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A B S T R A C T

Greenery plays a vital role in urban environments, providing numerous benefits through diverse pathways. 
Various metrics and methodologies have been proposed to assess multiple dimensions of greenery exposure. For 
a comprehensive and precise assessment of greenery exposure for different research purposes, it is crucial to 
identify the most suitable methods and data sources. However, existing reviews primarily address the health 
outcomes of urban greenery, rather than the methods of assessing greenery exposure. To address this gap, we 
conducted a review of 312 research articles, focusing on methodologies and technologies for measuring greenery 
exposure in urban settings. This review categorizes exposure measurement techniques into three categories: 
proximity-based, mobility-based, and visibility-based, evaluating their strengths, limitations, and synergies. 
Proximity-based methods generally assess overall greenery level in residential areas or other locations, but they 
fall short in capturing the actual interactions between humans and greenery. Mobility-based methods track real- 
time human location and assess greenery exposure based on travel trajectories, but they neglect the specific 
nature of human-greenery interactions. In contrast, emerging visibility-based methods offer opportunities to 
measure potential visual interactions between individuals and greenery. We found emerging metrics tend to 
integrate 3D data, qualitative aspects, and diverse data sources. We advocate for an integrated approach that 
encompasses both human mobility and potential interactions with greenery across various areas. We also argue 
that data granularity is balanced against cost, scalability, and ethical constraints. Our comprehensive review 
offers a framework and categorization to guide studies in designing exposure measurements aligned with their 
research objectives.

1. Introduction

1.1. Significance of assessing people’s exposure to urban greenery

Urban greenery is known to improve mental health (Gianfredi et al., 
2021), boost physical activities (Lu, 2019), enhance community cohe
sion (De Vries et al., 2013; Dzhambov et al., 2018), and contribute to 
ecological benefits such as air purification (Abhijith et al., 2017) and 
temperature regulation (Cruz et al., 2021). To effectively monitor and 
leverage these benefits, it is crucial to measure people’s daily exposure 
to greenery (Markevych et al., 2017).

People’s interactions with greenery can be diverse, and each type of 
interaction may provide distinct benefits. Researchers have summarized 
these benefits as three major pathways: reducing harm, restoring ca
pacities, and building capacities (Markevych et al., 2017). In the 
respective of harm reduction, urban greenery mitigates adverse 

conditions by enhancing microclimate as vegetation absorbs solar ra
diation, noise, pollutants, and carbon dioxide, thereby improving envi
ronmental comfort (Gillner et al., 2015; Zhao et al., 2018). The capacity 
restoration involves recovery from mental stress through visual or 
auditory exposure to natural elements, which lowers stress levels and 
restores directed attention (Ma et al., 2024). Capacity building refers to 
greenspaces facilitating physical activities and social interactions (Ward 
et al., 2016). Different pathways entail different types of interactions 
between people and greenery. For example, physical access to parks or 
green spaces enables active engagement in various physical activities, 
such as walking or jogging, which can improve physical health (Hearst 
et al., 2013; Lu et al., 2018). Visual views of greenery from home or work 
can enhance mental well-being by reducing stress and promoting 
relaxation (Bi et al., 2022; Du et al., 2022). Simply living near green 
spaces might influence air quality and provide a more comfortable 
microclimate, contributing to general health benefits (Cruz et al., 2021).
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1.2. Evolving methods and data sources for measuring greenery exposure

To accurately assess the interactions between individuals and 
greenery through various pathways, it is essential to evaluate the supply 
(greenery), demand (people), and the interactions between them 
(exposure). The most common method for measuring exposure involves 
using simple buffers around individuals’ residential addresses or other 
locations. It is argued that environmental benefits facilitated by urban 
greenery, such as noise reduction, temperature moderation, air purifi
cation, can be directly gained by nearby greenery without direct phys
ical or visual exposure (Zhang et al., 2022a,b). However, this method 
provides a very coarse measure of greenery supply around a location. 
Furthermore, it does not differentiate the interactions, such as physical 
or visual ones. Some studies illustrated that the proximity between 
humans and greenery has little direct influence on mental and physical 
health (Dadvand et al., 2016). Different types of contact between 
humans and greenery might be an important potential mechanism (L. 
Zhang et al., 2022a,b). For example, the time spent in green spaces was 
linked to mental health more than proximity to green spaces (van den 
Berg et al., 2017). To address these issues, more detailed and sophisti
cated methods are required.

Traditional studies have often been constrained by technological 
limitations in assessing greenery exposure at both covering a large scale 
and capturing fine-grained dimensions (Sadeh et al., 2021). However, 
advancements in emerging sensing technologies and big data analysis 
tools have progressively addressed these challenges. Technologies such 
as GPS tracking and smartphone applications can collect data on in
dividuals’ movements and interactions with green spaces, offering in
sights into actual usage patterns rather than merely availability and 
potential access (Ladle et al., 2018). Additionally, participatory map
ping that incorporates community feedback can provide contextual 
qualitative data to enhance quantitative analysis (Brown et al., 2018). 
Advancements in remote sensing, particularly with high-resolution 
satellite sensors, have improved the granularity of urban greenery 
mapping using indices such as the Normalized Difference Vegetation 
Index (NDVI) (B. Chen et al., 2022). Over recent decades, Street View 
Imagery (SVI) offers a human-centric perspective on greenery exposure 
and has been widely used to extract the percentage of visible greenery 
along streets (Li et al., 2015; Lu et al., 2018).

Recent advances in geoinformatics and the growth of 3D city models 
have also introduced innovative approaches for assessing greenery 
exposure. For instance, a 3D greening measurement method has been 
proposed, utilizing multi-dimensional metrics such as volume, area, and 
diversity, derived from mobile laser scanning (MLS) point clouds 
(Ferreira et al., 2024; J. Qi et al., 2022; Tang et al., 2023). Furthermore, 
these technologies facilitate the analysis of urban greenery exposure 
from various perspectives. For example, deep learning models have been 
adapted to quantify the proportion of natural views in window-view 
photographs obtained from 3D photorealistic City Information Models 
(CIMs) (Li et al., 2022), which can represent the indoor visual exposure 
of individual buildings.

In addition to emerging data sources, artificial intelligence (AI), 
particularly computer vision, has demonstrated significant potential for 
enhancing the analysis of greenery exposure. Recently, there is a rising 
trend of using advanced computer vision techniques to assess both the 
quality and quantity of greenery exposure incorporating prevalent 
urban images or 3D city models (M. Li et al., 2022; Li et al., 2015; Liu, 
Jiang, Wang, et al., 2023). Furthermore, computer vision is employed to 
examine the impact of vegetation on individuals’ perceptions of urban 
views, such as aesthetic quality (Southon et al., 2017) and value of 
property (Xu et al., 2022). Beyond the direct assessment of greenery, 
computer vision also serves as a tool to generate urban images, offering 
more detailed information on greenery from low-resolution data, which 
is easier to acquire. For instance, researchers have utilized Generative 
Adversarial Networks (GANs) and diffusion models to generate street 
view images and other urban imagery, as well as 3D city models from 2D 

satellite images (Toker et al., 2021). Besides computer vision, other AI 
models such as natural language processing (NLP) and large language 
models (LLMs) also have the potential to directly or indirectly assess 
greenery exposure such as analyze people’s perception and emotion on 
green space from user-generate contents from social media platforms 
(Wei et al., 2023).

1.3. Other related reviews

Most review papers published in international scientific outlets that 
discuss greenery exposure concentrate on examining its effects on one or 
several health-related issues (Barnes et al., 2019; Kondo et al., 2018; 
Luque-García et al., 2023; Twohig-Bennett & Jones, 2018). These issues 
include mental health (Barnes et al., 2019; Liu, Chen, Cui, et al., 2023; 
Park et al., 2024), physical health (Liu et al., 2022), cognitive function 
(Fowler Davis et al., 2024), physical activities (Yen et al., 2021), and 
others (Ccami-Bernal et al., 2023; Wolf et al., 2020). These reviews al
ways found that different ways of defining and measuring green spaces 
can produce heterogeneous results of the same health issue. Since 
greenery may benefit people through multiple pathways regarding 
diverse outcomes, the measurement of people’s exposure to green space 
must be tailored to concrete study contexts and research questions. 
However, there is a scarcity of review papers that focus specifically on 
the methodology and technology used to measure greenery exposure. 
While numerous studies have highlighted the health benefits associated 
with exposure to green spaces, few have critically evaluated the various 
techniques and tools employed to quantify or qualify this exposure. 
Existing studies have reviewed papers specifically for eye-level urban 
greenery using SVIs (Lu et al., 2023; Yan, Huang, et al., 2023). Y. Liu 
(2023) systematically reviewed existing green space representations and 
metrics for assessing individuals’ exposure to green spaces, highlighting 
the limitations of traditional residence-based paradigms which often 
overlook individuals’ mobility and the uncertainties in exposure along 
daily activity-travel paths. Notably, their review encompasses literature 
before 2021. From 2021–2024, advancements in 3D and computer 
vision technologies have significantly transformed the measurement of 
greenery and the interactions between people and green spaces.

1.4. Our review

This paper examines emerging approaches to measuring greenery 
exposure in urban environments, highlighting their strengths and limi
tations. We assess the suitability of these advanced techniques and 
explore the potential for their integration to yield more meaningful as
sessments. We also identify the research opportunities required to 
develop a comprehensive framework that integrates the strengths of 
different techniques. To the extent of our knowledge, this is one of the 
most comprehensive and wide-ranging reviews on greenery exposure 
studies focusing on methodology and technology, and adds new insights 
to the body of knowledge. Fig. 1

2. Methodology

In this study, we followed the established systematic review methods 
to identify relevant studies (Bowler et al., 2010) (Fig. 2). Our selection of 
keywords was guided by three primary considerations: firstly, the 
presence of various types of urban greenery; secondly, the interactions 
between humans and greenery; and thirdly, focusing on methodology or 
using the particular approach/metric/data source for the first time.

Various definitions of "greenery exposure" exist in the literature. The 
3–30–300 Rule for urban forestry and greenery stipulates that: 1) every 
individual should have visual access to at least three mature trees from 
their residence; 2) each neighborhood must achieve minimum 30 % tree 
canopy cover; and 3) the distance to the nearest green space should not 
exceed 300 m (Konijnendijk, 2023). Therefore, this study defines 
"greenery exposure" as comprising: 1) visual access to urban green 

D. Liu et al.                                                                                                                                                                                                                                      Urban Forestry & Urban Greening 114 (2025) 129169 

2 



spaces or vegetation; 2) engagement in activities that involve urban 
green spaces; 3) physical access through visitation.

In the initial phase of our scoping review, we utilized multiple key
words related to "urban greenery", “exposure”, and “methodology” to 
identify relevant publications by examining the full text of articles in 
two databases: Scopus, and Web of Science. To encompass the broadest 
interpretation of "greenery," a publication was included if it contained 
terms such as "park," "green space," "green infrastructure," "vegetation," 
"street tree," "shrub," "green belt," "horticulture," “greening” and related 
words. These keywords were searched across the title, keywords, and 
abstract. Additionally, the presence of methodology-focused terms such 
as "assessment," "measure," "approach," "measurement," “index,” and 

"technology", alongside terms indicating human interaction with 
greenery, such as "exposure," "accessibility," "contact," “live,” “work,” 
“exercise,” "visit," "visual," and "visibility." was required exists in the title 
to include only methodology-oriented studies on greenery exposure 
assessment. The search was restricted to peer-reviewed research articles 
published between 2000 and 2024. After eliminating duplicates, liter
ature review, and conference papers, the search yielded a collection of 
2199 publications, forming a raw literature pool.

In the subsequent phase of the review, the titles and abstracts of the 
research articles are screened to retain those that meet the following 
criteria: the study focuses on methodology or has employed one or 
multiple metrics/data sources to measure greenery, or human-greenery 

Fig. 1. (a) proximity-based measurements; (b) mobility-based measurements; (c) visibility-based measurements.

Fig. 2. The flow chart shows the process of literature screening and reviewing.
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interactions, which not previously documented in earlier greenery- 
exposure studies. Furthermore, the study must have been conducted 
within an urban context, excluding rural, forest, or agricultural land
scapes. The study should focus on human–greenery interactions (e.g., 
exposure, accessibility, visibility), excluding those focused solely on 
ecological or forestry outcomes without human exposure. The selected 
research is then systematically analyzed to address the research ques
tions of this scoping review.

3. Results

3.1. Research on greenery exposure in the last two decades

A total number of 2199 research articles were identified initially. 
After the abstract screening, 312 articles that brought innovations in 
greenery exposure measurement or metrics were retained, while those 
that employed commonly used metrics as independent variables in 
environmental behavior and public health studies were excluded. There 
is a growing trend in the number of publications during both the initial 
filtration and the final selection stages. Firstly, we categorized selected 
studies by data sources for exposure assessment (Fig. 3). There is an 
increasing number of papers across most data sources. Satellite images 
and questionnaires have traditionally been dominant, but in the past two 
years, they have been surpassed by SVIs. Questionnaires, as a traditional 
data source, continue to increase in use because they are often combined 
with big data sources to provide qualitative information. Social media 
and mobile phone data experienced a period of growth but have fluc
tuated over time. SVIs and 3D city models emerged after 2014, with SVIs 
rising rapidly and 3D city models gradually increasing.

Building on prior classifications (Kwan, 2009), we distinguish three 
categories of approaches to measuring greenery exposure. First, 
proximity-based measures (previously referred to as proximity-based) 
rely on individuals’ fixed addresses (e.g., residential or workplace) 
and the use of surrounding buffers to quantify greenery accessibility or 
the ratio of greenery to population/buildings. Second, mobility-based 
measures expand exposure assessment beyond fixed locations by 
incorporating greenery along individuals’ movement paths within a 
given time frame. Both proximity- and mobility-based measures 
conceptualize exposure primarily in terms of the relative 2D positioning 
of individuals and greenery (distance, buffer, accessibility). In contrast, 
visibility-based measures exclusively capture potential or actual visual 

interactions between individuals and greenery. This approach empha
sizes the role of the 3D built environment in shaping what people can or 
cannot see, which cannot be accurately represented through 2D prox
imity or mobility metrics. By explicitly distinguishing visibility-based 
measures from proximity- and mobility-based ones, we argue that 
these three represent fundamentally different and complementary ways 
of operationalizing greenery exposure. (Figure 1). Before 2010, 
proximity-based approaches dominated related studies. Subsequently, 
both mobility-based and proximity-based methods advanced in parallel, 
exhibiting fluctuations starting in 2021 (Fig. 4). Visibility-based 
methods emerged in 2013 and have steadily increased, reaching a 
similar level to the other two approaches during the past two years 
(Fig. 4). Although these three categories show little overlap, visibility- 
and mobility-based measures not mutually exclusive. In the future, 
studies that integrate visibility-based and mobility-based approaches are 
expected to provide a more accurate assessment of greenery exposure.

The volume of literature was compared based on the data sources 
and types of human-greenery interactions analyzed (Fig. 5). As an 
emerging data source, most studies on greenery exposure used Street 
View Images (SVIs) for visibility-based and mobility-based assessments. 
SVIs were also used for proximity-based assessments to compute 
aggregate indices for spatial units, such as the Green View Index (GVI) 
(X. Li et al., 2015). The use of 3D city models enables researchers to 
measure greenery visibility from specific observation points directly, 
leading to a predominance of visibility-based assessments, though some 
studies also include proximity-based and mobility-based assessments. 
Questionnaires are primarily used to gather data of travel behavior, e.g., 
via travel log, resulting in their prevalent use in proximity-based and 
mobility-based assessments. Only a few studies use questionnaires for 
visibility-based assessments, such as obtaining respondents’ scoring on 
photos taken in the street or from windows (Lin et al., 2022). Social 
media and mobile phone data offer the advantage of providing real-time 
locations and geolocated user-generated content, making them popular 
for mobility-based studies (Y. Chen et al., 2018; Lu et al., 2021). 
Traditionally, satellite images have been used for top-down greenery 
measurements in proximity-based assessments. Recently, satellite im
agery has been combined with other data sources, such as social media, 
mobile phone data, and 3D city models, to conduct mobility-based and 
visibility-based assessments (Yu et al., 2016).

Fig. 3. The temporal evolution of greenery exposure studies by data sources.
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3.2. Evolving technologies on greenery exposure measurement

3.2.1. Satellite imagery
Nearly half of the studies utilized satellite data. For decades, satellite 

imagery has played a crucial role in the large-scale assessment of urban 
greenery by forestry departments and urban planners (Iverson et al., 
1989), and it continues to evolve (Phiri et al., 2020). The advancement 

of remote sensing technology, particularly the advent of high-resolution 
satellite systems, has significantly improved the capability to quantify 
urban greenery with higher spatial precision (Neyns and Canters, 2022; 
Pristeri et al., 2021). Various indices have been developed to quantify 
urban greenery and greenery exposure using satellite data, such as the 
Normalized Difference Vegetation Index (NDVI), which is commonly 
employed to evaluate vegetation health, density, and coverage in 

Fig. 4. The temporal evolution of the greenery exposure studies by types of measurements.

Fig. 5. Sankey diagram depicting the volume of literature based on the relationship between data sources and types of human-greenery interactions. (Note: Some 
studies utilized multiple primary data sources, resulting in potential multiple counts in this figure.).
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environmental behavior studies and public health research (Rugel et al., 
2017; Song et al., 2018). In recent years, satellite imagery has been 
combined with 3D city models (Donovan et al., 2019; Yu et al., 2016), 
SVIs (Lu et al., 2019; Tong et al., 2020) to develop more fine-grained and 
multidimensional metrics for measuring exposure to greenery.

Most studies utilizing satellite imagery as the main data source 
concentrate on assessing the amount of greenery or the area of green 
space surrounding locations where people live, work, study, or engage in 
other activities, without determining whether visual or physical contact 
occurs (Fig. 5). By integrating smartphone GPS data (Almanza et al., 
2012) or 3D building models (Li et al., 2016; Yu et al., 2016), it is now 
feasible to assess individuals’ physical and visual access to greenery.

Compared with other data sources, satellite imagery offers relatively 
low acquisition costs when using open-access sources, with high spatial 
scalability and moderate-to-high temporal frequency. Processing de
mands are modest for basic indices such as NDVI but become more 
intensive for fine-grained classification. Technical accessibility is mod
erate, requiring GIS competence but not necessarily advanced expertise.

3.2.2. Eye-level imagery
SVI has been increasingly used in exposure studies since 2018, due to 

its availability, global coverage, and human-oriented perspective over 
the past decade (Biljecki & Ito, 2021; Li et al., 2015). It can also bridge 
some shortcomings of overhead-view greenery assessment. For example, 
the overhead view of greenery differs from the landscape as it is 
perceived by humans (Li, 2021). Furthermore, vegetation located 
beneath tree canopies and within urban vertical greening systems may 
be neglected in the overhead assessments (Lu et al., 2019). Numerous 
studies have utilized both eye-level and top-down greenery to evaluate 
individuals’ exposure and compare their associations with human 
behavior and health issues. Some research concluded that eye-level 
greenery offers a better assessment compared to top-down methods 
(Lu et al., 2019), while other findings suggest that eye-level greenery 
more accurately captures vegetation in urban centers, whereas 
top-down greenery is more effective in representing vegetation in parks 
and forests (Labib et al., 2021). For long-term, population-level health 
outcomes (cohort studies), eye-level images even failed to outperform 
NDVI (Jimenez et al., 2022a; Yi et al., 2024).

Currently, most urban greenery studies using SVIs aggregately, 
calculating the average greenery ratio in SVI as the green view index of a 
spatial unit or the buffer of the residential location of individuals. 
Therefore, such measures are limited to quantifying greenspace expo
sure within the immediate residential street network, a scope that fails to 
account for the totality of an individual’s visual experience throughout 
their daily life. (Liu et al., 2025). Besides, SVIs from map services, such 
as Google and Baidu, are primarily obtained from vehicle-based cameras 
on the road, which differs from the perspective of pedestrians (Ito et al., 
2024). To conduct disaggregate analysis of greenery views from each 
SVI, a precise knowledge of the camera’s position, such as pedestrians on 
the street or vehicles on the road, is necessary (Ki et al., 2023). There
fore, some studies have begun to use personal devices to capture street 
views or utilize crowdsourcing street view platforms (Y. Yang et al., 
2021; Zhang et al., 2021), which may provide sufficiently accurate 
greenery measurements (Biljecki et al., 2023).

SVIs and crowdsourced images provide valuable human-scale per
spectives of greenery but involve high processing costs due to computer 
vision requirements. Their spatial coverage is uneven and temporally 
inconsistent, depending on platform updates or user contributions. The 
approach is less technically accessible without advanced machine 
learning skills.

3.2.3. 3D city model
The application of 3D models in exposure studies remains limited but 

is experiencing steady growth. A 3D city model is a representation of an 
urban environment with a three-dimensional geometry of common 
urban objects and structures, with buildings as the most prominent 

feature (Biljecki et al., 2015). Such models are typically created using a 
variety of acquisition techniques, including photogrammetric approach 
or LiDAR, extrusion from 2D footprints (Arroyo Ohori et al., 2015), and 
architectural models or drawings (Donkers et al., 2016). However, 
existing urban 3D modeling predominantly emphasizes buildings and 
roads, frequently simplifying or excluding vegetation to minimize 
computational and storage demands (R. Wang et al., 2018). Data 
acquisition poses significant challenges, as sensors such as LiDAR often 
fail to capture intricate vegetation details, and seasonal variations 
hinder the creation of accurate static representations (Balestra et al., 
2024; Norton et al., 2022). Furthermore, manually modeling vegetation 
is both resource-intensive and costly, while legal and privacy consider
ations may limit the mapping of vegetation in private or protected areas 
(Wang et al., 2018). However, emerging trends, such as environmental 
planning, procedural generation tools, and advanced sensors, are 
driving greater inclusion of vegetation in 3D models (Balestra et al., 
2024). Using a 3D city model for greenery exposure measurement in
volves a comprehensive integration of detailed vegetation data within 
the urban model to evaluate not only physical accessible but also visible 
green spaces are from different locations across a city (Li et al., 2023; 
Yan et al., 2023). The process starts by collecting high-resolution data 
about the city’s existing vegetation and other objects through methods 
like photogrammetry and laser scanning (Morgenroth and Gómez, 
2014). These datasets are then used to generate a 3D city model, which 
includes detailed representations of city components, such as buildings, 
streets, and other infrastructure, facilitating an accurate spatial overlay 
of the existing urban and natural environments (Arroyo Ohori et al., 
2018). This integrated model enables the performance of visibility an
alyses, such as viewshed or line-of-sight assessments, from various 
vantage points in the city, thereby allowing urban planners and re
searchers to quantify metrics of greenery exposure, such as the per
centage of visible green area and the distance to the nearest green space 
(Yu et al., 2016).

The evolution of sensing technology, such as advanced LiDAR sys
tems, high-resolution satellite imagery, and drone-based photogram
metry, has significantly contributed to the development of 3D city 
models at higher levels of detail (Biljecki et al., 2015). These technolo
gies allow for the precise mapping of urban environments, capturing 
intricate details of buildings, such as the location of windows, and nat
ural elements like vegetation with high accuracy (Bolte et al., 2024). 
Consequently, these detailed 3D city models can offer precise spatial and 
non-spatial information regarding both humans and greenery, enabling 
a nuanced analysis of their interactions to evaluate greenery exposure 
comprehensively. For instance, researchers attempted to use 3D city 
models to locate pedestrians’ walkways in order to assess eye-level 
greenery from the perspectives of potential pedestrians (Ki et al., 2023).

3D city models offer precise structural information on urban green
ery, though acquisition and processing costs are high. Their spatial 
scalability is limited to selected cities, with infrequent temporal updates. 
The method demands advanced 3D GIS and modeling expertise, con
straining accessibility.

3.2.4. Data from mobile phone signals and personally equipped GPS devices
Mobile phones and other personally equipped GPS devices offer 

detailed data for tracking human locations and mobility. Combining 
with spatial distribution of urban greenery, this data can offer insights 
into human exposure to urban greenery (Almanza et al., 2012; Guan 
et al., 2020). There are primarily two ways for utilizing these data in 
greenery exposure studies. Firstly, GPS and proximity-based services can 
be employed to track individual movement patterns, allowing them to 
determine the frequency and duration of personal visits to green spaces 
or areas with varying levels of greenery (Ladle et al., 2018; Roberts & 
Helbich, 2021). Secondly, data from mobile signal stations can be used 
to explore the collective behavior of people in greenery exposure by 
obtaining the number of people present around each station during 
specific time periods (Song et al., 2018). Both two ways can help assess 
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accessibility, frequency of use, and the role of urban greenery in daily 
life (Kim et al., 2023; Xiao et al., 2019). However, ethical considerations, 
such as privacy and consent, are crucial when using mobile phone data, 
ensuring that data use is responsible and respects individuals’ rights 
(Fuller et al., 2017).

Mobile signal data enable large-scale and temporally continuous 
tracking of population exposure, offering strong scalability. However, 
acquisition is costly and often restricted by privacy regulations and in
dustry partnerships. Technical demands are moderate, requiring data 
engineering and secure handling protocols.

3.2.5. Social media
Geolocated social media data represents a distinct category of mobile 

phone data characterized by user-generated content. It was popular in 
studies on greenery exposure, but their occurrence has declined. Social 
media serves as a valuable resource in studies on greenery exposure by 
offering innovative avenues for data collection and participant 
engagement (Ghermandi and Sinclair, 2019). Researchers can employ 
geospatial analysis on social media data to study accessibility and usage 
patterns of green spaces (Ghermandi et al., 2022; Heikinheimo et al., 
2020). Additionally, platforms like Instagram and Twitter provide rich 
datasets through geotagged posts and hashtags, enabling researchers to 
analyze patterns of green space usage and public sentiment in green 
space (Grzyb et al., 2021; Plunz et al., 2019; Roberts et al., 2019). While 
providing diverse data and engagement opportunities, the use of social 
media inevitably raises ethical concerns about privacy, consent, and 
biases in data representation (Ghermandi and Sinclair, 2019).

The emerging Natural Language Processing (NLP) technology has 
boosted the application of social media in evaluating people’s exposure 
to greenery recently. Through analyzing user-generated content, studies 
obtained insights into public sentiment and interactions with urban 
greenery from social media (Chen et al., 2018; Heikinheimo et al., 2020; 
Wei et al., 2024). Through sentiment analysis, NLP can determine 
whether sentiments of the contents shared on platforms like Twitter or 
Facebook are positive or negative (Wei et al., 2023). Topic modeling can 
identify common themes, such as recreational activities or health ben
efits associated with green spaces (Heikinheimo et al., 2020).

This data source provides highly frequent, real-time observations of 
greenery exposure but suffers from spatial and demographic biases. Data 
acquisition is inexpensive, though processing requires expertise in nat
ural language processing and computer vision. Its scalability is moder
ate, as coverage is concentrated in urban, tech-savvy populations.

3.2.6. Questionnaire
Questionnaires served as a significant tool in greenery exposure 

studies for a long time, which is a widely used tool for collecting self- 
reported data regarding individuals’ interactions with urban greenery 
(Dzhambov et al., 2021; Lin et al., 2022). They can capture a range of 
individual-level information, including the frequency, duration and 
motivations of visits to various green environments like parks, gardens, 
or nature trails (Flowers et al., 2016). Questionnaires are effective for 
assessing perceived benefits such as improvements in physical health, 
mental well-being, and stress reduction attributed to time spent in na
ture (Van Den Berg et al., 2019). They can also be used to identify 
barriers individuals face in accessing green spaces, such as safety con
cerns or lack of nearby facilities (Wendel et al., 2012). Additionally, 
questionnaires offer insights into the quality and features of green spaces 
that participants find most valuable (Stessens et al., 2020). By gathering 
demographic and contextual information, researchers can better un
derstand differences in greenery exposure across various populations 
(Helbich et al., 2020; Wang et al., 2019). Furthermore, questionnaires 
can also be used in conjunction with other data sources, such as SVIs and 
GIS, to obtain complimentary subjective and objective data (Stessens 
et al., 2020; Yang et al., 2021). The advent of mobile phones and the 
Internet has expanded the dissemination channels for questionnaires, 
establishing them as a pivotal tool for crowdsourcing data collection in 

greenery exposure studies (Heikinheimo et al., 2020).
This tradition method is straightforward to implement and highly 

accessible, with moderate acquisition costs and minimal processing re
quirements. Its scalability is constrained by sampling limitations, and 
temporal frequency is typically low due to the resource intensity of 
repeated surveys. Despite these limits, they remain widely used for self- 
reported greenery exposure.

3.2.7. Other data sources
In addition to the data sources previously discussed, various tools are 

available to support the measurement of greenery exposure. Land cover 
maps, such as OpenStreetMap (OSM) or official maps, serve as signifi
cant resources for identifying and quantifying green spaces (Teeuwen 
et al., 2024). Furthermore, OSM provides contextual information on 
surrounding facilities and infrastructure, which can influence the qual
ity and accessibility of green spaces (Cimini et al., 2024). As a common 
and widely used data source for measuring greenery, land cover maps 
appeared in nearly every study on greenery exposure. However, the 
innovation in these studies does not stem from the land cover maps 
themselves but rather from how they are integrated with emerging data 
sources, such as GPS devices and social media data (Guan et al., 2020; 
Heikinheimo et al., 2020). Therefore, we do not classify these studies as 
a separate category but instead group them based on the complementary 
data sources they are combined with.

Besides, advanced technology such as saliva measurements (Veitch 
et al., 2022), electroencephalography (EEG) (Lin et al., 2020), and 
eye-tracking (Li et al., 2020) were utilized to assess human interactions 
with greenery and their physiological and behavioral outcomes. These 
innovative tools focus on capturing human responses to green envi
ronments; however, they do not provide direct insights into the specific 
aspects of human interaction with greenery, such as what, where, and 
how these interactions occur. Therefore, they require integration with 
complementary data sources to achieve a comprehensive evaluation of 
exposure so are not included in this review (Table 1).

3.3. Research on greenery exposure according to the type of interactions

3.3.1. Proximity-based exposure
Traditional studies on greenery exposure primarily focus on quan

tifying vegetation or green space area within the buffer zones sur
rounding places where individuals live, work, study, or engage in other 
activities (Giannico et al., 2022; Rugel et al., 2017; Rundle et al., 2011) 
(Table 2). Initially, researchers evaluated greening within a geograph
ical unit based on the proportion of green space or tree coverage (Lang 
et al., 2007; Zhu et al., 2003). Subsequently, many scholars began to 
consider not only the proportion of green areas but also the relative 
distribution of green spaces and buildings (Gupta et al., 2012; Li et al., 
2014). Some studies utilized building characteristics and population 
data to weight human-centered greenery exposure (Chen et al., 2022; 
Rugel et al., 2017). Early research mainly relied on satellite imagery to 
identify green spaces and trees (Gascon et al., 2016; Uto et al., 2008). 
Over time, the use of street-level images to assess eye-level greenery 
became more common (Li et al., 2015; J. Yang et al., 2009), alongside 
employing 3D city models to measure both green and building volumes, 
with the green-to-building volume ratio serving as an indicator of 
greenery exposure (Giannico et al., 2022; Lafortezza and Giannico, 
2019). However, this approach only reveals the proximity between 
people’s potential locations and vegetation, while neglecting the real 
interaction of people and urban greenery and failing to provide any 
insight into how they are using and benefiting from the greenery (Liu, 
Kwan, Wong, et al., 2023).

3.3.2. Mobility-based exposure
Beyond proximity-based studies, certain research methodologies 

employ individuals’ actual locations to evaluate their exposure to green 
spaces (Kwan, 2009) (Table 3). These studies can be categorized into 
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Table 1 
The scalability and accessibility of each data source

Data source Acquisition cost Processing cost Spatial scalability Temporal frequency Technical accessibility

Satellite 
images

Low–Medium (many are open- 
access; very high-res imagery 
costly)

Low–Medium (basic GIS 
for NDVI; higher for 
segmentation)

High (global coverage) Medium–High (weekly–monthly 
updates for free sources)

Medium (basic GIS training 
sufficient; advanced ML for 
fine detail)

Eye-level 
images

Low (Google SV free; crowd- 
sourced images free; but API 
fees or licensing can add up)

High (computer vision, 
large storage/processing 
demand)

Medium (coverage biased 
to urban, not rural; varies 
by country)

Low–Medium (commercial SVIs 
updated irregularly; 
crowdsourced photos uneven)

Low–Medium (requires 
ML/CV expertise)

3D city model High (LiDAR flights expensive; 
3D models proprietary in many 
cities)

Very High (data heavy, 
need 3D modeling 
expertise)

Medium (available in 
selected cities, not global)

Low (updates rare, every few 
years)

Low (specialized 3D GIS 
skills required)

Social media Low (data “free” but API 
restrictions)

Medium (need NLP + CV 
for greenery detection; 
noisy data)

Medium (urban centers 
only, socio-demographic 
bias)

High (real-time, continuous posts) Medium (requires data 
mining, NLP, CV skills)

Mobile signal High (requires collaboration 
with telecoms, costly access)

Medium (spatial 
aggregation, linkage to 
greenery maps)

High (near-universal 
coverage in many 
countries)

High (continuous, real-time data 
streams possible)

Medium (requires data 
engineering + privacy 
protocols)

Questionnaire Medium (printing, field staff, 
incentives, but manageable)

Low (basic stats analysis) Low–Medium (sample size 
limits, hard to scale city- 
wide)

Low (cross-sectional; costly to 
repeat longitudinally)

High (easy to administer, 
no special technical skills)

Table 2 
The representative approaches of proximity-based measurements.

Study Greenery exposure measurement Measurement meaning Data source Study area

Zhu et al., (2003) Vegetation Cover Index (VCI) Proportion of vegetation cover in an area Satellite image Beer Sheva, Israel
Lang et al., (2007) Weighted Green Index occurrence and distribution of 

relevant green structure types weighted by relative 
importance of 
these types in the eyes of the citizens

Satellite image / 
Survey

Phoenix, USA

Gupta et al., (2012) Urban Neighborhood Green Index (UNGI) the spatial distribution of UGS in the vicinity of urban 
built-up

Satellite image Delhi, India

Li et al., (2014) Building’s Proximity to Green spaces Index 
(BPGI)

the green spaces adjacent to a building LiDAR 3D building 
models / Satellite 
image

Székesfehérvár, 
Hungary

Li et al., (2015); J. 
Yang et al., (2009)

Green View Index (GVI) the amount of greenery that people can see on the 
ground at different locations in a city

Street View Images Berkeley, USA / New 
York City, USA

Rugel et al., (2017) Natural Space Index potential exposure based on the presence, form, 
accessibility, and quality of multiple forms of 
greenspace and bluespace

Satellite based data Vancouver, Canada

Lafortezza and 
Giannico, (2019)

Normalized Difference Green-Building 
Volume (NDGB)

the way people perceive the ecosystem services 
conveyed by green spaces

LiDAR 3D building 
models

Bari, Italy

Giannico et al., 
(2022)

3D Green volume/gray volume and 
Normalized Difference Green-Gray Volume 
(NDGG)

the volume of vegetation and its relationship with the 
volume of buildings

LiDAR 3D building 
models

Rome, Italy

Chen et al., (2022) Population-weighted greenery exposure Population weighted green space coverage Satellite images China

Table 3 
The representative approaches of mobility-based measurements.

Study Mobility Measurement Mobility data Greenery measurement Data source Study area

Almanza et al., 
(2012)

Time and location of participants Data from portable GPS NDVI Satellite 
imagery

Chino, USA

Ladle et al., (2018) The location history data from 280 
university students

Smart phone GPS data Land use data Land cover 
map

The City of Calgary, 
Canada

Song et al., (2018) Hourly human distribution map Mobile phone data (Tencent) Normalized Difference 
Greenness Index (NDGI)

Satellite 
imagery

Thirty Chinese cities

Chen et al., (2018) time-spatial distribution of urban 
park users

Social media real-time Tencent user 
density (RTUD) data

Park boundary Land cover 
map

Shenzhen, China

Guan et al., (2020) park visit and residential locations 
of visitors

mobile signaling data Park boundary Land cover 
map

Tokyo, Japna

Heikinheimo et al., 
(2020)

Geolocated posts about park use Social media data and mobile phone 
data

Park boundary Land cover 
map

Helsinki, Finland

Zhang et al., (2021) Wearable GPS Real time location from GPS Images taken by a wearable 
camera

Wearable 
camera

Beijing, China

Ghermandi et al., 
(2022)

Number of geolocated social media 
photos

Geolocated social media photos Element in geolocated social 
media photos

Social media Haifa, Isreal

Liu et al. (2023) GPS-equipped mobile phones 7-day GPS trajectories NDVI Satellite 
imagery

Hong Kong, China
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two groups. The first involves measuring the aggregate number of 
people present in various areas during specific time intervals such as the 
pedestrian volume of streets (Liu, Wang, Grekousis, et al., 2023; Yin 
et al., 2015). These areas may consist of spatial units with varying levels 
of greenery, such as streets, or may directly be greenspaces like parks 
(Chen et al., 2018; Guan et al., 2020; Heikinheimo et al., 2020). 
Traditional studies typically obtain the number of pedestrians or visitors 
by manually counting in the field. Recently, studies automatically esti
mated number of people through social media, SVIs, video surveillance 
to calculates the people-weighted greenery exposure (Chen et al., 2018; 
Yin et al., 2015).

The second method focuses on assessments of individual real-time 
trajectories or locations (Almanza et al., 2012; Liu et al., 2023). The 
most common approach involves using questionnaires to gather travel 
logs of respondents (Pliakas et al., 2014). In recent years, some studies 
utilize geolocated social media images to pinpoint individuals’ locations 
and recognize how they use green space (Ghermandi et al., 2022), 
though this approach may face challenges regarding insufficient 
spatiotemporal resolution, recall biases, and limitations in understand
ing the actual activities of individuals. Some of these studies assess green 
space exposure within relevant spatial contexts at specific moments 
(Xiao et al., 2019), and the other evaluates the spatiotemporally 
weighted accumulation of exposure throughout an individual’s 
activity-travel trajectories (Liu et al., 2023). Besides, studies used 
wearable cameras equipped with GPS to capture images along partici
pants’ daily routes and analyze the proportion of greenery in these im
ages (Liu et al., 2023; Zhang et al., 2021).

3.3.3. Visibility-based exposure
While mobility-based methods focus on the dynamic location of 

people therefore can evaluate the real-time proximity between in
dividuals and greenery, how a human and greenery interacted remains 
unclear. Two major types of interactions between humans and greenery 
exist, which are visual and physical contact to greenery (Cox et al., 
2017). Proximity-based and mobility-based exposure can be considered 
as physical contact (or physical proximity) to urban greenery.

Compared with physical contact, the assessment of visual accessi
bility or direct visibility is more complex due to the influence of three- 
dimensional factors. 3D city models are particularly effective for 
various visibility analyses, such as determining the line of sight between 
two points within urban environments and estimating the volume of 
sight (Biljecki et al., 2015). Initially, manually constructed virtual 

models were utilized to assess the visibility of green spaces from 
different buildings (Yasumoto et al., 2011). Some research also employs 
3D city models to obtain viewsheds and integrates these with greenery 
detected from satellite images (Meng et al., 2020; Yu et al., 2016) or SVIs 
(Qi et al., 2024) to measure greenery visibility. With advances in 
photo-realistic 3D models, studies can directly derive greenery distri
bution from 3D city models and assess greenery views for buildings (Li 
et al., 2022) and pedestrians (Ki et al., 2023; Tang et al., 2023). Addi
tionally, some studies have developed indices based on 3D city models to 
evaluate the visual exposure to greenery (Bolte et al., 2024; Xia et al., 
2024). Besides 3D city model, studies also employ urban greenery maps 
and high-resolution digital surface models to evaluate greenery visibility 
(Cimburova & Blumentrath, 2022). SVI also has the potential to assess 
the visual accessibility of greenery, but it should be transformed from a 
vehicle’s perspective to a pedestrian’s perspective using deep learning 
methods (Ito et al., 2024) (Table 4).

4. Discussion

4.1. Trend in automatic greenery exposure assessment

4.1.1. From 2D to 3D measurement
In greenery exposure studies, the large-scale representation of urban 

greenery has traditionally relied on 2D indicators, such as the Normal
ized Difference Vegetation Index (NDVI), which are derived from sat
ellite imagery (De La Iglesia Martinez and Labib, 2023).

However, 2D indicators alone are insufficient for the detailed mea
surement of urban greenery, and benefits related to 3D greenery volume, 
including carbon stock estimation, heat mitigation, and air pollutant 
removal. Meanwhile, the increasing vertical expansion of urbanization 
especially in high density areas has led to morphological heterogeneity 
in the urban landscape. This development has resulted in diverse spatial 
patterns of urban infrastructure and urban greenery, influencing the 
interaction of urban residents and urban greenery. Research has delved 
into the link between the visibility of nature and mental health benefits, 
including the relief of stress and fatigue (Du et al., 2022), reduction of 
anxiety and depression (Bi et al., 2022), enhanced positive emotions (Lin 
et al., 2022), and increase residential satisfaction (Kley & Dovbischuk, 
2024). Recently, SVIs have emerged as an omnipresent data source for 
assessing urban greenery visibility. However, SVIs are captured by ve
hicles traveling along the center of roads, which may not accurately 
represent views from other locations, such as pedestrians on the 

Table 4 
The representative approaches of visibility-based measures.

Study Greenery exposure measure Measurement meaning Data sources Study area

Yasumoto et al., (2011) Access to the view of green 
spaces

The visibility of green space from different buildings virtual city model developed 
manually

Kyoto, Japan

Yu et al., (2016) Total Floor Green View Index 
(TFGVI)

the area of visible urban vegetation on a particular floor 
of a city building

LiDAR 3D building models / 
Satellite image

Shanghai, China

Meng et al., (2020) Floor-level exposure 
opportunity index

the amount of vegetation people perceived on a 
particular floor of a city building

LiDAR data and aerial imagery Székesfehérvár, 
Hungary

Lin et al., (2022) Greenery ratio in window 
view content

the ratio of pixels for Greenery in a window’s view Manual taken photos in 
questionnaire

Taibei, China

Li et al., (2022) Window View Indices (WVIs) 
of Green

the ratio of pixels for Greenery in a window’s view 3D photogrammetric city model Hong Kong, China

Cimburova & 
Blumentrath, (2022)

visual exposure to urban 
greenery

viewshed-based method for modelling visual exposure 
to urban greenery

GRASS GIS Oslo, Norway

Ki et al., (2023) human-centric virtual street 
view greenery

the ratio of pixels for Greenery in pedestrians’ view 
from sidewalk

3D photogrammetric city model New York City, USA

Tang et al., (2023) Green View Index the ratio of pixels for Greenery in pedestrians’ view 
from sidewalk

Mobile laser scanning (MLS) point 
cloud data

Fuzhou, China

Xia et al., (2024) Greenspace Composite Index 
framework

3D greenery exposure levels in communities 
considering the range of residents’ activities

LiDAR data based 3d model Nanjing, China

Qi et al., (2024) Building Green View Index visible green space from a building Street view images and urban 
construction data

Shenyang, China

Bolte et al., (2024) The green window view 
index

The proportion of visible vegetation area in a field of 
view 
when looking out of a specific window

airborne 
LiDAR data

Bonn, Germany
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sidewalk or residents near windows (Ito et al., 2024).
Recent advancements in technologies such as Light Detection and 

Ranging (LiDAR), photogrammetry, high-resolution aerial remote 
sensing, and 3D Geographic Information Systems (GIS) have signifi
cantly enhanced the precision and comprehensiveness of 3D city model, 
which may it feasible to measure comprehensive 3D characteristics of 
urban greenery. These 3D city models provide opportunities to extract 
3D indicators of greenery consider elements like green volume, vege
tation types, shade and microclimate effects, and offer a more detailed 
understanding of the features of greenery in a given space (Giannico 
et al., 2022; Spano et al., 2023). Meanwhile, incorporating 3D mea
surements allows researchers to accurately assess people’s daily expo
sure to urban greenery. Traditional 2D greenery measurement methods 
primarily focus on the horizontal distribution of green spaces using GIS 
mapping and fixed buffer zones, which often overlook vertical elements 
and provide a static, oversimplified view. 3D city model offers oppor
tunities considering factors like different locations people occupied, e.g., 
window view, street view. Hence, it provides a more accurate, detailed, 
and human-centric view of urban greenery, capturing the intricated 
dynamics of human and green space interactions. They support the 
integration with other technological tools, such as simulation models 
and environmental sensors to support the planning, designing, and 
managing green infrastructure (Jia and Wu, 2020).

4.1.2. Automatically greenery measurement: from quantitative to 
qualitative

Another trend in greenery exposure studies is that the automatic 
assessment of urban greenery has evolved from a sole focus on quanti
fying the level of greenery to a more comprehensive approach that in
cludes both quantitative and qualitative assessments. Quantitative 
assessment of urban greenery involved using metrics such as number of 
trees around housing of people, the percentage of green area within a 
certain radius, which are easy to automatically be obtained from urban 
big data using advanced computer vision technology (Seiferling et al., 
2017). Qualitative assessment of greenery exposure encompasses 
various non-quantifiable aspects of urban greenery, such as aesthetics, 
maintenance, safety, and amenities (Stessens et al., 2020). Qualitative 
evaluation of green spaces is crucial for understanding their subtle 
values and impacts beyond what quantitative measures can capture (Li 
and Wang, 2021). User engagement and accessibility are significantly 
influenced by qualitative factors (Palliwoda and Priess, 2021; Tan et al., 
2019). Furthermore, urban greenery’s health benefits, including mental 
restoration and stress relief, are enhanced by features like vegetation 
type, shade, and noise reduction, while also reflecting ecological values 
and social-cultural significance that strengthen community identity and 
cohesion (De Vries et al., 2013).

Traditionally, qualitative studies were carried out through field 
studies or questionnaires which were limited to sample sizes (Yang et al., 
2021; Zhang et al., 2022a,b). Recently, advancements in AI and com
puter technology have introduced new changes to these methods (Liu, 
2023). As a large-scale metric of greenery, NDVI also provides people 
with both quantitative and qualitative information on greenery (De La 
Iglesia Martinez and Labib, 2023). NDVI provides a measure of vege
tation health overtime (Ji and Peters, 2003). By comparing NDVI values 
over different time periods, researchers can monitor changes in vege
tation conditions over time (Kinyanjui, 2011). However, NDVI does not 
differentiate between different types of vegetation or species, limiting its 
ability to assess species-specific health or stress (De La Iglesia Martinez 
and Labib, 2023).

With the advantage of both easy to be acquired and high-resolution, 
Street view images recently also become an effective tool for evaluating 
the quality of greenery and greenery exposure (Ma et al., 2024; Tong 
et al., 2020). Street view images provide a detailed view of trees from 
the ground level, allowing researchers to assess tree species, vegetation 
structure, leaf index and health (Liu, et al., 2023). Also, street view 
images were used to grade people’s perceptions on greenery such as 

aesthetic levels (Xu et al., 2022). This information can be calculated into 
aggregate index such as tree species mix and proportion of a specific 
species of trees to assess the impact of greenery quality on people’s 
walking behavior (Jiang et al., 2024).

3D models generated through LiDAR and photogrammetry can offer 
detailed information about vegetation structure (Hancock et al., 2017). 
LiDAR generates high-resolution 3D models of vegetation, allowing re
searchers to analyze the structure of urban forests, including species, 
health conditions, leaf index (Kamoske et al., 2019). Photogrammetry 
can also generate 3D models but with color information, which can be 
beneficial for distinguishing different species or vegetation types based 
on color and texture (Tuominen et al., 2018). The use of 3D city models 
for qualitative assessing urban greenery and exposure to greenery is still 
underexplored, but it holds promise for the near future.

It should be noted that street view imagery is characterized as a 2.5D 
data between 2D and 3D (Taneja et al., 2013). While it conveys the 
impression of depth and a 3D environment, it fundamentally lacks 
explicit volumetric geometry (Armagan et al., 2017). These ground-level 
panoramic images offer immersive visual cues such as perspective and 
parallax, yet they remain surface-based projections anchored to specific 
camera viewpoints (Ito et al., 2024). In contrast, urban models derived 
from LiDAR or airborne photogrammetry explicitly encode spatial ge
ometry through point clouds or textured meshes with precise x–y–z 
values, enabling comprehensive analytical capabilities, such as volu
metric measurement (Casalegno et al., 2017), and occlusion-accurate 
visibility analysis (Li et al., 2022), that street-view images cannot 
support.

4.1.3. Adoption of AI in greenery exposure assessment
The significance of AI in measuring exposure to greenery has been 

increasingly recognized. The application of advanced computer vision 
techniques has greatly enhanced the capacity to extract information 
from images, including satellite imagery, street view photographs, social 
media images, manual taking images, and even images extracted from 
3D city models (Li et al., 2022; Li et al., 2015; Y. Zhang et al., 2022a,b). 
Meanwhile, natural language processing (NLP) has also been employed 
to assess human exposure to greenery by analyzing user-generated 
content from social media, questionnaires, and interviews, thereby 
capturing more subjective evaluations of greenery and its perceived 
impact (Chen et al., 2018; Heikinheimo et al., 2020; Wei et al., 2024). 
Beyond the direct assessment of greenery, computer vision also serves as 
a tool to generate urban images, offering more detailed information on 
greenery from low-resolution data, which is easier to acquire. For 
example, researchers have employed Generative Adversarial Networks 
(GANs) and diffusion models to generate street view images (Toker 
et al., 2021) as well as transformed vehicle-view SVIs to a pedestrian 
perspective, more closely reflecting what pedestrians observe on the 
road (Ito et al., 2024). These AI-generated images can subsequently be 
used to evaluate eye-level greenery exposure.

The role of AI in exposure studies has evolved from objective mea
surement (Li et al., 2015) to inductive reasoning (Suppakittpaisarn et al., 
2022) and, more recently, toward emerging applications of deductive 
generation (Ito et al., 2024). Objective measurement primarily involves 
estimating the quantity or quality of greenery from urban images (Li 
et al., 2015). Inductive reasoning involves drawing inferences from 
analysis rather than relying only on number or volume. This includes 
subjective perception on greenery such as interpreting people’s com
ments on social media and review platforms, or scoring imagery to 
evaluate green quality (Havinga et al., 2021; Wang et al., 2023), and 
also objective analysis such as assessing the health condition of vege
tation (Windrim et al., 2020) and how tree canopy functions on heat 
stress (Liu et al., 2024, 2024). Nonetheless, inductive reasoning AI, 
which draws conclusions from specific data observations, may face 
challenges in contexts with limited or unstructured data unless extensive 
datasets support it. Conversely, deductive generative AI leverages 
established scientific theories and principles, making it well-suited for 
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environments defined by comprehensive regulations and standards (H. 
Xu et al., 2024). More recently, researchers have begun to explore 
generative approaches. Current demonstrated applications are relatively 
narrow, such as transforming greenery views across different perspec
tives (Ito et al., 2024; Toker et al., 2021). Beyond these, there is growing 
interest in potential applications such as predicting human behavior or 
simulating vegetation growth and microclimates. However, these 
remain exploratory rather than established.

A prevalent challenge across AI applications is the scarcity of high- 
quality datasets specifically curated for urban greenery. Furthermore, 
the application of AI in greenery studies is hindered by biases stemming 
from various data sources. For instance, SVIs used to extract greenery 
data are captured at different times across different locations. Addi
tionally, other sources, such as mobile phone signal data and social 
media data, contribute to biases related to the demographic distribution 
of users. Early discussions suggest that generative AI might help mitigate 
such biases, although empirical validation remains limited (Mehrabi 
et al., 2022; Zhang et al., 2018). To facilitate this, there is a critical need 
for developing standardized, transparent measurement frameworks to 
ensure coherence and reproducibility in future research.

4.1.4. Multi-modal data integration
Another trend in greenery exposure evaluation is the integration of 

multi-modal data, combining diverse datasets and capturing the com
plex ways in which people interact with greenery (Weng et al., 2024). 
Studies employed satellite imagery for vegetation mapping, GPS-based 
mobility and wearable sensor data for dynamic exposure assessments, 
SVIs for evaluating greenery visibility, and social media or survey data 
to capture perceptions and emotional interactions, bringing 
human-centered insights, incorporating multiple aspects such as 
mobility, visibility, accessibility, and behavioral patterns over time 
(Chen et al., 2018; Guan et al., 2020; Yu et al., 2016). The key is to 
synthesize these diverse data points to create a richer understanding of 
when, where, and how people encounter greenery in their environments 
(Weng et al., 2024).

Data integration techniques such as spatial-temporal overlays, ma
chine learning algorithms, and composite indices enable combining such 
varied datasets into meaningful metrics (Hashemi and Karimi, 2020). 
For example, wearable GPS data can be aligned with satellite-derived 
vegetation data to track individual exposure (Liu et al., 2023). Social 
media data, such as geotagged photos or text posts, can be used along
side objective measures to assess qualitative experiences and seasonal 
trends in greenery exposure (Guan et al., 2020). By combining these 
sources, we can analyze patterns of exposure across different de
mographic groups and geographic regions, identify disparities in access 
to green spaces, and investigate dynamic changes in exposure (Liu et al., 
2023).

Besides, multi-modal data integration also enables multi-sensory 
exposure assessment, capturing auditory and olfactory dimensions of 
greenery experiences. For instance, acoustic data can reveal the pres
ence of natural sounds such as birdsong or rustling leaves (Stobbe et al., 
2022), while environmental sensors can capture odor-related com
pounds that shape olfactory experiences (He et al., 2022). By linking 
these non-visual sensory pathways with visual and mobility datasets 
(Korpilo et al., 2023), researchers can develop a more comprehensive 
understanding of how green environments influence human perception, 
comfort, and well-being across multiple senses.

However, key challenges persist, such as addressing data fragmen
tation caused by varying resolutions or timeframes, protecting user 
privacy when integrating human mobility and greenery data, and 
minimizing bias, as some data sources (e.g., social media or app data) 
may not represent all population groups (Senaratne et al., 2017).

4.2. From proximity-based exposure to mobility-based and visibility-based 
exposure

Researchers have classified human-nature interactions into three 
distinct types: intentional, incidental, and indirect (Keniger et al., 2013). 
‘Intentional interactions’ refer to deliberate visits to natural spaces such 
as parks or gardens. ‘Incidental interactions’ occur when individuals 
encounter nature elements while engaged in other activities. ‘Indirect 
interactions’ involve viewing nature without being physically present 
within it. Studies found that in urban areas, indirect interactions 
dominate as the primary mode of human engagement with nature (Cox 
et al., 2017). Proximity-based measures indicate the potential for 
human-greenery interaction, relating to a concept of ’capacity buil
ding’—such as providing opportunities for physical activity or social 
engagement (Markevych et al., 2017). However, mere proximity does 
not confirm that these interactions actually occur. With the increasing 
availability of urban data sources in the era of big data and advances in 
AI, studies on greenery exposure are evolving towards more detailed and 
comprehensive measurements. Mobility-based methods focus on 
capturing individual movements, addressing methodological issues 
associated with proximity-based data, such as the Uncertain Geographic 
Context Problem (UGCoP) (Kwan, 2012). This type of measurement 
captures both ‘intentional interaction’ and ‘incident interaction’ 
combining with data delineating greenery, which can offer insights to 
both “reducing harms” and “restoring capacities” (Markevych et al., 
2017). By considering human mobility, these methods allow for the 
assessment of real time distance between human and greenery by 
determining where and how much time individuals spend on their daily 
activities, rather than assuming exposure within a static place buffer 
(Kwan, 2009). Furthermore, by accounting for individual activity spaces 
and movement patterns, mobility-based measurements provide 
personalized insights into greenery exposure, enabling tailored health 
recommendations and interventions (Zhang et al., 2021). This approach 
is particularly valuable for examining short-term exposure impacts, such 
as stress reduction from brief park visits (Kabisch et al., 2021), as well as 
the long-term benefits from consistent interaction with green environ
ments over years or decades (De Keijzer et al., 2016).

The visibility-based method emphasizes occurred or potential visual 
contracts between individuals and greenery, which belongs to ‘indirect 
interaction’. The visual perception of greenery serves as a primary 
pathway for “restoring capacities”, such as attention restoration and 
stress recovery (Markevych et al., 2017). The primary distinction be
tween visibility-based methods and the other two types of methods 
(proximity- and mobility-based) is that the former focuses on the 
nuanced human visual contact with greenery, whereas the latter two 
merely considers the availability of greenery in an area or a location 
(Zhang et al., 2022a,b). For visual contacts, individuals residing on 
higher floors in the same building can have vastly different visual access 
to greenery compared to those living on lower floors (Li et al., 2022, 
2023). Even within the same room, the view of greenery can vary 
significantly for individuals standing near the windows compared to 
those positioned further away or near other windows (Bolte et al., 2024). 
Therefore, a person’s location and posture also play a critical role; in
dividuals in the same spot who are standing, sitting, lying down, or of 
different heights may experience different views of greenery. For 
example, individuals with mobility limitations living on upper floors of a 
high-rise building might have difficulty physically accessing nearby 
greenery but can still enjoy a visual connection to greenery (Rosso et al., 
2011).

However, most visibility-based measures are resource-intensive and 
constrained in spatial coverage and temporal resolution, making them 
less practical for health research compared with location- or mobility- 
based approaches. To fully realize the accuracy of visibility-based 
exposure, detailed information is required not only on the precise 
location and form of greenery and the surrounding built environment (e. 
g., window placement), but also on individuals’ exact locations and the 
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duration of their presence there (Li et al., 2023). For long-term, pop
ulation-level health outcomes such as those examined in cohort studies, 
proximity-based measures often perform as well as or better than 
visibility-based ones (Jimenez et al., 2022b; Yi et al., 2024), potentially 
due to its greater temporal consistency, broader effective exposure area, 
and lower susceptibility to measurement. Furthermore, studies 
employing visibility-based measures often present a simplified view of 
human-greenery encounters, which prioritizes visual stimuli to the 
detriment of other sensory channels of greenery like sound (Bates et al., 
2020) and smell (He et al., 2022), resulting in a ’visual bias’ in health 
outcomes.

4.3. Ethical considerations in greenery exposure measures

While methodological advances in mobility- and visibility-based 
approaches have substantially enriched our capacity to quantify 
greenery exposure, they also raise profound ethical challenges. These 
methods generate highly granular data that can inadvertently expose 
sensitive aspects of individuals’ daily lives, including residential loca
tions, commuting routines, and social activities. The risks become even 
more acute when such exposure metrics are linked to health outcomes, 
as this combination heightens the potential for re-identification and 
misuse.

First, concerns about geoprivacy are paramount. Studies increasingly 
rely on personal location data, including home, work, and daily itiner
aries, that may be reverse-identified even after anonymization 
(Farzanehfar et al., 2021). The risk of inferring sensitive personal in
formation and recommend safeguards such as pseudonymization and 
geographical methods is across all stages of research (pre-collection, 
processing, analysis, sharing) (Ribeiro et al., 2022). In recent urban 
health studies, for instance, smartphones have been used to collect 
minute-by-minute GPS traces that were then matched with street-view 
imagery classified by deep learning to quantify greenery exposure (Yi 
et al., 2025). Similarly, studies integrating wearable cameras and 
physiological sensors to capture participants’ stress responses in 
different urban contexts have underscored the challenge of handling 
visual data that may inadvertently include bystanders or private envi
ronments without consent (Z. Zhang et al., 2021).

Beyond privacy, issues of informed consent and autonomy warrant 
critical attention. Participants may not fully grasp the extent to which 
their spatial traces or imagery reveal lifestyle patterns or vulnerabilities 
(Zhang et al., 2023). The complexity increases in studies using oppor
tunistic or passively collected data, such as mobile phone records or 
large-scale street-view images, where consent is often indirect, opaque, 
or absent (Meyer et al., 2022). In such cases, individuals whose data or 
images are analyzed may not even be aware of their participation, 
raising fundamental concerns about autonomy and fairness (Zhang 
et al., 2023).

To address these challenges, researchers should adopt robust 
governance frameworks that go beyond legal compliance (Kelly et al., 
2013). Recommended practices include minimizing the collection of 
sensitive variables, implementing privacy-preserving techniques such as 
aggregation or differential privacy, securing storage and access controls, 
and ensuring that consent procedures are transparent and comprehen
sible (Ribeiro et al., 2022). Ethical oversight should be iterative rather 
than static, adapting to evolving data practices, and community stake
holders should be engaged in decisions around data use. Epidemiolog
ical studies involving georeferenced personal data demand proactive 
ethical reflection to ensure that scientific benefits clearly outweigh the 
risks to participants (Ribeiro et al., 2022).

4.4. Future directions for greenery exposure assessment

The measurement of greenery exposure is becoming increasingly 
fine-grained and efficient. To achieve more precise exposure assess
ments, it is possible to evaluate the real-time, real-distance, and real- 

type interactions between greenery and humans. This requires accu
rate measurement of both individual’s location and greenery drawing on 
emerging big data sources such as SVIs, 3D city models, social media 
data. Another direction involves utilizing limited available data to 
maximize the measurement of greenery exposure. AI, mainly computer 
vision (CV) and natural language processing (NLP), would play a crucial 
role in extracting information, reasoning problems, and generating data 
for more accurate and comprehensive measurements. Recent emerging 
LLMs have the potential to synthesize heterogeneous data sources—such 
as satellite imagery, SVIs, IoT sensors, and social media—to create ho
listic models of greenery exposure, enhancing decision-making through 
improved data analysis, participatory engagement, predictive modeling, 
and policy automation (Malekzadeh et al., 2025). Furthermore, future 
work may look beyond greenery measures to incorporate behavioural 
and psychological factors in exposure research. Even within identical 
green spaces, differences in behaviour, psychological status, and cul
tural background may result in vastly disparate "effective doses" of 
exposure for individuals (Sella et al., 2023). How to incorporate factors 
related to these behavioural and psychological contexts may represent 
another potential aspect requiring attention in fine-grained greenery 
exposure studies.

The results of these fine-grained and comprehensive measures would 
further inform studies in public health, environmental behavior, and 
transportation. These outcomes would guide planners and decision- 
makers regarding which types or features of nature provide the great
est benefits and how nature interventions compare to other measures 
that could enhance well-being, potentially at lower cost or with more 
lasting impact. Finally, a viable direction are comparative and quality 
assessment studies of measuring urban greenery. There has been some 
research initiated on this topic, e.g. studies comparing the performance 
of different data sources (Helbich et al., 2021; Huang et al., 2025), and 
studies on examining the reliability and coverage of particular data 
sources such as SVI (Biljecki et al., 2023; Fan et al., 2025). However, 
further work is needed to critically grasp the capability of each approach 
and the integrity of the derived measurements.

4.5. Limitation

This review has several limitations. First, a complete inter-rater 
reliability process was not conducted. The initial search, screening, 
and data extraction were performed by the first author, and the second 
and third authors independently checked the screened results for con
sistency with the predefined inclusion and exclusion criteria. Although a 
formal inter-rater reliability assessment was not carried out, this quality 
control procedure helped reduce subjectivity and enhance the rigor of 
the review. Second, the scope of this review was limited to methodo
logical aspects of greenery exposure assessment. While this focus 
allowed us to provide a detailed synthesis of methodological advances, it 
did not extend to evaluating health outcomes, which may limit the 
applicability of findings for public health implications.

5. Conclusion

Urban greenery is a crucial element of urban environments, offering 
numerous benefits through various pathways. Traditional proximity- 
based methods inadequately capture the actual interaction between 
humans and greenery. Mobility-based methods focus on real-time 
human location data and potential human-greenery physical contact. 
Emerging visibility-based methods further provide opportunities to 
measure potential visual interactions between humans and greenery. 
Emerging data sources and technology enable developing metrics that 
account for both human mobility and potential contact with greenery, 
while traditional methods still held an advantage in scalability and 
accessibility. Current systematic reviews on greenery exposure primarily 
focus on the health outcomes of urban greenery and have largely 
ignored emerging visibility-based studies. To address this gap, we 
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reviewed 312 studies using the particular approach/metric/data source 
for the first time to assess human exposure to urban greenery. We 
categorized these studies by the data sources used to measure greenery 
and human presence, and further classified them based on the aspects of 
details captured in human-greenery interactions as proximity-based, 
mobility-based, and visibility-based assessments. Our review offers the 
most comprehensive analysis of methodologies available for measuring 
human exposure to urban greenery. Our conceptual framework and 
categorization may guide a wide range of greenery exposure studies to 
design their exposure measurements according to the level of detail 
required for their research objectives.
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Lang, S., Schöpfer, E., Hölbling, D., Blaschke, T., Moeller, M., Jekel, T., Kloyber, E., 2007. 
Quantifying and Qualifying Urban Green by Integrating Remote Sensing, GIS, and 
Social Science Method. In: Petrosillo, I., Müller, F., Jones, K.B., Zurlini, G., 
Krauze, K., Victorov, S., Li, B.-L., Kepner, W.G. (Eds.), Use of Landscape Sciences for 
the Assessment of Environmental Security. Springer Netherlands, pp. 93–105. 
https://doi.org/10.1007/978-1-4020-6594-1_6.

Li, J., Zhang, Z., Jing, F., Gao, J., Ma, J., Shao, G., Noel, S., 2020. An evaluation of urban 
green space in Shanghai, China, using eye tracking. Urban For. Urban Green. 56, 
126903. https://doi.org/10.1016/j.ufug.2020.126903.

Li, M., Xue, F., Wu, Y., Yeh, A.G., 2022. A room with a view: automatic assessment of 
window views for high-rise high-density areas using City Information Models and 
deep transfer learning. Landsc. Urban Plan. 226, 104505.

Li, M., Xue, F., Yeh, A.G., 2023. Bi-objective analytics of 3D visual-physical nature 
exposures in high-rise high-density cities for landscape and urban planning. Landsc. 
Urban Plan. 233, 104714.

Li, P., Wang, Z.-H., 2021. Environmental co-benefits of urban greening for mitigating 
heat and carbon emissions. J. Environ. Manag. 293, 112963.

Li, X., 2021. Examining the spatial distribution and temporal change of the green view 
index in New York City using Google Street View images and deep learning. 
Environment Planning B Urban Analytics City Science 48 (7), 2039–2054. https:// 
doi.org/10.1177/2399808320962511.

Li, X., Li, W., Meng, Q., Zhang, C., Jancso, T., Wu, K., 2016. Modelling building proximity 
to greenery in a three-dimensional perspective using multi-source remotely sensed 
data. J. Spat. Sci. 61 (2), 389–403. https://doi.org/10.1080/ 
14498596.2015.1132642.

Li, X., Meng, Q., Li, W., Zhang, C., Jancso, T., Mavromatis, S., 2014. An explorative study 
on the proximity of buildings to green spaces in urban areas using remotely sensed 
imagery. Ann. GIS 20 (3), 193–203. https://doi.org/10.1080/ 
19475683.2014.945482.

Li, X., Zhang, C., Li, W., Ricard, R., Meng, Q., Zhang, W., 2015. Assessing street-level 
urban greenery using Google Street View and a modified green view index. Urban 
For. Urban Green. 14 (3), 675–685.

Lin, T.-Y., Le, A.-V., Chan, Y.-C., 2022. Evaluation of window view preference using 
quantitative and qualitative factors of window view content. Build. Environ. 213, 
108886. https://doi.org/10.1016/j.buildenv.2022.108886.

Lin, W., Chen, Q., Jiang, M., Tao, J., Liu, Z., Zhang, X., Wu, L., Xu, S., Kang, Y., Zeng, Q., 
2020. Sitting or Walking? Analyzing the Neural Emotional Indicators of Urban Green 
Space Behavior with Mobile EEG. Article 2. J. Urban Health 97 (2). https://doi.org/ 
10.1007/s11524-019-00407-8.

Liu, D., Jiang, Y., Wang, R., Lu, Y., 2023. Establishing a citywide street tree inventory 
with street view images and computer vision techniques. Comput. Environ. Urban 
Syst. 100, 101924. https://doi.org/10.1016/j.compenvurbsys.2022.101924.

Liu, D., Lu, Y., Wei, D., Hu, Y., 2025. Contrasting inequalities in collective residence- 
based and pedestrian-based urban greenery exposure with multi-sourced urban big 
data and deep learning. Appl. Geogr. 183, 103743. https://doi.org/10.1016/j. 
apgeog.2025.103743.

D. Liu et al.                                                                                                                                                                                                                                      Urban Forestry & Urban Greening 114 (2025) 129169 

14 

http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref40
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref40
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref40
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref41
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref41
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref42
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref42
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref42
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref42
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref43
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref43
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref43
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref44
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref44
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref44
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref45
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref45
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref45
https://doi.org/10.1016/j.compenvurbsys.2020.101474
https://doi.org/10.1016/j.compenvurbsys.2020.101474
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref47
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref47
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref47
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref48
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref48
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref48
https://doi.org/10.1109/JSTARS.2020.2995834
https://doi.org/10.1109/JSTARS.2020.2995834
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref50
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref50
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref51
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref51
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref51
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref52
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref52
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref52
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref52
https://doi.org/10.1016/j.landurbplan.2020.103845
https://doi.org/10.1016/j.landurbplan.2020.103845
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref54
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref54
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref54
https://doi.org/10.1016/j.landurbplan.2021.104181
https://doi.org/10.1016/j.buildenv.2024.112395
https://doi.org/10.1016/j.buildenv.2024.112395
https://doi.org/10.1080/13658816.2024.2391969
https://doi.org/10.1007/BF00131175
https://doi.org/10.1007/BF00131175
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref59
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref59
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref60
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref60
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref61
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref61
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref61
https://doi.org/10.1016/j.envres.2022.113744
https://doi.org/10.1016/j.envres.2022.113744
https://doi.org/10.1016/j.envres.2022.113744
https://doi.org/10.1016/j.envres.2022.113744
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref64
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref64
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref64
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref64
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref65
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref65
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref65
https://doi.org/10.1016/j.amepre.2012.11.006
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref67
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref67
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref68
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref68
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref68
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref69
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref69
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref69
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref69
https://doi.org/10.1111/j.1365-2028.2010.01251.x
https://doi.org/10.1111/j.1365-2028.2010.01251.x
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref71
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref71
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref72
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref72
https://doi.org/10.1007/s11676-022-01523-z
https://doi.org/10.1016/j.landurbplan.2022.104617
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref75
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref75
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref76
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref76
https://doi.org/10.1016/j.scitotenv.2020.143050
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref78
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref78
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref78
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref79
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref79
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref79
https://doi.org/10.1007/978-1-4020-6594-1_6
https://doi.org/10.1016/j.ufug.2020.126903
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref82
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref82
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref82
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref83
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref83
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref83
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref84
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref84
https://doi.org/10.1177/2399808320962511
https://doi.org/10.1177/2399808320962511
https://doi.org/10.1080/14498596.2015.1132642
https://doi.org/10.1080/14498596.2015.1132642
https://doi.org/10.1080/19475683.2014.945482
https://doi.org/10.1080/19475683.2014.945482
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref88
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref88
http://refhub.elsevier.com/S1618-8667(25)00503-5/sbref88
https://doi.org/10.1016/j.buildenv.2022.108886
https://doi.org/10.1007/s11524-019-00407-8
https://doi.org/10.1007/s11524-019-00407-8
https://doi.org/10.1016/j.compenvurbsys.2022.101924
https://doi.org/10.1016/j.apgeog.2025.103743
https://doi.org/10.1016/j.apgeog.2025.103743


Liu, D., Wang, R., Grekousis, G., Liu, Y., Lu, Y., 2023. Detecting older pedestrians and 
aging-friendly walkability using computer vision technology and street view 
imagery. Comput. Environ. Urban Syst. 105, 102027.

Liu, P., Lei, B., Huang, W., Biljecki, F., Wang, Y., Li, S., Stouffs, R., 2024. Sensing climate 
justice: a multi-hyper graph approach for classifying urban heat and flood 
vulnerability through street view imagery. Sustain. Cities Soc., 106016

Liu, P., Zhao, T., Luo, J., Lei, B., Frei, M., Miller, C., Biljecki, F., 2023. Towards human- 
centric digital twins: leveraging computer vision and graph models to predict 
outdoor comfort. Sustain. Cities Soc. 93, 104480. https://doi.org/10.1016/j. 
scs.2023.104480.

Liu, X.-X., Ma, X.-L., Huang, W.-Z., Luo, Y.-N., He, C.-J., Zhong, X.-M., Dadvand, P., 
Browning, M.H., Li, L., Zou, X.-G., 2022. Green space and cardiovascular disease: a 
systematic review with meta-analysis. Environ. Pollut. 301, 118990.

Liu, Y., Kwan, M.-P., Wong, M.S., Yu, C., 2023. Current methods for evaluating people’s 
exposure to green space: A scoping review. Soc. Sci. Med., 116303

Liu, Y., Kwan, M.-P., Yu, C., 2023. The uncertain geographic context problem (UGCoP) in 
measuring people’s exposure to green space using the integrated 3S approach. Urban 
For. Urban Green. 85, 127972.

Liu, Z., Chen, X., Cui, H., Ma, Y., Gao, N., Li, X., Meng, X., Lin, H., Abudou, H., Guo, L., 
2023. Green space exposure on depression and anxiety outcomes: a meta-analysis. 
Environ. Res. 231, 116303.

Lu, Y., 2019. Using Google Street View to investigate the association between street 
greenery and physical activity. Landsc. Urban Plan. 191, 103435.

Lu, Y., Ferranti, E.J.S., Chapman, L., Pfrang, C., 2023. Assessing urban greenery by 
harvesting street view data: a review. Urban For. Urban Green. 83, 127917. https:// 
doi.org/10.1016/j.ufug.2023.127917.

Lu, Y., Sarkar, C., Xiao, Y., 2018. The effect of street-level greenery on walking behavior: 
evidence from Hong Kong. Soc. Sci. Med. 208, 41–49.

Lu, Y., Yang, Y., Sun, G., Gou, Z., 2019. Associations between overhead-view and eye- 
level urban greenness and cycling behaviors. Cities 88, 10–18.

Lu, Y., Zhao, J., Wu, X., Lo, S.M., 2021. Escaping to nature during a pandemic: a natural 
experiment in Asian cities during the COVID-19 pandemic with big social media 
data. Sci. Total Environ. 777, 146092.

Luque-García, L., Muxika-Legorburu, J., Mendia-Berasategui, O., Lertxundi, A., García- 
Baquero, G., Ibarluzea, J., 2023. Green and blue space exposure and non- 
communicable disease related hospitalizations: A systematic review. Environ. Res., 
118059

Ma, H., Zhang, Y., Liu, P., Zhang, F., Zhu, P., 2024. How does spatial structure affect 
psychological restoration? A method based on graph neural networks and street view 
imagery. Landsc. Urban Plan. 251, 105171.

Malekzadeh, M., Willberg, E., Torkko, J., Toivonen, T., 2025. Urban attractiveness 
according to ChatGPT: Contrasting AI and human insights. Comput. Environ. Urban 
Syst. 117, 102243. https://doi.org/10.1016/j.compenvurbsys.2024.102243.

Markevych, I., Schoierer, J., Hartig, T., Chudnovsky, A., Hystad, P., Dzhambov, A.M., De 
Vries, S., Triguero-Mas, M., Brauer, M., Nieuwenhuijsen, M.J., 2017. Exploring 
pathways linking greenspace to health: Theoretical and methodological guidance. 
Environ. Res. 158, 301–317.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A., 2022. A survey on bias 
and fairness in machine learning. ACM Comput. Surv. 54 (6), 1–35. https://doi.org/ 
10.1145/3457607.

Meng, Q., Chen, X., Sun, Y., Zhang, J., Wang, Q., Jancsó, T., Liu, S., 2020. Exposure 
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