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A B S T R A C T

Outdoor thermal comfort is a crucial determinant of urban space quality. While research has developed various 
heat indices, such as the Universal Thermal Climate Index (UTCI) and the Physiological Equivalent Temperature 
(PET), these metrics fail to fully capture perceived thermal comfort. Beyond environmental and physiological 
factors, recent research suggests that visual elements significantly drive outdoor thermal perception. This study 
integrates computer vision, explainable machine learning, and perceptual assessments to investigate how visual 
elements in streetscapes affect thermal perception. To provide a comprehensive representation of diverse visual 
elements, we employed multiple computer vision models (viz. Segment Anything Model, ResNet-50, and Vision 
Transformer) and applied the Maximum Clique method to systematically select 50 representative ground-level 
images, each paired with a corresponding thermal image captured simultaneously. An outdoor, web-based 
survey among 317 students collected thermal sensation votes (TSV), thermal comfort votes (TCV), and 
element preference data, yielding 2,854 valid responses. The same survey was replicated in an indoor exhibition 
setting to provide a comparative reference against the outdoor experiment. A Random Forest classifier achieved 
70% and 68% accuracy in predicting thermal sensation and comfort, respectively. Using Shapley Additive Ex
planations to interpret model outcomes, we uncovered that the colour magenta emerged as the most influential 
visual factor for thermal perception, while greenery – despite being participants' most preferred element for 
cooling – showed weaker correlation with actual thermal perception. These findings challenge conventional 
assumptions about visual thermal comfort and offer a novel framework for image-based thermal perception 
research, with important implications for climate-responsive urban design.

1. Introduction

1.1. Background

With the intensifying effects of global warming, maintaining thermal 
comfort in outdoor environments has become increasingly critical. 
Urban areas worldwide are experiencing more frequent and severe heat 
events [1]. In tropical countries such as Singapore, the risks are even 
more pronounced. As a highly urbanized and densely built city, 
Singapore faces additional challenges such as the urban heat island 
(UHI) effect, making the issue of reduced outdoor thermal comfort an 
increasingly urgent concern [2]. A central component in this topic is 
thermal perception – how people experience thermal conditions in 
outdoor spaces [3]. Past studies have indicated that human thermal 

perception in outdoor environments is strongly influenced by a wide 
range of physiological and psychological factors [4–6]. Heat indices 
such as the Universal Thermal Climate Index (UTCI) and Physiological 
Equivalent Temperature (PET) were developed to reveal the relationship 
between equivalent temperature and thermal sensation through stan
dardized scales. These indices incorporate physiological factors 
(including air temperature, mean radiation temperature, wind speed, 
relative humidity, metabolic rate and clothing insulation). However, 
they do not fully capture the thermal comfort of a given location, as 
studies have shown that thermal perception is influenced not only by 
physiological conditions but also by psychological factors (Fig. 1). 
Recent research has revealed that visual elements also significantly 
affect perceived outdoor thermal comfort [6].
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1.2. Related work

Visual elements act as psychological primers, shaping people's out
door thermal perception and expectations. A substantial body of liter
ature has examined the influence of visual cues on thermal experience, 
adopting diverse visual parameter selection and experimental settings. 
Some previous studies primarily focused on individual visual parame
ters, often investigated under controlled or semi-controlled conditions. 
These include illuminance [7], albedo and glare [8–10], surface mate
rials [8,11], hue [12], and environmental elements such as tree shade, 
water features, and street furniture [9,13–15]. While these studies 
provide important insights into specific visual-thermal relationships, 
their limited-factor selection restrict their ability to capture the visual 
complexity of real outdoor environments.

Subsequent research extended these investigations to outdoor urban 
contexts by incorporating aggregated visual metrics, such as sky view 
factor, building view factor, and green visibility indices [6,16,17]. While 
these metrics provide scalable representations of urban visual environ
ments, they typically reduce complex visual scenes to a limited set of 
summary indicators. In response to this limitation, more recent studies 
have adopted image-based and multi-feature frameworks to capture 
outdoor visual environments in a more holistic manner. For instance 
Yang et al. [18] introduced the concept of thermal affordance and 
proposed the Visual Assessment of Thermal Affordance (VATA) frame
work, which integrates multiple classes of image-derived features – 
including scene recognition, semantic segmentation, object detection, 
colour characteristics, and convolutional image representations – to 
predict thermal comfort potential at the urban scale. However, while 
such frameworks categorize visual features broadly, they often overlook 
the granular attributes that drive perception – such as surface material 
or fine-grained color distributions – which have been shown to influence 
thermal psychology in earlier studies.

1.3. Current methodological approaches

Researchers have developed various methodological approaches to 
study visual-thermal relationships. Three key methodological advances 
have emerged in the literature that (when integrated) offer promising 
pathways for more comprehensive analysis of how visual elements in
fluence thermal perception.

1.3.1. Computer vision
Recent advances in computer vision have reshaped how researchers 

analyze visual environments. Studies increasingly utilize diverse image 
sources – from regular photographs and street-view images [18,19], to 
panoramic images [20] – as primary data for understanding urban visual 
characteristics. Models like PSPNet and FCN, trained on comprehensive 
datasets such as Cityscapes and ADE20K, enable automated extraction of 
complex visual parameters. These computational tools, combined with 
OpenCV and thermal imaging technologies, allow researchers to 
objectively quantify previously unmeasurable visual elements, including 
detailed colour distributions, material properties, and spatial configu
rations. However, while these methods excel at objective measurement, 
they cannot capture the subjective human experience of thermal 
environments.

1.3.2. Subjective thermal perception votes and assessments
To address the subjective dimension, researchers have established 

standardized approaches for measuring human thermal perception. 
Current understanding recognizes thermal perception as comprising two 
semantic dimensions: sensation and comfort. Thermal sensation, the 
objective or descriptive dimension, is most commonly assessed using the 
ASHRAE seven-point scale. Thermal comfort is the affective or hedonic 
component of thermal perception [21] – researchers working on these 
topics have widely adopted the Thermal Sensation Vote (TSV) and 
Thermal Comfort Vote (TCV) as standardized instruments for quanti
fying these subjective perceptions (and experiences) [22,23]. These dual 
assessment methods have proven valuable for capturing both physical 
sensations and emotional responses to outdoor environments in urban 
spaces. However, a significant challenge remains in linking these sub
jective assessments to objective visual measurements.

1.3.3. Explainable artificial intelligence/machine learning approaches
A recent methodological advancement has been the adoption of 

explainable machine learning techniques to bridge objective measure
ments with subjective perceptions. Shapley Additive Explanations 
(SHAP) – derived from game theory – has emerged as a powerful tool for 
interpreting model predictions [24]. Unlike traditional black-box 
models, SHAP quantifies each feature's contribution to predictions, 
revealing not just correlations but causal pathways – in this context, 
between visual elements and thermal perception. This interpretability is 
particularly valuable for thermal comfort research, as it allows re
searchers to move beyond simple prediction to understand which visual 

Fig. 1. Theoretical framework illustrating the interplay of visual and non-visual factors (physiological and psychological) in shaping outdoor thermal perception.
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factors drive perception and why. Recent applications have demon
strated SHAP's potential for uncovering unexpected relationships be
tween environmental features and comfort outcomes.

1.4. Research gap

Despite these methodological advances, most studies still apply them 
in isolation or focus on a limited set of visual parameters. To address this 
critical gap, our study compiles and analyzes a comprehensive set of 
visual parameters (building upon previous research) to investigate how 
multiple visual features collectively influence thermal perception. By 
integrating computer vision, perceptual assessment, and interpretable 
machine learning within a holistic framework, we aim to provide a more 
complete understanding of visual-thermal relationships in outdoor 
spaces – one that could reveal insights about the relative importance of 
different visual elements in shaping outdoor thermal comfort. Our 
model can be used for both inference and prediction, serving as a toolkit 
for human-centric urban design.

1.5. Research objectives and key contributions

This research comprehensively investigates how visual elements in
fluence outdoor thermal perception by integrating computer vision, 
perceptual assessment, and explainable machine learning approaches. 
Through this integrated methodology, we seek to challenge existing 
assumptions about visual-thermal relationships and provide evidence- 
based insights for climate-responsive urban design.

The specific objectives of this research are: 

1. To systematically quantify and compare the influence of diverse vi
sual elements on outdoor thermal perception. Using computer vision 
techniques to extract comprehensive visual parameters from images, 
we aim to move beyond single-feature studies to understand the 
relative importance of colours, materials, vegetation, and spatial 
configurations in shaping thermal comfort and sensation.

2. To reveal and interpret the mechanisms through which visual fea
tures affect thermal perception. By applying explainable machine 
learning (ensemble tree-based models + SHAP) to bridge objective 
visual measurements with subjective thermal votes, we seek to un
cover not just correlations but the underlying pathways of influence 
– potentially revealing unexpected relationships.

3. To develop and validate an integrated framework for image-based 
thermal perception assessment. Our framework will demonstrate 
how computer vision, standardized perception measures (TSV/TCV), 
and interpretable machine learning can be effectively combined to 
predict and explain thermal perception from visual data, providing a 
scalable methodology for future research and practical urban design 
applications.

Our study contributes a novel, integrated data-driven framework for 
understanding outdoor thermal comfort through visual perception. It 
integrates computer vision, explainable machine learning, and percep
tual assessment data to identify key visual predictors of thermal sensa
tion and comfort and help support actionable design insights that bridge 
physical and psychological aspects of thermal experiences in urban 
spaces.

2. Methodology

Holistically, our study employs a six-stage integrated methodology 
(Fig. 2) that progressively builds from data collection to interpretive 
analysis, ensuring comprehensive investigation of visual-thermal re
lationships. First, we conducted systematic on-site data collection across 
the campus of the National University of Singapore, capturing diverse 
outdoor environments comprehensively. Second, we employed com
puter vision models and a custom-designed dissimilarity analysis to 

select maximally diverse and representative images from our initial 
dataset. Third, we extracted and quantified 34 visual parameters from 
the selected images using various image processing and computer vision 
techniques. Fourth, we conducted a web-based survey where partici
pants (situated in outdoor environments) provided thermal sensation 
votes, thermal comfort votes, and element preferences for each image. 
Fifth, we systematically evaluated multiple machine learning models – 
both regression and classification approaches – to identify the optimal 
model for capturing visual-thermal relationships. Finally, we applied 
SHAP, correlation analysis, and statistical testing to determine the 
relative importance and directional influence of visual features on 
thermal perception, revealing relationships between visual elements and 
thermal comfort.

2.1. Field data collection and study site

Field data collection was conducted across the National University of 
Singapore (NUS) campus in the period of 18–27 June 2025, during peak 
afternoon hours (14:00–17:00) when outdoor thermal stress is typically 
the highest. These temporal parameters were specifically chosen to 
capture visual environments under challenging thermal conditions, with 
ambient temperatures consistently ranging between 30–38.5 ◦C, as 
recorded by weather stations deployed across campus (Appendix A1). 
The NUS campus provided an advantageous study site due to its diverse 
outdoor environments, including varied topology, vegetation coverage, 
building densities, surface materials, and spatial configurations repre
sentative of tropical urban settings, and it has been subject of climate 
and comfort research for several years [25,26].

We systematically captured 135 photographs along pedestrian routes 
and activity areas throughout the campus, ensuring comprehensive 
coverage of different visual-thermal contexts – from open plazas with 
high sun exposure to tree-lined pathways with extensive shading. Each 
photograph was paired with corresponding thermal imagery captured 
using a thermal camera (Flir One® Pro, Appendix A1), which simulta
neously records a photograph and its thermal image with a single shutter 
press. This ensured spatially aligned surface temperature information, 
providing ground-truth surface temperature distributions for validating 
the relationship between visual elements and actual surface tempera
tures. Unlike photographic images, thermal images cannot correspond 
to information that the human eye can directly perceive. Nevertheless, 
thermal images can partially reveal the (thermal) impressions people 
derive visually from their surroundings, providing an innovative proxy 
that bridges visual features and the underlying physical condition of the 
environment. This dual-imaging approach enriches the interpretation of 
how people perceive outdoor thermal environments.

2.2. Image selection

To ensure our analysis captured the full diversity of visual-thermal 
environments (while maintaining computational efficiency and a 
reasonable survey scope), we developed a novel image selection proto
col that identified maximally representative images from our initial 
dataset of 135 photographs. This selection process was important for 
balancing comprehensive visual coverage with practical constraints of 
participant survey fatigue and computational resources.

We implemented a multi-model approach using three state-of-the-art 
computer vision models to capture different aspects of visual similarity: 
Segment Anything Model (SAM) for semantic understanding, ResNet-50 
for general visual features, and Vision Transformer (ViT) for global 
image relationships. From each model, we extracted latent embeddings 
(high-dimensional representations capturing the essential visual char
acteristics of each image). We then computed pairwise cosine similar
ities between all image embeddings using the formula: 
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Fig. 2. Overall study methodology.
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where A and B represent the embedding vectors for two images in the 
entire set

Fig. 3 shows the distribution of similarity scores across image pairs 
for each model. To establish an objective selection criterion, we ana
lysed the rate of change in similarity score distributions and identified 
inflection points where the density of similar image pairs changed most 
rapidly. This analysis yielded model-specific thresholds: 0.40 for SAM, 
0.33 for ResNet-50, and 0.45 for ViT (Vision Transformer), below which 
images were considered sufficiently dissimilar.

Using these thresholds, we applied the Maximum Clique algorithm – 
a graph theory method that identifies the largest subset of nodes (im
ages) where all pairs meet a specified criterion (dissimilarity). In our 
implementation, the Maximum Clique represents the largest set of im
ages that are all mutually dissimilar across all three models, ensuring no 
redundancy in visual content. This selection process yielded 50 images 
that optimally represent the visual diversity of campus environments, 
from heavily vegetated areas to exposed concrete plazas, providing a 
comprehensive (yet manageable dataset) for subsequent perceptual 
assessment.

2.3. Parameter extraction and selection

2.3.1. Feature extraction
We developed a systematic parameter extraction framework building 

upon established metrics from previous thermal comfort and urban 
perception studies, it comprehensively captures the visual elements that 
may influence thermal perception. Development of the parameter set 
was guided by three principles: (1) inclusion of established visual met
rics proven relevant to environmental perception, (2) comprehensive 
coverage across different visual dimensions, and (3) computational 
feasibility for large-scale analysis. We organized these parameters into 
six distinct categories that capture different aspects of the visual envi
ronment: segmented objects, HSV colour distributions (both proportions 
and statistical properties), surface materials, special visual objects, 
pixel-level characteristics, and thermal properties. A key novelty in our 
parameter set, which records thermal properties, is the introduction of 
HotZone%, defined as the proportion of the thermal image where surface 
temperatures exceed 30◦C. This parameter directly links visual analysis 
to thermal conditions, providing a quantitative measure of the (poten
tially) visible heat load in each scene. The 30◦C threshold was selected 
based on established thermal comfort research indicating this as a crit
ical temperature for human thermal stress in outdoor environments. 
Neurological studies have used 30◦C as a baseline temperature for 
measuring human skin thermal responses [27], while thermal remote 

sensing studies frequently analyze this temperature as a critical 
threshold in urban heat island research [28].

2.3.2. Feature selection
The extracted visual parameters were subsequently treated as input 

features for the machine learning model. Prior to model training, an 
iterative model-informed feature screening process was conducted, 
guided by principles of recursive feature elimination/selection, model 
performance evaluation, and correlation analysis. Through this process, 
non-informative or redundant parameters were excluded, resulting in a 
final set of 34 visual features used for subsequent modelling. Pairwise 
correlation analysis was conducted among the retained features 
(Appendix A2). Although some feature groups exhibited relatively high 
correlations, these patterns are expected in image-based representations 
due to inherent compositional constraints. Importantly, correlated fea
tures are not mathematically redundant but capture complementary 
visual dimensions of the same scene elements, such as semantic pres
ence, chromatic intensity, and visual heterogeneity.

Table 1 provides a detailed overview of all 34 parameters, their 
definitions, variable ranges, and extraction methods. Parameters were 
extracted using a combination of deep learning-based image segmen
tation (DeepLab v3), traditional computer vision techniques (OpenCV), 
manual coding for material identification, and thermal image analysis. 
This multi-method approach ensures robust quantification of visual el
ements ranging from basic colour properties to complex spatial and 
thermal characteristics, providing the comprehensive visual feature set 
necessary for understanding their relative influence on thermal 
perception.

2.4. Perceptual data collection through web-based survey

2.4.1. Questionnaire
We designed a web-based survey (Fig. 4) to systematically collect 

subjective thermal perception data [31]. The survey utilized our 50 
representative images selected through the dissimilarity analysis, pre
senting each image with corresponding assessment questions. To 
improve ecological validity, we required all 317 participants to com
plete the entire survey being physically present in an outdoor location of 
their choice on campus, ensuring consistency – i.e. their thermal re
sponses reflected their thermal perceptions while in warm/hot outdoor 
conditions rather than in conditioned indoor spaces.

The survey instrument comprised three distinct assessment compo
nents designed to capture different dimensions of thermal-visual 
perception (Fig. 4). Questions 1 and 2 assessed Thermal Sensation 
Votes and Thermal Comfort Votes respectively, employing established 
psychometric approaches for quantifying subjective thermal perception. 
Question 3 introduced an element preference test, asking participants to 
indicate desired changes (more/less/no change) for four key urban 

Fig. 3. Similarity scores and threshold.

L. Zhu et al.                                                                                                                                                                                                                                      Building and Environment 293 (2026) 114322 

5 



elements: greenery, buildings, sky, and pavement. This preference data 
provides insights into perceived thermal mitigation strategies and pri
orities for climate-responsive urban design.

Responses for TSV and TCV were numerically encoded for quanti
tative analysis. Specifically, TSV responses ranging from "Slightly cool" 
to "Very hot" were encoded on a scale from -1 to 4, while TCV responses 
from "Very uncomfortable" to "Very comfortable" were encoded from -2 
to 2, facilitating standardized data handling for regression and classifi
cation modelling.

2.4.2. Adaptation of thermal scales for tropical context
A critical methodological consideration was adapting standard 

thermal assessment scales to Singapore’s consistently warm tropical 
climate. The questionnaire design was informed by two widely used 
standards: ISO 10551:2019 [32], which provides general guidance for 
the design of subjective judgment scales in environmental perception 
research, and ASHRAE 55 [33], which is commonly applied in the 
assessment of physical thermal environments and thermal sensation. 
Following these standards, the initial survey design was based on a 
9-point TSV scale and a 5-point TCV scale. However, local validation 
studies have shown that cold-end sensation categories (very cold, cold, 
cool) are psychologically irrelevant in tropical outdoor contexts where 
air temperatures rarely fall below 25◦C [34]. Based on this empirical 
evidence, these cold-related categories were removed, resulting in a 
reduced 6-point TSV scale ranging from slightly cool to very hot (“very 
cold”, “cold”, and “cool” were removed). This approach is consistent 
with prior literature [34,35].

2.4.3. Sample size
To determine the minimum required sample size for this study, a 

standard statistical approach for finite population sampling was used. 
The total target population was estimated to be ~50,000 individuals. 
We selected a 90 % confidence level and a 5 % margin of error, 
balancing statistical robustness with practical feasibility. Initially 
assuming the most conservative scenario (p = 0.5) for maximum vari
ability, the preliminary sample size for an infinite population was 
calculated using the formula: 

n0 =
Z2⋅p⋅(1 − p)

e2 

where Z is the Z-score for a 90 % confidence level (1.645 for 90 %), p is 
the estimated proportion of the attribute being measured (0.5), and e is 
the margin of error (0.05). This calculation yielded an initial sample size 
of approximately 271. 

n0 =
1.6452⋅0.5⋅(1 − 0.5)

0.052 ≈ 270.6 

To account for the finite population size, we applied the finite pop
ulation correction (FPC) formula: 

n =
n0⋅N

N − 1 + n0 

where N = 50,000 and n0=270.6, the corrected sample size was 
approximately 270. This sample size provides confidence that the find
ings will accurately represent the broader population within the speci
fied confidence and margin of error.

2.5. Model development and evaluation

2.5.1. Preliminary evaluation of (explainable) machine learning models
Prior to model development, we conducted an initial evaluation of 

several machine learning algorithms to identify the most effective 
approach for predicting thermal comfort. Guided by previous literature 
on urban environmental modelling and thermal perception prediction 
and avoiding an a priori commitment to a single modelling paradigm, 

Table 1 
Visual parameters and extraction method.

Parameter 
category

Visual 
parameters

Description Variable 
range

Measurement 
method

Segmented 
object

Sky Proportion of sky 0–100 % Image 
segmentation 
[29] (Deeplab 
v3)

​ Building Proportion of 
Building

0–100 % ​

​ Pavement Proportion of 
pavement

0–100 % ​

​ Vegetation Proportion of 
vegetation (tree/ 
shrub/ turf)

0–100 % ​

​ Others Proportion of 
vegetation (tree/ 
shrub/ turf)

0–100 % ​

HSV* Red Proportion of red 
pixels

0–100 % Python code 
(OpenCV)

​ Orange Proportion of 
orange pixels

0–100 % ​

​ Yellow Proportion of 
yellow pixels

0–100 % ​

​ Green Proportion of 
green pixels

0–100 % ​

​ Cyan Proportion of cyan 
pixel

0–100 % ​

​ Blue Proportion of blue 
pixels

0–100 % ​

​ Magenta Proportion of 
magenta pixels

0–100 % ​

​ Red mean 
value 
(rMean)

The average 
intensity of red 
colour

0–255 ​

​ Green mean 
value 
(gMean)

The average 
intensity of green 
colour

0–255 ​

​ Blue mean 
value 
(bMean)

The average 
intensity of blue 
colour

0–255 ​

​ rStdDev Measures the 
variation in the 
intensity of red

0–127.5 ​

​ gStdDev Measures the 
variation in the 
intensity of green

0–127.5 ​

​ bStdDev Measures the 
variation in the 
intensity of blue

0–127.5 ​

Surface 
material

- Material of 
pavement: 
Concrete; Grass; 
Asphalt; Wood; 
Brick; Gravel; Tiles; 
Rubber

0 or 1 Image 
segmentation 
(Manual check)

Special 
Visual 
object

- Special visual 
objects that might 
make people feel 
cooler Building 
shade; Tree shade; 
Shade provision (i. 
e., canopies, 
awnings); Rest spot/ 
outdoor furniture; 
Water feature

0 or 1 Manual

Thermal 
image

Hot Zone% Proportion of 
thermal image 
with temperatures 
exceeding 30◦C

0–100 % Thermal studio 
software

* HSV colour classification follows established colour perception methodologies 
[30]. Images were converted from RGB to HSV colour space and pixels catego
rized into seven colour groups based on OpenCV hue ranges: Red [0–10, 
160–179], Orange [11–25], Yellow [26–35], Green [36–85], Cyan [86–100], 
Blue [101–130], and Magenta [131–159].
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we selected a set of regression and classification algorithms for com
parison, including Random Forest, XGBoost, ExtraTrees, Catboost, and 
K-Nearest Neighbours (KNN) [30,36–38]. These are mostly tree-based 
(ensemble) models that balance interpretability with predictive prow
ess, with the exception of KNN.

All candidate models were optimized using grid search with 10-fold 
cross-validation, and their performance was evaluated using task- 
appropriate metrics (R² for regression models and accuracy and 
macro-averaged F1-score for classification models). After systematically 
comparing the cross-validated performance across all models, we 
selected the best-performing model for subsequent detailed analysis and 
interpretation.

2.5.2. Equal frequency binning
Further data preprocessing was conducted to ensure robust and 

interpretable results. Equal frequency binning was employed to dis
cretize thermal sensation votes into three categories (i.e. Cool, Neutral, 
and Hot) based on percentile distributions. Similarly, thermal comfort 
votes were discretized into three corresponding categories (i.e. Un
comfortable, Neutral, and Comfortable).

This approach aligns with prior studies (Ballantyne et al., 1977; 
Schweiker et al., 2017, 2020) and is particularly important because 
thermal comfort perception scales are inherently non-equidistant; in
dividuals do not necessarily perceive the difference between scale points 
(e.g., from 1 to 2, 2 to 3, or neutral to warm, warm to hot) uniformly, 
highlighting the need for categorization based on distribution rather 
than equal interval assumptions. We then implemented a 10-fold cross- 
validation procedure.

2.6. Data analysis

2.6.1. Model selection and interpretation
Based on model selection results, we employed the Random Forest 

Classifier, with post-hoc application of SHAP to provide an interpretable 
means to model predictions [39,40]. SHAP values quantify the impact of 
each input feature on model predictions, enabling clear interpretation of 

feature importance.
To explore the relationships between participants' TSV, TCV, and 

preferences for visual elements (sky, building, pavement, and vegeta
tion), we employed heatmap visualization combined with correlation 
analysis. Preferences were encoded as ordinal variables (More = 1, No 
change = 0, Less = − 1).

Pearson correlation coefficients were computed between element 
preferences and TSV/TCV to assess linear relationships. The strength 
and direction of these relationships were quantified, and significance 
was determined using p-values. A positive correlation indicates that a 
higher preference for a particular visual element corresponds to warmer 
thermal sensations or increased discomfort, whereas a negative corre
lation suggests the opposite. Statistically significant correlations (p <
0.05) indicate meaningful psychological/subjective impacts of visual 
elements on thermal perception.

3. Results

3.1. Selection of representative images

As shown in Fig. 5, similarity scores varied across the three computer 
vision models due to distinct feature extraction methods (and their 
associated latent spaces) inherent to each model. To achieve a 
comprehensive and representative image selection, the Maximum Cli
que method was individually applied to each model. Specifically, 28 
images from the Segment Anything Model, 14 from ResNet-50, and 21 
from the Vision Transformer were selected. After combining these se
lections and eliminating duplicates, a final set of 50 unique images was 
utilized for the subsequent web-based survey.

3.2. Extracted visual parameters

From the finalized set of images, we then extracted a set of 34 pa
rameters, categorized into several key groups. These parameters 
included surface materials (i.e. concrete, grass, asphalt, wood, brick, 
gravel, tiles, rubber), special visual objects (i.e. building shade, tree shade, 

Fig. 4. Web-based voting platform.
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other shading provision, rest spot/outdoor furniture, water feature), the 
proportion of the image with a temperature greater than 30◦C ('HotZone 
%'), hue (i.e. red, orange, yellow, green, cyan, blue, magenta), light in
tensity (i.e. rMean, gMean, bMean), tonal contrast (i.e. rStdDev, gStdDev, 
bStdDev) [41–43] and image segmentation proportions (i.e. sky, pave
ment, tree, other vegetation, building, water and others). These pa
rameters constituted the input features for subsequent machine learning 
analyses.

3.3. Analysis of thermal (Sensation and comfort) votes

A total of 2,854 valid responses (Appendix A3, Appendix A4) were 
collected from 317 participants. Fig. 6 displays the average TSV and TCV 
scores for each of the 50 selected images, ranked according to perceived 
thermal sensation from coolest to hottest. The ranking was derived from 
mean TSV scores calculated from participant responses.

Overall, TCV scores closely aligned with TSV rankings, indicating 
that images perceived as hotter were typically rated as less comfortable. 
Nevertheless, minor discrepancies emerged between TSV and TCV 
scores, suggesting variations in individual comfort perceptions despite 
similar thermal sensations. To quantitatively assess the relationship 
between TSV and TCV, a Pearson correlation analysis was conducted, 
revealing a strong and statistically significant negative correlation (r =
− 0.97, p < 0.001). This finding confirms that higher thermal sensations 
(feeling hotter) were closely associated with decreased comfort levels.

The heatmap in Fig. 6 further illustrates the distribution of TCV re
sponses within each TSV category, showing a distinct diagonal pattern. 
For example, 70 % of respondents experiencing “very hot” sensations 
reported feeling “very uncomfortable,” while 57 % of those feeling 
“slightly cool” indicated being “comfortable,” with an additional 30 % 
rating themselves as “very comfortable.” Nonetheless, notable vari
ability was observed within moderate thermal sensation categories 

Fig. 5. Similarity scores metrices and selected images.
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("neutral," "slightly warm," and "warm"), indicating subjective vari
ability in perceived comfort.

Qualitative visual inspection of the Top 5 hottest and Top 5 coolest 
images revealed distinguishable visual characteristics. Hotter images 
typically featured extensive sky exposure, high colour contrast, and 
minimal shading. Conversely, images perceived as cooler often had 
dense vegetation and visible shade structures. These visual distinctions 
underscore potential drivers of thermal perception, necessitating 
detailed statistical validation in subsequent analyses.

Overall, the findings support a robust correlation between thermal 
sensation and comfort while highlighting meaningful perceptual vari
ability under moderate thermal conditions. Future analysis should 
further examine these divergences to develop a nuanced understanding 
of subjective thermal experiences.

3.4. Model training and optimal model selection

For both regression and classification models, hyperparameter 
optimization was conducted using grid search combined with cross- 
validation. For regression models, the encoded thermal responses were 
treated as continuous target variables. We evaluated multiple (ensemble 
tree-based) regression algorithms. Hyperparameter optimization for the 
regressors focused primarily on model depth and ensemble size, with 
max_depth ranging from 1 to 15 and n_estimators ranging from 50 to 
250. For KNN regression, the number of neighbours (k) was varied be
tween 3 and 15. All models were initialized with a fixed random seed 
(42) to ensure reproducibility.

For the classification models, the encoded thermal responses were 
first transformed into three discrete classes using an equal-frequency 

Fig. 6. TSV/TCV response distribution, Pearson correlation analysis and heatmap.
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binning strategy. This binning approach was adopted to address the non- 
equidistant perceptual spacing of ordinal thermal sensation scales [44]. 
We evaluated a range of classification algorithms, and hyperparameters 
for the tree-based classifiers were optimized by varying max_depth 
(1–15) and n_estimators (50–250), while k was tuned for the KNN 
classifier. All classification models were also trained with the same fixed 
random seed for consistency. All models were evaluated using 10-fold 
cross-validation.

As shown in Fig. 7, across all tested regression algorithms and 
hyperparameter configurations, the coefficient of determination (R²) 
consistently remained below 0.4, indicating limited explanatory power 
when modelling thermal perception as a continuous variable. For clas
sification models, performance was primarily assessed using overall 
accuracy for intuitive model comparison. The classification models 
achieved average accuracy exceeding 0.6, indicating substantially 
stronger predictive performance compared to regression approaches.

This performance difference between the regressors and classifiers is 
likely attributable to the fact that regression approaches assume a 
continuous dependent variable with equidistant numerical encoding, 
which may not fully capture the discrete or ordinal nature of thermal 
perception responses. In contrast, classification models can handle cat
egorical or ordinal outcomes, making them better suited to the data 
characteristics in this study.

Among the tested classifiers, the Random Forest Classifier (ran
dom_state = 42, n_estimators = 150, max_depth = 8) emerged as the 
most effective model, achieving accuracy scores of 70 % for TSV and 68 
% for TCV.

3.5. Model outcome interpretation and feature importance

Based on the SHAP analysis, both feature importance plots and SHAP 
beeswarm plots were generated for TSV and TCV. These plots outline the 
overall contribution of each predictor, offering a global perspective on 
feature importance. Meanwhile, the SHAP beeswarm plot provides more 
detailed local interpretability by showing how variations in each fea
ture’s values influence individual prediction outcomes.

The SHAP summary plots (Fig. 8a, c) highlighted Magenta as the most 
influential visual feature in predicting thermal comfort and sensation. 
Other significant predictors included, sky coverage(Sky(SEG)%), blue- 
related variables (i.e. Blue, bMean, bStdDev) and building coverage. 
Similarly, the detailed SHAP beeswarm plots (Fig. 8b, d) revealed that 
increased Magenta strongly predicted cooler and more comfortable 
perceptions, whereas greater Blue and Sky(SEG)% predicted hotter and 
less comfortable conditions, thus demonstrating clear directional in
fluences of visual parameters on thermal perception. Another note
worthy predictor is HotZone%, which represents the proportion of an 
image area with surface temperatures exceeding 30◦C. Although not the 
most influential predictor, its effect exhibited a consistent pattern: 
higher HotZone% values were associated with warmer thermal percep
tions. Importantly, this indicator also reflects an aspect of the physical 
environment, suggesting that visual perception may partially encom
passes cues regarding underlying physical conditions – that is, people 
may infer certain environmental properties, such as surface tempera
ture, through visual scenes, thereby invoking corresponding thermal 
perceptions.

3.5.1. Comparative feature category analysis
Fig. 9 presents two polar charts that summarize the SHAP values of 

major visual feature categories. The cumulative SHAP value for each 
category was calculated based on the grouped features under six 
categories. 

1. Hue: red, orange, blue, yellow, green, cyan, magenta
2. Light intensity: rMean, gMean, bMean
3. Tonal contrast: bStdDev, rStdDev, gStdDev

4. Segmentation Objects: sky(SEG)%, pavement(SEG)%, water(SEG)%, 
building(SEG)%, tree(SEG)%, otherVegetation(SEG)%, other(SEG)%

5. Surface Temperature: HotZone%
6. Surface Material: concrete, grass, asphalt, wood, brick, gravel, tiles, 

rubber

Hue and Segmentation emerged as the most influential categories 
overall. Specifically, Hue had a more pronounced influence on TCV 
predictions compared to segmentation features, whereas the impact of 
these two categories was relatively balanced for TSV predictions. Sur
face Temperature and Surface Material categories exhibited the lowest 
influence across both models. Additionally, Tonal Contrast showed a 
notably stronger impact on TSV, indicating it plays a critical role in 
perceiving how hot or cool an environment feels. Conversely, Light In
tensity had a greater impact on TCV, suggesting it significantly in
fluences perceptions of environmental comfort.

3.6. Element preferences and thermal votes

To investigate the association between TSV, TCV and preferences for 
urban elements (viz. greenery, pavement, sky, buildings), Pearson cor
relations and heatmap analyses were conducted (Fig. 10). Sky visibility 
showed the strongest correlation with thermal perceptions, exhibiting a 
significant negative correlation with TSV (r = − 0.75, p < 0.001) and a 
significant positive correlation with TCV (r = 0.72, p < 0.001). This 
indicates participants associated higher sky exposure with cooler sen
sations and enhanced comfort. In contrast, correlations for greenery, 
pavement, and buildings were considerably weaker, all with low r (r <
0.31) and the association were not significant (p-value>0.05)

Heatmap analyses revealed a pronounced preference for increased 
greenery, particularly under warmer conditions, despite its weaker 
statistical correlation with TSV and TCV. Preferences for sky, buildings, 
and pavement were predominantly neutral, reflecting less distinct atti
tudes toward altering these elements. These findings suggest partici
pants strongly value greenery despite the stronger statistical (and 
model) linkage of sky visibility with thermal perception. This result may 
be influenced by a commonly held belief that vegetation contributes to 
reducing ambient temperatures [45].

3.7. Survey group comparison

This study's dataset primarily consisted of responses from students 
aged 20-30, collected through a web-based survey conducted outdoors. 
While this approach allows us to keep the survey and study context 
consistent and control for potential demographic biases, it may limit the 
generalizability of results to broader urban populations and varying age 
groups. To address this limitation, we conducted a parallel indoor public 
survey at the Singapore City Gallery as part of the “Well-being in the 
City” national exhibition, involving a diverse age demographic. The 
survey was set up as an interactive exhibit (Fig. 11), with the same set of 
locational images shown randomly. Participants were instructed to 
imagine themselves in each scene and then respond to the same TCV 
question. A total of 755 responses across 50 images were collected over 
two months of the exhibition’s duration.

A comparative analysis (Fig. 11) revealed notable variations between 
these two groups. Group B (indoor survey) consistently exhibited greater 
variance in TCV and generally reported higher comfort levels, likely due 
to the controlled (air-conditioned) indoor environment. Interestingly, 
certain images rated as highly comfortable by Group A (the outdoor 
participants) were perceived as less comfortable by Group B, particu
larly those featuring shade, reduced sky(SEG)%, lower bStdDev and 
HotZone% values; as well as increased magenta and building(SEG)%. 
These features, beneficial for outdoor participants, lost their perceptual 
effectiveness for the indoor participants. Other reasons for this result 
may include redundancy of shading, age-related variations, and indoor 
versus outdoor environmental settings.
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Fig. 7. Model selection and evaluation process.
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Fig. 8. SHAP analyses of visual features affecting thermal perception.
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Another notable finding is that, for 39 of the 50 images, the mean 
comfort vote in Group B was higher than in Group A. This is most likely 
explained by the different survey environments. Respondents in Group B 
who completed the survey in an air-conditioned indoor setting generally 
reported greater imagined comfort in the viewed scenes than those in 
Group A’s outdoor setting.

However, 11 of the 50 images (highlighted in Fig. 11) were rated as 
less comfortable in Group B than in Group A. Taking a closer look at 
these images revealed some shared characteristics: most featured shade 
provision, lower sky-exposure ratios, lower bStdDev values, lower Hot
Zone% values, and higher magenta and building coverage. Interestingly, 
these features were previously identified as effective in enhancing 
thermal comfort in outdoor environments. However, this effect was not 
replicated in the indoor survey results. A possible explanation is that, 
within an air-conditioned indoor setting – where participants are 
already thermally comfortable and protected from direct environmental 
exposure – the perceived relevance of such features is diminished. For 
example, shading becomes functionally redundant indoors, and partic
ipants may instead shift their attention to other environmental cues that 
are more salient or meaningful in an indoor context.

Overall, the contrasting results between the two survey groups 
indicate that the survey setting (air-conditioned indoor vs. outdoor 
environment) influences participants’ TCV. In most cases, TCV results 
collected indoors tend to reflect a higher level of perceived comfort 
compared to those collected outdoors. However, certain features iden
tified as enhancing thermal comfort in outdoor voting results were 
associated with lower TCV ratings in the indoor setting. This suggests 
that although the study focuses solely on the influence of visual elements 
on thermal perception and all surveys were conducted based on image- 
based questions, the environmental conditions under which participants 
complete the survey can also affect the outcomes. Therefore, in this 
study, we chose to use the survey results collected in the outdoor setting 
as the training data, as the outdoor thermal conditions are more repre
sentative of the real environmental context depicted in the selected 
images. In most cases, TCV results collected indoors tend to reflect a 
higher level of perceived comfort compared to those collected outdoors. 
However, certain features identified as enhancing thermal comfort in 
outdoor voting results were associated with lower TCV ratings in the 

indoor setting. This suggests that although the study focuses solely on 
the influence of visual elements on thermal perception and all surveys 
were conducted based on image-based questions, the environmental 
conditions under which participants complete the survey can also affect 
the outcomes. Therefore, in this study, we chose to use the survey results 
collected in the outdoor setting as the training data, as the outdoor 
thermal conditions are more representative of the real environmental 
context depicted in the selected images.

It is important to note that this comparative analysis represents an 
opportunistic study conducted by the research team, made possible by 
the opportunity afforded through a public exhibition facilitated by the 
planning agency in Singapore. As a result, the survey environment and 
respondent demographics vary simultaneously. While this prevents the 
isolation of independent effects, the comparison nevertheless provides a 
valuable validity check by contrasting a controlled academic sample 
under some potential heat stress with a diverse public sample evaluated 
under thermally comfortable conditions.

4. Discussion

4.1. Influential visual features

This study utilized SHAP analysis to identify visual parameters 
significantly influencing TSV and TCV. Magenta consistently emerged as 
a prominent feature, strongly associated with perceptions of coolness 
and comfort. In contrast, blue-related visual features, including Blue, 
bMean, and bStdDev, were linked to warmer sensations and decreased 
comfort. Increased sky exposure (Sky(SEG)%) and Hot Zone% also 
demonstrated clear associations with hotter and more uncomfortable 
predictions. Conversely, higher values of Other(SEG)% predominantly 
corresponded to neutral perceptions, indicating minimal biased effects.

Notably, certain visual features exhibited differing (and divergent) 
impacts between TSV and TCV predictions. For example, Building 
(SEG)% showed context-dependent effects in the TCV model, associated 
with both comfort and discomfort depending on the context. In contrast, 
for TSV, this feature primarily predicted cooler sensations. Despite the 
strong correlation previously established between TSV and TCV through 
Pearson analysis, individual visual features did not consistently exert 

Fig. 9. Polar charts of TSV/TCV summarizing feature category influence.
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Fig. 10. Pearson correlation analyses and Heatmaps of Element perference.
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Fig. 11. TCV response comparison between Group A and Group B.
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uniform directional influences across these two measures.
Contrary to common findings in indoor environments, where blue 

typically signals cooler conditions and comfort [12,46,47], our study 
found the opposite trend outdoors. Increased presence of blue was 
associated with warmer and less comfortable perceptions. This diver
gence may stem from contextual differences – particularly that in indoor 
settings, high blue values often correlate with skylight or vertical win
dow exposure, which may contribute to a perceived cooler atmosphere. 
In contrast, in outdoor environments, increased blue may indicate direct 
sky exposure (Sky(SEG)%), which is often linked to higher solar radia
tion and perceived heat.

Similarly, while magenta often has minimal influence (and is often 
considered a neutral or cool colour) indoors [46], our findings high
lighted its significant role outdoors, suggesting complexity in how 
magenta influences thermal perception that merits further exploration. 
This unexpected prominence of magenta suggests that its role in shaping 
outdoor thermal perception is more complex and warrants further 
investigation.

4.2. Limitations

One limitation of the web-based survey modality is that participants’ 
immediate local microclimatic conditions during survey completion 
could not be fully controlled. Although participants were instructed to 
complete the survey in an outdoor, sunny environment prior to partic
ipation, individual variations in environmental conditions may still 
exist.

It is important to note, however, that the primary objective of this 
study is not to estimate absolute thermal sensation under tightly 
controlled microclimatic conditions, but to investigate the relative in
fluence of visual characteristics on perceived thermal sensation and 
comfort. Participants were therefore explicitly instructed to focus on the 
visual content of the images when providing TSV and TCV responses. 
Moreover, each image was evaluated by approximately 50 participants 
on average, and aggregating responses across a large sample helps 
reduce the influence of individual-level environmental noise, yielding 
more robust image-level perceptual estimates.

The survey was intentionally conducted in an outdoor context to 
enhance ecological validity. Supplementary experiments performed 
under a fully controlled indoor environment (at Singapore city gallery) 
indicate that visual thermal perception assessed indoors differs sys
tematically from outdoor evaluations, further supporting the benefits of 
an outdoor survey setting despite the associated variability.

In this study, the experimental environment where each respondent 
conducted their web-based survey purposely remained constant across 
all images. Therefore, the physical environment in which the re
spondents answered the questionnaire was different from the physical 
environment in which the images were collected, yet Singapore’s af
ternoon climate is generally stable and consistently warm. Unlike other 
studies that incorporated in-field data for validation [18], we deliber
ately chose not to adopt this approach for two main reasons. First, the 
primary objective of this study was to focus specifically on visual pa
rameters as the core research subject. Therefore, we employed a 
web-based survey format to minimize the influence of external envi
ronmental factors. Second, collecting on-site data poses considerable 
challenges. In outdoor settings, participants' sensory perceptions are 
influenced by various physical conditions such as ambient noise, wind 
speed, and temperature fluctuations across different image collection 
locations. If not held constant, these environmental features would also 
interfere with our objective of isolating and independently analysing the 
effects of visual elements.

In subsequent research, we may consider integrating environmental 
factors to comprehensively examine the combined influence of visual 
and physical parameters on thermal perception. In our study, we found 
that the HotZone% indicator we collected, although not as influential as 
colour in shaping thermal perception, still exerted a measurable effect. 

Moreover, the limited size and visual diversity of the current image 
dataset – collected exclusively within campus and evaluated by a 
campus-based participant population – may constrain the generaliz
ability of our findings beyond the campus context. To address this lim
itation, future studies could adopt a similar methodology but 
incorporate larger and more diverse datasets and validate the predictive 
models across different urban settings, climatic conditions, and popu
lation groups.

4.3. Insights for urban design

Analysis of element preference votes revealed that sky exposure(Sky 
(SEG)%) exhibited the strongest statistical correlation with thermal 
perceptions, but participants expressed relatively low preference for it as 
a cooling strategy. In contrast, greenery, despite weaker statistical cor
relations with TSV and TCV, received overwhelming public support, 
reflecting widespread belief in its physical cooling benefits [45]. 
Furthermore, in a recent study [20], which also employed an 
image-based method to investigate the restorative potential of urban 
landscapes, the findings critically questioned the intuitive notion of "the 
greener, the better" in relation to urban health benefits. Their findings 
suggest that more trees do not necessarily enhance comfort; instead, 
openness and the diversity of vegetation are also important factors 
influencing perceived comfort. This indicates that perceived outdoor 
thermal comfort relies not solely on physical cooling features but also on 
visual and psychological cues embedded in colour composition and vi
sual scene complexity.

Urban design thus needs to integrate physical environmental per
formance with perceptual (subjective) and psychological consider
ations. Our findings suggest that perceived thermal comfort is not solely 
governed by elements that have been empirically and scientifically 
proven to provide physical cooling, such as greenery, but is also shaped 
by visual and psychological cues embedded in colour composition and 
image perception. In Singapore, several established cooling strategies 
exist, including measures related to material reflectance and vegetation 
planting [48]. For instance, the Singapore Government has started 
heat-reflective paint initiatives, applying cool coatings to the exterior of 
HDB buildings (public housing developed by the Housing and Devel
opment Board in Singapore) buildings to reduce surface temperatures 
[49], However, such cooling strategies, which primarily focus on 
modifying the physical environment, have yet to account for other di
mensions such as visual influences. For instance, while cool paint 
coatings on roads can reduce surface temperatures [50], their high 
reflectance may also create glare under strong sunlight – visual 
perception shown to negatively affect perceived thermal comfort [8,9]. 
Consequently, urban thermal design must account for the distinction 
between physical environmental performance and perceptual outcomes. 
Other design-related theories also emphasize this point. For example, 
the Contemplative Landscape Model [51] underscores the pivotal role of 
visual perception in shaping psychological experiences in outdoor 
landscapes, with direct implications for human well-being and mental 
health. Accordingly, designing for outdoor comfort should consider how 
colour tones, visual complexity, and scene composition influence how 
people perceive and respond to thermal environments.

5. Conclusion

Our study advances the understanding of outdoor thermal comfort 
by integrating computer vision and (explainable) machine learning with 
image-based visual analysis and human perception data. The first 
objective was to extract a comprehensive set of visual parameters from 
images, encompassing six key dimensions: hue, light intensity, tonal 
contrast, segmentation, surface temperature, and surface material, then to 
identify the visual parameters most strongly associated with thermal 
perception. SHAP analysis identified magenta as the most influential 
visual feature predicting both thermal sensation and comfort, while 
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blue-related features and sky exposure (Sky(SEG)%) were linked to 
higher perceived heat and discomfort. These findings challenge tradi
tional indoor-based colour assumptions and underscore the unique role 
of outdoor visual contexts. The second objective was to reveal how 
different visual elements relate to thermal perception. While sky expo
sure (Sky(SEG)%) showed the strongest statistical association with TSV 
and TCV, participants expressed a stronger preference for more green
ery. Interestingly, greenery had less predictive power than colour fea
tures, suggesting a possible gap between perceived and actual thermal 
impact. This highlights the need to consider both psychological and 
physiological cues in urban comfort design. For the third objective, we 
successfully developed a framework that tightly integrates computer 
vision, standardized perceptual measures (TSV/TCV), and interpretable 
machine learning approaches. Specifically, we extracted 34 visual pa
rameters using computer vision techniques and collected subjective 
thermal perception data through web-based TSV/TCV surveys. In terms 
of model training, we confirmed that thermal votes are not equidistant 
and that classification models – especially Random Forests with equal- 
frequency binning – outperform regression approaches. This supports 
the use of ordinal-aware methods in perceptual modelling. This frame
work offers potential for future larger-scale urban analysis using 
crowdsourced data, such as street-view imagery, which is increasingly 
available for pedestrian paths [16,19,26].

Finally, our study contributes a comprehensive framework for ana
lysing outdoor thermal perception using visual parameters, introduces a 
novel image selection methodology leveraging computer vision and 
explainable machine learning, and provides new urban design insights 
that go beyond physical simulation by incorporating perceptual and 
visual cues. Our method is scalable and adaptable to different 
geographic or cultural contexts, requiring only that the model be 
retrained with images and survey data representative of the target 
environment and participant population. Such flexibility provides 

localized insights into thermal perception and enables the framework’s 
application across diverse urban climates.
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Appendix A2. Pairwise correlation matrix of the selected 34 visual features.
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Appendix A3. Distribution of TSV vote per image.
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Appendix A4. Distribution of TCV vote per image.
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