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Introduction

Urban areas stand at the forefront of the climate crisis, facing escalating environmental pressures,
growing social inequalities, and heightened risks to human health and well-being. These challenges
are especially pronounced in rapidly expanding cities across the Global South, where informal
settlements, resource constraints, and inadequate infrastructure amplify vulnerabilities. Conven-
tional urban planning and management approaches, developed prior to recent advances in data-
intensive urban analysis, are increasingly unable to address the complexity, scale, and dynamism of
these issues.

In this context, the convergence of artificial intelligence (AI) and urban science, commonly
termed UrbanAI (Caprotti et al., 2024), offers transformative potential for data-driven urban
sustainability design and modeling. UrbanAI broadly refers to the application of AI techniques to
understand, design, and govern urban systems. Recent breakthroughs in remote sensing, computer
vision, and machine learning enable the extraction of meaningful patterns from vast, heterogeneous
data sources, including satellite and drone imagery, street-level imagery, environmental sensor
networks, and crowdsourcing datasets (Li and Hsu, 2022). These advances facilitate high-resolution
and fine-granularity monitoring and modeling of urban processes at unprecedented spatial and
temporal scales. For instance, UrbanAI methods can map heat resilience at the resolution of in-
dividual households, model the risk of mosquito bites potentially carrying pathogens (Knoblauch
et al., 2024, 2025a, 2025b), or predict residents’ perceptions of safety (Knoblauch et al., 2025c;
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Zhang et al., 2021). By linking physical urban form, environmental conditions, and human ex-
perience, UrbanAI reshapes how cities are represented and understood. Importantly, AI is not only
enhancing data acquisition but also transforming analytical paradigms, enabling scalable, adaptive,
and equitable urban interventions. When integrated into planning and policy frameworks, these
tools can inform targeted solutions tailored to local contexts, ultimately fostering resilient and
inclusive urban futures (Ye et al., 2025).

This special issue showcases a diverse collection of pioneering research contributions that
exemplify the current progress and future directions of UrbanAI for a sustainable built environment.
Together, they demonstrate how geospatial technologies, AI-driven analytics, and human-centered
modeling approaches are expanding the frontiers of urban observation, understanding, and ad-
aptation in the face of climate change and social challenges.

Urban sensing as a foundation for UrbanAI

Urban sensing constitutes a critical foundation for UrbanAI, encompassing the diverse methods and
technologies used to observe, measure, and interpret both the physical fabric and dynamic activities
of urban environments. Broadly defined, urban sensing refers to the collection and management of
data on static elements such as buildings and infrastructure, as well as dynamic phenomena in-
cluding traffic patterns, social media activity, environmental conditions, and human mobility (Shi,
2021). As a major pillar of urban analytics, it underpins data-driven decision-making across a wide
array of domains, from transportation, disaster response, and public health to tourism, food systems,
and social equity (Abirami and Chitra, 2023; Biljecki, 2023; Calabrese et al., 2013; Shin et al., 2015;
Xu et al., 2022; Yang et al., 2023).

In recent years, urban sensing has undergone rapid evolution, driven by several converging
trends. These include the proliferation of sensing platforms (e.g., sensor-equipped vehicles, drones,
and smartphones), improved spatial and temporal resolution of data (e.g., high-resolution satellite
imagery and LiDAR), and the emergence of new data sources such as street-level imagery, social
media, wearables, and crowdsourced contributions (Huang et al., 2024; Lei et al., 2026; Liu et al.,
2025b). The rise of citizen science platforms such as OpenStreetMap and crowdsourcing tools has
further democratized data collection, enabling residents themselves to become active participants in
sensing and mapping their urban environments. The dramatic growth in data availability has been
matched by advances in computational power and analytical techniques (Gao et al., 2023a).

In particular, geospatial artificial intelligence, commonly referred to as GeoAI, has become a
transformative force in urban sensing. GeoAI leverages machine learning, computer vision, and
natural language processing to extract meaningful patterns from vast and heterogeneous urban
datasets (Das et al., 2022; Gao et al., 2023b; Li, 2020; Liu and Biljecki, 2022). These tools enable
the fusion of multimodal inputs, from satellite and drone imagery to location and text data,
producing holistic representations of urban systems at unprecedented resolution and scale. In this
special issue, we expand this research landscape into two directions: the first focuses on modeling of
physical environment, and the second focuses on sensing of social environment.

Yuan et al. (2025) propose a deep learning-based approach for large-scale, detailed assessment of
street transparency, defined as the proportion of ground-level openings (windows and doors),
utilizing open-source street view imagery. They find that that street-level penetration rate in first-tier
Chinese cities (i.e., Beijing, Shanghai, and Guangzhou) is affected only by economic construction
but also the layout of street with significant spatial heterogeneity observed.

Wang et al. (2025) examine the feasibility of fine-tuning natural language processing (NLP)
models to classify POI data into manufacturing industry categorizes and correlating their spatial
concentration with carbon emission intensity. As a result, more than 90% of manufacturing land can
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be accurately identified in a Chinese city, namely, Hefei, to support high-resolution carbon emission
mapping tasks.

In Chen et al. (2025), the authors explore the spatiotemporal patterns of activities and violence
associated with unrest events by analyzing social media data with Biterm Topic Modeling (BTM)
approaches. Using the 2013 Brazil Protest as a case study, they found that locations where groups
expressing concern about violence gather are more likely to become sites of actual violence,
providing a promising approach to capture changes in the social environment.

Modeling human perception and behavior

A particularly vibrant area of UrbanAI research investigates the links between environmental
characteristics and human perception, experience, and behavior. Traditionally reliant on field
surveys and observational studies, such insights are increasingly being derived from large-scale,
digital datasets. Crowdsourcing platforms such as MapSwipe (Ullah et al., 2023) or Place Pulse
(Dubey et al., 2016) enable the annotation of street-level imagery to capture subjective perceptions
such as safety, walkability, or esthetic appeal. UrbanAI models can then be trained to identify latent
visual features predictive of these perceptions without requiring explicit feature engineering. These
AI models provide scalable tools for mapping urban experience across entire cities, although care
must be taken to validate them against spatial, socioeconomic, and cultural biases to ensure fairness
and reliability (Quintana et al., 2025). In parallel, wearable sensors and personal mobility data are
increasingly being used to capture real-time physiological and behavioral responses to urban form
(Cheng et al., 2026). Explainable machine learning techniques reveal how features such as in-
tersection density, green space, exposure to sky, or noise levels relate to perceived stress or active
mobility choices. Within our special issue, there is a noticeable share of work dedicated to modeling
human perception and behavior in the built environment.

Ma et al. (2025) investigate the impact of perceived distance to greenery on psychological
restoration utilizing street view images and explainable AI models. Experiment results in Wuhan,
China, show a significant positive causal relationship between urban greenness and psychological
restoration, enhancing future evidence-based promotion for the health and well-being of city
residents.

Moser et al. (2025) introduce a methodology to assess environmental stressors in urban cycling,
addressing stress and safety concerns. Their study in Osnabrück combined wearable electrodermal
activity (EDA) sensors with spatial data from OpenStreetMap, Sentinel-2, andMapillary imagery to
analyze stress levels during cycling. Using a random forest model, they found that cycling in-
frastructure, traffic regulations, and road users were more significant predictors of stress than green
space. This approach provides a transferable method for evaluating urban environments, offering
valuable insights for designing safer cycling spaces.

Lim and Lee (2025) examine the travel pattern and transportation modes of shared bicycles in the
city of Seoul by applying an explainable LightGBM enhanced with a robust SHapley Additive
exPlanation (SHAP) method. Their findings reveal distinct difference in travel patterns and as-
sociated spatiotemporal influencing factors, shedding lights into clarify personal mobility patterns
and inform sustainable transport policy.

As a highlight, Noyman et al. (2025) introduce a novel agentic simulation platform, namely,
TravelAgent, to model pedestrian navigation, activity, and human-like decision-making in the built
environment, which aim at understanding how different people might experience diverse built
environments under varying environmental conditions. Preliminary results based on both interior
and exterior spaces confirm the model capacity of simulating complex agent profiles, behaviors, and
interactions and provide helpful insights into human decision-making, experience, and emotional
responses in urban smart cities.
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AI for urban morphology, design, and planning

AI is transforming the practice of urban design and planning by enabling data-driven understanding
and generative creation of urban morphology and city forms, enhancing efficiency, sustainability,
and inclusivity in urban development. By integrating urban big data with design innovation, AI
empowers planners and architects to model, simulate, and optimize urban environments for sus-
tainable, resilient and human-centered cities. Beyond sensing and perception, UrbanAI is employed
to reimagine urban morphology and guide data-driven design and planning practices. A final cohort
of works in this special issue presents recent progress in applying generative models, graph-based
networks, and reinforcement learning to optimize urban forms, allocate resources, and protect
cultural heritage, reflecting a future of AI-assisted urban planning that is both responsible and
sustainable.

Huang et al. (2025) address the complexity of assessing preservation city boundaries in historic
districts by integrating explainable AI and game theory, facilitating a tree-step process of urban
morphology assessment. Their preliminary findings show that historical heritage plays a major role
in core zone decisions, underscoring the key impact of prioritizing cultural value for heritage
conservation.

Zhang et al. (2025) propose a deep reinforcement learning approach to optimize spatial resource
allocation for school district division task. The key idea is to leverage the advantages of deep
reinforcement learning for real-time response and flexibility, which directly learns behavioral
implication based on the input of changing school district states, supporting long-term school
districting strategies in urban development.

In Huang and Oki (2025), the authors present generative AI approach leveraging a stable
diffusion model with massive public walking preference data in Tokyo, to establish a workflow of
generating revitalized street scenes that aimed at enhancing subjective walking preferences. They
validate the proposed method in a real-world case study using data collected from Tokyo’s Setagaya
ward, highlighting the potential of generative AI in equipping urban designers and planners with fast
and insightful visual assistance in their early design stages.

Last, Liu et al., 2025a present a contribution in designing a heterogeneous graph autoencoder,
called HeteGAE, to jointly embed street and waterway network into a unified, graph-based rep-
resentation for better urban form understanding. Experimental results in Singapore confirm the
capability of HeterGEA in achieving highly competitive prediction accuracy across a range of
downstream tasks, including land surface temperature and resale prices of public housing. More
importantly, it underscores the value of integrating UrbanAI into evidence-based planning and
highlights the potential of graph neural networks to support more nuanced and sustainable urban
design.

Future directions

As UrbanAI continues to evolve, several key challenges and opportunities will shape its trajectory
toward a sustainable built environment. Inspired by the contributions in this special issue, we have
identified three future directions in further advancing UrbanAI research. As an unexhausted list, we
hope these directions will guide ongoing research, inspire practical applications, and foster col-
laborative innovation in UrbanAI and beyond.

The reliability of UrbanAI depends fundamentally on high-quality, diverse urban data. While
data availability is expanding rapidly, through sensors, crowdsourcing, and smart city infra-
structures, there remains a pressing need for standardized quality assessment and fusion techniques
to effectively integrate heterogeneous and multimodal urban datasets. To combine structured and
unstructured data such as imagery, mobility traces, and social sensing information, there is a need to
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advance the spatial representation learning that enables latent alignment of these complex data
streams and reveal dynamic patterns across space and time (Mai et al., 2024). Improving temporal
resolution and leveraging historical urban data will further enable dynamic, longitudinal studies that
capture subtle changes in cities over time (Yue et al., 2025).

Emerging urban analytic data types, from indoor location data to environmental IoT sensors,
human mobility data, and social media data, offer unprecedented insights into urban dynamics and
human–environment interactions. These novel urban data streams capture both urban build en-
vironment and human digital footprints, allowing researchers to model spatial-temporal human
behavior across scales, from individual building usage to city-wide mobility flows. Integrating such
diverse urban data can reveal how city dwellers interact with urban infrastructure, experience
environmental exposure, and perceive urban designs. These novel data streams require tailored
UrbanAI analytical methods and raise important concerns around privacy, bias, and ethical usage
(Sanchez et al., 2025). Establishing data standards, benchmarks, and privacy safeguards will be
essential to responsibly harness these opportunities (Li et al., 2024).

The ability to reproduce or replicate research minimally requires the existence and availability of
the provenance of that research, which is an adequate record of how researchers produced a result.
Promoting open and interoperable urban datasets and software, via standardized formats, metadata
documentation, and FAIR (Findable, Accessible, Interoperable, Reusable) and CARE (Collective
Benefit, Authority to Control, Responsibility, and Ethics) principles, can enable researchers and
stakeholders to better leverage existing research findings and focus on innovative solutions. To this
end, UrbanAI research must embrace open data, transparent workflows, and reproducible methods.
Overcoming barriers posed by proprietary data and computational complexity will foster broader
collaboration and trust within the community (Kedron et al., 2021).

Conclusion

The research presented in this special issue highlights the transformative potential of UrbanAI to
reshape how cities understand, govern, and adapt to environmental and social challenges. By
integrating advanced sensing technologies, artificial intelligence, and participatory data practices,
UrbanAI enables fine-grained, dynamic insights into the complex relationships between people,
infrastructure, and the environment. Importantly, it not only improves scientific understanding but
also supports more targeted and efficient interventions, laying the foundation for more sustainable,
inclusive, and resilient urban futures.

Realizing this promise, however, demands progress on multiple fronts. As UrbanAI systems
increasingly rely on vast, multimodal datasets, such as emerging textual sources, challenges around
data quality, interoperability, and privacy become more urgent. The generalizability of models
across diverse urban contexts remains limited, and the “black-box” nature of many UrbanAI
techniques underscores the growing need for explainability and transparency (Goodchild and Li,
2021). Large language models may enhance interpretation, but ethical frameworks must keep pace
with technical capabilities. Equally critical is the gap between research and policy: despite rapid
advances, UrbanAI tools are seldom adopted in practice due to limited trust, regulatory constraints,
and a lack of institutional capacity. Bridging this divide will require interdisciplinary collaboration,
open science, and deliberate efforts to embed UrbanAI within accountable governance frameworks.

As this special issue demonstrates, the future of sustainable urban development lies not only in
technological innovation but also in ensuring that these tools are explainable, generalizable,
ethically grounded, and actionable. These advances will ultimately serve the diverse needs of urban
populations and be guided by human-centered priorities.
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