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Outdoor thermal comfort is a crucial determinant of urban space quality. While research has developed various
heat indices, such as the Universal Thermal Climate Index (UTCI) and the Physiological Equivalent Temperature
(PET), these metrics fail to fully capture perceived thermal comfort. Beyond environmental and physiological
Computer vision factors, recent research suggests that visual elements significantly drive outdoor thermal perception. This study
Thermal sensation integrates computer vision, explainable machine learning, and perceptual assessments to investigate how visual
SHAP elements in streetscapes affect thermal perception. To provide a comprehensive representation of diverse visual
elements, we employed multiple computer vision models (viz. Segment Anything Model, ResNet-50, and Vision
Transformer) and applied the Maximum Clique method to systematically select 50 representative ground-level
images, each paired with a corresponding thermal image captured simultaneously. An outdoor, web-based
survey among 317 students collected thermal sensation votes (TSV), thermal comfort votes (TCV), and
element preference data, yielding 2,854 valid responses. The same survey was replicated in an indoor exhibition
setting to provide a comparative reference against the outdoor experiment. A Random Forest classifier achieved
70% and 68% accuracy in predicting thermal sensation and comfort, respectively. Using Shapley Additive Ex-
planations to interpret model outcomes, we uncovered that the colour magenta emerged as the most influential
visual factor for thermal perception, while greenery — despite being participants' most preferred element for
cooling — showed weaker correlation with actual thermal perception. These findings challenge conventional
assumptions about visual thermal comfort and offer a novel framework for image-based thermal perception
research, with important implications for climate-responsive urban design.

1. Introduction perception in outdoor environments is strongly influenced by a wide
range of physiological and psychological factors [4-6]. Heat indices
such as the Universal Thermal Climate Index (UTCI) and Physiological

Equivalent Temperature (PET) were developed to reveal the relationship

1.1. Background

With the intensifying effects of global warming, maintaining thermal
comfort in outdoor environments has become increasingly critical.
Urban areas worldwide are experiencing more frequent and severe heat
events [1]. In tropical countries such as Singapore, the risks are even
more pronounced. As a highly urbanized and densely built city,
Singapore faces additional challenges such as the urban heat island
(UHI) effect, making the issue of reduced outdoor thermal comfort an
increasingly urgent concern [2]. A central component in this topic is
thermal perception — how people experience thermal conditions in
outdoor spaces [3]. Past studies have indicated that human thermal
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between equivalent temperature and thermal sensation through stan-
dardized scales. These indices incorporate physiological factors
(including air temperature, mean radiation temperature, wind speed,
relative humidity, metabolic rate and clothing insulation). However,
they do not fully capture the thermal comfort of a given location, as
studies have shown that thermal perception is influenced not only by
physiological conditions but also by psychological factors (Fig. 1).
Recent research has revealed that visual elements also significantly
affect perceived outdoor thermal comfort [6].
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1.2. Related work

Visual elements act as psychological primers, shaping people's out-
door thermal perception and expectations. A substantial body of liter-
ature has examined the influence of visual cues on thermal experience,
adopting diverse visual parameter selection and experimental settings.
Some previous studies primarily focused on individual visual parame-
ters, often investigated under controlled or semi-controlled conditions.
These include illuminance [7], albedo and glare [8-10], surface mate-
rials [8,11], hue [12], and environmental elements such as tree shade,
water features, and street furniture [9,13-15]. While these studies
provide important insights into specific visual-thermal relationships,
their limited-factor selection restrict their ability to capture the visual
complexity of real outdoor environments.

Subsequent research extended these investigations to outdoor urban
contexts by incorporating aggregated visual metrics, such as sky view
factor, building view factor, and green visibility indices [6,16,17]. While
these metrics provide scalable representations of urban visual environ-
ments, they typically reduce complex visual scenes to a limited set of
summary indicators. In response to this limitation, more recent studies
have adopted image-based and multi-feature frameworks to capture
outdoor visual environments in a more holistic manner. For instance
Yang et al. [18] introduced the concept of thermal affordance and
proposed the Visual Assessment of Thermal Affordance (VATA) frame-
work, which integrates multiple classes of image-derived features —
including scene recognition, semantic segmentation, object detection,
colour characteristics, and convolutional image representations — to
predict thermal comfort potential at the urban scale. However, while
such frameworks categorize visual features broadly, they often overlook
the granular attributes that drive perception — such as surface material
or fine-grained color distributions — which have been shown to influence
thermal psychology in earlier studies.

1.3. Current methodological approaches

Researchers have developed various methodological approaches to
study visual-thermal relationships. Three key methodological advances
have emerged in the literature that (when integrated) offer promising
pathways for more comprehensive analysis of how visual elements in-
fluence thermal perception.
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1.3.1. Computer vision

Recent advances in computer vision have reshaped how researchers
analyze visual environments. Studies increasingly utilize diverse image
sources — from regular photographs and street-view images [18,19], to
panoramic images [20] — as primary data for understanding urban visual
characteristics. Models like PSPNet and FCN, trained on comprehensive
datasets such as Cityscapes and ADE20K, enable automated extraction of
complex visual parameters. These computational tools, combined with
OpenCV and thermal imaging technologies, allow researchers to
objectively quantify previously unmeasurable visual elements, including
detailed colour distributions, material properties, and spatial configu-
rations. However, while these methods excel at objective measurement,
they cannot capture the subjective human experience of thermal
environments.

1.3.2. Subjective thermal perception votes and assessments

To address the subjective dimension, researchers have established
standardized approaches for measuring human thermal perception.
Current understanding recognizes thermal perception as comprising two
semantic dimensions: sensation and comfort. Thermal sensation, the
objective or descriptive dimension, is most commonly assessed using the
ASHRAE seven-point scale. Thermal comfort is the affective or hedonic
component of thermal perception [21] — researchers working on these
topics have widely adopted the Thermal Sensation Vote (TSV) and
Thermal Comfort Vote (TCV) as standardized instruments for quanti-
fying these subjective perceptions (and experiences) [22,23]. These dual
assessment methods have proven valuable for capturing both physical
sensations and emotional responses to outdoor environments in urban
spaces. However, a significant challenge remains in linking these sub-
jective assessments to objective visual measurements.

1.3.3. Explainable artificial intelligence/machine learning approaches

A recent methodological advancement has been the adoption of
explainable machine learning techniques to bridge objective measure-
ments with subjective perceptions. Shapley Additive Explanations
(SHAP) — derived from game theory — has emerged as a powerful tool for
interpreting model predictions [24]. Unlike traditional black-box
models, SHAP quantifies each feature's contribution to predictions,
revealing not just correlations but causal pathways — in this context,
between visual elements and thermal perception. This interpretability is
particularly valuable for thermal comfort research, as it allows re-
searchers to move beyond simple prediction to understand which visual
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Fig. 1. Theoretical framework illustrating the interplay of visual and non-visual factors (physiological and psychological) in shaping outdoor thermal perception.
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factors drive perception and why. Recent applications have demon-
strated SHAP's potential for uncovering unexpected relationships be-
tween environmental features and comfort outcomes.

1.4. Research gap

Despite these methodological advances, most studies still apply them
in isolation or focus on a limited set of visual parameters. To address this
critical gap, our study compiles and analyzes a comprehensive set of
visual parameters (building upon previous research) to investigate how
multiple visual features collectively influence thermal perception. By
integrating computer vision, perceptual assessment, and interpretable
machine learning within a holistic framework, we aim to provide a more
complete understanding of visual-thermal relationships in outdoor
spaces — one that could reveal insights about the relative importance of
different visual elements in shaping outdoor thermal comfort. Our
model can be used for both inference and prediction, serving as a toolkit
for human-centric urban design.

1.5. Research objectives and key contributions

This research comprehensively investigates how visual elements in-
fluence outdoor thermal perception by integrating computer vision,
perceptual assessment, and explainable machine learning approaches.
Through this integrated methodology, we seek to challenge existing
assumptions about visual-thermal relationships and provide evidence-
based insights for climate-responsive urban design.

The specific objectives of this research are:

1. To systematically quantify and compare the influence of diverse vi-
sual elements on outdoor thermal perception. Using computer vision
techniques to extract comprehensive visual parameters from images,
we aim to move beyond single-feature studies to understand the
relative importance of colours, materials, vegetation, and spatial
configurations in shaping thermal comfort and sensation.

2. To reveal and interpret the mechanisms through which visual fea-
tures affect thermal perception. By applying explainable machine
learning (ensemble tree-based models + SHAP) to bridge objective
visual measurements with subjective thermal votes, we seek to un-
cover not just correlations but the underlying pathways of influence
- potentially revealing unexpected relationships.

3. To develop and validate an integrated framework for image-based
thermal perception assessment. Our framework will demonstrate
how computer vision, standardized perception measures (TSV/TCV),
and interpretable machine learning can be effectively combined to
predict and explain thermal perception from visual data, providing a
scalable methodology for future research and practical urban design
applications.

Our study contributes a novel, integrated data-driven framework for
understanding outdoor thermal comfort through visual perception. It
integrates computer vision, explainable machine learning, and percep-
tual assessment data to identify key visual predictors of thermal sensa-
tion and comfort and help support actionable design insights that bridge
physical and psychological aspects of thermal experiences in urban
spaces.

2. Methodology

Holistically, our study employs a six-stage integrated methodology
(Fig. 2) that progressively builds from data collection to interpretive
analysis, ensuring comprehensive investigation of visual-thermal re-
lationships. First, we conducted systematic on-site data collection across
the campus of the National University of Singapore, capturing diverse
outdoor environments comprehensively. Second, we employed com-
puter vision models and a custom-designed dissimilarity analysis to
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select maximally diverse and representative images from our initial
dataset. Third, we extracted and quantified 34 visual parameters from
the selected images using various image processing and computer vision
techniques. Fourth, we conducted a web-based survey where partici-
pants (situated in outdoor environments) provided thermal sensation
votes, thermal comfort votes, and element preferences for each image.
Fifth, we systematically evaluated multiple machine learning models —
both regression and classification approaches — to identify the optimal
model for capturing visual-thermal relationships. Finally, we applied
SHAP, correlation analysis, and statistical testing to determine the
relative importance and directional influence of visual features on
thermal perception, revealing relationships between visual elements and
thermal comfort.

2.1. Field data collection and study site

Field data collection was conducted across the National University of
Singapore (NUS) campus in the period of 18-27 June 2025, during peak
afternoon hours (14:00-17:00) when outdoor thermal stress is typically
the highest. These temporal parameters were specifically chosen to
capture visual environments under challenging thermal conditions, with
ambient temperatures consistently ranging between 30-38.5 °C, as
recorded by weather stations deployed across campus (Appendix Al).
The NUS campus provided an advantageous study site due to its diverse
outdoor environments, including varied topology, vegetation coverage,
building densities, surface materials, and spatial configurations repre-
sentative of tropical urban settings, and it has been subject of climate
and comfort research for several years [25,26].

We systematically captured 135 photographs along pedestrian routes
and activity areas throughout the campus, ensuring comprehensive
coverage of different visual-thermal contexts — from open plazas with
high sun exposure to tree-lined pathways with extensive shading. Each
photograph was paired with corresponding thermal imagery captured
using a thermal camera (Flir One® Pro, Appendix Al), which simulta-
neously records a photograph and its thermal image with a single shutter
press. This ensured spatially aligned surface temperature information,
providing ground-truth surface temperature distributions for validating
the relationship between visual elements and actual surface tempera-
tures. Unlike photographic images, thermal images cannot correspond
to information that the human eye can directly perceive. Nevertheless,
thermal images can partially reveal the (thermal) impressions people
derive visually from their surroundings, providing an innovative proxy
that bridges visual features and the underlying physical condition of the
environment. This dual-imaging approach enriches the interpretation of
how people perceive outdoor thermal environments.

2.2. Image selection

To ensure our analysis captured the full diversity of visual-thermal
environments (while maintaining computational efficiency and a
reasonable survey scope), we developed a novel image selection proto-
col that identified maximally representative images from our initial
dataset of 135 photographs. This selection process was important for
balancing comprehensive visual coverage with practical constraints of
participant survey fatigue and computational resources.

We implemented a multi-model approach using three state-of-the-art
computer vision models to capture different aspects of visual similarity:
Segment Anything Model (SAM) for semantic understanding, ResNet-50
for general visual features, and Vision Transformer (ViT) for global
image relationships. From each model, we extracted latent embeddings
(high-dimensional representations capturing the essential visual char-
acteristics of each image). We then computed pairwise cosine similar-
ities between all image embeddings using the formula:
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where A and B represent the embedding vectors for two images in the
entire set

Fig. 3 shows the distribution of similarity scores across image pairs
for each model. To establish an objective selection criterion, we ana-
lysed the rate of change in similarity score distributions and identified
inflection points where the density of similar image pairs changed most
rapidly. This analysis yielded model-specific thresholds: 0.40 for SAM,
0.33 for ResNet-50, and 0.45 for ViT (Vision Transformer), below which
images were considered sufficiently dissimilar.

Using these thresholds, we applied the Maximum Clique algorithm —
a graph theory method that identifies the largest subset of nodes (im-
ages) where all pairs meet a specified criterion (dissimilarity). In our
implementation, the Maximum Clique represents the largest set of im-
ages that are all mutually dissimilar across all three models, ensuring no
redundancy in visual content. This selection process yielded 50 images
that optimally represent the visual diversity of campus environments,
from heavily vegetated areas to exposed concrete plazas, providing a
comprehensive (yet manageable dataset) for subsequent perceptual
assessment.

Cosine Similarity =

2.3. Parameter extraction and selection

2.3.1. Feature extraction

We developed a systematic parameter extraction framework building
upon established metrics from previous thermal comfort and urban
perception studies, it comprehensively captures the visual elements that
may influence thermal perception. Development of the parameter set
was guided by three principles: (1) inclusion of established visual met-
rics proven relevant to environmental perception, (2) comprehensive
coverage across different visual dimensions, and (3) computational
feasibility for large-scale analysis. We organized these parameters into
six distinct categories that capture different aspects of the visual envi-
ronment: segmented objects, HSV colour distributions (both proportions
and statistical properties), surface materials, special visual objects,
pixel-level characteristics, and thermal properties. A key novelty in our
parameter set, which records thermal properties, is the introduction of
HotZone%, defined as the proportion of the thermal image where surface
temperatures exceed 30°C. This parameter directly links visual analysis
to thermal conditions, providing a quantitative measure of the (poten-
tially) visible heat load in each scene. The 30°C threshold was selected
based on established thermal comfort research indicating this as a crit-
ical temperature for human thermal stress in outdoor environments.
Neurological studies have used 30°C as a baseline temperature for
measuring human skin thermal responses [27], while thermal remote
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sensing studies frequently analyze this temperature as a critical
threshold in urban heat island research [28].

2.3.2. Feature selection

The extracted visual parameters were subsequently treated as input
features for the machine learning model. Prior to model training, an
iterative model-informed feature screening process was conducted,
guided by principles of recursive feature elimination/selection, model
performance evaluation, and correlation analysis. Through this process,
non-informative or redundant parameters were excluded, resulting in a
final set of 34 visual features used for subsequent modelling. Pairwise
correlation analysis was conducted among the retained features
(Appendix A2). Although some feature groups exhibited relatively high
correlations, these patterns are expected in image-based representations
due to inherent compositional constraints. Importantly, correlated fea-
tures are not mathematically redundant but capture complementary
visual dimensions of the same scene elements, such as semantic pres-
ence, chromatic intensity, and visual heterogeneity.

Table 1 provides a detailed overview of all 34 parameters, their
definitions, variable ranges, and extraction methods. Parameters were
extracted using a combination of deep learning-based image segmen-
tation (DeepLab v3), traditional computer vision techniques (OpenCV),
manual coding for material identification, and thermal image analysis.
This multi-method approach ensures robust quantification of visual el-
ements ranging from basic colour properties to complex spatial and
thermal characteristics, providing the comprehensive visual feature set
necessary for understanding their relative influence on thermal
perception.

2.4. Perceptual data collection through web-based survey

2.4.1. Questionnaire

We designed a web-based survey (Fig. 4) to systematically collect
subjective thermal perception data [31]. The survey utilized our 50
representative images selected through the dissimilarity analysis, pre-
senting each image with corresponding assessment questions. To
improve ecological validity, we required all 317 participants to com-
plete the entire survey being physically present in an outdoor location of
their choice on campus, ensuring consistency — i.e. their thermal re-
sponses reflected their thermal perceptions while in warm/hot outdoor
conditions rather than in conditioned indoor spaces.

The survey instrument comprised three distinct assessment compo-
nents designed to capture different dimensions of thermal-visual
perception (Fig. 4). Questions 1 and 2 assessed Thermal Sensation
Votes and Thermal Comfort Votes respectively, employing established
psychometric approaches for quantifying subjective thermal perception.
Question 3 introduced an element preference test, asking participants to
indicate desired changes (more/less/no change) for four key urban

Similarity Scores vs. Image Pair Count
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Visual transformer
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Fig. 3. Similarity scores and threshold.
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Table 1

Visual parameters and extraction method.
Parameter Visual Description Variable Measurement
category parameters range method

Segmented Sky Proportion of sky 0-100 % Image
object segmentation
[29] (Deeplab
v3)
Building Proportion of 0-100 %
Building
Proportion of
pavement
Proportion of
vegetation (tree/
shrub/ turf)
Others Proportion of
vegetation (tree/
shrub/ turf)
Proportion of red 0-100 % Python code
pixels (OpenCV)
Proportion of 0-100 %
orange pixels
Yellow Proportion of
yellow pixels
Green Proportion of
green pixels
Cyan Proportion of cyan
pixel
Blue Proportion of blue
pixels
Proportion of
magenta pixels
Red mean The average 0-255
value intensity of red
(rMean) colour
Green mean The average 0-255
value intensity of green
(gMean) colour
Blue mean The average 0-255
value intensity of blue
(bMean) colour
rStdDey Measures the
variation in the
intensity of red
Measures the
variation in the
intensity of green
Measures the

Pavement 0-100 %

Vegetation 0-100 %

0-100 %

HSV* Red
Orange
0-100 %
0-100 %
0-100 %
0-100 %

Magenta 0-100 %

0-127.5

gStdDev 0-127.5

bStdDey 0-127.5
variation in the
intensity of blue
Material of Oorl Image
pavement: segmentation
Concrete; Grass; (Manual check)
Asphalt; Wood;
Brick; Gravel; Tiles;
Rubber
Special - Special visual Oorl
Visual objects that might
object make people feel
cooler Building
shade; Tree shade;
Shade provision (i.
e., canopies,
awnings); Rest spot/
outdoor furniture;
Water feature
Thermal Hot Zone% Proportion of
image thermal image
with temperatures
exceeding 30°C

Surface -
material

Manual

0-100 % Thermal studio

software

* HSV colour classification follows established colour perception methodologies
[30]. Images were converted from RGB to HSV colour space and pixels catego-
rized into seven colour groups based on OpenCV hue ranges: Red [0-10,
160-179], Orange [11-25], Yellow [26-35], Green [36-85], Cyan [86-100],
Blue [101-130], and Magenta [131-159].
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elements: greenery, buildings, sky, and pavement. This preference data
provides insights into perceived thermal mitigation strategies and pri-
orities for climate-responsive urban design.

Responses for TSV and TCV were numerically encoded for quanti-
tative analysis. Specifically, TSV responses ranging from "Slightly cool"
to "Very hot" were encoded on a scale from -1 to 4, while TCV responses
from "Very uncomfortable" to "Very comfortable" were encoded from -2
to 2, facilitating standardized data handling for regression and classifi-
cation modelling.

2.4.2. Adaptation of thermal scales for tropical context

A critical methodological consideration was adapting standard
thermal assessment scales to Singapore’s consistently warm tropical
climate. The questionnaire design was informed by two widely used
standards: ISO 10551:2019 [32], which provides general guidance for
the design of subjective judgment scales in environmental perception
research, and ASHRAE 55 [33], which is commonly applied in the
assessment of physical thermal environments and thermal sensation.
Following these standards, the initial survey design was based on a
9-point TSV scale and a 5-point TCV scale. However, local validation
studies have shown that cold-end sensation categories (very cold, cold,
cool) are psychologically irrelevant in tropical outdoor contexts where
air temperatures rarely fall below 25°C [34]. Based on this empirical
evidence, these cold-related categories were removed, resulting in a
reduced 6-point TSV scale ranging from slightly cool to very hot (“very
cold”, “cold”, and “cool” were removed). This approach is consistent
with prior literature [34,35].

2.4.3. Sample size

To determine the minimum required sample size for this study, a
standard statistical approach for finite population sampling was used.
The total target population was estimated to be ~50,000 individuals.
We selected a 90 % confidence level and a 5 % margin of error,
balancing statistical robustness with practical feasibility. Initially
assuming the most conservative scenario (p = 0.5) for maximum vari-
ability, the preliminary sample size for an infinite population was
calculated using the formula:

_Zp(1-p)

Ny
&2

where Z is the Z-score for a 90 % confidence level (1.645 for 90 %), p is
the estimated proportion of the attribute being measured (0.5), and e is
the margin of error (0.05). This calculation yielded an initial sample size
of approximately 271.

. _ 16452051 -05)
o 0.052

To account for the finite population size, we applied the finite pop-
ulation correction (FPC) formula:

~ 270.6

_ ny -N
" N-1+ng

where N = 50,000 and ny=270.6, the corrected sample size was
approximately 270. This sample size provides confidence that the find-
ings will accurately represent the broader population within the speci-
fied confidence and margin of error.

2.5. Model development and evaluation

2.5.1. Preliminary evaluation of (explainable) machine learning models
Prior to model development, we conducted an initial evaluation of
several machine learning algorithms to identify the most effective
approach for predicting thermal comfort. Guided by previous literature
on urban environmental modelling and thermal perception prediction
and avoiding an a priori commitment to a single modelling paradigm,
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we selected a set of regression and classification algorithms for com-
parison, including Random Forest, XGBoost, ExtraTrees, Catboost, and
K-Nearest Neighbours (KNN) [30,36-38]. These are mostly tree-based
(ensemble) models that balance interpretability with predictive prow-
ess, with the exception of KNN.

All candidate models were optimized using grid search with 10-fold
cross-validation, and their performance was evaluated using task-
appropriate metrics (R? for regression models and accuracy and
macro-averaged F1-score for classification models). After systematically
comparing the cross-validated performance across all models, we
selected the best-performing model for subsequent detailed analysis and
interpretation.

2.5.2. Equal frequency binning

Further data preprocessing was conducted to ensure robust and
interpretable results. Equal frequency binning was employed to dis-
cretize thermal sensation votes into three categories (i.e. Cool, Neutral,
and Hot) based on percentile distributions. Similarly, thermal comfort
votes were discretized into three corresponding categories (i.e. Un-
comfortable, Neutral, and Comfortable).

This approach aligns with prior studies (Ballantyne et al., 1977;
Schweiker et al.,, 2017, 2020) and is particularly important because
thermal comfort perception scales are inherently non-equidistant; in-
dividuals do not necessarily perceive the difference between scale points
(e.g., from 1 to 2, 2 to 3, or neutral to warm, warm to hot) uniformly,
highlighting the need for categorization based on distribution rather
than equal interval assumptions. We then implemented a 10-fold cross-
validation procedure.

2.6. Data analysis

2.6.1. Model selection and interpretation

Based on model selection results, we employed the Random Forest
Classifier, with post-hoc application of SHAP to provide an interpretable
means to model predictions [39,40]. SHAP values quantify the impact of
each input feature on model predictions, enabling clear interpretation of

feature importance.

To explore the relationships between participants' TSV, TCV, and
preferences for visual elements (sky, building, pavement, and vegeta-
tion), we employed heatmap visualization combined with correlation
analysis. Preferences were encoded as ordinal variables (More = 1, No
change = 0, Less = —1).

Pearson correlation coefficients were computed between element
preferences and TSV/TCV to assess linear relationships. The strength
and direction of these relationships were quantified, and significance
was determined using p-values. A positive correlation indicates that a
higher preference for a particular visual element corresponds to warmer
thermal sensations or increased discomfort, whereas a negative corre-
lation suggests the opposite. Statistically significant correlations (p <
0.05) indicate meaningful psychological/subjective impacts of visual
elements on thermal perception.

3. Results
3.1. Selection of representative images

As shown in Fig. 5, similarity scores varied across the three computer
vision models due to distinct feature extraction methods (and their
associated latent spaces) inherent to each model. To achieve a
comprehensive and representative image selection, the Maximum Cli-
que method was individually applied to each model. Specifically, 28
images from the Segment Anything Model, 14 from ResNet-50, and 21
from the Vision Transformer were selected. After combining these se-
lections and eliminating duplicates, a final set of 50 unique images was
utilized for the subsequent web-based survey.

3.2. Extracted visual parameters

From the finalized set of images, we then extracted a set of 34 pa-
rameters, categorized into several key groups. These parameters
included surface materials (i.e. concrete, grass, asphalt, wood, brick,
gravel, tiles, rubber), special visual objects (i.e. building shade, tree shade,
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Fig. 5. Similarity scores metrices and selected images.

other shading provision, rest spot/outdoor furniture, water feature), the
proportion of the image with a temperature greater than 30°C (HotZone
%"), hue (i.e. red, orange, yellow, green, cyan, blue, magenta), light in-
tensity (i.e. rMean, gMean, bMean), tonal contrast (i.e. rStdDev, gStdDev,
bStdDev) [41-43] and image segmentation proportions (i.e. sky, pave-
ment, tree, other vegetation, building, water and others). These pa-
rameters constituted the input features for subsequent machine learning
analyses.

3.3. Analysis of thermal (Sensation and comfort) votes

A total of 2,854 valid responses (Appendix A3, Appendix A4) were
collected from 317 participants. Fig. 6 displays the average TSV and TCV
scores for each of the 50 selected images, ranked according to perceived
thermal sensation from coolest to hottest. The ranking was derived from
mean TSV scores calculated from participant responses.

Overall, TCV scores closely aligned with TSV rankings, indicating
that images perceived as hotter were typically rated as less comfortable.
Nevertheless, minor discrepancies emerged between TSV and TCV
scores, suggesting variations in individual comfort perceptions despite
similar thermal sensations. To quantitatively assess the relationship
between TSV and TCV, a Pearson correlation analysis was conducted,
revealing a strong and statistically significant negative correlation (r =
—0.97, p < 0.001). This finding confirms that higher thermal sensations
(feeling hotter) were closely associated with decreased comfort levels.

The heatmap in Fig. 6 further illustrates the distribution of TCV re-
sponses within each TSV category, showing a distinct diagonal pattern.
For example, 70 % of respondents experiencing “very hot” sensations
reported feeling “very uncomfortable,” while 57 % of those feeling
“slightly cool” indicated being “comfortable,” with an additional 30 %
rating themselves as “very comfortable.” Nonetheless, notable vari-
ability was observed within moderate thermal sensation categories
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Fig. 6. TSV/TCV response distribution, Pearson correlation analysis and heatmap.

("neutral," "slightly warm," and "warm"), indicating subjective vari-
ability in perceived comfort.

Qualitative visual inspection of the Top 5 hottest and Top 5 coolest
images revealed distinguishable visual characteristics. Hotter images
typically featured extensive sky exposure, high colour contrast, and
minimal shading. Conversely, images perceived as cooler often had
dense vegetation and visible shade structures. These visual distinctions
underscore potential drivers of thermal perception, necessitating
detailed statistical validation in subsequent analyses.

Overall, the findings support a robust correlation between thermal
sensation and comfort while highlighting meaningful perceptual vari-
ability under moderate thermal conditions. Future analysis should
further examine these divergences to develop a nuanced understanding
of subjective thermal experiences.

3.4. Model training and optimal model selection

For both regression and classification models, hyperparameter
optimization was conducted using grid search combined with cross-
validation. For regression models, the encoded thermal responses were
treated as continuous target variables. We evaluated multiple (ensemble
tree-based) regression algorithms. Hyperparameter optimization for the
regressors focused primarily on model depth and ensemble size, with
max_depth ranging from 1 to 15 and n_estimators ranging from 50 to
250. For KNN regression, the number of neighbours (k) was varied be-
tween 3 and 15. All models were initialized with a fixed random seed
(42) to ensure reproducibility.

For the classification models, the encoded thermal responses were
first transformed into three discrete classes using an equal-frequency
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binning strategy. This binning approach was adopted to address the non-
equidistant perceptual spacing of ordinal thermal sensation scales [44].
We evaluated a range of classification algorithms, and hyperparameters
for the tree-based classifiers were optimized by varying max_depth
(1-15) and n_estimators (50-250), while k was tuned for the KNN
classifier. All classification models were also trained with the same fixed
random seed for consistency. All models were evaluated using 10-fold
cross-validation.

As shown in Fig. 7, across all tested regression algorithms and
hyperparameter configurations, the coefficient of determination (R?)
consistently remained below 0.4, indicating limited explanatory power
when modelling thermal perception as a continuous variable. For clas-
sification models, performance was primarily assessed using overall
accuracy for intuitive model comparison. The classification models
achieved average accuracy exceeding 0.6, indicating substantially
stronger predictive performance compared to regression approaches.

This performance difference between the regressors and classifiers is
likely attributable to the fact that regression approaches assume a
continuous dependent variable with equidistant numerical encoding,
which may not fully capture the discrete or ordinal nature of thermal
perception responses. In contrast, classification models can handle cat-
egorical or ordinal outcomes, making them better suited to the data
characteristics in this study.

Among the tested classifiers, the Random Forest Classifier (ran-
dom_state = 42, n_estimators = 150, max_depth = 8) emerged as the
most effective model, achieving accuracy scores of 70 % for TSV and 68
% for TCV.

3.5. Model outcome interpretation and feature importance

Based on the SHAP analysis, both feature importance plots and SHAP
beeswarm plots were generated for TSV and TCV. These plots outline the
overall contribution of each predictor, offering a global perspective on
feature importance. Meanwhile, the SHAP beeswarm plot provides more
detailed local interpretability by showing how variations in each fea-
ture’s values influence individual prediction outcomes.

The SHAP summary plots (Fig. 8a, c¢) highlighted Magenta as the most
influential visual feature in predicting thermal comfort and sensation.
Other significant predictors included, sky coverage(Sky(SEG)%), blue-
related variables (i.e. Blue, bMean, bStdDev) and building coverage.
Similarly, the detailed SHAP beeswarm plots (Fig. 8b, d) revealed that
increased Magenta strongly predicted cooler and more comfortable
perceptions, whereas greater Blue and Sky(SEG)% predicted hotter and
less comfortable conditions, thus demonstrating clear directional in-
fluences of visual parameters on thermal perception. Another note-
worthy predictor is HotZone%, which represents the proportion of an
image area with surface temperatures exceeding 30°C. Although not the
most influential predictor, its effect exhibited a consistent pattern:
higher HotZone% values were associated with warmer thermal percep-
tions. Importantly, this indicator also reflects an aspect of the physical
environment, suggesting that visual perception may partially encom-
passes cues regarding underlying physical conditions — that is, people
may infer certain environmental properties, such as surface tempera-
ture, through visual scenes, thereby invoking corresponding thermal
perceptions.

3.5.1. Comparative feature category analysis

Fig. 9 presents two polar charts that summarize the SHAP values of
major visual feature categories. The cumulative SHAP value for each
category was calculated based on the grouped features under six
categories.

1. Hue: red, orange, blue, yellow, green, cyan, magenta
2. Light intensity: rMean, gMean, bMean
3. Tonal contrast: bStdDev, rStdDev, gStdDev
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4. Segmentation Objects: sky(SEG)%, pavement(SEG)%, water(SEG)%,
building(SEG)%, tree(SEG)%, otherVegetation(SEG)%, other(SEG)%

5. Surface Temperature: HotZone%

6. Surface Material: concrete, grass, asphalt, wood, brick, gravel, tiles,
rubber

Hue and Segmentation emerged as the most influential categories
overall. Specifically, Hue had a more pronounced influence on TCV
predictions compared to segmentation features, whereas the impact of
these two categories was relatively balanced for TSV predictions. Sur-
face Temperature and Surface Material categories exhibited the lowest
influence across both models. Additionally, Tonal Contrast showed a
notably stronger impact on TSV, indicating it plays a critical role in
perceiving how hot or cool an environment feels. Conversely, Light In-
tensity had a greater impact on TCV, suggesting it significantly in-
fluences perceptions of environmental comfort.

3.6. Element preferences and thermal votes

To investigate the association between TSV, TCV and preferences for
urban elements (viz. greenery, pavement, sky, buildings), Pearson cor-
relations and heatmap analyses were conducted (Fig. 10). Sky visibility
showed the strongest correlation with thermal perceptions, exhibiting a
significant negative correlation with TSV (r = —0.75, p < 0.001) and a
significant positive correlation with TCV (r = 0.72, p < 0.001). This
indicates participants associated higher sky exposure with cooler sen-
sations and enhanced comfort. In contrast, correlations for greenery,
pavement, and buildings were considerably weaker, all with low r (r <
0.31) and the association were not significant (p-value>0.05)

Heatmap analyses revealed a pronounced preference for increased
greenery, particularly under warmer conditions, despite its weaker
statistical correlation with TSV and TCV. Preferences for sky, buildings,
and pavement were predominantly neutral, reflecting less distinct atti-
tudes toward altering these elements. These findings suggest partici-
pants strongly value greenery despite the stronger statistical (and
model) linkage of sky visibility with thermal perception. This result may
be influenced by a commonly held belief that vegetation contributes to
reducing ambient temperatures [45].

3.7. Survey group comparison

This study's dataset primarily consisted of responses from students
aged 20-30, collected through a web-based survey conducted outdoors.
While this approach allows us to keep the survey and study context
consistent and control for potential demographic biases, it may limit the
generalizability of results to broader urban populations and varying age
groups. To address this limitation, we conducted a parallel indoor public
survey at the Singapore City Gallery as part of the “Well-being in the
City” national exhibition, involving a diverse age demographic. The
survey was set up as an interactive exhibit (Fig. 11), with the same set of
locational images shown randomly. Participants were instructed to
imagine themselves in each scene and then respond to the same TCV
question. A total of 755 responses across 50 images were collected over
two months of the exhibition’s duration.

A comparative analysis (Fig. 11) revealed notable variations between
these two groups. Group B (indoor survey) consistently exhibited greater
variance in TCV and generally reported higher comfort levels, likely due
to the controlled (air-conditioned) indoor environment. Interestingly,
certain images rated as highly comfortable by Group A (the outdoor
participants) were perceived as less comfortable by Group B, particu-
larly those featuring shade, reduced sky(SEG)%, lower bStdDev and
HotZone% values; as well as increased magenta and building(SEG)%.
These features, beneficial for outdoor participants, lost their perceptual
effectiveness for the indoor participants. Other reasons for this result
may include redundancy of shading, age-related variations, and indoor
versus outdoor environmental settings.
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Another notable finding is that, for 39 of the 50 images, the mean
comfort vote in Group B was higher than in Group A. This is most likely
explained by the different survey environments. Respondents in Group B
who completed the survey in an air-conditioned indoor setting generally
reported greater imagined comfort in the viewed scenes than those in
Group A’s outdoor setting.

However, 11 of the 50 images (highlighted in Fig. 11) were rated as
less comfortable in Group B than in Group A. Taking a closer look at
these images revealed some shared characteristics: most featured shade
provision, lower sky-exposure ratios, lower bStdDev values, lower Hot-
Zone% values, and higher magenta and building coverage. Interestingly,
these features were previously identified as effective in enhancing
thermal comfort in outdoor environments. However, this effect was not
replicated in the indoor survey results. A possible explanation is that,
within an air-conditioned indoor setting — where participants are
already thermally comfortable and protected from direct environmental
exposure — the perceived relevance of such features is diminished. For
example, shading becomes functionally redundant indoors, and partic-
ipants may instead shift their attention to other environmental cues that
are more salient or meaningful in an indoor context.

Overall, the contrasting results between the two survey groups
indicate that the survey setting (air-conditioned indoor vs. outdoor
environment) influences participants’ TCV. In most cases, TCV results
collected indoors tend to reflect a higher level of perceived comfort
compared to those collected outdoors. However, certain features iden-
tified as enhancing thermal comfort in outdoor voting results were
associated with lower TCV ratings in the indoor setting. This suggests
that although the study focuses solely on the influence of visual elements
on thermal perception and all surveys were conducted based on image-
based questions, the environmental conditions under which participants
complete the survey can also affect the outcomes. Therefore, in this
study, we chose to use the survey results collected in the outdoor setting
as the training data, as the outdoor thermal conditions are more repre-
sentative of the real environmental context depicted in the selected
images. In most cases, TCV results collected indoors tend to reflect a
higher level of perceived comfort compared to those collected outdoors.
However, certain features identified as enhancing thermal comfort in
outdoor voting results were associated with lower TCV ratings in the
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indoor setting. This suggests that although the study focuses solely on
the influence of visual elements on thermal perception and all surveys
were conducted based on image-based questions, the environmental
conditions under which participants complete the survey can also affect
the outcomes. Therefore, in this study, we chose to use the survey results
collected in the outdoor setting as the training data, as the outdoor
thermal conditions are more representative of the real environmental
context depicted in the selected images.

It is important to note that this comparative analysis represents an
opportunistic study conducted by the research team, made possible by
the opportunity afforded through a public exhibition facilitated by the
planning agency in Singapore. As a result, the survey environment and
respondent demographics vary simultaneously. While this prevents the
isolation of independent effects, the comparison nevertheless provides a
valuable validity check by contrasting a controlled academic sample
under some potential heat stress with a diverse public sample evaluated
under thermally comfortable conditions.

4. Discussion
4.1. Influential visual features

This study utilized SHAP analysis to identify visual parameters
significantly influencing TSV and TCV. Magenta consistently emerged as
a prominent feature, strongly associated with perceptions of coolness
and comfort. In contrast, blue-related visual features, including Blue,
bMean, and bStdDev, were linked to warmer sensations and decreased
comfort. Increased sky exposure (Sky(SEG)%) and Hot Zone% also
demonstrated clear associations with hotter and more uncomfortable
predictions. Conversely, higher values of Other(SEG)% predominantly
corresponded to neutral perceptions, indicating minimal biased effects.

Notably, certain visual features exhibited differing (and divergent)
impacts between TSV and TCV predictions. For example, Building
(SEG)% showed context-dependent effects in the TCV model, associated
with both comfort and discomfort depending on the context. In contrast,
for TSV, this feature primarily predicted cooler sensations. Despite the
strong correlation previously established between TSV and TCV through
Pearson analysis, individual visual features did not consistently exert
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uniform directional influences across these two measures.

Contrary to common findings in indoor environments, where blue
typically signals cooler conditions and comfort [12,46,47], our study
found the opposite trend outdoors. Increased presence of blue was
associated with warmer and less comfortable perceptions. This diver-
gence may stem from contextual differences — particularly that in indoor
settings, high blue values often correlate with skylight or vertical win-
dow exposure, which may contribute to a perceived cooler atmosphere.
In contrast, in outdoor environments, increased blue may indicate direct
sky exposure (Sky(SEG)%), which is often linked to higher solar radia-
tion and perceived heat.

Similarly, while magenta often has minimal influence (and is often
considered a neutral or cool colour) indoors [46], our findings high-
lighted its significant role outdoors, suggesting complexity in how
magenta influences thermal perception that merits further exploration.
This unexpected prominence of magenta suggests that its role in shaping
outdoor thermal perception is more complex and warrants further
investigation.

4.2. Limitations

One limitation of the web-based survey modality is that participants’
immediate local microclimatic conditions during survey completion
could not be fully controlled. Although participants were instructed to
complete the survey in an outdoor, sunny environment prior to partic-
ipation, individual variations in environmental conditions may still
exist.

It is important to note, however, that the primary objective of this
study is not to estimate absolute thermal sensation under tightly
controlled microclimatic conditions, but to investigate the relative in-
fluence of visual characteristics on perceived thermal sensation and
comfort. Participants were therefore explicitly instructed to focus on the
visual content of the images when providing TSV and TCV responses.
Moreover, each image was evaluated by approximately 50 participants
on average, and aggregating responses across a large sample helps
reduce the influence of individual-level environmental noise, yielding
more robust image-level perceptual estimates.

The survey was intentionally conducted in an outdoor context to
enhance ecological validity. Supplementary experiments performed
under a fully controlled indoor environment (at Singapore city gallery)
indicate that visual thermal perception assessed indoors differs sys-
tematically from outdoor evaluations, further supporting the benefits of
an outdoor survey setting despite the associated variability.

In this study, the experimental environment where each respondent
conducted their web-based survey purposely remained constant across
all images. Therefore, the physical environment in which the re-
spondents answered the questionnaire was different from the physical
environment in which the images were collected, yet Singapore’s af-
ternoon climate is generally stable and consistently warm. Unlike other
studies that incorporated in-field data for validation [18], we deliber-
ately chose not to adopt this approach for two main reasons. First, the
primary objective of this study was to focus specifically on visual pa-
rameters as the core research subject. Therefore, we employed a
web-based survey format to minimize the influence of external envi-
ronmental factors. Second, collecting on-site data poses considerable
challenges. In outdoor settings, participants' sensory perceptions are
influenced by various physical conditions such as ambient noise, wind
speed, and temperature fluctuations across different image collection
locations. If not held constant, these environmental features would also
interfere with our objective of isolating and independently analysing the
effects of visual elements.

In subsequent research, we may consider integrating environmental
factors to comprehensively examine the combined influence of visual
and physical parameters on thermal perception. In our study, we found
that the HotZone% indicator we collected, although not as influential as
colour in shaping thermal perception, still exerted a measurable effect.
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Moreover, the limited size and visual diversity of the current image
dataset — collected exclusively within campus and evaluated by a
campus-based participant population — may constrain the generaliz-
ability of our findings beyond the campus context. To address this lim-
itation, future studies could adopt a similar methodology but
incorporate larger and more diverse datasets and validate the predictive
models across different urban settings, climatic conditions, and popu-
lation groups.

4.3. Insights for urban design

Analysis of element preference votes revealed that sky exposure(Sky
(SEG)%) exhibited the strongest statistical correlation with thermal
perceptions, but participants expressed relatively low preference for it as
a cooling strategy. In contrast, greenery, despite weaker statistical cor-
relations with TSV and TCV, received overwhelming public support,
reflecting widespread belief in its physical cooling benefits [45].
Furthermore, in a recent study [20], which also employed an
image-based method to investigate the restorative potential of urban
landscapes, the findings critically questioned the intuitive notion of "the
greener, the better" in relation to urban health benefits. Their findings
suggest that more trees do not necessarily enhance comfort; instead,
openness and the diversity of vegetation are also important factors
influencing perceived comfort. This indicates that perceived outdoor
thermal comfort relies not solely on physical cooling features but also on
visual and psychological cues embedded in colour composition and vi-
sual scene complexity.

Urban design thus needs to integrate physical environmental per-
formance with perceptual (subjective) and psychological consider-
ations. Our findings suggest that perceived thermal comfort is not solely
governed by elements that have been empirically and scientifically
proven to provide physical cooling, such as greenery, but is also shaped
by visual and psychological cues embedded in colour composition and
image perception. In Singapore, several established cooling strategies
exist, including measures related to material reflectance and vegetation
planting [48]. For instance, the Singapore Government has started
heat-reflective paint initiatives, applying cool coatings to the exterior of
HDB buildings (public housing developed by the Housing and Devel-
opment Board in Singapore) buildings to reduce surface temperatures
[49], However, such cooling strategies, which primarily focus on
modifying the physical environment, have yet to account for other di-
mensions such as visual influences. For instance, while cool paint
coatings on roads can reduce surface temperatures [50], their high
reflectance may also create glare under strong sunlight — visual
perception shown to negatively affect perceived thermal comfort [8,9].
Consequently, urban thermal design must account for the distinction
between physical environmental performance and perceptual outcomes.
Other design-related theories also emphasize this point. For example,
the Contemplative Landscape Model [51] underscores the pivotal role of
visual perception in shaping psychological experiences in outdoor
landscapes, with direct implications for human well-being and mental
health. Accordingly, designing for outdoor comfort should consider how
colour tones, visual complexity, and scene composition influence how
people perceive and respond to thermal environments.

5. Conclusion

Our study advances the understanding of outdoor thermal comfort
by integrating computer vision and (explainable) machine learning with
image-based visual analysis and human perception data. The first
objective was to extract a comprehensive set of visual parameters from
images, encompassing six key dimensions: hue, light intensity, tonal
contrast, segmentation, surface temperature, and surface material, then to
identify the visual parameters most strongly associated with thermal
perception. SHAP analysis identified magenta as the most influential
visual feature predicting both thermal sensation and comfort, while
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blue-related features and sky exposure (Sky(SEG)%) were linked to
higher perceived heat and discomfort. These findings challenge tradi-
tional indoor-based colour assumptions and underscore the unique role
of outdoor visual contexts. The second objective was to reveal how
different visual elements relate to thermal perception. While sky expo-
sure (Sky(SEG)%) showed the strongest statistical association with TSV
and TCV, participants expressed a stronger preference for more green-
ery. Interestingly, greenery had less predictive power than colour fea-
tures, suggesting a possible gap between perceived and actual thermal
impact. This highlights the need to consider both psychological and
physiological cues in urban comfort design. For the third objective, we
successfully developed a framework that tightly integrates computer
vision, standardized perceptual measures (TSV/TCV), and interpretable
machine learning approaches. Specifically, we extracted 34 visual pa-
rameters using computer vision techniques and collected subjective
thermal perception data through web-based TSV/TCV surveys. In terms
of model training, we confirmed that thermal votes are not equidistant
and that classification models — especially Random Forests with equal-
frequency binning — outperform regression approaches. This supports
the use of ordinal-aware methods in perceptual modelling. This frame-
work offers potential for future larger-scale urban analysis using
crowdsourced data, such as street-view imagery, which is increasingly
available for pedestrian paths [16,19,26].

Finally, our study contributes a comprehensive framework for ana-
lysing outdoor thermal perception using visual parameters, introduces a
novel image selection methodology leveraging computer vision and
explainable machine learning, and provides new urban design insights
that go beyond physical simulation by incorporating perceptual and
visual cues. Our method is scalable and adaptable to different
geographic or cultural contexts, requiring only that the model be
retrained with images and survey data representative of the target
environment and participant population. Such flexibility provides

Appendix A
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Flir One® Pro

(Image from FLIR product website)
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localized insights into thermal perception and enables the framework’s
application across diverse urban climates.
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Thermal Vote Distribution with Color-Coded Bars
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Thermal Comfort Vote Distribution with Color-Coded Bars
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