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Abstract

Urban street environments are vital to supporting human activity in public spaces. The emergence of big data, such as street view
images (SVI) combined with multi-modal large language models (MLLM), is transforming how researchers and practitioners in-
vestigate, measure, and evaluate semantic and visual elements of urban environments. Considering the low threshold for creating
automated evaluative workflows using MLLM, it is crucial to explore both the risks and opportunities associated with these prob-
abilistic models. In particular, the extent to which the integration of expert knowledge can influence the performance of MLLM
in the evaluation of the quality of urban design has not been fully explored. This study set out an initial exploration of how integ-
rating more formal and structured representations of expert urban design knowledge (e.g., formal quantifiers and descriptions from
existing methods) into the input prompts of an MLLM (ChatGPT-4) can enhance the model’s capability and reliability to evaluate
the walkability of built environments using SVIs. We collect walkability metrics through the existing literature and categorise them
using relevant ontologies. Then we select a subset of these metrics, used for assessing the subthemes of pedestrian safety and
attractiveness, and develop prompts for MLLMs accordingly. We analyse MLLM’s abilities to evaluate SVI walkability subthemes
through prompts with multiple levels of clarity and specificity about evaluation criteria. Our experiments demonstrate that MLLMs
are capable of providing assessments and interpretations based on general knowledge and can support the automation of image-
text multimodal evaluations. However, they generally provide more optimistic scores and can make mistakes when interpreting
the provided metrics, resulting in incorrect evaluations. By integrating expert knowledge, MLLM’s evaluative performance exhib-
its higher consistency and concentration. Therefore, this paper highlights the importance of formally and effectively integrating
domain knowledge into MLLMs for evaluating urban design quality.

1. Introduction

Urban street environments are vital to supporting human activ-
ity in public spaces (Jacobs, 2010). Streets are essential con-
nectors within urban networks, allowing for seamless move-
ment of pedestrians, cyclists, and vehicles. Well-designed
urban environments can have a range of positive impacts, such
as encouraging physical activities, improving mood, strength-
ening urban identity, and promoting public health (Koohsari et
al., 2020; Wedyan and Saeidi-Rizi, 2025). In contrast, poorly
designed or unpleasant urban environments can have various
negative consequences (de Jong and Fyhri, 2023; Giles-Corti et
al., 2016).

Multi-modal large language models (MLLM) such as GPT-4
(OpenAI), with their ability to analyze textual and visual data,
hold the potential for providing evidence-based evaluations and
quality improvement suggestions for the built environments.
Currently, the large availability of street view imagery (SVI)
provides a rich data source, along with the rapid development
of computer vision techniques, enabling the computational as-
sessment of the visual quality of the street environment. Exist-
ing literature on SVI and environmental quality has primarily
focused on identifying key correlations between visual street
features and travel behaviour, enhancing the accuracy of street

quality indicators, and mapping the spatial distribution of envir-
onmental attributes within study cities (Biljecki and Ito, 2021;
Liu and Sevtsuk, 2024). MLLMs hold significant potential for
extracting physical environment features and automating eval-
uative workflows (Malekzadeh et al., 2025). Although LLMs
demonstrate a certain level of knowledge about global cities,
their limitations become evident when they encounter unfamil-
iar tasks, often producing generic or random outputs (Li et al.,
2024). A significant challenge lies in the gap between the gen-
eralised training data of MLLMs and the specialised knowledge
required for evaluating built environment quality. The risks and
advantages of MLLM — a black box — in providing evalu-
ation results, and the potential to enhance its performance by
integrating expert urban design knowledge, have not been fully
explored.

Formal definitions and representations of expert knowledge en-
able the automation of environmental quality assessments and
the operationalization of urban design. Public space quality
assessments, such as walkability metrics, utilise determinants
and criteria as representations of expert knowledge (Fonseca
et al., 2022; Ariffin et al., 2021). While the key components
of walkable urban environments are well-recognised by the re-
search community (Ewing and Handy, 2009; Dragović et al.,
2023), translating these principles into interpretable and ro-
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bust indicators requires formal definitions of domain-specific
concepts. In walkability evaluation, there are mixed-use of
terms and measurements from different domains, scales and
data sources. First, for instance, land use density is linked
to attractiveness in one framework (Frank et al., 2010) and to
accessibility in another (Pelclová et al., 2014). Additionally,
methods for measuring land use density vary across different
studies. Second, walkability metrics contain both contextual
factors (e.g., entropy index of different land uses in an area)
and site-specific factors (e.g., presence of streetlights) (Fonseca
et al., 2022). Metrics include elements that are directly meas-
urable (e.g., presence of fixed furniture on streets) and those
requiring monitoring (e.g., history of thefts). Some elements
in these frameworks are actionable for urban design, while oth-
ers are not (Dragović et al., 2023; Reisi et al., 2019). In sum-
mary, the variable use of terms and measurements across differ-
ent frameworks causes challenges for interpretability and com-
parability between cases and between frameworks. In turn, a
lack of formal definitions and categorisations for urban design-
related metrics also makes it difficult to generate clear design
recommendations to improve environments.

Exploring the risks and opportunities of MLLM in urban evalu-
ative frameworks through the integration of formal expertise is
crucial. First, it requires translating multiple characteristics into
formalised and methodologically practical indicators. Second,
integrating expert urban design knowledge (e.g., definitions,
categorisations, scoring models) formally and effectively into
MLLMs and enhancing their performance in evaluating built
environment quality requires more investigations. Hence, the
following research questions are raised:

• Can MLLMs provide consistent responses when prompted
to evaluate street environment quality?

• To what extent can expert knowledge (more formal defin-
itions and semantic clarity) and a structured evaluation
framework enhance MLLMs’ ability to evaluate street en-
vironment quality (e.g. walkability)?

Our research aims to bridge core urban design variables of street
environments with urban design solutions to increase suitability
for human activities. We investigate how formal representation
of urban design knowledge can improve the MLLM’s consist-
ency to assess walkability. In this paper, we sets out the initial
explorations and implementations, focusing on: 1) categorising
walkability metrics through tangible measurements in the built
environment, and 2) investigating how the level of formality
in urban design expert knowledge influences MLLM perform-
ance, including expert descriptions from the literature review
and semantic clarity of walkability metrics. First, through the
existing literature, we collect and categorise walkability metrics
based on measurements, criteria, methods, and data sources.
Second, using example metrics related to pedestrian Safety
and Attractiveness, we develop prompts, with varying levels
of formalization and identification, to compare MLLMs’ pro-
duced assessments. Third, along with SVIs from selected loca-
tions in Singapore, we examine the performance of MLLMs in
evaluating SVI walkability. We apply statistical analysis to the
assessment results, focusing on the general score distributions
and notable differences between particular metrics. Finally, the
paper provides an example of identifying potential urban design
interventions for places requiring improvement, focusing on the
metrics that are actionable within the scope of urban design.

2. Background

Extensive research explores how urban spatial characteristics
influence the suitability of street environment for people and
activities. Street view images (SVI) enable the study of the
physical environment and its interactions with the socioeco-
nomic environment at various scales (Zhang et al., 2024) and
have been widely used for numerous applications – ranging
from analysing vegetation and transportation to health and
socio-economic studies (Biljecki and Ito, 2021). In walkability-
related studies, because of SVIs’ convenience, field auditing
works have been replaced by the desktop-auditing tools (Lar-
ranaga et al., 2019). A wide range of walkability and SVI-
related research focuses on uncovering the most significant cor-
relations between visual street features and travel behaviour,
as well as mapping the spatial distribution of specific environ-
mental features (Larranaga et al., 2019; Huang et al., 2024).

The advent of MLLMs, such as GPT-4 (Achiam et al., 2023),
which combine the textual interaction capabilities of LLMs
with image analysis, unlocked new possibilities for applications
that demand integrated visual and textual interpretation. Liu et
al. (2023) introduced methods using the Multimodal Contrast-
ive Learning Model(CLIP) to assess perceived walkability by
analysing both tangible and subjective factors such as safety and
attractiveness. Compared with convolutional neural networks
(CNN), MLLM has the strength in increasing explainability
in AI-driven assessments. It can generate interpretations and
explanations for walkability assessments, hence it can provide
insights into the specific factors that influence the evaluations
(Blečić et al., 2024). However, it is evident that while LLMs
possess a certain level of urban knowledge, they have limita-
tions when faced with unfamiliar tasks, often generating gen-
eric or random outputs (Li et al., 2024). Given the potential of
using MLLMs, they are developed based on generalised train-
ing data (Bender et al., 2021). However, evaluating walkab-
ility and providing suggestions for improvement requires spe-
cialised urban design knowledge. Therefore, whether MLLMs
can effectively evaluate walkability and offer professional im-
provement suggestions and how to integrate expert knowledge
remains unexplored.

Various evaluation frameworks and metrics have been de-
veloped to represent urban design knowledge, using varied cri-
teria and metrics in different scales. Focusing on walkability,
the metrics from the literature examine local elements (e.g. vis-
ible amenities, greenery) and contextual factors (e.g. street net-
works, neighbourhood land use) (Fonseca et al., 2022; Dragović
et al., 2023), some of which are actionable for urban designers
(e.g. park and green zones, aesthetics of buildings), while oth-
ers are not (e.g. motorised transport speed, weather conditions).
Greenness is an example of a criterion name label that is meas-
ured in very different ways, such as assessing landscape cov-
erage from satellite images (Fan et al., 2018), calculating the
percentage of trees in street view images (Huang et al., 2024),
counting the number of street segments with street trees (Lee et
al., 2020), or even defining ”green” to include the presence of
amenities that seem wholly unrelated to green, such as health
services, banks, or auto services (Pereira et al., 2020).

In many urban design-related walkability evaluation frame-
works, there are different sets of criteria. Yin (2017) developed
the evaluation framework by methodologically interpreting and
translating the criteria proposed by Ewing and Handy (2009).
Arellana et al. (2020) assess it based on factors such as sidewalk
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condition, traffic safety, comfort, and attractiveness. Mean-
while, Larranaga et al. (2019) employed a different set of cri-
teria, such as connectivity, topography, sidewalk surface, num-
ber of police officers, and number of shops. There is a mix of
criteria types. For example, criteria such as safety or attractive-
ness are dispositions, while criteria such as the number of shops
or sidewalk width are directly measurable properties. Metrics
often share the same definition but are labelled differently, for
instance, the number of parks was used to measure imageability
(Yin, 2017) in one study and to measure amenity density (Fon-
seca et al., 2022) in another. Grisiute et al. (2024) highlighted
the need for a structured and shared vocabulary for bike net-
work evaluations to enhance the coherence of evaluation meth-
ods within the field of bike network planning — the same is true
for walkability. The fact that different studies use different eval-
uation frameworks and models is to be expected, but the observ-
able lack of formal definitions and semantic accuracy. These in-
consistencies also hinders the potential implementations using
digital technologies (e.g.LLMs).

3. Methodology

This section introduces our methodology for MLLM-based
street environment walkability evaluation. Our methodology
was shaped by the following scopes and aims:

Aims In the paper, our goal is to define expert knowledge in
walkability assessment in distinct levels based on current liter-
ature, and to assess and compare the evaluative results provided
by the MLLMs. This paper does not aim to propose a new set of
indicators or refine the semantic correctness of indicator names
from the literature; these aspects will be addressed in future
work.

Scopes We collect metrics that are directly related to public
spaces, along with the criteria used to cap them, as documented
in the existing literature. We conducted a comparative study
designing four prompt sets. The prompt sets have varying levels
of semantic clarity to represent different levels of embedding of
expert knowledge. We applied inferential statistics to identify
differences in MLLM assessments and highlight metrics with
statistically significant variations between models, hence identi-
fying the influence of intergating expert knowledge to MLLMs.

3.1 Selecting and structuring walkability metrics

We selected our walkability metrics and identified the cri-
teria based on two review articles about measuring walkabil-
ity (Dragović et al., 2023; Fonseca et al., 2022). Based on
the combined literature sets from both reviews, we conduct a
review of studies that develop walkability metrics. This com-
bined set was used to develop a list of indexes, aimed at building
upon existing work and reducing bias in the indicator selection
process. Our work reveals that varying interpretations of what
defines a good walking environment have led to a broad array
of interchangeably used terms. For example, inconsistencies
were observed where different metric names referred to similar
measurements, or conversely, identical metric names were used
despite differences in the underlying methods.

From our initial literature set, we collected 124 walkability met-
rics. We use Metric to refer to direct measurables of the street
environment, Methods to refer to evaluation methods (e.g. a
survey or a tool), Criterion to refer to specific criteria in the
evaluation approaches (e.g. Accessibility, Attractiveness). We

introduced DataSource class and ScoringFunction class. We
applied the Triple-A ontology (Herthogs, 2021) to hierarchic-
ally structure and describe the final versions of these metrics,
similar to the metric structuring described by Grisiute et al.
(2024) and Ataman et al. (2022). We set out the categorisa-
tion as the first step towards structuring walkability evaluation
metrics. The entire metric database is available (Cai, 2025).

In this paper, we take 21 metrics that are used for evaluating
Safety and Attractiveness as examples and feed multi-modal
large language models (MLLM). We set a scale from 1 (low-
est) to 5 (highest) for each metric, hence the total scoring scale
is from 21 to 105. As shown in Table 1, we identified 21 met-
rics for each Criterion. We then adapted these into two sets of
metrics: one with vague definitions while naming the metrics
and another with more quantifiers in the metric names. These
metric lists, developed based on the current literature, are non-
exhaustive for evaluating walkability, safety, and attractiveness
but are used as comparison sets to test MLLMs’ performance in
evaluating the street environment.

3.2 Shaping prompts for SVI samples

We selected streets representing various types in Singapore, in-
cluding locations from the downtown area, countryside, com-
mercial centre, and housing areas (Figure 1). A total of 42 SVIs
are sourced from a crowd-sourced platform KartaView.

Figure 1. Streets in Singapore were selected for evaluating SVI
walkability. (c) KartaView contributors.

The ChatGPT-4 model was used to evaluate the image dataset.
Drawing on the metrics outlined in Table 1, we developed four
distinct prompt sets, with different levels of defined information
(which is one way of representing different levels of expertise),
to assess the influence of formal definitions of expert knowledge
on the walkability assessment using MLLM. Correspondingly,
four MLLMs are developed by using the designed prompt sets
representing four levels of expertise. The models demonstrate
an increasing expert level of evaluation metric definition and
semantic clarity from Model-C1 to Model-C4. Model C1 has
the lowest expertise level (level 1) and Model C4 has the highest
expertise level (level 4). Model-C1 simply asks GPT-4 to assess
Safety and Attractiveness without any metric input. Model-C4
prompt has a document of formal descriptions for each met-
ric with more clarified definitions and scoring models. Table
2 shows three examples of metrics and their descriptions. The
full document is available (Cai, 2025).

• Level 1 of expertise : Model-C1 uses no metrics, asking
GPT-4 to rate pedestrian Safety and Attractiveness on a
scale from 21 (lowest) to 105 (highest) without specifying
any evaluation metrics.
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Table 1. Overview of the identified metrics for safety and attractiveness (as used in walkability studies). The vague metrics (Metric-1)
exhibit vague definitions in their names and the quantified metrics (Metric-2) have more formal names using explicit quantifiers.

Vague
Safety Metric-1

Quantified
Safety Metric-2

Vague
Attractiveness Metric-1

Quantified
Attractiveness Metric-2

CrossingAids PresenceOfCrossingAids GreenArea PresenceOfGreenArea
TrafficSignals PresenceOfPedestrianSignals InstitutionalArea PresenceOfInstitutionalArea
SpeedBumps PresenceOfTrafficCalmingDevice ResidentialArea PresenceOfResidentialArea
PoliceStations PresenceOfPoliceStations CommercialArea PresenceOfCommercialArea
CCTV PresenceOfSecurityCameras Parks PresenceOfParks
CrossRoads NumberOfCrossingFacilities Trees PresenceOfTrees
RiskOfTrafficAccidents PerceivedRiskOfTrafficAccidents Attractiveness PerceivedAttractiveness
VehicleSpeed MotorisedTransportSpeed EstheticFeatures PerceivedNeighborEstheticFeature
VehicleFlow VehicleFlow CulturalCentres NumberOfCulturalCentres
TrafficSafety PerceivedTrafficSafety Retails AreaOfRetailTradeOrGastronomy
TrafficCalmingDevice NumberOfTrafficCalmingDevices FixedFurniture NumberOfFixedFurniture
PoliceOfficers NumberOfPoliceOfficers PublicToilets NumberOfPublicToilets
CrimeRate PerceptionOfCrimeRate TransportationStations NumberOfTransportationStations
CrimeSecurityDuringDay PerceivedDaytimeCrimeSecurity Greenness ProportionOfGreenness
CrimeSecurityAtNight PerceivedCrimeSecurityAtNight WalkableSpace ProportionOfWalkableSpace
Lights NumberOfLights DiverseLandscape LandscapeDiversityIndex
Graffiti GraffitiOnBuildings Colorfulness EnvironmentalColorDiversity
FootTraffic PerceptionOfPedestrianFlow Sky ProportionOfSky
LandmarkVisibility LandmarkVisibilityIndex Cleanliness StreetCleanliness
DiverseLandscape LandscapeDiversityIndex LandmarkVisibility LandmarkVisibilityIndex
Colorfulness EnvironmentalColorDiversity Transparency TransparencyIndex

• Level 2 of expertise: Model-C2 uses the 21 metrics from
literature, but in vague language, incorporating Vague
Safety Metric-1 and Vague Attractiveness Metric-1 with
ratings on a scale from 1 (lowest) to 5 (highest) for each
metric.

• Level 3 of expertise: Model-C3 uses the 21 metrics with
quantifiers, incorporating Quantified Safety Metric-2 and
Quantified Attractiveness Metric-2 with ratings on a scale
from 1 (lowest) to 5 (highest) for each metric.

• Level 4 of expertise: Model-C4 uses quantified met-
rics and formal descriptions, integrating Quantified Safety
Metric-2 and Quantified Attractiveness Metric-2, along
with a document containing specified descriptions for each
metric.

Table 2. Three examples Model-C4 prompt, including metrics
and their descriptions. The descriptions outline the definitions

and scoring methods.

Examples
Metric: PresenceOfInstitutionalArea
Description: Institutional area refers to educational, medical,
community and cultural areas.
Scoring: If one of the above institutional areas is present, score:
5. If not, score: 1.
Metric:NumberOfTrafficCalmingDevices
Description:The number of traffic calming devices, such as
speed bumps, raised crosswalks, and pedestrian islands.
Scoring:A higher number of traffic calming devices corres-
ponds to a higher score.
Metric: GraffitiOnBuildings
Description: If graffiti is present on buildings, indicating a
sense of unsafety, score: 1.

The models are tested in order from Model-C1 to Model-C4.
We deploy Model-C4 with metrics and descriptions as the last
one to prevent the language model from learning from the de-
scriptions and influencing the results of other models. All tests
are conducted on the same machine by the same user to avoid

discrepancies between machines and accounts and to ensure the
comparative study’s consistency and reliability.

To further evaluate the scoring behaviour of the four language
models under different prompts, Levene’s Test is conducted to
assess the assumption of homogeneity of variances as a pre-
requisite for variance analysis. Subsequently, Welch’s ANOVA
and the Games-Howell post hoc test are employed to exam-
ine differences in score distributions, both for the overall score
and across individual metrics. Among the 21 metrics analyzed,
the six exhibiting the most significant statistical differences are
identified and further investigated to gain insights into the mod-
els’ interpretative behaviour. Based on the statistical results, we
further investigate the case studies of places with lower scores
and discuss the potential urban design interventions.

4. Results and Discussion

4.1 Results of MLLM evaluations on SVIs

Figure 2 shows the average safety and attractiveness scores for
each street across the four models. Model-C1 diverges signific-
antly from the other models in both assessments. It shows not-
able differences in scoring ranges across the six streets, too. For
instance, Lorong Mambong scores lowest in safety in Model-
C1 but ranks mid-range in other models.

Figure 3 presents the SVIs that received the highest and low-
est scores across the four models. Overall, the models similarly
depict the safest and most attractive streets, as well as the least
safe and least attractive streets. In the safety assessment, Haji
Lane-5 achieved the highest score in Model-C4, while Boon Tat
Street-6, which ranked highest in the other models, received the
second-highest score (75) in Model-C4, showing the similarity
between the four models. These results provide an initial indic-
ation that while MLLM can offer assessments based on general
knowledge, integrating MLLM with representations of expert
knowledge significantly influences its evaluative performance.

To compare the performance differences between the models,
we conducted statistical analysis on all the SVI assessment
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Figure 2. Plot of the streets’ average scores in safety and
attractiveness assessments, as evaluated by the four MLLMs.

Lowest

Score

Images

Safety Assessment Score    (max. 105)

Model-C1

Highest

Score

Images

Model-C2 Model-C3 Model-C4

Score : Score : Score : Score :90 73 77 77

Boon Tat Street-6 Boon Tat S treet-6 Boon Tat S treet-6 Haji Lane-5

Score : Score : Score : Score :30 43 39 35

Lorong Mambong-1 Sungei Kadut Street-2 Sungei Kadut Street-5 Sungei Kadut Street-2

Lowest

Score

Images

Attractiveness Assessment Score    (max. 105)

Model-C1

Highest

Score

Images

Model-C2 Model-C3 Model-C4

Score : Score : Score : Score :98 73 72 83

Haji Lane-4 Lorong Mambong-5 Lorong Mambong-5 Lorong Mambong-5

Score : Score : Score : Score :40 38 35 40

Boon Tat Link-2Sungei Kadut Street-2Sungei Kadut Street-3 Sungei Kadut Street-2

Figure 3. Street view images with the highest and lowest scores
for safety (top) and attractiveness (bottom), giving the

corresponding scores.

scores generated from all four models. We conducted Levene’s
Test for the four models applied for Safety and Attractiveness
to assess the equality of variances. In both cases, the null hypo-
thesis was rejected. Consequently, we employed Welch’s AN-
OVA to evaluate the differences in distributions across the four

models for each metric. The results revealed statistically signi-
ficant differences, with p-values for both tests below 0.01. We
then performed the Games-Howell post hoc test and visualised
the score distributions within 95% confidence intervals.

Table 3. Statistical comparison of MLLMs’ scoring distributions
for safety and attractiveness using Welch ANOVA. p-val(S) is
the p-value from safety scores, and p-val(A) is the p-value of

attractiveness scores.

Inter-group Comparisons p-
val(S)

p-
val(A)

Model-C1 Model-C2 <0.01** <0.001***
Model-C1 Model-C3 <0.001***<0.001***
Model-C1 Model-C4 <0.001***<0.001***
Model-C2 Model-C3 0.20 0.99
Model-C2 Model-C4 0.27 0.51
Model-C3 Model-C4 0.99 0.57

Overall Test Statistics <0.001***<0.001***

Figure 4. The score distributions of the four MLLMs assessing
safety (top) and attractiveness (bottom).

From the score distributions (Figure 4) and post hoc test res-
ults (Table 3), Model-C1 produced significantly higher scores,
suggesting that in the absence of detailed instructions, the lan-
guage model tends to produce more optimistic assessments. In
contrast, the other three models show no significant differences
in their distributions, while their median scores exhibited slight
variations in different directions. This indicates that adding
evaluation metrics with specific criteria can significantly influ-
ence MLLM’s assessments. However, increasing the level of
semantic clarity by adding descriptions, has a relatively less
pronounced impact on the overall scores.

To further investigate the difference between the models with
input metrics, we analyzed the scoring differences for each
metric assessed by Model-C2 (with vague metrics), Model-C3
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Figure 5. The top six metrics with the largest statistical differences according to safety scores (top) and attractiveness scores (bottom),
ranked by their test statistics. The density plots show the level of concentration in each MLLM when measuring the particular metric.

(with quantified metrics), and Model-C4 (with quantified met-
rics and descriptions). We conducted the Kruskal-Wallis Test
for the three models. Figure 5 shows the top six metrics with
the largest statistical differences under the Safety and Attract-
iveness assessments, ranked by their test statistics.

In most metrics shown in Figure 5, the score distribution for
Model-C4 exhibited a higher degree of concentration. This
trend might be attributed to the more defined descriptions
provided along the metrics in Model-C4, which likely enhance
the MLLM’s ability to analyze according to the specific defin-
ition of each metric. To further investigate the influence of de-
scriptions on MLLM evaluations, we examined two examples
shown in Figure 6. In the Safety assessment, Model-C4 as-
signed a low score to the image because the specified traffic
calming devices (e.g., speed bumps and raised crosswalks) were
not visible. In contrast, Model-C2 inferred the presence of
traffic calming devices based on narrow roads and markings,
resulting in a more positive score. Similarly, in the attractive-
ness assessment, Model-C4 assigned scores based on the de-
scriptions of FixedFurniture, while Model-C2 mistakenly con-
sidered crosswalks as a type of fixed furniture, leading to an
incorrect evaluation.

Therefore, the more varied and dispersed score distributions
in Model-C3, which uses only quantified metrics, and Model-
C2, which uses vague metrics, could be attributed to the am-
biguity resulting from the lack of definitions, leaving room for
MLLM’s interpretations. In contrast, the detailed descriptions
in Model-C4 reduce ambiguity in the prompts, thereby guiding
the model’s interpretations with the intended evaluation criteria,
resulting in higher concentration and consistency.

Figure 6. Two example responses from MLLMs for the metrics
that differ significantly among the three models, assessing safety

(top) and attractiveness (bottom). This shows the influence of
descriptions to MLLM evaluations.

4.2 Discussion

We discuss the findings of the paper in three aspects. First,
the results offer preliminary evidence that MLLMs can per-
form assessments based on the provide evaluation metrics, us-
ing general knowledge. The multimodal model can automatic-
ally provide interpretations and scoring based on images. For
example, it assumed the perceived traffic flow based on the
width of the road. Therefore, MLLMs are potentially help-
ful for large-scale studies of urban design quality assessment.
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Second, Model-C1 produces more optimistic scores compared
to the other three models. The results of its evaluation for
the street segments show discrepancies compared to the oth-
ers. For example, a street that receives the lowest safety score
in Model C1 is ranked mid-range in the other models. This
suggests that MLLM evaluations without incorporating expert
knowledge tend to be overly optimistic and may produce feed-
back that diverges from expert-informed evaluations. Third, in-
forming MLLMs with expert knowledge (e.g., evaluation met-
rics) significantly influences their evaluative performance. For
example, enhancing the semantic clarity of the walkability met-
rics described in the prompts helps align the MLLM interpreta-
tions with the specified criteria, leading to increased concentra-
tion and consistency. Although the addition of descriptions to
the metrics has a comparatively less pronounced effect on over-
all scores, it can prevent MLLM from making mistakes when
interpreting the provided metrics.

The paper presents our initial exploration of the risks and ad-
vantages of large language models in evaluating environmental
quality and the potential to integrate expertise and domain
knowledge. MLLMs offer a low entry barrier for generating
automated multimodal image-text assessments of walkability
and can support large-scale evaluations of the quality of urban
design. While this automation holds promise for broad, data-
intensive studies, it also presents risks, such as overly optim-
istic evaluations, misinterpretation of terminology, and inaccur-
ate assessments. Therefore, further research is needed to better
understand how MLLM can be effectively integrated into urban
design quality surveys and to establish standardised guidelines
for prompt formulation.

5. Conclusion

This study explores how integrating more formal and clarified
representations of expert urban design knowledge into the in-
put prompts of an MLLM (ChatGPT) can enhance its capab-
ility to evaluate walkability using SVIs. Walkability metrics
were collected and categorised through the existing literature. A
comparative study was conducted for MLLMs fed with prompts
with varying levels of clarity and specificity, using the metrics
for assessing pedestrian safety and attractiveness. The findings
demonstrate that MLLMs’ evaluative performance can be en-
hanced by integrating expert knowledge. Furthermore, increas-
ing the semantic clarity of expert knowledge representations
improves the consistency of MLLMs’ evaluative outputs.

This paper has limitations of the small size of the SVI data-
base and the limited set of metrics for walkability evaluation.
These challenges mark the starting points for future enhance-
ments and developments in this area. Our future work will
be extended from the following aspects. First, we will engage
urban design practitioners to evaluate the SVIs, and compare
their assessment with the MLLMs, hence to investigate the dif-
ference between MLLM evaluators and human evaluators, and
enhance the reliability of the MLLM assessments. Second, a
more rigorous process of defining walkability metrics will be
established based on a more comprehensive review of literat-
ure, through the lens of urban design assessment characterist-
ics. Third, as currently the test dataset is limited in size, we will
scale up the dataset by adding more SVI variations and provide
a more rigorous selection process for SVIs in terms of the built
environment characteristics. Fourth, the automated evaluation
workflow could be developed to provide urban designers with
practical guidelines.
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Ataman, C., Herthogs, P., Tunçer, B., Perrault, S., 2022. Multi-
Criteria Decision Making in Digital Participation.

Bender, E. M., Gebru, T., McMillan-Major, A., Shmitchell, S.,
2021. On the dangers of stochastic parrots: Can language mod-
els be too big? Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency, 610–623.

Biljecki, F., Ito, K., 2021. Street view imagery in urban analyt-
ics and GIS: A review. Landscape and Urban Planning, 215,
104217.
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