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Greenery plays a vital role in urban environments, providing numerous benefits through diverse pathways.
Various metrics and methodologies have been proposed to assess multiple dimensions of greenery exposure. For
a comprehensive and precise assessment of greenery exposure for different research purposes, it is crucial to
identify the most suitable methods and data sources. However, existing reviews primarily address the health
outcomes of urban greenery, rather than the methods of assessing greenery exposure. To address this gap, we
conducted a review of 312 research articles, focusing on methodologies and technologies for measuring greenery
exposure in urban settings. This review categorizes exposure measurement techniques into three categories:
proximity-based, mobility-based, and visibility-based, evaluating their strengths, limitations, and synergies.
Proximity-based methods generally assess overall greenery level in residential areas or other locations, but they
fall short in capturing the actual interactions between humans and greenery. Mobility-based methods track real-
time human location and assess greenery exposure based on travel trajectories, but they neglect the specific
nature of human-greenery interactions. In contrast, emerging visibility-based methods offer opportunities to
measure potential visual interactions between individuals and greenery. We found emerging metrics tend to
integrate 3D data, qualitative aspects, and diverse data sources. We advocate for an integrated approach that
encompasses both human mobility and potential interactions with greenery across various areas. We also argue
that data granularity is balanced against cost, scalability, and ethical constraints. Our comprehensive review
offers a framework and categorization to guide studies in designing exposure measurements aligned with their
research objectives.

1. Introduction conditions by enhancing microclimate as vegetation absorbs solar ra-
diation, noise, pollutants, and carbon dioxide, thereby improving envi-
ronmental comfort (Gillner et al., 2015; Zhao et al., 2018). The capacity

restoration involves recovery from mental stress through visual or

1.1. Significance of assessing people’s exposure to urban greenery

Urban greenery is known to improve mental health (Gianfredi et al.,
2021), boost physical activities (Lu, 2019), enhance community cohe-
sion (De Vries et al., 2013; Dzhambov et al., 2018), and contribute to
ecological benefits such as air purification (Abhijith et al., 2017) and
temperature regulation (Cruz et al., 2021). To effectively monitor and
leverage these benefits, it is crucial to measure people’s daily exposure
to greenery (Markevych et al., 2017).

People’s interactions with greenery can be diverse, and each type of
interaction may provide distinct benefits. Researchers have summarized
these benefits as three major pathways: reducing harm, restoring ca-
pacities, and building capacities (Markevych et al., 2017). In the
respective of harm reduction, urban greenery mitigates adverse
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auditory exposure to natural elements, which lowers stress levels and
restores directed attention (Ma et al., 2024). Capacity building refers to
greenspaces facilitating physical activities and social interactions (Ward
et al., 2016). Different pathways entail different types of interactions
between people and greenery. For example, physical access to parks or
green spaces enables active engagement in various physical activities,
such as walking or jogging, which can improve physical health (Hearst
etal., 2013; Lu et al., 2018). Visual views of greenery from home or work
can enhance mental well-being by reducing stress and promoting
relaxation (Bi et al., 2022; Du et al., 2022). Simply living near green
spaces might influence air quality and provide a more comfortable
microclimate, contributing to general health benefits (Cruz et al., 2021).
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1.2. Evolving methods and data sources for measuring greenery exposure

To accurately assess the interactions between individuals and
greenery through various pathways, it is essential to evaluate the supply
(greenery), demand (people), and the interactions between them
(exposure). The most common method for measuring exposure involves
using simple buffers around individuals’ residential addresses or other
locations. It is argued that environmental benefits facilitated by urban
greenery, such as noise reduction, temperature moderation, air purifi-
cation, can be directly gained by nearby greenery without direct phys-
ical or visual exposure (Zhang et al., 2022a,b). However, this method
provides a very coarse measure of greenery supply around a location.
Furthermore, it does not differentiate the interactions, such as physical
or visual ones. Some studies illustrated that the proximity between
humans and greenery has little direct influence on mental and physical
health (Dadvand et al., 2016). Different types of contact between
humans and greenery might be an important potential mechanism (L.
Zhang et al., 2022a,b). For example, the time spent in green spaces was
linked to mental health more than proximity to green spaces (van den
Berg et al., 2017). To address these issues, more detailed and sophisti-
cated methods are required.

Traditional studies have often been constrained by technological
limitations in assessing greenery exposure at both covering a large scale
and capturing fine-grained dimensions (Sadeh et al., 2021). However,
advancements in emerging sensing technologies and big data analysis
tools have progressively addressed these challenges. Technologies such
as GPS tracking and smartphone applications can collect data on in-
dividuals’ movements and interactions with green spaces, offering in-
sights into actual usage patterns rather than merely availability and
potential access (Ladle et al., 2018). Additionally, participatory map-
ping that incorporates community feedback can provide contextual
qualitative data to enhance quantitative analysis (Brown et al., 2018).
Advancements in remote sensing, particularly with high-resolution
satellite sensors, have improved the granularity of urban greenery
mapping using indices such as the Normalized Difference Vegetation
Index (NDVI) (B. Chen et al., 2022). Over recent decades, Street View
Imagery (SVI) offers a human-centric perspective on greenery exposure
and has been widely used to extract the percentage of visible greenery
along streets (Li et al., 2015; Lu et al., 2018).

Recent advances in geoinformatics and the growth of 3D city models
have also introduced innovative approaches for assessing greenery
exposure. For instance, a 3D greening measurement method has been
proposed, utilizing multi-dimensional metrics such as volume, area, and
diversity, derived from mobile laser scanning (MLS) point clouds
(Ferreira et al., 2024; J. Qi et al., 2022; Tang et al., 2023). Furthermore,
these technologies facilitate the analysis of urban greenery exposure
from various perspectives. For example, deep learning models have been
adapted to quantify the proportion of natural views in window-view
photographs obtained from 3D photorealistic City Information Models
(CIMs) (Li et al., 2022), which can represent the indoor visual exposure
of individual buildings.

In addition to emerging data sources, artificial intelligence (AI),
particularly computer vision, has demonstrated significant potential for
enhancing the analysis of greenery exposure. Recently, there is a rising
trend of using advanced computer vision techniques to assess both the
quality and quantity of greenery exposure incorporating prevalent
urban images or 3D city models (M. Li et al., 2022; Li et al., 2015; Liu,
Jiang, Wang, et al., 2023). Furthermore, computer vision is employed to
examine the impact of vegetation on individuals’ perceptions of urban
views, such as aesthetic quality (Southon et al., 2017) and value of
property (Xu et al., 2022). Beyond the direct assessment of greenery,
computer vision also serves as a tool to generate urban images, offering
more detailed information on greenery from low-resolution data, which
is easier to acquire. For instance, researchers have utilized Generative
Adversarial Networks (GANs) and diffusion models to generate street
view images and other urban imagery, as well as 3D city models from 2D

Urban Forestry & Urban Greening 114 (2025) 129169

satellite images (Toker et al., 2021). Besides computer vision, other Al
models such as natural language processing (NLP) and large language
models (LLMs) also have the potential to directly or indirectly assess
greenery exposure such as analyze people’s perception and emotion on
green space from user-generate contents from social media platforms
(Wei et al., 2023).

1.3. Other related reviews

Most review papers published in international scientific outlets that
discuss greenery exposure concentrate on examining its effects on one or
several health-related issues (Barnes et al., 2019; Kondo et al., 2018;
Luque-Garcia et al., 2023; Twohig-Bennett & Jones, 2018). These issues
include mental health (Barnes et al., 2019; Liu, Chen, Cui, et al., 2023;
Park et al., 2024), physical health (Liu et al., 2022), cognitive function
(Fowler Davis et al., 2024), physical activities (Yen et al., 2021), and
others (Ccami-Bernal et al., 2023; Wolf et al., 2020). These reviews al-
ways found that different ways of defining and measuring green spaces
can produce heterogeneous results of the same health issue. Since
greenery may benefit people through multiple pathways regarding
diverse outcomes, the measurement of people’s exposure to green space
must be tailored to concrete study contexts and research questions.
However, there is a scarcity of review papers that focus specifically on
the methodology and technology used to measure greenery exposure.
While numerous studies have highlighted the health benefits associated
with exposure to green spaces, few have critically evaluated the various
techniques and tools employed to quantify or qualify this exposure.
Existing studies have reviewed papers specifically for eye-level urban
greenery using SVIs (Lu et al., 2023; Yan, Huang, et al., 2023). Y. Liu
(2023) systematically reviewed existing green space representations and
metrics for assessing individuals’ exposure to green spaces, highlighting
the limitations of traditional residence-based paradigms which often
overlook individuals’ mobility and the uncertainties in exposure along
daily activity-travel paths. Notably, their review encompasses literature
before 2021. From 2021-2024, advancements in 3D and computer
vision technologies have significantly transformed the measurement of
greenery and the interactions between people and green spaces.

1.4. Our review

This paper examines emerging approaches to measuring greenery
exposure in urban environments, highlighting their strengths and limi-
tations. We assess the suitability of these advanced techniques and
explore the potential for their integration to yield more meaningful as-
sessments. We also identify the research opportunities required to
develop a comprehensive framework that integrates the strengths of
different techniques. To the extent of our knowledge, this is one of the
most comprehensive and wide-ranging reviews on greenery exposure
studies focusing on methodology and technology, and adds new insights
to the body of knowledge. Fig. 1

2. Methodology

In this study, we followed the established systematic review methods
to identify relevant studies (Bowler et al., 2010) (Fig. 2). Our selection of
keywords was guided by three primary considerations: firstly, the
presence of various types of urban greenery; secondly, the interactions
between humans and greenery; and thirdly, focusing on methodology or
using the particular approach/metric/data source for the first time.

Various definitions of "greenery exposure" exist in the literature. The
3-30-300 Rule for urban forestry and greenery stipulates that: 1) every
individual should have visual access to at least three mature trees from
their residence; 2) each neighborhood must achieve minimum 30 % tree
canopy cover; and 3) the distance to the nearest green space should not
exceed 300 m (Konijnendijk, 2023). Therefore, this study defines
"greenery exposure" as comprising: 1) visual access to urban green
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Fig. 1. (a) proximity-based measurements; (b) mobility-based measurements; (c) visibility-based measurements.
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Fig. 2. The flow chart shows the process of literature screening and reviewing.

spaces or vegetation; 2) engagement in activities that involve urban
green spaces; 3) physical access through visitation.

In the initial phase of our scoping review, we utilized multiple key-
words related to "urban greenery", “exposure”, and “methodology” to
identify relevant publications by examining the full text of articles in
two databases: Scopus, and Web of Science. To encompass the broadest
interpretation of "greenery," a publication was included if it contained
terms such as "park," "green space," "green infrastructure," "vegetation,"
"street tree," "shrub," "green belt," "horticulture," “greening” and related
words. These keywords were searched across the title, keywords, and
abstract. Additionally, the presence of methodology-focused terms such

as "assessment," "measure," "

"o,

"o

approach," "measurement," “index,” and

"technology"’, alongside terms indicating human interaction with
greenery, such as "exposure," "accessibility," "contact," “live,” “work,”
“exercise,” "visit," "visual," and "visibility." was required exists in the title
to include only methodology-oriented studies on greenery exposure
assessment. The search was restricted to peer-reviewed research articles
published between 2000 and 2024. After eliminating duplicates, liter-
ature review, and conference papers, the search yielded a collection of
2199 publications, forming a raw literature pool.

In the subsequent phase of the review, the titles and abstracts of the
research articles are screened to retain those that meet the following
criteria: the study focuses on methodology or has employed one or
multiple metrics/data sources to measure greenery, or human-greenery

"o »
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interactions, which not previously documented in earlier greenery-
exposure studies. Furthermore, the study must have been conducted
within an urban context, excluding rural, forest, or agricultural land-
scapes. The study should focus on human-greenery interactions (e.g.,
exposure, accessibility, visibility), excluding those focused solely on
ecological or forestry outcomes without human exposure. The selected
research is then systematically analyzed to address the research ques-
tions of this scoping review.

3. Results
3.1. Research on greenery exposure in the last two decades

A total number of 2199 research articles were identified initially.
After the abstract screening, 312 articles that brought innovations in
greenery exposure measurement or metrics were retained, while those
that employed commonly used metrics as independent variables in
environmental behavior and public health studies were excluded. There
is a growing trend in the number of publications during both the initial
filtration and the final selection stages. Firstly, we categorized selected
studies by data sources for exposure assessment (Fig. 3). There is an
increasing number of papers across most data sources. Satellite images
and questionnaires have traditionally been dominant, but in the past two
years, they have been surpassed by SVIs. Questionnaires, as a traditional
data source, continue to increase in use because they are often combined
with big data sources to provide qualitative information. Social media
and mobile phone data experienced a period of growth but have fluc-
tuated over time. SVIs and 3D city models emerged after 2014, with SVIs
rising rapidly and 3D city models gradually increasing.

Building on prior classifications (Kwan, 2009), we distinguish three
categories of approaches to measuring greenery exposure. First,
proximity-based measures (previously referred to as proximity-based)
rely on individuals’ fixed addresses (e.g., residential or workplace)
and the use of surrounding buffers to quantify greenery accessibility or
the ratio of greenery to population/buildings. Second, mobility-based
measures expand exposure assessment beyond fixed locations by
incorporating greenery along individuals’ movement paths within a
given time frame. Both proximity- and mobility-based measures
conceptualize exposure primarily in terms of the relative 2D positioning
of individuals and greenery (distance, buffer, accessibility). In contrast,
visibility-based measures exclusively capture potential or actual visual
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interactions between individuals and greenery. This approach empha-
sizes the role of the 3D built environment in shaping what people can or
cannot see, which cannot be accurately represented through 2D prox-
imity or mobility metrics. By explicitly distinguishing visibility-based
measures from proximity- and mobility-based ones, we argue that
these three represent fundamentally different and complementary ways
of operationalizing greenery exposure. (Figure 1). Before 2010,
proximity-based approaches dominated related studies. Subsequently,
both mobility-based and proximity-based methods advanced in parallel,
exhibiting fluctuations starting in 2021 (Fig. 4). Visibility-based
methods emerged in 2013 and have steadily increased, reaching a
similar level to the other two approaches during the past two years
(Fig. 4). Although these three categories show little overlap, visibility-
and mobility-based measures not mutually exclusive. In the future,
studies that integrate visibility-based and mobility-based approaches are
expected to provide a more accurate assessment of greenery exposure.

The volume of literature was compared based on the data sources
and types of human-greenery interactions analyzed (Fig. 5). As an
emerging data source, most studies on greenery exposure used Street
View Images (SVIs) for visibility-based and mobility-based assessments.
SVIs were also used for proximity-based assessments to compute
aggregate indices for spatial units, such as the Green View Index (GVI)
(X. Li et al., 2015). The use of 3D city models enables researchers to
measure greenery visibility from specific observation points directly,
leading to a predominance of visibility-based assessments, though some
studies also include proximity-based and mobility-based assessments.
Questionnaires are primarily used to gather data of travel behavior, e.g.,
via travel log, resulting in their prevalent use in proximity-based and
mobility-based assessments. Only a few studies use questionnaires for
visibility-based assessments, such as obtaining respondents’ scoring on
photos taken in the street or from windows (Lin et al., 2022). Social
media and mobile phone data offer the advantage of providing real-time
locations and geolocated user-generated content, making them popular
for mobility-based studies (Y. Chen et al., 2018; Lu et al., 2021).
Traditionally, satellite images have been used for top-down greenery
measurements in proximity-based assessments. Recently, satellite im-
agery has been combined with other data sources, such as social media,
mobile phone data, and 3D city models, to conduct mobility-based and
visibility-based assessments (Yu et al., 2016).
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Fig. 3. The temporal evolution of greenery exposure studies by data sources.
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Fig. 5. Sankey diagram depicting the volume of literature based on the relationship between data sources and types of human-greenery interactions. (Note: Some
studies utilized multiple primary data sources, resulting in potential multiple counts in this figure.).

3.2. Evolving technologies on greenery exposure measurement

3.2.1. Satellite imagery

Nearly half of the studies utilized satellite data. For decades, satellite
imagery has played a crucial role in the large-scale assessment of urban
greenery by forestry departments and urban planners (Iverson et al.,
1989), and it continues to evolve (Phiri et al., 2020). The advancement

of remote sensing technology, particularly the advent of high-resolution
satellite systems, has significantly improved the capability to quantify
urban greenery with higher spatial precision (Neyns and Canters, 2022;
Pristeri et al., 2021). Various indices have been developed to quantify
urban greenery and greenery exposure using satellite data, such as the
Normalized Difference Vegetation Index (NDVI), which is commonly
employed to evaluate vegetation health, density, and coverage in
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environmental behavior studies and public health research (Rugel et al.,
2017; Song et al., 2018). In recent years, satellite imagery has been
combined with 3D city models (Donovan et al., 2019; Yu et al., 2016),
SVIs (Luetal., 2019; Tong et al., 2020) to develop more fine-grained and
multidimensional metrics for measuring exposure to greenery.

Most studies utilizing satellite imagery as the main data source
concentrate on assessing the amount of greenery or the area of green
space surrounding locations where people live, work, study, or engage in
other activities, without determining whether visual or physical contact
occurs (Fig. 5). By integrating smartphone GPS data (Almanza et al.,
2012) or 3D building models (Li et al., 2016; Yu et al., 2016), it is now
feasible to assess individuals’ physical and visual access to greenery.

Compared with other data sources, satellite imagery offers relatively
low acquisition costs when using open-access sources, with high spatial
scalability and moderate-to-high temporal frequency. Processing de-
mands are modest for basic indices such as NDVI but become more
intensive for fine-grained classification. Technical accessibility is mod-
erate, requiring GIS competence but not necessarily advanced expertise.

3.2.2. Eye-level imagery

SVI has been increasingly used in exposure studies since 2018, due to
its availability, global coverage, and human-oriented perspective over
the past decade (Biljecki & Ito, 2021; Li et al., 2015). It can also bridge
some shortcomings of overhead-view greenery assessment. For example,
the overhead view of greenery differs from the landscape as it is
perceived by humans (Li, 2021). Furthermore, vegetation located
beneath tree canopies and within urban vertical greening systems may
be neglected in the overhead assessments (Lu et al., 2019). Numerous
studies have utilized both eye-level and top-down greenery to evaluate
individuals’ exposure and compare their associations with human
behavior and health issues. Some research concluded that eye-level
greenery offers a better assessment compared to top-down methods
(Lu et al., 2019), while other findings suggest that eye-level greenery
more accurately captures vegetation in urban centers, whereas
top-down greenery is more effective in representing vegetation in parks
and forests (Labib et al., 2021). For long-term, population-level health
outcomes (cohort studies), eye-level images even failed to outperform
NDVI (Jimenez et al., 2022a; Yi et al., 2024).

Currently, most urban greenery studies using SVIs aggregately,
calculating the average greenery ratio in SVI as the green view index of a
spatial unit or the buffer of the residential location of individuals.
Therefore, such measures are limited to quantifying greenspace expo-
sure within the immediate residential street network, a scope that fails to
account for the totality of an individual’s visual experience throughout
their daily life. (Liu et al., 2025). Besides, SVIs from map services, such
as Google and Baidu, are primarily obtained from vehicle-based cameras
on the road, which differs from the perspective of pedestrians (Ito et al.,
2024). To conduct disaggregate analysis of greenery views from each
SVI, a precise knowledge of the camera’s position, such as pedestrians on
the street or vehicles on the road, is necessary (Ki et al., 2023). There-
fore, some studies have begun to use personal devices to capture street
views or utilize crowdsourcing street view platforms (Y. Yang et al.,
2021; Zhang et al., 2021), which may provide sufficiently accurate
greenery measurements (Biljecki et al., 2023).

SVIs and crowdsourced images provide valuable human-scale per-
spectives of greenery but involve high processing costs due to computer
vision requirements. Their spatial coverage is uneven and temporally
inconsistent, depending on platform updates or user contributions. The
approach is less technically accessible without advanced machine
learning skills.

3.2.3. 3D city model

The application of 3D models in exposure studies remains limited but
is experiencing steady growth. A 3D city model is a representation of an
urban environment with a three-dimensional geometry of common
urban objects and structures, with buildings as the most prominent
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feature (Biljecki et al., 2015). Such models are typically created using a
variety of acquisition techniques, including photogrammetric approach
or LiDAR, extrusion from 2D footprints (Arroyo Ohori et al., 2015), and
architectural models or drawings (Donkers et al., 2016). However,
existing urban 3D modeling predominantly emphasizes buildings and
roads, frequently simplifying or excluding vegetation to minimize
computational and storage demands (R. Wang et al., 2018). Data
acquisition poses significant challenges, as sensors such as LiDAR often
fail to capture intricate vegetation details, and seasonal variations
hinder the creation of accurate static representations (Balestra et al.,
2024; Norton et al., 2022). Furthermore, manually modeling vegetation
is both resource-intensive and costly, while legal and privacy consider-
ations may limit the mapping of vegetation in private or protected areas
(Wang et al., 2018). However, emerging trends, such as environmental
planning, procedural generation tools, and advanced sensors, are
driving greater inclusion of vegetation in 3D models (Balestra et al.,
2024). Using a 3D city model for greenery exposure measurement in-
volves a comprehensive integration of detailed vegetation data within
the urban model to evaluate not only physical accessible but also visible
green spaces are from different locations across a city (Li et al., 2023;
Yan et al., 2023). The process starts by collecting high-resolution data
about the city’s existing vegetation and other objects through methods
like photogrammetry and laser scanning (Morgenroth and Gomez,
2014). These datasets are then used to generate a 3D city model, which
includes detailed representations of city components, such as buildings,
streets, and other infrastructure, facilitating an accurate spatial overlay
of the existing urban and natural environments (Arroyo Ohori et al.,
2018). This integrated model enables the performance of visibility an-
alyses, such as viewshed or line-of-sight assessments, from various
vantage points in the city, thereby allowing urban planners and re-
searchers to quantify metrics of greenery exposure, such as the per-
centage of visible green area and the distance to the nearest green space
(Yu et al., 2016).

The evolution of sensing technology, such as advanced LiDAR sys-
tems, high-resolution satellite imagery, and drone-based photogram-
metry, has significantly contributed to the development of 3D city
models at higher levels of detail (Biljecki et al., 2015). These technolo-
gies allow for the precise mapping of urban environments, capturing
intricate details of buildings, such as the location of windows, and nat-
ural elements like vegetation with high accuracy (Bolte et al., 2024).
Consequently, these detailed 3D city models can offer precise spatial and
non-spatial information regarding both humans and greenery, enabling
a nuanced analysis of their interactions to evaluate greenery exposure
comprehensively. For instance, researchers attempted to use 3D city
models to locate pedestrians’ walkways in order to assess eye-level
greenery from the perspectives of potential pedestrians (Ki et al., 2023).

3D city models offer precise structural information on urban green-
ery, though acquisition and processing costs are high. Their spatial
scalability is limited to selected cities, with infrequent temporal updates.
The method demands advanced 3D GIS and modeling expertise, con-
straining accessibility.

3.2.4. Data from mobile phone signals and personally equipped GPS devices

Mobile phones and other personally equipped GPS devices offer
detailed data for tracking human locations and mobility. Combining
with spatial distribution of urban greenery, this data can offer insights
into human exposure to urban greenery (Almanza et al., 2012; Guan
et al., 2020). There are primarily two ways for utilizing these data in
greenery exposure studies. Firstly, GPS and proximity-based services can
be employed to track individual movement patterns, allowing them to
determine the frequency and duration of personal visits to green spaces
or areas with varying levels of greenery (Ladle et al., 2018; Roberts &
Helbich, 2021). Secondly, data from mobile signal stations can be used
to explore the collective behavior of people in greenery exposure by
obtaining the number of people present around each station during
specific time periods (Song et al., 2018). Both two ways can help assess
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accessibility, frequency of use, and the role of urban greenery in daily
life (Kim et al., 2023; Xiao et al., 2019). However, ethical considerations,
such as privacy and consent, are crucial when using mobile phone data,
ensuring that data use is responsible and respects individuals’ rights
(Fuller et al., 2017).

Mobile signal data enable large-scale and temporally continuous
tracking of population exposure, offering strong scalability. However,
acquisition is costly and often restricted by privacy regulations and in-
dustry partnerships. Technical demands are moderate, requiring data
engineering and secure handling protocols.

3.2.5. Social media

Geolocated social media data represents a distinct category of mobile
phone data characterized by user-generated content. It was popular in
studies on greenery exposure, but their occurrence has declined. Social
media serves as a valuable resource in studies on greenery exposure by
offering innovative avenues for data collection and participant
engagement (Ghermandi and Sinclair, 2019). Researchers can employ
geospatial analysis on social media data to study accessibility and usage
patterns of green spaces (Ghermandi et al., 2022; Heikinheimo et al.,
2020). Additionally, platforms like Instagram and Twitter provide rich
datasets through geotagged posts and hashtags, enabling researchers to
analyze patterns of green space usage and public sentiment in green
space (Grzyb et al., 2021; Plunz et al., 2019; Roberts et al., 2019). While
providing diverse data and engagement opportunities, the use of social
media inevitably raises ethical concerns about privacy, consent, and
biases in data representation (Ghermandi and Sinclair, 2019).

The emerging Natural Language Processing (NLP) technology has
boosted the application of social media in evaluating people’s exposure
to greenery recently. Through analyzing user-generated content, studies
obtained insights into public sentiment and interactions with urban
greenery from social media (Chen et al., 2018; Heikinheimo et al., 2020;
Wei et al., 2024). Through sentiment analysis, NLP can determine
whether sentiments of the contents shared on platforms like Twitter or
Facebook are positive or negative (Wei et al., 2023). Topic modeling can
identify common themes, such as recreational activities or health ben-
efits associated with green spaces (Heikinheimo et al., 2020).

This data source provides highly frequent, real-time observations of
greenery exposure but suffers from spatial and demographic biases. Data
acquisition is inexpensive, though processing requires expertise in nat-
ural language processing and computer vision. Its scalability is moder-
ate, as coverage is concentrated in urban, tech-savvy populations.

3.2.6. Questionnaire

Questionnaires served as a significant tool in greenery exposure
studies for a long time, which is a widely used tool for collecting self-
reported data regarding individuals’ interactions with urban greenery
(Dzhambov et al., 2021; Lin et al., 2022). They can capture a range of
individual-level information, including the frequency, duration and
motivations of visits to various green environments like parks, gardens,
or nature trails (Flowers et al., 2016). Questionnaires are effective for
assessing perceived benefits such as improvements in physical health,
mental well-being, and stress reduction attributed to time spent in na-
ture (Van Den Berg et al., 2019). They can also be used to identify
barriers individuals face in accessing green spaces, such as safety con-
cerns or lack of nearby facilities (Wendel et al., 2012). Additionally,
questionnaires offer insights into the quality and features of green spaces
that participants find most valuable (Stessens et al., 2020). By gathering
demographic and contextual information, researchers can better un-
derstand differences in greenery exposure across various populations
(Helbich et al., 2020; Wang et al., 2019). Furthermore, questionnaires
can also be used in conjunction with other data sources, such as SVIs and
GIS, to obtain complimentary subjective and objective data (Stessens
et al., 2020; Yang et al., 2021). The advent of mobile phones and the
Internet has expanded the dissemination channels for questionnaires,
establishing them as a pivotal tool for crowdsourcing data collection in
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greenery exposure studies (Heikinheimo et al., 2020).

This tradition method is straightforward to implement and highly
accessible, with moderate acquisition costs and minimal processing re-
quirements. Its scalability is constrained by sampling limitations, and
temporal frequency is typically low due to the resource intensity of
repeated surveys. Despite these limits, they remain widely used for self-
reported greenery exposure.

3.2.7. Other data sources

In addition to the data sources previously discussed, various tools are
available to support the measurement of greenery exposure. Land cover
maps, such as OpenStreetMap (OSM) or official maps, serve as signifi-
cant resources for identifying and quantifying green spaces (Teeuwen
et al., 2024). Furthermore, OSM provides contextual information on
surrounding facilities and infrastructure, which can influence the qual-
ity and accessibility of green spaces (Cimini et al., 2024). As a common
and widely used data source for measuring greenery, land cover maps
appeared in nearly every study on greenery exposure. However, the
innovation in these studies does not stem from the land cover maps
themselves but rather from how they are integrated with emerging data
sources, such as GPS devices and social media data (Guan et al., 2020;
Heikinheimo et al., 2020). Therefore, we do not classify these studies as
a separate category but instead group them based on the complementary
data sources they are combined with.

Besides, advanced technology such as saliva measurements (Veitch
et al., 2022), electroencephalography (EEG) (Lin et al., 2020), and
eye-tracking (Li et al., 2020) were utilized to assess human interactions
with greenery and their physiological and behavioral outcomes. These
innovative tools focus on capturing human responses to green envi-
ronments; however, they do not provide direct insights into the specific
aspects of human interaction with greenery, such as what, where, and
how these interactions occur. Therefore, they require integration with
complementary data sources to achieve a comprehensive evaluation of
exposure so are not included in this review (Table 1).

3.3. Research on greenery exposure according to the type of interactions

3.3.1. Proximity-based exposure

Traditional studies on greenery exposure primarily focus on quan-
tifying vegetation or green space area within the buffer zones sur-
rounding places where individuals live, work, study, or engage in other
activities (Giannico et al., 2022; Rugel et al., 2017; Rundle et al., 2011)
(Table 2). Initially, researchers evaluated greening within a geograph-
ical unit based on the proportion of green space or tree coverage (Lang
et al., 2007; Zhu et al., 2003). Subsequently, many scholars began to
consider not only the proportion of green areas but also the relative
distribution of green spaces and buildings (Gupta et al., 2012; Li et al.,
2014). Some studies utilized building characteristics and population
data to weight human-centered greenery exposure (Chen et al., 2022;
Rugel et al., 2017). Early research mainly relied on satellite imagery to
identify green spaces and trees (Gascon et al., 2016; Uto et al., 2008).
Over time, the use of street-level images to assess eye-level greenery
became more common (Li et al., 2015; J. Yang et al., 2009), alongside
employing 3D city models to measure both green and building volumes,
with the green-to-building volume ratio serving as an indicator of
greenery exposure (Giannico et al., 2022; Lafortezza and Giannico,
2019). However, this approach only reveals the proximity between
people’s potential locations and vegetation, while neglecting the real
interaction of people and urban greenery and failing to provide any
insight into how they are using and benefiting from the greenery (Liu,
Kwan, Wong, et al., 2023).

3.3.2. Mobility-based exposure

Beyond proximity-based studies, certain research methodologies
employ individuals’ actual locations to evaluate their exposure to green
spaces (Kwan, 2009) (Table 3). These studies can be categorized into
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Table 1

The scalability and accessibility of each data source
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Data source

Acquisition cost

Processing cost

Spatial scalability

Temporal frequency

Technical accessibility

Satellite
images

Eye-level
images
3D city model

Social media

Mobile signal

Low—Medium (many are open-
access; very high-res imagery
costly)

Low (Google SV free; crowd-
sourced images free; but API
fees or licensing can add up)
High (LiDAR flights expensive;
3D models proprietary in many
cities)

Low (data “free” but API
restrictions)

High (requires collaboration
with telecoms, costly access)

Low-Medium (basic GIS
for NDVT; higher for
segmentation)

High (computer vision,
large storage/processing
demand)

Very High (data heavy,
need 3D modeling
expertise)

Medium (need NLP + CV
for greenery detection;
noisy data)

Medium (spatial
aggregation, linkage to
greenery maps)

High (global coverage)

Medium (coverage biased
to urban, not rural; varies
by country)

Medium (available in
selected cities, not global)

Medium (urban centers
only, socio-demographic
bias)

High (near-universal
coverage in many
countries)

Medium-High (weekly-monthly
updates for free sources)

Low—Medium (commercial SVIs
updated irregularly;
crowdsourced photos uneven)
Low (updates rare, every few
years)

High (real-time, continuous posts)

High (continuous, real-time data
streams possible)

Medium (basic GIS training
sufficient; advanced ML for
fine detail)

Low-Medium (requires
ML/CV expertise)

Low (specialized 3D GIS
skills required)

Medium (requires data
mining, NLP, CV skills)

Medium (requires data
engineering + privacy
protocols)

Questionnaire Medium (printing, field staff, Low (basic stats analysis) =~ Low-Medium (sample size =~ Low (cross-sectional; costly to High (easy to administer,
incentives, but manageable) limits, hard to scale city- repeat longitudinally) no special technical skills)
wide)
Table 2

The representative approaches of proximity-based measurements.

Study

Greenery exposure measurement

Measurement meaning

Data source

Study area

Zhu et al., (2003)
Lang et al., (2007)

Gupta et al., (2012)

Li et al., (2014)

Li et al., (2015); J.
Yang et al., (2009)
Rugel et al., (2017)

Lafortezza and
Giannico, (2019)

Giannico et al.,
(2022)

Vegetation Cover Index (VCI)
Weighted Green Index

Urban Neighborhood Green Index (UNGI)

Building’s Proximity to Green spaces Index
(BPGI)

Green View Index (GVI)

Natural Space Index

Normalized Difference Green-Building
Volume (NDGB)

3D Green volume/gray volume and
Normalized Difference Green-Gray Volume

Proportion of vegetation cover in an area

occurrence and distribution of

relevant green structure types weighted by relative
importance of

these types in the eyes of the citizens

the spatial distribution of UGS in the vicinity of urban
built-up

the green spaces adjacent to a building

the amount of greenery that people can see on the
ground at different locations in a city

potential exposure based on the presence, form,
accessibility, and quality of multiple forms of
greenspace and bluespace

the way people perceive the ecosystem services
conveyed by green spaces

the volume of vegetation and its relationship with the
volume of buildings

Satellite image
Satellite image /
Survey

Satellite image

LiDAR 3D building
models / Satellite
image

Street View Images

Satellite based data

LiDAR 3D building
models
LiDAR 3D building
models

(NDGG)

Beer Sheva, Israel
Phoenix, USA

Delhi, India

Székesfehérvar,
Hungary

Berkeley, USA / New
York City, USA
Vancouver, Canada

Bari, Italy

Rome, Italy

Chen et al., (2022) Population-weighted greenery exposure Population weighted green space coverage Satellite images China
Table 3
The representative approaches of mobility-based measurements.
Study Mobility Measurement Mobility data Greenery measurement Data source Study area
Almanza et al., Time and location of participants Data from portable GPS NDVI Satellite Chino, USA
(2012) imagery
Ladle et al., (2018) The location history data from 280 Smart phone GPS data Land use data Land cover The City of Calgary,
university students map Canada
Song et al., (2018) Hourly human distribution map Mobile phone data (Tencent) Normalized Difference Satellite Thirty Chinese cities
Greenness Index (NDGI) imagery
Chen et al., (2018) time-spatial distribution of urban Social media real-time Tencent user Park boundary Land cover Shenzhen, China
park users density (RTUD) data map
Guan et al., (2020) park visit and residential locations mobile signaling data Park boundary Land cover Tokyo, Japna
of visitors map
Heikinheimo et al., Geolocated posts about park use Social media data and mobile phone  Park boundary Land cover Helsinki, Finland
(2020) data map
Zhang et al., (2021) Wearable GPS Real time location from GPS Images taken by a wearable Wearable Beijing, China
camera camera

Ghermandi et al.,
(2022)
Liu et al. (2023)

Number of geolocated social media
photos
GPS-equipped mobile phones

Geolocated social media photos

7-day GPS trajectories

Element in geolocated social
media photos
NDVI

Social media

Satellite
imagery

Haifa, Isreal

Hong Kong, China
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two groups. The first involves measuring the aggregate number of
people present in various areas during specific time intervals such as the
pedestrian volume of streets (Liu, Wang, Grekousis, et al., 2023; Yin
et al., 2015). These areas may consist of spatial units with varying levels
of greenery, such as streets, or may directly be greenspaces like parks
(Chen et al., 2018; Guan et al., 2020; Heikinheimo et al., 2020).
Traditional studies typically obtain the number of pedestrians or visitors
by manually counting in the field. Recently, studies automatically esti-
mated number of people through social media, SVIs, video surveillance
to calculates the people-weighted greenery exposure (Chen et al., 2018;
Yin et al., 2015).

The second method focuses on assessments of individual real-time
trajectories or locations (Almanza et al., 2012; Liu et al., 2023). The
most common approach involves using questionnaires to gather travel
logs of respondents (Pliakas et al., 2014). In recent years, some studies
utilize geolocated social media images to pinpoint individuals’ locations
and recognize how they use green space (Ghermandi et al., 2022),
though this approach may face challenges regarding insufficient
spatiotemporal resolution, recall biases, and limitations in understand-
ing the actual activities of individuals. Some of these studies assess green
space exposure within relevant spatial contexts at specific moments
(Xiao et al.,, 2019), and the other evaluates the spatiotemporally
weighted accumulation of exposure throughout an individual’s
activity-travel trajectories (Liu et al., 2023). Besides, studies used
wearable cameras equipped with GPS to capture images along partici-
pants’ daily routes and analyze the proportion of greenery in these im-
ages (Liu et al., 2023; Zhang et al., 2021).

3.3.3. Visibility-based exposure

While mobility-based methods focus on the dynamic location of
people therefore can evaluate the real-time proximity between in-
dividuals and greenery, how a human and greenery interacted remains
unclear. Two major types of interactions between humans and greenery
exist, which are visual and physical contact to greenery (Cox et al.,
2017). Proximity-based and mobility-based exposure can be considered
as physical contact (or physical proximity) to urban greenery.

Compared with physical contact, the assessment of visual accessi-
bility or direct visibility is more complex due to the influence of three-
dimensional factors. 3D city models are particularly effective for
various visibility analyses, such as determining the line of sight between
two points within urban environments and estimating the volume of
sight (Biljecki et al., 2015). Initially, manually constructed virtual

Table 4
The representative approaches of visibility-based measures.
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models were utilized to assess the visibility of green spaces from
different buildings (Yasumoto et al., 2011). Some research also employs
3D city models to obtain viewsheds and integrates these with greenery
detected from satellite images (Meng et al., 2020; Yu et al., 2016) or SVIs
(Qi et al., 2024) to measure greenery visibility. With advances in
photo-realistic 3D models, studies can directly derive greenery distri-
bution from 3D city models and assess greenery views for buildings (Li
et al., 2022) and pedestrians (Ki et al., 2023; Tang et al., 2023). Addi-
tionally, some studies have developed indices based on 3D city models to
evaluate the visual exposure to greenery (Bolte et al., 2024; Xia et al.,
2024). Besides 3D city model, studies also employ urban greenery maps
and high-resolution digital surface models to evaluate greenery visibility
(Cimburova & Blumentrath, 2022). SVI also has the potential to assess
the visual accessibility of greenery, but it should be transformed from a
vehicle’s perspective to a pedestrian’s perspective using deep learning
methods (Ito et al., 2024) (Table 4).

4. Discussion
4.1. Trend in automatic greenery exposure assessment

4.1.1. From 2D to 3D measurement

In greenery exposure studies, the large-scale representation of urban
greenery has traditionally relied on 2D indicators, such as the Normal-
ized Difference Vegetation Index (NDVI), which are derived from sat-
ellite imagery (De La Iglesia Martinez and Labib, 2023).

However, 2D indicators alone are insufficient for the detailed mea-
surement of urban greenery, and benefits related to 3D greenery volume,
including carbon stock estimation, heat mitigation, and air pollutant
removal. Meanwhile, the increasing vertical expansion of urbanization
especially in high density areas has led to morphological heterogeneity
in the urban landscape. This development has resulted in diverse spatial
patterns of urban infrastructure and urban greenery, influencing the
interaction of urban residents and urban greenery. Research has delved
into the link between the visibility of nature and mental health benefits,
including the relief of stress and fatigue (Du et al., 2022), reduction of
anxiety and depression (Bi et al., 2022), enhanced positive emotions (Lin
et al., 2022), and increase residential satisfaction (Kley & Dovbischuk,
2024). Recently, SVIs have emerged as an omnipresent data source for
assessing urban greenery visibility. However, SVIs are captured by ve-
hicles traveling along the center of roads, which may not accurately
represent views from other locations, such as pedestrians on the

Data sources Study area

The visibility of green space from different buildings

virtual city model developed
manually

Kyoto, Japan

the area of visible urban vegetation on a particular floor

Study Greenery exposure measure Measurement meaning
Yasumoto et al., (2011) Access to the view of green

spaces
Yu et al., (2016) Total Floor Green View Index

(TFGVI) of a city building

Meng et al., (2020)

Lin et al., (2022)

Li et al., (2022)

Cimburova &
Blumentrath, (2022)

Ki et al., (2023)

Tang et al., (2023)

Xia et al., (2024)

Qi et al., (2024)

Bolte et al., (2024)

Floor-level exposure
opportunity index

Greenery ratio in window
view content

Window View Indices (WVIs)
of Green

visual exposure to urban
greenery

human-centric virtual street
view greenery

Green View Index

Greenspace Composite Index
framework
Building Green View Index

The green window view
index

the amount of vegetation people perceived on a
particular floor of a city building
the ratio of pixels for Greenery in a window’s view

the ratio of pixels for Greenery in a window’s view

viewshed-based method for modelling visual exposure
to urban greenery

the ratio of pixels for Greenery in pedestrians’ view
from sidewalk

the ratio of pixels for Greenery in pedestrians’ view
from sidewalk

3D greenery exposure levels in communities
considering the range of residents’ activities

visible green space from a building

The proportion of visible vegetation area in a field of
view
when looking out of a specific window

LiDAR 3D building models /
Satellite image
LiDAR data and aerial imagery

Manual taken photos in
questionnaire
3D photogrammetric city model

GRASS GIS

3D photogrammetric city model

Mobile laser scanning (MLS) point

cloud data
LiDAR data based 3d model

Street view images and urban
construction data

airborne

LiDAR data

Shanghai, China
Székesfehérvar,
Hungary

Taibei, China

Hong Kong, China
Oslo, Norway

New York City, USA
Fuzhou, China
Nanjing, China
Shenyang, China

Bonn, Germany
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sidewalk or residents near windows (Ito et al., 2024).

Recent advancements in technologies such as Light Detection and
Ranging (LiDAR), photogrammetry, high-resolution aerial remote
sensing, and 3D Geographic Information Systems (GIS) have signifi-
cantly enhanced the precision and comprehensiveness of 3D city model,
which may it feasible to measure comprehensive 3D characteristics of
urban greenery. These 3D city models provide opportunities to extract
3D indicators of greenery consider elements like green volume, vege-
tation types, shade and microclimate effects, and offer a more detailed
understanding of the features of greenery in a given space (Giannico
et al., 2022; Spano et al., 2023). Meanwhile, incorporating 3D mea-
surements allows researchers to accurately assess people’s daily expo-
sure to urban greenery. Traditional 2D greenery measurement methods
primarily focus on the horizontal distribution of green spaces using GIS
mapping and fixed buffer zones, which often overlook vertical elements
and provide a static, oversimplified view. 3D city model offers oppor-
tunities considering factors like different locations people occupied, e.g.,
window view, street view. Hence, it provides a more accurate, detailed,
and human-centric view of urban greenery, capturing the intricated
dynamics of human and green space interactions. They support the
integration with other technological tools, such as simulation models
and environmental sensors to support the planning, designing, and
managing green infrastructure (Jia and Wu, 2020).

4.1.2. Automatically greenery measurement: from quantitative to
qualitative

Another trend in greenery exposure studies is that the automatic
assessment of urban greenery has evolved from a sole focus on quanti-
fying the level of greenery to a more comprehensive approach that in-
cludes both quantitative and qualitative assessments. Quantitative
assessment of urban greenery involved using metrics such as number of
trees around housing of people, the percentage of green area within a
certain radius, which are easy to automatically be obtained from urban
big data using advanced computer vision technology (Seiferling et al.,
2017). Qualitative assessment of greenery exposure encompasses
various non-quantifiable aspects of urban greenery, such as aesthetics,
maintenance, safety, and amenities (Stessens et al., 2020). Qualitative
evaluation of green spaces is crucial for understanding their subtle
values and impacts beyond what quantitative measures can capture (Li
and Wang, 2021). User engagement and accessibility are significantly
influenced by qualitative factors (Palliwoda and Priess, 2021; Tan et al.,
2019). Furthermore, urban greenery’s health benefits, including mental
restoration and stress relief, are enhanced by features like vegetation
type, shade, and noise reduction, while also reflecting ecological values
and social-cultural significance that strengthen community identity and
cohesion (De Vries et al., 2013).

Traditionally, qualitative studies were carried out through field
studies or questionnaires which were limited to sample sizes (Yang et al.,
2021; Zhang et al., 2022a,b). Recently, advancements in Al and com-
puter technology have introduced new changes to these methods (Liu,
2023). As a large-scale metric of greenery, NDVI also provides people
with both quantitative and qualitative information on greenery (De La
Iglesia Martinez and Labib, 2023). NDVI provides a measure of vege-
tation health overtime (Ji and Peters, 2003). By comparing NDVI values
over different time periods, researchers can monitor changes in vege-
tation conditions over time (Kinyanjui, 2011). However, NDVI does not
differentiate between different types of vegetation or species, limiting its
ability to assess species-specific health or stress (De La Iglesia Martinez
and Labib, 2023).

With the advantage of both easy to be acquired and high-resolution,
Street view images recently also become an effective tool for evaluating
the quality of greenery and greenery exposure (Ma et al., 2024; Tong
et al., 2020). Street view images provide a detailed view of trees from
the ground level, allowing researchers to assess tree species, vegetation
structure, leaf index and health (Liu, et al., 2023). Also, street view
images were used to grade people’s perceptions on greenery such as
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aesthetic levels (Xu et al., 2022). This information can be calculated into
aggregate index such as tree species mix and proportion of a specific
species of trees to assess the impact of greenery quality on people’s
walking behavior (Jiang et al., 2024).

3D models generated through LiDAR and photogrammetry can offer
detailed information about vegetation structure (Hancock et al., 2017).
LiDAR generates high-resolution 3D models of vegetation, allowing re-
searchers to analyze the structure of urban forests, including species,
health conditions, leaf index (Kamoske et al., 2019). Photogrammetry
can also generate 3D models but with color information, which can be
beneficial for distinguishing different species or vegetation types based
on color and texture (Tuominen et al., 2018). The use of 3D city models
for qualitative assessing urban greenery and exposure to greenery is still
underexplored, but it holds promise for the near future.

It should be noted that street view imagery is characterized as a 2.5D
data between 2D and 3D (Taneja et al., 2013). While it conveys the
impression of depth and a 3D environment, it fundamentally lacks
explicit volumetric geometry (Armagan et al., 2017). These ground-level
panoramic images offer immersive visual cues such as perspective and
parallax, yet they remain surface-based projections anchored to specific
camera viewpoints (Ito et al., 2024). In contrast, urban models derived
from LiDAR or airborne photogrammetry explicitly encode spatial ge-
ometry through point clouds or textured meshes with precise x-y-z
values, enabling comprehensive analytical capabilities, such as volu-
metric measurement (Casalegno et al., 2017), and occlusion-accurate
visibility analysis (Li et al., 2022), that street-view images cannot
support.

4.1.3. Adoption of Al in greenery exposure assessment

The significance of Al in measuring exposure to greenery has been
increasingly recognized. The application of advanced computer vision
techniques has greatly enhanced the capacity to extract information
from images, including satellite imagery, street view photographs, social
media images, manual taking images, and even images extracted from
3D city models (Li et al., 2022; Li et al., 2015; Y. Zhang et al., 2022a,b).
Meanwhile, natural language processing (NLP) has also been employed
to assess human exposure to greenery by analyzing user-generated
content from social media, questionnaires, and interviews, thereby
capturing more subjective evaluations of greenery and its perceived
impact (Chen et al., 2018; Heikinheimo et al., 2020; Wei et al., 2024).
Beyond the direct assessment of greenery, computer vision also serves as
a tool to generate urban images, offering more detailed information on
greenery from low-resolution data, which is easier to acquire. For
example, researchers have employed Generative Adversarial Networks
(GANs) and diffusion models to generate street view images (Toker
et al., 2021) as well as transformed vehicle-view SVIs to a pedestrian
perspective, more closely reflecting what pedestrians observe on the
road (Ito et al., 2024). These Al-generated images can subsequently be
used to evaluate eye-level greenery exposure.

The role of Al in exposure studies has evolved from objective mea-
surement (Li et al., 2015) to inductive reasoning (Suppakittpaisarn et al.,
2022) and, more recently, toward emerging applications of deductive
generation (Ito et al., 2024). Objective measurement primarily involves
estimating the quantity or quality of greenery from urban images (Li
et al., 2015). Inductive reasoning involves drawing inferences from
analysis rather than relying only on number or volume. This includes
subjective perception on greenery such as interpreting people’s com-
ments on social media and review platforms, or scoring imagery to
evaluate green quality (Havinga et al., 2021; Wang et al., 2023), and
also objective analysis such as assessing the health condition of vege-
tation (Windrim et al., 2020) and how tree canopy functions on heat
stress (Liu et al., 2024, 2024). Nonetheless, inductive reasoning Al,
which draws conclusions from specific data observations, may face
challenges in contexts with limited or unstructured data unless extensive
datasets support it. Conversely, deductive generative AI leverages
established scientific theories and principles, making it well-suited for
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environments defined by comprehensive regulations and standards (H.
Xu et al., 2024). More recently, researchers have begun to explore
generative approaches. Current demonstrated applications are relatively
narrow, such as transforming greenery views across different perspec-
tives (Ito et al., 2024; Toker et al., 2021). Beyond these, there is growing
interest in potential applications such as predicting human behavior or
simulating vegetation growth and microclimates. However, these
remain exploratory rather than established.

A prevalent challenge across Al applications is the scarcity of high-
quality datasets specifically curated for urban greenery. Furthermore,
the application of Al in greenery studies is hindered by biases stemming
from various data sources. For instance, SVIs used to extract greenery
data are captured at different times across different locations. Addi-
tionally, other sources, such as mobile phone signal data and social
media data, contribute to biases related to the demographic distribution
of users. Early discussions suggest that generative Al might help mitigate
such biases, although empirical validation remains limited (Mehrabi
etal., 2022; Zhang et al., 2018). To facilitate this, there is a critical need
for developing standardized, transparent measurement frameworks to
ensure coherence and reproducibility in future research.

4.1.4. Multi-modal data integration

Another trend in greenery exposure evaluation is the integration of
multi-modal data, combining diverse datasets and capturing the com-
plex ways in which people interact with greenery (Weng et al., 2024).
Studies employed satellite imagery for vegetation mapping, GPS-based
mobility and wearable sensor data for dynamic exposure assessments,
SVIs for evaluating greenery visibility, and social media or survey data
to capture perceptions and emotional interactions, bringing
human-centered insights, incorporating multiple aspects such as
mobility, visibility, accessibility, and behavioral patterns over time
(Chen et al., 2018; Guan et al., 2020; Yu et al., 2016). The key is to
synthesize these diverse data points to create a richer understanding of
when, where, and how people encounter greenery in their environments
(Weng et al., 2024).

Data integration techniques such as spatial-temporal overlays, ma-
chine learning algorithms, and composite indices enable combining such
varied datasets into meaningful metrics (Hashemi and Karimi, 2020).
For example, wearable GPS data can be aligned with satellite-derived
vegetation data to track individual exposure (Liu et al., 2023). Social
media data, such as geotagged photos or text posts, can be used along-
side objective measures to assess qualitative experiences and seasonal
trends in greenery exposure (Guan et al., 2020). By combining these
sources, we can analyze patterns of exposure across different de-
mographic groups and geographic regions, identify disparities in access
to green spaces, and investigate dynamic changes in exposure (Liu et al.,
2023).

Besides, multi-modal data integration also enables multi-sensory
exposure assessment, capturing auditory and olfactory dimensions of
greenery experiences. For instance, acoustic data can reveal the pres-
ence of natural sounds such as birdsong or rustling leaves (Stobbe et al.,
2022), while environmental sensors can capture odor-related com-
pounds that shape olfactory experiences (He et al., 2022). By linking
these non-visual sensory pathways with visual and mobility datasets
(Korpilo et al., 2023), researchers can develop a more comprehensive
understanding of how green environments influence human perception,
comfort, and well-being across multiple senses.

However, key challenges persist, such as addressing data fragmen-
tation caused by varying resolutions or timeframes, protecting user
privacy when integrating human mobility and greenery data, and
minimizing bias, as some data sources (e.g., social media or app data)
may not represent all population groups (Senaratne et al., 2017).
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4.2. From proximity-based exposure to mobility-based and visibility-based
exposure

Researchers have classified human-nature interactions into three
distinct types: intentional, incidental, and indirect (Keniger et al., 2013).
‘Intentional interactions’ refer to deliberate visits to natural spaces such
as parks or gardens. ‘Incidental interactions’ occur when individuals
encounter nature elements while engaged in other activities. ‘Indirect
interactions’ involve viewing nature without being physically present
within it. Studies found that in urban areas, indirect interactions
dominate as the primary mode of human engagement with nature (Cox
et al., 2017). Proximity-based measures indicate the potential for
human-greenery interaction, relating to a concept of ’capacity buil-
ding’—such as providing opportunities for physical activity or social
engagement (Markevych et al., 2017). However, mere proximity does
not confirm that these interactions actually occur. With the increasing
availability of urban data sources in the era of big data and advances in
Al studies on greenery exposure are evolving towards more detailed and
comprehensive measurements. Mobility-based methods focus on
capturing individual movements, addressing methodological issues
associated with proximity-based data, such as the Uncertain Geographic
Context Problem (UGCoP) (Kwan, 2012). This type of measurement
captures both ‘intentional interaction’ and ‘incident interaction’
combining with data delineating greenery, which can offer insights to
both “reducing harms” and “restoring capacities” (Markevych et al.,
2017). By considering human mobility, these methods allow for the
assessment of real time distance between human and greenery by
determining where and how much time individuals spend on their daily
activities, rather than assuming exposure within a static place buffer
(Kwan, 2009). Furthermore, by accounting for individual activity spaces
and movement patterns, mobility-based measurements provide
personalized insights into greenery exposure, enabling tailored health
recommendations and interventions (Zhang et al., 2021). This approach
is particularly valuable for examining short-term exposure impacts, such
as stress reduction from brief park visits (Kabisch et al., 2021), as well as
the long-term benefits from consistent interaction with green environ-
ments over years or decades (De Keijzer et al., 2016).

The visibility-based method emphasizes occurred or potential visual
contracts between individuals and greenery, which belongs to ‘indirect
interaction’. The visual perception of greenery serves as a primary
pathway for “restoring capacities”, such as attention restoration and
stress recovery (Markevych et al., 2017). The primary distinction be-
tween visibility-based methods and the other two types of methods
(proximity- and mobility-based) is that the former focuses on the
nuanced human visual contact with greenery, whereas the latter two
merely considers the availability of greenery in an area or a location
(Zhang et al., 2022a,b). For visual contacts, individuals residing on
higher floors in the same building can have vastly different visual access
to greenery compared to those living on lower floors (Li et al., 2022,
2023). Even within the same room, the view of greenery can vary
significantly for individuals standing near the windows compared to
those positioned further away or near other windows (Bolte et al., 2024).
Therefore, a person’s location and posture also play a critical role; in-
dividuals in the same spot who are standing, sitting, lying down, or of
different heights may experience different views of greenery. For
example, individuals with mobility limitations living on upper floors of a
high-rise building might have difficulty physically accessing nearby
greenery but can still enjoy a visual connection to greenery (Rosso et al.,
2011).

However, most visibility-based measures are resource-intensive and
constrained in spatial coverage and temporal resolution, making them
less practical for health research compared with location- or mobility-
based approaches. To fully realize the accuracy of visibility-based
exposure, detailed information is required not only on the precise
location and form of greenery and the surrounding built environment (e.
g., window placement), but also on individuals’ exact locations and the
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duration of their presence there (Li et al., 2023). For long-term, pop-
ulation-level health outcomes such as those examined in cohort studies,
proximity-based measures often perform as well as or better than
visibility-based ones (Jimenez et al., 2022b; Yi et al., 2024), potentially
due to its greater temporal consistency, broader effective exposure area,
and lower susceptibility to measurement. Furthermore, studies
employing visibility-based measures often present a simplified view of
human-greenery encounters, which prioritizes visual stimuli to the
detriment of other sensory channels of greenery like sound (Bates et al.,
2020) and smell (He et al., 2022), resulting in a ’visual bias’ in health
outcomes.

4.3. Ethical considerations in greenery exposure measures

While methodological advances in mobility- and visibility-based
approaches have substantially enriched our capacity to quantify
greenery exposure, they also raise profound ethical challenges. These
methods generate highly granular data that can inadvertently expose
sensitive aspects of individuals’ daily lives, including residential loca-
tions, commuting routines, and social activities. The risks become even
more acute when such exposure metrics are linked to health outcomes,
as this combination heightens the potential for re-identification and
misuse.

First, concerns about geoprivacy are paramount. Studies increasingly
rely on personal location data, including home, work, and daily itiner-
aries, that may be reverse-identified even after anonymization
(Farzanehfar et al., 2021). The risk of inferring sensitive personal in-
formation and recommend safeguards such as pseudonymization and
geographical methods is across all stages of research (pre-collection,
processing, analysis, sharing) (Ribeiro et al., 2022). In recent urban
health studies, for instance, smartphones have been used to collect
minute-by-minute GPS traces that were then matched with street-view
imagery classified by deep learning to quantify greenery exposure (Yi
et al., 2025). Similarly, studies integrating wearable cameras and
physiological sensors to capture participants’ stress responses in
different urban contexts have underscored the challenge of handling
visual data that may inadvertently include bystanders or private envi-
ronments without consent (Z. Zhang et al., 2021).

Beyond privacy, issues of informed consent and autonomy warrant
critical attention. Participants may not fully grasp the extent to which
their spatial traces or imagery reveal lifestyle patterns or vulnerabilities
(Zhang et al., 2023). The complexity increases in studies using oppor-
tunistic or passively collected data, such as mobile phone records or
large-scale street-view images, where consent is often indirect, opaque,
or absent (Meyer et al., 2022). In such cases, individuals whose data or
images are analyzed may not even be aware of their participation,
raising fundamental concerns about autonomy and fairness (Zhang
et al., 2023).

To address these challenges, researchers should adopt robust
governance frameworks that go beyond legal compliance (Kelly et al.,
2013). Recommended practices include minimizing the collection of
sensitive variables, implementing privacy-preserving techniques such as
aggregation or differential privacy, securing storage and access controls,
and ensuring that consent procedures are transparent and comprehen-
sible (Ribeiro et al., 2022). Ethical oversight should be iterative rather
than static, adapting to evolving data practices, and community stake-
holders should be engaged in decisions around data use. Epidemiolog-
ical studies involving georeferenced personal data demand proactive
ethical reflection to ensure that scientific benefits clearly outweigh the
risks to participants (Ribeiro et al., 2022).

4.4. Future directions for greenery exposure assessment
The measurement of greenery exposure is becoming increasingly

fine-grained and efficient. To achieve more precise exposure assess-
ments, it is possible to evaluate the real-time, real-distance, and real-
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type interactions between greenery and humans. This requires accu-
rate measurement of both individual’s location and greenery drawing on
emerging big data sources such as SVIs, 3D city models, social media
data. Another direction involves utilizing limited available data to
maximize the measurement of greenery exposure. Al, mainly computer
vision (CV) and natural language processing (NLP), would play a crucial
role in extracting information, reasoning problems, and generating data
for more accurate and comprehensive measurements. Recent emerging
LLMs have the potential to synthesize heterogeneous data sources—such
as satellite imagery, SVIs, IoT sensors, and social media—to create ho-
listic models of greenery exposure, enhancing decision-making through
improved data analysis, participatory engagement, predictive modeling,
and policy automation (Malekzadeh et al., 2025). Furthermore, future
work may look beyond greenery measures to incorporate behavioural
and psychological factors in exposure research. Even within identical
green spaces, differences in behaviour, psychological status, and cul-
tural background may result in vastly disparate "effective doses" of
exposure for individuals (Sella et al., 2023). How to incorporate factors
related to these behavioural and psychological contexts may represent
another potential aspect requiring attention in fine-grained greenery
exposure studies.

The results of these fine-grained and comprehensive measures would
further inform studies in public health, environmental behavior, and
transportation. These outcomes would guide planners and decision-
makers regarding which types or features of nature provide the great-
est benefits and how nature interventions compare to other measures
that could enhance well-being, potentially at lower cost or with more
lasting impact. Finally, a viable direction are comparative and quality
assessment studies of measuring urban greenery. There has been some
research initiated on this topic, e.g. studies comparing the performance
of different data sources (Helbich et al., 2021; Huang et al., 2025), and
studies on examining the reliability and coverage of particular data
sources such as SVI (Biljecki et al., 2023; Fan et al., 2025). However,
further work is needed to critically grasp the capability of each approach
and the integrity of the derived measurements.

4.5. Limitation

This review has several limitations. First, a complete inter-rater
reliability process was not conducted. The initial search, screening,
and data extraction were performed by the first author, and the second
and third authors independently checked the screened results for con-
sistency with the predefined inclusion and exclusion criteria. Although a
formal inter-rater reliability assessment was not carried out, this quality
control procedure helped reduce subjectivity and enhance the rigor of
the review. Second, the scope of this review was limited to methodo-
logical aspects of greenery exposure assessment. While this focus
allowed us to provide a detailed synthesis of methodological advances, it
did not extend to evaluating health outcomes, which may limit the
applicability of findings for public health implications.

5. Conclusion

Urban greenery is a crucial element of urban environments, offering
numerous benefits through various pathways. Traditional proximity-
based methods inadequately capture the actual interaction between
humans and greenery. Mobility-based methods focus on real-time
human location data and potential human-greenery physical contact.
Emerging visibility-based methods further provide opportunities to
measure potential visual interactions between humans and greenery.
Emerging data sources and technology enable developing metrics that
account for both human mobility and potential contact with greenery,
while traditional methods still held an advantage in scalability and
accessibility. Current systematic reviews on greenery exposure primarily
focus on the health outcomes of urban greenery and have largely
ignored emerging visibility-based studies. To address this gap, we
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reviewed 312 studies using the particular approach/metric/data source
for the first time to assess human exposure to urban greenery. We
categorized these studies by the data sources used to measure greenery
and human presence, and further classified them based on the aspects of
details captured in human-greenery interactions as proximity-based,
mobility-based, and visibility-based assessments. Our review offers the
most comprehensive analysis of methodologies available for measuring
human exposure to urban greenery. Our conceptual framework and
categorization may guide a wide range of greenery exposure studies to
design their exposure measurements according to the level of detail
required for their research objectives.
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