second, the Mazziota-Pareto Index (MPI) is
adopted to measure the urban comfort index. Third, a graph-based approach is designed to exploit
spatial relationships between neighbourhoods and urban features. Lastly, explainable AI (XAI) is
leveraged to interpret the impact of each urban feature.

3.1. Designing a multidimensional framework to measure urban comfort
Evaluating urban comfort has gathered continuous interest in academia and

practice; however, a consensus has yet to be generated regarding its definition and
conceptualisation (Benita et al., 2021; Liang et al., 2020; Wang and Miao, 2022).
The inclusion of multidimensional indicators indicates a tendency to understand
urban comfort from a comprehensive and empirical aspect. Other than focusing
on how economic developments impact local life, the current approaches shift to
taking account of sociology-related metrics, e.g. urban activities and availability
to services and amenities (Zhan et al., 2018; Cao et al., 2021). Nevertheless, such
research predominantly investigates how objective urban features impact urban
comfort in the city, failing to consider the role of local residents, in particular the
perception of their neighbourhoods. Our research develops an integrated approach
incorporating 3D urban forms and environmental factors. It provides a dynamic
and holistic representation of urban surroundings, going beyond the prominent
metrics commonly considered in the literature. Meanwhile, we include human-
generated perception, offering a subjective perspective on urban environments in
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terms of visual quality.
We examine research papers related to life quality measurement, screen in-

struments developed by governments and initiatives that align with our research
motivations, and finally decide on four dimensions in our framework: (1) 3D
urban morphology, (2) socio-economic features, (3) human perception and (4)
environmental factors. Such a conceptual framework aims to integrate objective
and subjective features related to urban environments, encapsulating urban life of
residents and helping stakeholders (e.g. policymakers and city planners) better un-
derstand urban comfort from a diversity of perspectives. We further explain each
dimension and its components in detail, demonstrating how this multidimensional
framework can comprehensively represent urban comfort.

First, 3D urban morphology encompasses the shapes of buildings and archi-
tectural patterns, characterising urban form in more detail (Cai et al., 2022). 3D
city models and urban digital twins are increasingly adopted as virtual representa-
tions of urban environments, in particular involving a vertical dimension, aiming
to reproduce holistic features from the real world (Biljecki et al., 2015; Schrot-
ter and Hürzeler, 2020; Hämäläinen, 2021; Caprari et al., 2022; Dembski et al.,
2020). Given the role of urban buildings in the city, we adopt a set of 3D building
metrics developed by Labetski et al. (2023) to capture building morphology. Ad-
ditionally, we consider 2D building attributes as a supplementary source, such as
geographic locations, building age, and building style, to outline basic informa-
tion about urban buildings. Further, we use the portion of urban objects segmented
from street view imagery (SVI) to complete and enhance the representation of ur-
ban environments with visual elements of the streetscapes, for example, buildings,
roads, sidewalks, and street furniture. It is also widely discussed in the research
landscape that the proportions of streetscapes significantly affect human comfort
and the success of placemaking (Harvey et al., 2017; Su et al., 2023).

Second, following prevailing discussions, we incorporate a socio-economic
dimension to reveal the quality of life and well-being of urban residents. This
dimension comprises a range of factors that impact the everyday life of residents,
including the availability and access to services and facilities (Long et al., 2024),
opportunities for work and leisure (Ruth and Franklin, 2014), and the affordability
of housing (Badland and Pearce, 2019; Reid et al., 2024). For example, we include
mixed urban functions as an indicator to understand local activities, such as the
percentages of working, living, and recreation, implying the vibrancy related to
lifestyle (Tu et al., 2017). In response to the new tradition of compact cities in
urban development, many cities have implemented the concept of mixed-use to
accommodate diverse needs, such as job prospects, shopping, and public services
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around the living area (Raman, 2010). It is believed to be a critical feature im-
plying not only life convenience but also an enhancement of the living experience
of local residents. Along this line, we include the availability of multiple ameni-
ties, demonstrating access and proximity to points of interest (POIs), e.g. schools,
parks, and grocery stores, as well as transport options such as train stations and
bus stops. It can suggest the level of well-planned neighbourhoods and implies a
relationship with social equity and cohesion, where greater access to urban facili-
ties contributes to a higher quality of life and more perceived comfort (Bartik and
Smith, 1987; Frey, 2017; Xiao et al., 2017). Further, we consider housing prices as
a feature reflecting economic development and affordability, and population den-
sity to denote a rough profile of demographics. The indicator population density
is a multifaceted indicator associated with the provision of services and ameni-
ties, as well as the balance of neighbourhood development, illustrating both the
benefits and challenges of high population growth (Clark et al., 2002; Gottlieb,
1994).

Third, human perception is an innovative dimension of our framework, adding
valuable insights into how people perceive their living environment. We con-
sider two types of human sensing information: the perception of architectural
constructs and the perception of streetscapes, advanced through the use of SVI
and computer vision. Architectural constructs, including building layout and de-
sign, are essential elements in defining a city’s visual aesthetics (Imamoglu, 2000;
Devlin and Nasar, 1989). The perception of urban buildings is evaluated from
six aspects: complexity, originality, order, pleasantness, excitement, and style, on
a scale from 0 to 10. The evaluation is adopted from Liang et al. (2024), whose
dataset is trained from participants’ responses. Streetscape is designed and shaped
by the horizontal and vertical elements in the urban environments, influencing
comfort for human users (Harvey et al., 2017). It is widely used as an instrument
to evaluate place representations from a human perspective, such as how safe peo-
ple feel in a given area. In this work, streetscape perception is based on Place
Pulse 2.0 (Dubey et al., 2016), a crowdsourced dataset describing streets from 56
cities with six perceptual attributes: safe, lively, boring, wealthy, depressing, and
beautiful (Salesses et al., 2013; Dubey et al., 2016; Zhang et al., 2018).

Fourth, environmental factors contributes to comfort from a biological and
meteorological perspective (Williams, 1991; Chen et al., 2020; Fujiwara et al.,
2024). The elements of microclimate are outcomes of planning and policymak-
ing, indicating a number of implications for human health that cannot be over-
looked (Alijani et al., 2020; Shi et al., 2022). Among the most discussed topics in
urban microclimate, features such as thermal conditions and greenery are well ac-
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knowledged as determinants influencing human activities and behaviour (Armson
et al., 2012; Park et al., 2021; Yang et al., 2023; Antoniou et al., 2019). How-
ever, such a micro-environment aspect remains a lack of detailed investigation
when discussing urban comfort and the quality of urban life. Inspired by the in-
clusion of air quality and noise in measuring neighbourhood satisfaction (Higgs
et al., 2019; Silva and Mendes, 2012), we consider the impact of environmental
factors for building the urban comfort measurement, aiming to include a variety
of micro-environment features. For example, temperature, rainfall, noise, and
air quality are included in this dimension. Elaborating on these environmental
characteristics, our framework tends to be a holistic and dynamic instrument for
understanding urban comfort from multifaceted perspectives and uncovering the
interactions between various indicators and comfort.

3.2. Measuring and evaluating urban comfort
A variety of indicators outlined in Section 3.1 contribute to the urban comfort

index, with features having either a positive or negative impact on urban comfort.
For example, higher levels of noise, air pollutants, and unfavourable human per-
ceptions of the surroundings are generally less desirable. Reviewing the methods
used in socio-economic and policymaking domains, the Mazziotta-Pareto index
(MPI) is widely accepted as a composite instrument (Mazziotta and Pareto, 2018;
Scaccabarozzi et al., 2024; Mundetia et al., 2018; Higgs et al., 2019).

MPI+/−i = MZi ± S Zi × cvZi

where MZi is the mean of the standardised values for unit i, S Zi is the stan-
dard deviation of the standardised values for unit i, and cvZi is the coefficient of
variation. It enables the aggregation of multiple indicators at spatial units and
summarises their impact into a single index (Mazziotta and Pareto, 2016). Com-
pared to other measurements, a key aspect of the MPI method is the penalisation
of imbalances among positive and negative indicators, using a range of standard
deviations to match the polarity of indicator values.

zi j = 100 ±
(

xi j − Mx j

S x j

)
× 10

where xi j is the value of the j-th indicator for the i-th unit, Mx j is the mean of
the j-th indicator across all units, and S x j is the standard deviation of the j-th in-
dicator. Data-wise, the MPI method reduces the dimensionality of the data while
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preserving essential information, helping enhance efficiency and mitigate the im-
pact of outliers. In our research, we generate urban comfort scores by applying the
MPI method to the included indicators. Following the formula structure, the 100
is a constant used as the baseline score for standardising the values (Mazziotta and
Pareto, 2016), making the index more interpretable and comparable. Therefore,
we define in this work, that urban areas scoring above 100 are considered more
comfortable for living and activities, while areas scoring below 100 are regarded
as having less urban comfort.

3.3. Building a graph-based approach to explaining urban comfort
GeoAI, or geospatial artificial intelligence is an interdisciplinary field repre-

senting the intersection of geography and artificial intelligence (Gao, 2021), em-
powering the research to investigate geospatial phenomena and enhance the un-
derstanding of human habitation (Gao, 2021; Liu and Biljecki, 2022; Mai et al.,
2022; Casali et al., 2022). The emergence of graph neural networks (GNNs) in
GeoAI models introduce a new dimension by integrating geographic theories di-
rectly into the models, thereby making them spatially explicit (De Sabbata et al.,
2023; Liu and Song, 2024). Benefiting from the development of XAI techniques,
graph-based approaches can be specifically tailored for urban and geospatial ap-
plications, unveiling the mystery and enhancing the transparency and accountabil-
ity of AI-driven urban research (Liu et al., 2024; Xu et al., 2019).

Our multidimensional framework with a variety of urban features highlights
the value of spatially explicit information for exploring urban comfort. Thus, we
adopt GNNs to model the spatial patterns of urban areas (Liu et al., 2024; Jin et al.,
2023; Silva and Silver, 2024), which is visualised in Figure 3. While numerous
research papers examine the impact of urban features on life quality and urban
comfort, spatial characteristics are not fully investigated for this purpose. The
motivations for employing a graph-based neural network approach are twofold.
First, a GNN model capture intricate spatial relationships between neighbour-
hoods, leveraging the graph structure of urban features (Lei et al., 2024b), and
then predict urban comfort index with MPI scores as targets. The high complex-
ity and dimensionality of such a model, involving multiple layers and various
parameters, render traditional statistical inference methods less effective in this
case. When urban data availability is a challenge in some cities, this approach
can serve as an alternative for measuring comfort and developing a generic rep-
resentation of local areas. Second, advanced by XAI techniques (Hoffman et al.,
2018), a graph-based model can better explain the implicit contributions of vari-
ous indicators to urban comfort. Similar to other deep learning algorithms, GNNs
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are highly non-linear and involve numerous parameters learned from data without
assuming any specific underlying statistical distribution. Hence, different from
classical statistical models, GNNs learn complex patterns directly from the input
data itself. Thus, integrating with XAI techniques, the model can facilitate the in-
terpretability regarding feature impact. Such a graph-based model will outperform
the conventional methods (e.g. sensitivity analysis), which fall short of capturing
the complexity and dynamics of urban interactions.

Figure 3: Spatial relationships between neighbourhoods in our graph-based model. Basemap: (c)
OpenStreetMap contributors, (c) CARTO.

The GraphSAGE algorithm is adapted for constructing spatial networks among
urban areas, benefiting from inductive learning and information aggregation (Hamil-
ton et al., 2017). It is highly customisable, allowing for dynamic spatial represen-
tation and hyperparameter tuning (e.g. graph size and depth). XAI is a cutting
edge technique popular for explaining the predictions of machine learning mod-
els. GraphLIME (Huang et al., 2022), an adaptation of the LIME method:

ξ(v)← arg min
g∈G

g( f ,Xn),

where f denotes the GNN model, v is an interpretable explanation model and
node v is explained, addresses the challenges posed by graph-based models, for
example, the difficulty in interpreting aggregated features from multiple neigh-
bourhoods. Thus, we combine the GraphSAGE algorithm and GraphLIME to
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build an interpretable model for urban comfort index, aligning with our research
motivations.

3.4. Conducting experiments
To implement this conceptualised framework and assert its applicability, we

conducted our experiments in Amsterdam, carefully considering urban challenges
and data availability in the local context. Amsterdam has launched an official
project to measure urban liveability every two years. However, the current in-
dicators may fall short of reflecting a holistic evaluation of living conditions, in
particular in the context of climate change. Further, the multidimensional frame-
work is developed for examining urban comfort in a holistic manner, and thus the
completeness of urban data is a crucial determinant when we choose the study
area. Given the open data initiatives (Spaans et al., 2013; Zuiderwijk and Janssen,
2014), Amsterdam extends collaborative connections between research institu-
tions and government departments, providing a wide range of publicly accessible
local data. Some research efforts have been made, taking advantage of the avail-
ability of data in the Netherlands, e.g. a country-wide walkability index (Lam
et al., 2022), comprehensive 3D city models (Peters et al., 2022), and property
value analysis (Huisman and Mulder, 2022). While the framework can be cus-
tomised to align with local environments, the data richness in the Netherlands
ensures a thorough investigation of the usability of our framework, covering as
many urban features as possible, which affirms our motivation of considering the
Netherlands as the focus of the implementation. We use 2022 as the study pe-
riod in this work, aligning with the completion of government data release (e.g.
housing value) and other appropriate spatial data (e.g. neighbourhood divisions).

A visual example of some used features is is provided in a neighbourhood in
Amsterdam, as illustrated in Figure 4. Data sources used in the experiment are
mainly from open government data and publicly accessible data. In detail, we
retrieve most data from the government website — Maps Amsterdam3, in par-
ticular for building information, socio-economic indicators and part of environ-
mental factors (e.g. noise and air quality). Other than government information,
we also leverage data from crowdsourced platform (i.e. OpenStreetMap), freely
accessible data (i.e. Google Street View Images, PlacePulse 2.0, building percep-
tion dataset from Liang et al. (2024), 3D building metrics dataset from Labetski
et al. (2023)). Further, we apply interpolation techniques and spatial aggregation

3https://maps.amsterdam.nl/
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to process and harmonise data at the neighbourhood level. For finer-scale data
(e.g. building information and streetscape data), we aggregate values directly to
neighbourhoods by computing mean or sum values, depending on the nature of
the dataset. For coarser-scale data (e.g. weather data and air quality), we interpo-
late data values before aggregation to ensure data consistency across spatial and
temporal scales (Paulhus and Kohler, 1952; Afrifa-Yamoah et al., 2020).

Implementing our framework in Amsterdam can serve as a supplementary in-
strument for better understanding urban issues, filling information gaps, and sug-
gesting potential solutions for local stakeholders. Further, a successful adoption
can also inspire future customisation in other cities, where there is a need to com-
prehensively interpret urban comfort, taking into account its spatial and temporal
dynamics.

Figure 4: An example of data integration for urban comfort measurement in Amsterdam. It high-
lights the spatial distribution of selected features included in our multidimensional framework,
such as 3D building index from 3D urban morphology, visual perception of buildings from human
perception, property value as one of socio-economic indicators, urban trees from environmental
factors.

The experiment in Amsterdam contains a multidimensional framework with
44 urban features, MPI measurements, graph-based model construction, and ex-
planation. Regarding the graph-based model design, each neighbourhood is con-
sidered a node, with various indicators serving as node features. To exploit spa-
tial relationships, we connect each neighbourhood with its 10 nearest neighbours,
where the connection is an edge in the model, and the distance is used as the
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edge weight. Considering the issue of geographical isolation, we exclude neigh-
bourhoods that cannot be spatially connected with their neighbours, such as those
segmented by administrative boundaries. Root mean squared error (RMSE), mean
absolute error (MAE), and R-squared value (R2) are employed as evaluation met-
rics to examine model performance.

4. Results

We generate a city-wide urban comfort index in Amsterdam, and explain how
both objective and subjective features contribute to the spatio-temporal dynam-
ics of urban comfort. We summarise the feature importance by leveraging the
graph-based model and explainable AI, which exploit the spatial connectivity of
neighbourhoods and outperform standard machine learning algorithms across var-
ious metrics, e.g. RMSE (2.04), MAE (1.03), and R-squared value (93.57%). For
example, the density of urban trees and the availability of points of interest (POIs)
consistently have a positive impact on neighbourhood urban comfort, whereas
population density and housing value also positively affect urban comfort in some
cases. Notably, certain aspects of buildings along the street negatively contribute
to urban comfort, for example, the perceived building style.

4.1. Urban comfort demonstrates spatial variation and temporal dynamics
Figure 5 illustrates the spatial distribution of the urban comfort index for 2022

and its quarterly changes at the neighbourhood scale in Amsterdam. We apply
seven classes to quantify the divergence of urban comfort across the city, with
higher scores indicating better urban comfort and a score of 100 set as the base-
line. We determine seven classes to make a balance between granularity and inter-
pretability, allowing us to capture nuanced variations in urban comfort while en-
suring that the results remain meaningful. The multidimensional index indicates
that lower urban comfort is generally found within inner Amsterdam compared
to areas in the middle and some peripheral regions. While these findings reflect
discrepancies with the acknowledged distribution of infrastructure (e.g. the city
centre commonly benefits from greater access to services and amenities), sub-
jective perception of facilitate provisions may play an important role in shaping
human-centric urban comfort. Considering urban challenges associated with the
rapid growth of cities, policy initiatives often focus on addressing inequities in so-
cial provisions in suburban areas, which, to a certain extent, impact urban comfort.
However, our findings suggest that such deductions may not comprehensively rep-
resent local life. Urban life results from a multidimensional interplay of various

16



uncertainties and dynamics (e.g. climate conditions, personal experiences, and
the quality of social infrastructure). We explore this case in detail in Section 4.2,
evaluating our findings within the local context.

Diving into the dynamics of urban comfort, we examine how it varies over the
seasons in 2022, considering differences in environmental factors (e.g. tempera-
ture, rainfall, and air quality). The right column in Figure 5 illustrates the temporal
variation of urban comfort, showing changes across each quarter. We observe an
increase in urban comfort index in the city centre and nearby suburbs from the
first quarter (Q1) to the second quarter (Q2). This trend expands to more periph-
eral regions in Amsterdam from Q2 to the third quarter (Q3). In detail, around
50% of neighbourhoods experience positive changes from Q1 to Q2 and from Q2
to Q3. However, there is a slight decrease from Q3 to Q4, with 46.21% of neigh-
bourhoods showing improved urban comfort. This seasonal variation highlights
the influence of environmental factors on urban comfort, as factors like tempera-
ture, rainfall, and air quality fluctuate throughout the year. The findings underline
the importance of considering temporal dynamics when evaluating urban comfort,
as seasonal variations can significantly impact the overall quality of life. In Sec-
tion 4.4, we dive deeper into these observations, providing a detailed analysis of
how different seasons and their associated features affect urban comfort in various
neighbourhoods across Amsterdam.
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Figure 5: Urban comfort index in Amsterdam. Its distribution highlights spatial and temporal
variations across neighbourhoods in Amsterdam. The left map shows the urban comfort index for
each neighbourhood, with 100 as the baseline; higher values indicate greater comfort. The right
column illustrates the changes in the urban comfort index across quarters.

4.2. Evaluating urban comfort index with the official instrument
Exploring the results from the spatial distribution, we compare our findings

with the ‘Leefbaarometer’ instrument published by the Netherlands government.
We choose two illustrative regions as examples: Amsterdam-Centrum and Amsterdam-
Gein. The former, the city centre, demonstrates deficient urban comfort in our
measurement but is classified with excellent liveability in the Leefbaarometer. The
latter, an outer suburban region, shows satisfactory urban comfort in our index but
is indicated as a less liveable area by the official measurement. Given the distinct
differences between our urban comfort index and the official index, we leverage
social media data to investigate these scenarios and evaluate the reliability of our
findings. The results are summarised in Figure 6. This comparative analysis helps
to highlight the unique aspects captured by our multidimensional framework and
implies the future enhancement in conventional measurements of urban life qual-
ity.
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Figure 6: The evaluation of urban comfort index, comparing it with official instruments and sup-
plementary data from Google reviews. Word clouds generated from Google reviews demonstrate
positive and negative comments for two highlighted regions. The percentages of positive and neg-
ative comments reveal human perspectives, substantiating the potential of the urban comfort index
to fill an information gap through a mix of qualitative and quantitative methods. Source of the
imagery: Leefbaarometer 2022 and Google reviews.

The adoption of social media data, also known as volunteered geographic in-
formation and user generated content in many cases, has proliferated in the re-
search landscape (Martı́ et al., 2019; Yan et al., 2020). The publicly available
and crowdsourced nature of such data enhances various studies by providing in-
sights into urban phenomena and events on a human scale (Chen et al., 2018; Liu
et al., 2017). In this regard, we aim to seek local perspectives on urban life across
neighbourhoods in Amsterdam. Therefore, Google Places, one of the most promi-
nent social platforms with a wealth of user reviews, has become an expansive data
source for researchers to obtain observational information and comments related
to how people experience and understand urban places (Song et al., 2021; Huai
and Van de Voorde, 2022).

To retain as many comments from local residents as possible, we primarily
focus on urban amenities that support daily life and provide social services. We
consider 15 types of places, such as urban parks, healthcare, and schools. Fur-
ther, we only include comments written in Dutch to filter out visitors to a certain
extent, and accurately profile local residents in these two regions. Applying the
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defined search strategy, we retrieve comments using the Places API4, building our
dataset for further analysis. As a result, we obtained 20,740 reviews in the central
area, with 15.02% negative comments, and 659 reviews in Gein, 14.87% of which
were negative. A sentiment analysis was conducted as supplementary information
(detailed in Figure 6). Many negative comments in the centre complain about un-
pleasant streets, crowdedness, and expensive prices, using words such as ‘busy’,
‘expensive’, and ‘annoying’. In Gein, concerns related to availability and environ-
mental maintenance were observed, with terms like ‘dirty’, ‘strange’, and ‘waste’.
While the Gein neighbourhood is less popular than the city centre, the percentage
of negative comments on social infrastructure is lower than in the central region.
This contemporary evaluation, using a mix of qualitative and quantitative meth-
ods, enhances our understanding that the urban comfort index has the potential
to uncover more details that the official measurement may overlook. Further, it
should be highlighted that our index is not intended to contrast the government
project but to provide insights into a comprehensive representation of urban life
in the city. Indeed, urban comfort results from city planning and strategic imple-
mentation, and thus, the inclusion of multidimensional features can shed light on
the inherent differences across space and time.

4.3. Graph-based approach performs well in predicting urban comfort
We train the graph model across neighbourhoods over time in Amsterdam

and achieve good performance in generating urban comfort dynamics, bench-
marked against the baseline random forest model, a widely accepted method
in the research landscape. To gauge the characteristics of the graph-based ap-
proach compared with the random forest algorithm, the same features are applied
in both models, with specific parameters in random forest (i.e. max depth=100,
random state=0). Table 1 summarises the evaluation. When predicting yearly ur-
ban comfort on a neighbourhood scale in 2022, the graph-based model delivers an
RMSE of 2.04 and an MAE of 1.03, with an average R-squared value of 93.57%
across four quarters. Whereas, the random forest model achieves an RMSE of 4.57
and an MAE of 1.56, with an average R-squared value of 85.59%. The predic-
tions in Q3 achieve the best performance, with an RMSE of 1.31 and an MAE of
0.88, and an R-squared value of 95.85%, indicating a better fit of the model to the
variables. We then evaluate the model performance in more detail, calculating the

4https://developers.google.com/maps/documentation/places/web-service/

overview
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percentage of predicted urban comfort that is overestimated and underestimated
(Table 1). Overall, the graph-based approach tends to underrate urban comfort
scores. Specifically, 68.70% of neighbourhoods are predicted with lower urban
comfort in Q3, while 42.61% of neighbourhoods are overestimated in Q4.

Despite this tendency, the graph-based model outperforms the state-of-the-art
methods. We believe that the designed method is strongly predictive of urban
comfort, which can be further generalised in other cities that face challenges of
available urban data. Meanwhile, such an evaluation demonstrates robustness un-
der spatial and temporal changes by modelling the spatial interactions between
neighbourhoods in the city. It confirms a solid foundation for the subsequent
adoption of XAI to interpret the impact of each feature on urban comfort dynam-
ics.
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Table 1: Comparative performance evaluation of random forest and GraphSAGE models. Metrics
include MAE, RMSE, R-squared values for estimating urban comfort index; the percentages of
overestimated and underestimated neighbourhoods in the graph-based approach.

MAE RMSE R-squared (%)

2022

Random forest

1.56 4.57 85.59

GraphSAGE

1.03 2.04 93.58

Overestimate (%) Underestimate (%)

35.65 64.35

Quarter 1

Random forest

1.55 4.50 85.84

GraphSAGE

0.99 1.56 95.08

Overestimate (%) Underestimate (%)

40.87 59.13

Quarter 2

Random forest

1.70 4.50 84.62

GraphSAGE

0.88 1.46 95.53

Overestimate (%) Underestimate (%)

35.65 64.35

Quarter 3

Random forest

1.53 4.27 86.45

GraphSAGE

0.88 1.31 95.85

Overestimate (%) Underestimate (%)

31.30 68.70

Quarter 4

Random forest

1.80 5.57 82.93

GraphSAGE

1.15 2.44 92.54

Overestimate (%) Underestimate (%)

42.61 57.39
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4.4. Explaining the impact of features on urban comfort
We divide our explanations of feature importance into two scenarios: neigh-

bourhoods with high urban comfort (above the threshold of 100) and neighbour-
hoods with low urban comfort (below the threshold of 100). The yearly results
are used as an instance, complemented by seasonal details. Figure 7 concludes
the explanations from the graph-based model.

Figure 7: Explanations of feature importance from explainable AI (XAI), grouped by neighbour-
hoods in urban comfort index above and below the baseline. The bar charts highlight the the
contribution of each dimension, and the two tables lists the top three positive and negative features
for each quarter.

First, it is notable that socio-economic indicators and environmental factors
have significant impact on urban comfort. In detail, in neighbourhoods with high
urban comfort, greenery (1.75) from environmental aspect and points of interest
(1.33) from socio-economic dimension have a notably positive impact. Addition-
ally, the provision of urban facilities (e.g. bus stops) and local services (e.g. health-
care) underscores the significance of social support in building urban comfort,
which are well recognised features in the research landscape. Urban functions
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related to living and working also play a role in enhancing local life quality, in-
cluding the availability of residential spaces and proximity to workplaces (i.e. lo-
cal economy). Such finding implies a growing need for mixed-use developments,
which can enhance a balanced urban environment where living and working are
well integrated. Further, from the perspective of urban buildings, physical charac-
teristics such as housing value, building age, and morphology contribute positively
to urban comfort. In a human scale, neighbourhoods with buildings perceived as
more boring and ordered tend to have lower urban comfort. Similarly, regarding
human perception of streetscapes, livelier and wealthier streets encourage more
comfort compared to tedious streetscapes. In this sense, architectural design and
placemaking, focusing on visual quality, influence urban comfort.

Second, we find corresponding patterns in neighbourhoods with reduced ur-
ban comfort. Regarding the dimension of socio-economic indicators, the avail-
ability and accessibility of urban social support(e.g. facilities and diverse urban
functions) are important for generating higher life quality. However, population
density (-1.17) is a critical indicator that negatively impacts urban comfort. It
suggests that overcrowdedness may lead to an uncomfortable living experience,
propagating social issues such as a reduced sense of safety (Wen et al., 2020;
Tandogan and Ilhan, 2016). Additionally, a high portion of building (-0.38) and
vegetation (-0.23) in streetscapes induces undesirable comfort for residents. Such
phenomenon can be interpreted from a sentimental perspective. For example,
densely developed areas (e.g. with more compact and tall buildings) may make
people feel stressed and unpleasant, and an excessive portion of greenery on the
streets may trigger concerns about safety (Kuo et al., 1998; Mouratidis, 2019).

Moving from yearly to quarterly results, an alignment of positive feature im-
portance is observed across temporal changes (summarised in the right tables in
Figure 7). Indeed, the provisions of available and sufficient urban amenities and
services can promote urban comfort at the neighbourhood scale. However, while
crowdedness remains a negative impact on urban comfort in Q2 and Q3, human
perception of urban buildings contributes more to decreasing urban comfort in the
fourth quarter of 2022.

4.5. Use case: simulating strategies to enhance urban comfort
To investigate the usability of our urban comfort index and feature importance,

we conduct a use case (Figure 8), simulating urban scenarios and proposing strate-
gies to enhance local comfort. Taking the neighbourhood Frederik Hendrikbuurt-
Zuidwest as an example, its comfort index is 99.32 in 2022, slightly below the
baseline of 100.
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Figure 8: Scenario simulations for improving urban comfort in the neighbourhood of Frederik
Hendrikbuurt-Zuidwest. Source of the imagery: Google Street View, ninja (Vitalis et al., 2020).

The graph-based approach combined with XAI explains the impact of urban
features in detail. In this neighbourhood, human perception makes significant con-
tribution to local urban comfort. For example, when street design makes people
feel wealthier (3.06) and safer (2.08), it introduces positive impact on urban com-
fort. In the environmental dimension, air quality (reversed as a negative indicator)
suggests a significant influence on urban comfort with a value of 1.47, which is
indeed overlooked in the official instrument. Further, the explanations of feature
importance demonstrate that 3D urban morphology, as an important part of urban
environment, plays a role in generating urban comfort. For instance, the value of
3D fractality (-2.00) indicates that a number of similar architectural designs may
decrease comfort. In this regard, such interpretations substantiate our motivation
for including urban morphology and 3D building index as one critical dimension
in the urban comfort framework.

Considering the practicability of neighbourhood improvement, we propose
three urban scenarios advanced by 3D city models and urban digital twins: ac-
tivating street design, improving urban air quality, and increasing available urban
facilities. In Scenario 1, we increase the value of street safety while keeping other
feature values the same, achieving a score of 101.30 for neighbourhood comfort.
This scenario incorporates urban planning methods to visualise various strategies,
such as a regenerative design of building facades to enhance visual quality. Addi-
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tional considerations include well-lit sidewalks, visible cycling paths, and outdoor
seating areas, creating a safe and lively atmosphere in the neighbourhood. For Sce-
nario 2, we adopt several strategies to improve urban air quality. Given the nega-
tive impact of nitrogen dioxide (NO2) on urban comfort, we aim to decrease the
concentration of NO2 to 10 µg/m3 in this neighbourhood, an acknowledged level
with less impact on human health (Zallaghi et al., 2014; Rao et al., 2014). This
adjustment will increase the urban comfort index to 100.35. Design principles
include encouraging the development of vertical gardens in residential buildings,
introducing sustainable transportation modes, and setting up air quality monitor-
ing stations, contributing to a sustainable and healthy neighbourhood. Scenario 3
focuses on strengthening the accessibility and availability of urban facilities, es-
pecially public transport. By elaborating on design strategies such as setting up
publicly accessible bus stops and including diverse urban furniture (e.g. drinking
fountains, seating areas, and bike racks), we increase the number of facilities to 20
in this neighbourhood. The improvement facilitates an increase in the local urban
comfort score to 100.52.

The proposed three scenarios enhance neighbourhood comfort with the help of
XAI. However, this approach is purely quantitative and is limited to fully consider
the interaction between urban features and city complexity in the reality. For
example, adding more urban trees to the street may improve air quality to some
extent but may have an unknown impact on the sense of safety (e.g. discussed
in Section 4.4). Therefore, optimal consideration should be given when adopting
various strategies to enhance neighbourhood.

Further, a number of validations should be taken into account for accommodat-
ing local contexts (e.g. planning regulations and public demands), whereas these
scenario simulations provide quantitative insights on planning actions. In this
regard, we deem that incorporating qualitative information can complement the
findings from digital simulations, reviewing the feasibility in a holistic manner.
For example, we can compare the simulation results with empirical information,
such as similar strategic interventions in other neighbourhoods which share the
similar local contexts. Meanwhile, consultations with experts (e.g. strategic plan-
ners) can be involved as a means of evaluating the potential impact of proposed
scenarios, gathering insights from domain experts and practitioners. Prioritising
the voice from local residents, we also need to encourage public engagement in
the planning process. For example, interview and discussion sessions with resi-
dents of Frederik Hendrikbuurt-Zuidwest can be conducted in the future, under-
standing their vision of their neighbourhood, as well as validate the effectiveness
of proposed scenarios and strategies in the local environment. Hence, besides
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digital simulations of urban scenarios and strategies, an integration of qualitative
research, along with top-down and bottom-up approaches can be considered for
further applicability and validation, when implementing our framework in real-
world contexts.

Therefore, this use case remains of interest to future researchers and practi-
tioners, offering insights into potential solutions and recommendations for urban
design and planning. Further, compared to conventional tools, we highlight the
role of 3D city models and urban digital twins in representing urban settings, en-
abling a realistic and semantic perspective for analysis and simulations.

5. Discussion

5.1. Urban comfort framework fills the information gap
The quality of urban life has been widely studied to examine how liveable and

comfortable neighbourhoods and cities are, impacting urban health and wellbe-
ing. However, to date, this field is limited in providing a holistic representation
of humans and cities, as well as robust explanations of urban features. The term
‘urban comfort’ encapsulates a variety of urban features that impact the quality
of life, aiming to reflect the inherent dynamics. Compared to existing measure-
ments, our urban comfort framework stands out for its comprehensive inclusion of
both human perception and urban surroundings. Additionally, advanced by graph-
based neural networks and XAI, we are able to interpret the driving forces behind
urban comfort. Unlike commonly used methods for explanations, deep learning
models enable us to investigate how urban features are interwoven with urban
comfort, rather than merely analysing the linear relationships between urban fea-
tures. This approach is more appropriate for understanding the city as a complex
system consisting of interactions between humans and urban environments. Ap-
plying our instrument in Amsterdam, the urban comfort index illustrates spatial
and temporal variations. We compare the results with the Leefbaarometer project,
which is officially launched by the Netherlands and updated biannually, leading
to a discussion from two perspectives.

First, urban comfort index uncovers more detail that may be blurred in the
official measurement. The Leefbaarometer project has nine categories to classify
life quality, yet these categories can hardly demonstrate detailed differences. For
example, neighbourhoods located in the city centre are evaluated in the same cat-
egory with excellent life quality (Uitstekend). However, from a perspective of
spatial heterogeneity, each neighbourhood is uniquely characterised by its local
context. In this regard, the official instrument has limitations in distinguishing
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these inherent distinctions. As analysed in Section 4.1, our urban comfort in-
dex is unaligned with the official measurement in some areas, considering that
we include more diverse urban features in the designed framework. However, by
employing a mixed qualitative and quantitative analysis, we leverage social media
data to explore representations of local areas and discuss the differences. The find-
ings and details ensure the reliability of the urban comfort index. Therefore, we
believe this work can offer insights into revealing variations at the neighbourhood
scale and serve as a tool to address the information gap.

Second, integrating 3D building data with human perception plays a signifi-
cant role in measuring urban comfort. Current discussions on urban life quality
are hampered by limitations in quantifying diverse urban surroundings and the
lack of a human lens. The concept of human-centric urban digital twins, with
growing interest in analysing and solving urban issues (Ye et al., 2023; Lei et al.,
2023c), inspires us to adopt it in our urban comfort framework. It not only enables
a 3D representation of the city but also advances the subsequent use case to simu-
late different urban scenarios. Further, recent research on adding the perception of
urban buildings in 3D city models highlights the role of humans in understanding
urban morphology (Lei et al., 2024a). Following this line of research, we include
3D city models and human perception to represent urban environments with an
integration of subjective and objective aspects, thus generating preliminary un-
derstandings of the interactions between 3D urban morphology, human percep-
tion, and urban comfort. The explanations from XAI further indicate a significant
contribution of 3D morphology to urban comfort, confirming our motivation for
including these indicators.

The assessment of urban quality of life differs from various aspects world-
wide (Mittal et al., 2020), considering datasets (e.g. national census, public statis-
tics or participatory information), indices (e.g. subjective or objective), techniques
(e.g. statistical or geospatial analysis), and purposes (e.g. top-down approach for
urban governance or bottom-up for research. In this work, our urban comfort
index brings a plethora of innovative perspectives and potential use cases, con-
tributing the growing body of literature on urban life, wellbeing and sustainable
cities. Shedding light on the advancement of urban technology, such as graph
neural networks and urban digital twins, this work can serve as an invaluable in-
strument with credible evidence to understand the heterogeneity and complexity
of urban environments, as well as the dynamic interplay between urbanites and
their surroundings.
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5.2. Explainable AI advances the interpretations of urban features on urban com-
fort

Exploiting the spatial relationships between neighbourhoods, our graph-based
model represents such spatial connectivity, capturing urban features aggregated
in each neighbourhood. However, while the model is well constructed and evalu-
ated, it remains challenging to interpret the impact of each feature, considering the
black-box nature of this graph-based model. Meanwhile, the urban comfort index
is a composite measure derived from multiple dimensions, of which the high di-
mensionality of selected features further complicates the difficulty of interpreting
the contributions of individual features.

Employing LIME as our XAI technique, it enables us to gather explanations
for individual predictions, making it particularly useful for understanding model
behaviour in neighbourhoods of interest within the urban context. For example,
we can identify the most influential features in specific neighbourhoods (such as
Frederik Hendrikbuurt-Zuidwest as an example). Further, unlike classic means of
explanation in the existing assessment (e.g. sensitivity analysis), the advancement
of XAI moves forward to uncovering the non-linear interaction inherent to urban
complexity, which collectively impacts urban comfort. In this regard, the findings
from XAI can imply more comprehensive and in-depth insights to practitioners,
taking into account the intricate and interacting urban environments. For example,
adopting urban comfort index as an instrument, city planners can investigate key
drivers of urban comfort in a local neighbourhood, thereby designing and taking
potential interventions to improve the urban quality of life.

5.3. Limitations and future work
We discuss the limitations and future work from four perspectives. First, while

the four dimensions in the framework gather comprehensive information about ur-
ban environments, future studies can consider including more detailed indicators
to meet specific needs. In the case of Amsterdam, 44 urban features were selected
to capture characteristics related to urban comfort, taking into account the litera-
ture and local urban challenges. However, when generalising the framework and
method to other cities, local contexts should be considered. It means the urban
comfort index can be tailored in future customisations, integrating additional fea-
tures or updating the framework as needed. The second limitation addresses data
availability and quality. The implementation of urban comfort index in Amster-
dam aligns with the available data. Government data in the Netherlands stands out
compared to other regions, yet there remains a sparsity in specific data categories.
For example, not all buildings in Amsterdam can be retrieved with housing values,
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and the housing values only indicate a range of prices instead of specific values.
Further, while environmental factors (e.g. weather data) significantly contribute to
urban comfort, climate data is not easily accessible in this case (e.g. the limited
number of weather stations). Therefore, we use interpolation techniques, which
are commonly used in processing meteorological data, to enhance completeness
and consistency for analysis. Many studies on urban life quality rely on govern-
ment data; however, as previously mentioned, official data can be challenging in
terms of availability and quality, potentially leading to unreliable results. In this
regard, a highlight of our urban comfort index is the employment of crowdsourced
data, which has been widely used in multiple domains with acknowledged value,
such as human perception in this work. In future work, we intend to increase the
variety of datasets and collect opinions from local practitioners as well. Third,
the same way as in other domains (e.g. (Lam et al., 2022; Ye et al., 2022; Patias
et al., 2021; Lei et al., 2023b)), the selection of dimensions and features may be
considered subjective to some extent. Such an inclusion is based on our review
of related work, exploration of datasets, examination of use cases and literature,
and it strives to serve our research motivations. On the other hand, the proposed
framework is intended to serve as a generic approach to indexing urban com-
fort, thus, it may also satisfy further purposes for future uses. For example, it
enables giving more weight to a particular aspect that may be more important
than some others in a particular context. Depending on the specific goals, the
framework may be further extended with further dimensions. The urban com-
fort index with 44 features provides a holistic and robust instrument for different
stakeholders to evaluate local comfort. At the same time, it provides the flexibility
to further determine extra features based on particular use cases. Fourth, we have
only implemented our framework in one city — Amsterdam, which may propa-
gate uncertainties related to its scalability and transferability to other cities, given
spatial heterogeneity and varying urban settings. Differences in urban contexts
may impact the adoption of the urban comfort framework, in particular concern-
ing data availability and framework features. However, as discussed above, the
urban comfort framework is flexible and allows for customisation when tailored
to other contexts. Therefore, we can take into account diverse urban environments
and data accessibility, incorporating relevant features to better represent local life
quality. For example, Amsterdam is a typical European city with its own distinct
cultural and socio-economic characteristics. When adopting the framework in
cities that differ from European settings, the indicators of local importance should
be included (e.g. informal settlements in developing cities). Likewise, collaborat-
ing with local stakeholders and residents can further enhance the adaptability of
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our framework, reflecting urban life in a comprehensive manner. In this case, we
can explore and refine the framework in a variety of urban settings, facilitating
its robustness and scalability to serve as a more universal tool for evaluating and
improving urban comfort.

6. Conclusion

In this work, we introduce a generic concept — urban comfort — which in-
tegrates four dimensions to represent quality of life in urban environments: 3D
urban morphology, socio-economic features, human perception, and environmen-
tal factors. This holistic framework aims to measure dynamic urban comfort from
a human-centric perspective, advanced by the inclusion of 3D analysis and micro
environment.

Aligning with our research motivations, a graph-based approach is employed
to interpret how diverse urban features impact urban comfort. We conduct experi-
ments in Amsterdam, including 44 urban features for urban comfort measurement.
The results demonstrate spatial variations at the neighbourhood scale, as well as
quarterly changes in 2022. When observing differences compared to the official
instrument, we introduce a mixed qualitative and quantitative method to make
evaluations, using Google Places reviews as a crowdsourced dataset that helps us
sense additional information. The evaluation enhances our findings, showing that
urban comfort index has the potential to reveal detailed information across neigh-
bourhoods, while the official index falls short in classifying the quality of life in
more detail. Advanced by XAI, we gain a deeper understanding of feature im-
portance. The availability and accessibility of urban amenities and social services
(e.g. trees, facilities, and urban functions) positively contribute to urban comfort.
Conversely, less visual quality (e.g. boring building appearance) and overcrowd-
ing decrease local comfort.

Further, we conduct a use case to illustrate the usability of urban comfort index
and discuss its value in practice. Supported by 3D city models integrated with
human perception, we design three scenarios by adopting relevant strategies, each
of which enables an improvement in urban comfort. The proposed framework
and the innovation of our method provide insights into measuring urban comfort
from an inclusive perspective, facilitating urban planning and policymaking for
researchers and practitioners.
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Dembski, F., Wössner, U., Letzgus, M., Ruddat, M., and Yamu, C. (2020). Ur-
ban digital twins for smart cities and citizens: The case study of Herrenberg,
Germany. Sustainability, 12(6):2307.

Deng, J.-Y. and Wong, N. H. (2020). Impact of urban canyon geometries on
outdoor thermal comfort in central business districts. Sustainable Cities and
Society, 53:101966.

Devlin, K. and Nasar, J. L. (1989). The beauty and the beast: Some preliminary
comparisons of ‘high’versus ‘popular’residential architecture and public versus

34



architect judgments of same. Journal of environmental psychology, 9(4):333–
344.

Dubey, A., Naik, N., Parikh, D., Raskar, R., and Hidalgo, C. A. (2016). Deep
learning the city: Quantifying urban perception at a global scale. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part I 14, pages 196–212. Springer.

Elzeni, M. M., ELMokadem, A. A., and Badawy, N. M. (2022). Impact of urban
morphology on pedestrians: A review of urban approaches. Cities, 129:103840.

Emami, A. and Sadeghlou, S. (2021). Residential satisfaction: A narrative litera-
ture review towards identification of core determinants and indicators. Housing,
Theory and Society, 38(4):512–540.
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