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A B S T R A C T

Buildings play a crucial role in shaping urban environments, influencing their physical, functional, and aesthetic 
characteristics. However, urban analytics is frequently limited by datasets lacking essential semantic details as 
well as fragmentation across diverse and incompatible data sources. To address these challenges, we conducted a 
comprehensive meta-analysis of 6,285 publications (2019–2024). From this review, we identified 11 key visually 
discernible building characteristics grouped into three branches: satellite house, satellite neighborhood, and 
street-view. Based on this structured characteristic system, we introduce BuildingMultiView, an innovative 
framework leveraging fine-tuned Large Language Models (LLMs) to systematically extract semantically detailed 
building characteristics from integrated satellite and street-view imagery. Using structured image–prompt–label 
triplets, the model efficiently annotates characteristics at multiple spatial scales. These characteristics include 
swimming pools, roof types, building density, wall–window ratio, and property types. Together, they provide a 
comprehensive and multi-perspective building database. Experiments conducted across five cities in the USA 
with diverse architecture and urban form, San Francisco, San Diego, Salt Lake City, Austin, and New York City, 
demonstrate significant performance improvements, with an F1 score of 79.77% compared to the untuned base 
version of ChatGPT’s 45.66%. These results reveal diverse urban building patterns and correlations between 
architectural and environmental characteristics, showcasing the framework’s capability to analyze both macro- 
scale and micro-scale urban building data. By integrating multi-perspective data sources with cutting-edge LLMs, 
BuildingMultiView enhances building data extraction, offering a scalable tool for urban planners to address 
sustainability, infrastructure, and human-centered design, enabling smarter, resilient cities.

1. Introduction

Urban built environments have experienced unprecedented growth, 
shaped by an interplay of socio-cultural, economic, and technological 
factors, resulting in diverse urban landscapes (Liang et al., 2024; Coburn 
et al., 2017). At the core of these environments, building characteristics 
play a critical role in determining urban form, function, and perfor
mance. Accurately quantifying such characteristics is essential for 
analyzing spatial morphology, transportation efficiency, energy use, and 
social equity (Ashik et al., 2024; Li & Li, 2024). However, acquiring key 
building characteristics (e.g. number of floors, function) remains a 
major challenge for urban analytics. For example, Biljecki et al. (2021)

investigated 140 open government geospatial datasets across 28 coun
tries and found that only half included more than one building charac
teristic. These characteristics are essential for energy modeling, 
resilience analysis, and socio-spatial equity studies but are often missing 
or hard to access.

The usability of current building data is constrained by two key 
limitations. First, such information, even when available, is typically 
incomplete. For instance, OpenStreetMap (OSM), one of the most widely 
used open datasets, in most cases, beyond geometric footprints, it does 
not have any semantic information about buildings (Biljecki et al., 2023; 
Knezevic et al., 2022). Second, building-related data is fragmented 
across heterogeneous sources. These sources differ in format, geographic 
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coverage, and accessibility (Memduhoglu & Basaraner, 2023). These 
limitations pose significant barriers to consistent, scalable, and seman
tically rich building analysis. Therefore, establishing a comprehensive 
and extensible framework to systematically extract interpretable and 
multi-perspective building characteristics is essential.

To address these limitations, urban imagery, particularly satellite 
and street-view imagery, offers a promising avenue for acquiring richer 
and more consistent building information. These modalities provide 
complementary perspectives. Satellite imagery enables macro-scale 
monitoring of urban morphology and land cover, for example through 
vegetation indices or nighttime luminosity. In contrast, street-view data 
captures fine-grained ground-level details relevant to human experience 
and building facades (Mashala et al., 2023; Ashik et al., 2024). However, 
these sources are typically processed in isolation, resulting in frag
mented workflows and limited semantic richness. Thus, integrating 
them is essential to build semantically rich and scalable building 
datasets.

Moreover, researchers have proposed a range of computer vision 
approaches to extract building characteristics from urban imagery. 
These include CNN-based methods for building footprint detection (e.g., 
Faster R-CNN, YOLO), segmentation networks for evaluating walkability 
and façade transparency (e.g., DeepLabV3 + ), and image classification 
models for land-use inference (e.g., ResNet, VGGNet). Yet, such models 
demand large volumes of labeled data and frequent retraining, limiting 
their scalability and adaptability to new tasks or regions (Birgani et al., 
2024). Furthermore, they often operate within a single data modality, 
failing to leverage the complementary strengths of heterogeneous 
sources thus reinforcing the fragmentation issue noted above. The 
advent of large language models (LLMs) opens new opportunities to 
tackle both the incompleteness and fragmentation challenges. Initially 
designed for textual tasks, LLMs have evolved to handle multimodal 
inputs through vision-language pretraining and alignment techniques. 
These models can interpret both structured imagery and textual meta
data, offering a unified and adaptable architecture for cross-source 
analysis (Yan et al., 2023). Compared with traditional CNNs, LLMs 
provide greater scalability, require less task-specific retraining, and offer 
more flexible interaction interfaces (Zhang et al., 2024). However, these 
sources are typically processed in isolation, resulting in fragmented 
workflows and limited semantic richness. Bridging these modalities is 
essential for generating semantically rich, spatially explicit, and scalable 
building characteristic datasets.

To fill these gaps, we propose BuildingMultiView, a unified frame
work that leverages fine-tuned LLMs to extract detailed building char
acteristics in a holistic manner from both satellite and street-view 
imagery. Based on a meta-analysis, we identify 11 key characteristics 
across multiple spatial levels and design image–prompt–label triplets for 
task-specific fine-tuning of GPT-4o. This framework bridges fragmented 
data modalities and enhances semantic richness. The framework is also 
applied across five U.S. cities spanning diverse climate zones and urban 
forms, resulting in a representative multi-perspective building charac
teristics dataset.

Our contributions are threefold. First, we construct a structured 
characteristics system informed by a meta-analysis of the literature, and 
develop BuildingMultiView, a framework that systematically integrates 
satellite and street-view imagery to address the incompleteness of 
existing datasets by generating detailed and interpretable building 
characteristics across multiple spatial scales. Second, we fine-tune GPT- 
4o using multimodal image–prompt–label triplets and task-specific 
prompt engineering. This enables the model to learn from both visual 
and contextual cues, improving generalizability across geographic set
tings and spatial levels (house, neighborhood, street), while also helping 
to bridge fragmented data modalities and modeling processes. Third, we 
construct a large-scale building characteristics dataset consisting of over 
110,000 annotations covering 10,000 buildings in five U.S. cities span
ning diverse climate zones. Compared to existing platforms such as 
OSM, our dataset offers semantically richer, and interoperable building 

descriptors, facilitating downstream applications in energy modeling, 
climate adaptation, and human-centered urban planning.

2. Literature review

2.1. Perspectives and characteristics for comprehensive building analysis

Urban building characteristics extraction has primarily been 
approached from two perspectives: satellite remote sensing and street- 
view imagery. Satellite data enables large-scale mapping and spatial 
analysis, supporting tasks such as land use classification, structural 
delineation, and change detection (Zhao et al., 2021; Li et al., 2022). It 
allows the extraction of key spatial characteristics such as roof type, 
building footprint, parking availability, and swimming pool presence, 
which are closely tied to energy performance, land use efficiency, and 
urban heat regulation (Lee et al., 2014; Jadhav & Gore, 2016; Demir 
et al., 2021).

In contrast, street-view imagery offers a human-scale perspective 
that captures detailed architectural and functional attributes often 
invisible from above. This includes characteristics such as building type, 
window-to-wall ratio, architectural style, and floor count—factors 
crucial for understanding facade design, energy use, and regulatory 
compliance (Kang et al., 2018; Huang & Gurney, 2016; Alwetaishi & 
Benjeddou, 2021). The combination of both views enhances our un
derstanding of buildings not only as spatial units but also as functional, 
culturally embedded, and energy-relevant structures.

While many studies have examined these characteristics in isolation, 
recent research highlights the need for semantic-rich, multi-perspective 
datasets that integrate both physical and functional attributes (Biljecki 
& Chow, 2022). For instance, multi-source fusion has been applied to 
detect abandoned buildings (Zou & Wang, 2022) or assess flood 
vulnerability (Xing et al., 2023), but a comprehensive, globally scalable 
building characteristics database remains largely absent. Bridging this 
gap calls for improved data fusion and automation techniques. Inte
grating satellite remote sensing and street-view data offers a scalable 
and effective approach for capturing both spatial structures and facade- 
level details in the built environment.

2.2. Advanced methods for building information extraction

In recent decades, scholars have shifted from traditional urban 
building studies to computer vision, automating tasks like building 
classification and information extraction (Starzyńska-Grześ et al., 2023; 
Wang et al., 2021). However, complex backgrounds and diverse exte
riors make reusable building extraction challenging, such as CNN-based 
methods (e.g., Faster R-CNN, DeepLabV3+, ResNet) are widely used for 
specific tasks but often fail to transfer effectively across different cities 
(Yang et al., 2018). Transformer-based models such as Swin Transformer 
and SegFormer improve multi-scale reasoning and semantic segmenta
tion accuracy, particularly in remote sensing, but remain computation
ally expensive and often lack generalization across data modalities 
(Wang et al., 2022). These challenges have spurred growing interest in 
vision-language models that support prompt-based, multi-modal 
learning.

Recent years, LLMs have been widely applied for building informa
tion extraction by integrating semantic, geometric, and regulatory in
sights (Rillig et al., 2023; Wang et al., 2024). They enable scalable 
automation in GIS data processing (Zhang et al., 2024), simulation 
modeling (Xiao & Xu, 2024; Zhu et al., 2024), and geospatial annotation 
(Li et al., 2024). A key application is regulatory compliance, where GPT- 
based frameworks parse building codes and align them with BIM/IFC 
models, reducing errors and expediting approvals (Peng & Liu, 2023). 
LLMs also improve document intelligence, extracting insights from 
construction reports and maintenance manuals to enhance risk man
agement (Shahinmoghadam et al., 2024). Beyond text-based tasks, 
multimodal models such as BLIP-2 and PaLI integrate visual and 
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linguistic data for automated facade analysis and structural classifica
tion (Yao et al., 2025; Li et al., 2023). Additionally, combining LLMs 
with knowledge graphs supports urban planning by identifying corre
lations between building density, land use, and socioeconomic factors 
(Fu et al., 2024; Pusch and Tim, 2024). Extending this direction, the 
OpenFACADES framework leverages multimodal LLMs and street-level 
imagery to automatically enrich building profiles with semantic and 
geometric attributes, demonstrating robust performance across diverse 
cities and supporting fine-grained urban analysis (Liang et al., 2025). 
These advancements highlight LLMs' role in large-scale building data 
integration, driving efficient, sustainable, and data-driven built envi
ronment analysis.

3. Methodology

We develop BuildingMultiView, a framework for extracting building- 
centric characteristics using satellite and street-view imagery. The 
workflow includes three steps: (1) constructing a multi-level building 
characteristics system through a meta-analysis of recent literature; (2) 
fine-tuning large language models with multimodal data and prompts; 
and (3) developing an automated pipeline for data collection and 
annotation. The following sections provide a detailed breakdown of 
each component.

3.1. Building centric characteristics system construction through Meta- 
Analysis

3.1.1. Meta-Analysis of building centric characteristics
To identify and standardize the building characteristics that are most 

commonly used in building environment research, we conduct a sys
tematic meta-analysis of scholarly works published between 2019 and 
2024 to ensure methodological rigor and transparency. For that, we 
follow the typical approach of systematic literature reviews: we select 
relevant keywords and search for a set of papers, after which we filter 
papers relevant for our study, and then extract relevant information 
from them. An initial search is performed on November 15, 2024, within 
the Web of Science database using the keywords “building exterior,” 
“building characteristics,” and “building surroundings,” yielding 6,285 
studies broadly related to building and urban form analysis. To capture 
the multidimensional nature of building-related research, these works 
are categorized into three conceptual themes—human, energy, and 
green—which together reflect how building characteristics relate to 

social, energy, and ecological aspects of the urban environment. Incor
porating these additional keywords results in 4,683 relevant publica
tions (544 under human, 4,115 under energy, and 523 under green).

In alignment with our study’s focus on image-based analytics, we 
further adopt a filtering criterion emphasizing visually discernible 
characteristics—that is, building characteristics that can be objectively 
identified or inferred from visual data such as satellite or street-view 
imagery (e.g., roof type, building density, wall–window ratio, and 
façade transparency). This approach follows established practices in 
similar multimodal urban analytics frameworks, such as those devel
oped by Biljecki and Chow (2022) for building morphology character
istics, which adopt a similar literature review analytical framework to 
ensure reproducibility and interoperability. Through this systematic 
refinement, we identify 54 studies that explicitly examine visual or 
façade-level features of buildings and ultimately retain 39 publications 
providing quantifiable and visually observable characteristics suitable 
for integration into the characteristic system.

Given our comprehensive review of building centric characteristics, 
we have identified and summarized the key characteristics that re
searchers find intriguing, which are presented in Fig. 1.

The Satellite House branch represents high-resolution satellite im
agery centered on each building, covering a spatial extent of 100 m ×
100 m. This branch is designed to capture characteristics observable 
from above the top, providing contextual information around individual 
buildings. Based on this imagery, several top-level–related characteris
tics are extracted, including roof type, swimming pool presence, and 
green cover density, which together describe residential form, surface 
materials, and immediate landscape composition. The Satellite Neigh
borhood branch represents 1000 m × 1000 m satellite imagery centered 
on each building cluster, capturing the broader spatial organization and 
development context of the surrounding urban area. This branch focuses 
on neighborhood-scale characteristics that describe the intensity, 
structure, and function of built environments. Specifically, five key 
characteristics are derived: building density, large-building count, 
building-group pattern, land use, and road density. Together, these 
characteristics illustrate how buildings are spatially arranged and how 
different land functions interact within the urban fabric. The Street- 
View branch utilizes ground-level imagery to capture the built envi
ronment from a pedestrian perspective, emphasizing features directly 
perceived and experienced by humans. This branch focuses on archi
tectural and visual characteristics observable from the street façade. Key 
characteristics include wall–window ratio, property type, and floor 

Fig. 1. The Characteristics and Ground Truth Source of Building-centric Database. Note: The left side lists 11 key building-related characteristics grouped under three 
visual data branches, Satellite House, Satellite Neighbor and Street-view, along with their corresponding ground truth data sources. These ground truth datasets are 
used to generate image–prompt–label triplets for fine-tuning the LLM. The right side illustrates the spatial scope and data types involved across the three branches.
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count, which together describe structural form, building use, and ver
tical scale. These characteristics are essential for evaluating thermal 
performance, architectural style, and population density.

3.1.2. Ground truth construction based on Meta-Analysis
Based on the characteristic system identified through the previous 

meta-analysis, we collect and construct a corresponding ground truth 
dataset to support the subsequent fine-tuning of large language models 
(LLMs). This ground truth is organized across three major branches: (1) 
satellite house, (2) satellite neighbor, and (3) street-view level charac
teristics. Table 1 provides a summary of the characteristics, classifica
tion categories, and ground truth sources for each branch. Detailed 
descriptions and examples of each characteristic are presented in the 
following sections.

Satellite House Branch focuses on characteristics extracted from 
rooftop-level features visible in satellite imagery. Fig. 2 presents repre
sentative visual examples for each classification level under the three 
characteristics, highlighting their observable variations in satellite 
views.

Specifically, Swimming Pool (A) is sourced from the Kaggle Swim
ming Pool Detection Database (Coelho et al., 2021) and reflects the 
availability of recreational amenities, which are often associated with 
neighborhood socioeconomic status. Roof Type (B) is derived from the 
Roof Type Recognition Database (Alidoost & Arefi, 2018), capturing 
structural forms that adapt to climate and affect building performance 
(Wang et al., 2022; Zhang et al., 2021). Green Cover Density (C) is ob
tained from the Multi-temporal Scene Classification and Change 
Detection Dataset (Shao et al., 2020), representing the extent of vege
tative cover and its role in supporting urban ecological health (Hami 
et al., 2019; Santamouris and Osmond, 2020).

Satellite Neighbor Branch includes five characteristics derived from 
building footprints, land cover, and road networks. These features 
describe spatial structure, urban morphology, and infrastructure distri
bution. Fig. 3 presents representative visual examples for each class 
within this branch, illustrating their observable patterns in overhead 
satellite imagery.

Building Density, Large Building Count, and Building Group Pattern 
(D) are derived from the Building Footprint Segmentation Dataset 
(Maggiori et al., 2017). Building density measures the proportion of land 
covered by buildings, indicating urbanization levels and land-use effi
ciency (Yang et al., 2021); large building count reflects the prevalence of 
commercial, industrial, or high-rise residential structures (Jaller et al., 
2015) ); and building group pattern classifies spatial arrangements, 
where clustered patterns indicate compact urban design, random pat
terns suggest unregulated development, and uniform patterns align with 
grid-based planning. Land Use (E), obtained from the Multi-temporal 

Scene Classification and Change Detection Dataset (Zhou et al., 2024), 
categorizes land into ten types for planning and regulatory purposes (Li 
et al., 2024). Finally, Road Density (F) is derived from the Massachusetts 
Roads Dataset (Ranzato et al., 2013), which serves as a training and 
reference dataset for defining the spatial distribution of road networks as 
a characteristic of transportation accessibility (Sahitya et al., 2020).The 
road density is calculated as the ratio of the road mask area to the total 
area, expressed as: 

RoadDensity =
RoadMaskArea

TotalArea
(1) 

Street-view branch includes visual characteristics directly perceived 
from the pedestrian level, capturing façade elements and building ty
pologies. Fig. 4 presents sample images across all classes of this branch, 
showcasing the observable differences in street-level appearance.

Table 1 
The Overview of Characteristics and Class Labels Used for LLM Fine-Tuning with 11 Ground Truth Sources.

Branches Characteristics Class Groundtruth Source

Satellite House Swimming Pool No 0, Yes 1 Kaggle Swimming Pool Detection 
Database

Satellite House Roof Type flat 0, gabled 1, hipped 2 Roof Type Recognition Database
Satellite House Green Cover 

Density
0–10 % 0, 10–30 % 1, 30–60 % 2, 60 % and more 3 Multi-temporal Scene Classification 

and Change Detection
Satellite 

Neighbour
Building Density 0–10 % 0, 10–25 % 1, 25–100 % 2 Building Footprint Segmentation 

Dataset
Satellite 

Neighbour
Large Building 
Count

0 0, 1–5 1, 5–20 2, 20 and more than 3 Building Footprint Segmentation 
Dataset

Satellite 
Neighbour

Building Group 
Pattern

clustered 0, random 1, uniform 2 Building Footprint Segmentation 
Dataset

Satellite 
Neighbour

Land Use agriculturalland 0, bareland 1, educationalland 2, greenspace 3, industrialland 4, 
publiccommercialland 5, residentialland 6, transportationland 7, waterbody 8, woodland 9

Multi-temporal Scene Classification 
and Change Detection

Satellite 
Neighbour

Road Density 0–10 % 0, 10–25 % 1, 25–100 % 2 Massachusetts Roads Dataset

Street-view Wall Window Ratio 0–20 % 0, 20–40 % 1, 40–60 % 2, 60–100 % 3 MIT Window Detection Dataset
Street-view Property Type Single Family 0, Apartment 1, Multi-Family 2, Manufactured 3, Condo 4, Townhouse 5, other 6 Rentcast House Trading Database
Street-view Floor Count Numeric Rentcast House Trading Database

Fig. 2. Visual Examples of Classification Levels in the Satellite House Branch. 
Note: This figure shows sample satellite images for three characteristics: (A) 
Swimming Pool, (B) Roof Type, and (C) Green Cover Density. Sources: Coelho 
et al., 2021, Alidoost & Arefi, 2018, Shao et al., 2020. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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Specifically, Wall Window Ratio (G), sourced from the MIT Window 
Detection Dataset (Simone et al., 2024), reflects the proportion of win
dow area to wall surface, which affects ventilation, energy efficiency, 
and natural lighting conditions (Veillette et al., 2021).. The wall- 
window ratio is calculated as the ratio of the total window area to the 
total wall area, expressed as: 

WallWindowRatio =
WindowArea

TotalWallArea
(2) 

Property Type and Floor Count (H) are obtained from the Rentcast 
House Trading Database (RentCast, 2020), which provides information 

Fig. 3. Visual Examples of Classification Levels in the Satellite Neighbor Branch. Note: This figure displays representative satellite images across five characteristics: 
(D) Building Density, Large Building Count, and Building Group Pattern; (E) Land Use; and (F) Road Density. Sources: Maggiori et al., 2017, Zhou et al., 2024.
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on building usage types and vertical scale. Property type is categorized 
into discrete classes, while floor count is recorded as a numerical value 
representing the number of stories in each building (Grace et al., 2004).

3.2. LLM Fine-Tuning

Fine-tuning LLMs is crucial for adapting pre-trained models to 
specialized tasks (Wei et al., 2023). In this study, we fine-tune GPT-4o on 
a multi-branch dataset comprising satellite house, satellite neighbor
hood, and street-view imagery, each labeled with structured ground- 
truth characteristics. For each characteristic, we design task-specific 
prompts to guide the model in interpreting spatial and visual charac
teristics. As shown in Fig. 5, the framework follows a two-step process: 
(1) pre-processing and formatting the data into image-prompt-label 
triples, and (2) fine-tuning GPT-4o with carefully designed task- 
specific prompts (Representative Prompt Samples are provided in 
Fig. A1).

First, we pre-process the ground truth datasets into standardized 
image–prompt–label triplets. Each sample contains a visual input, a 
task-specific natural language prompt, and a structured label. We design 
prompts to match specific characteristics: binary for swimming pool 
detection, categorical for roof type classification, and range-based for 
vegetation cover. To ensure semantic consistency, we constrain model 
outputs to a strict format (e.g., Filename: <name>, Type: <label > ), 
simplifying downstream parsing. The dataset is split into training (60 
%), validation (20 %), and test (20 %) sets, ensuring balanced coverage 
across all characteristics and cities.

In the second step, we fine-tune GPT-4o (base model: gpt-4o- 
2024–08-06) using a supervised multi-task learning scheme. The fine- 
tuned model was trained on approximately 110,000 image
–prompt–label triplets across three data branches: satellite-house, sat
ellite-neighborhood, and street-view. Rather than adopting a unified 
prompt or joint training scheme, we apply a branch-wise fine-tuning 
strategy in which each characteristic is treated as an independent task 
with customized prompts, label schemas, and objectives. The prompt 
templates (see Fig. A1. Representative Prompt Samples for Building
MultiView) are designed to guide the model’s attention toward view- 

specific cues such as roof structure, façade materials, and spatial den
sity, while maintaining a consistent output schema across branches. 
Fine-tuning is performed for three epochs using a batch size of 5, a 
learning rate of 1 × 10-5, and the AdamW optimizer, with a fixed random 
seed (42) to ensure reproducibility. Model checkpoints are selected 
based on the highest validation F1 score on the held-out split. Evaluation 
metrics include accuracy, precision, recall, and F1 score, computed at 
the characteristic level.

3.3. Automated annotation framework for building characteristics

Building on the previous section, we develop a automate urban 
building characteristic generation framework using satellite and street- 
view imagery. As illustrated in Fig. 6, by integrating fine-tuned LLMs, it 
streamlines data collection, annotation, and analysis, producing a fine- 
grained building-centric characteristics dataset.

Our implementation begins by collecting geospatial inputs from 
multiple public APIs. OpenStreetMap (OSM) building footprints have 
been systematically evaluated for positional accuracy, completeness, 
and attribute reliability, showing high data quality in well-mapped re
gions such as North America and Western Europe, while global analyses 
of 13,189 urban centers found 1,848 cities exceeding 80 % completeness 
and 9,163 below 20 %, with higher coverage in Europe & Central Asia 
and North America (Herfort et al., 2023).These regions are among the 
best-mapped parts of the world, where continuous volunteer contribu
tions and frequent updates ensure near-complete coverage of the built 
environment (Biljecki et al., 2023; Zhang & Zhu, 2018). Such well- 
established data quality makes OSM a reliable and widely accepted 
foundation for large-scale urban analysis and machine-learning–based 
annotation tasks. Accordingly, our case studies focus on cities in the 
United States and Western Europe, where OSM provides consistent and 
authoritative representations of building footprints suitable for robust 
model development and evaluation. Building footprints are retrieved 
from OpenStreetMap using the Overpass API, filtered by geometry type 
and minimum area thresholds to ensure urban relevance. Bounding 
boxes or city names are resolved into precise geometries, addresses, and 
heights via the Nominatim API. Each building polygon is associated with 

Fig. 4. Visual Examples of Classification Levels in the Street-view Branch. Note: This figure displays representative images for: (G) Wall Window Ratio, (H1) Property 
Type, and (H2) Floor Count. Sources: Simone et al., 2024, RentCast, 2020.
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Fig. 5. The Workflow and prompts of fine-tuning LLMs. Note: The diagram presents an LLM-based framework for satellite and street-view image analysis, with three 
branches (house, neighbor, and street-view) fine-tuned for extracting key information on buildings. For illustration purposes, three representative characteristics are 
selected from each branch to demonstrate the structure of the image–prompt–label triplets used in the fine-tuning process.
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its centroid, which serves as the anchor point for image collection. For 
satellite imagery, we query Mapbox’s static image API at dual resolu
tions (100 m2 for house level, 1 km2 for neighborhood level); for street- 
view imagery, the Google Street View API fetches panoramas within a 
30-meter radius of each centroid, prioritizing front-facing facades using 
compass metadata when available. All retrieved data are structured into 
a JSONL-format annotation-ready dataset, indexed by building ID.

In addition, automatic annotation is performed via a multi-threaded 
GPT-4o pipeline, optimized for batch image-prompt processing. Each 
image is paired with a task-specific prompt template based on the 
characteristic type and image source. Post-processing includes spatial 
merging of annotations with raw geometry, removal of null or ambig
uous predictions, and transformation into standardized geo-formats 
(CSV, GeoJSON, Shapefile). The annotation framework supports multi
threaded processing (via Python’s concurrent.futures) and includes an 
error logging and retry mechanism to handle API limits or LLM timeouts. 
All outputs are publicly available on Hugging Face with version control, 
enabling reproducibility and future use in built environment studies.

4. Experiment

4.1. Study area and sampling data

To ensure consistent data sources and demonstrate the workflow’s 
transferability, we select the United States as the study region for its 
high-quality, openly accessible, and standardized datasets (e.g., building 
information, climatic classifications, and street-view imagery). These 
resources enable comparability across cities, making the U.S. an effec
tive testbed for method validation. Within this context, representative 
cities are selected across different climatic zones to capture diverse 
environmental and urban conditions. Following the U.S. Department of 
Energy’s Building America Program (Antonopoulos et al., 2022) and 
high-GDP urban centers (U.S. BEA, 2022), five cities are chosen: San 
Francisco (marine), San Diego (hot-dry), Salt Lake City (cold), Austin 
(humid-hot), and New York City (mixed-humid). Fig. 7 presents the 
geographic distribution of the five cities across climate zones, with inset 
maps showing city boundaries and sampling locations. A total of 10,000 
samples are collected, with 2,000 data points from each city.

4.2. Result and analysis

We present the results and analytical findings derived from the an
notated building dataset covering five representative climate zones 
across the United States. We organize the analysis into three parts to 

comprehensively evaluate the framework and interpret the extracted 
building information. The first part focuses on the classification per
formance and validation results (Section 4.2.1), which confirm the ac
curacy and robustness of the automated annotation process. The second 
part summarizes the statistical profiles and spatial distributions of key 
building characteristics (Section 4.2.2), providing an overview of the 
constructed database. The third part explores the relationships between 
building characteristics and regional climatic conditions (Section 4.2.3), 
serving as a downstream analysis that demonstrates how the annotated 
data can be utilized to examine climate-responsive patterns in urban 
form.

4.2.1. Classification performance and validation
To evaluate our model’s reliability, we compare the fine-tuned 

model against the original GPT-4o without task-specific tuning, as 
well as several competitive baselines including Vision Transformer, 
Gemini, and ResNet50, using a held-out test set. The dataset is split into 
80 % for training and 20 % for testing, with no overlapping building 
instances. All characteristics are assessed using standard classification 
metrics, including accuracy, precision, recall, and F1 score.

In the fine-tuning process, we start from the base model gpt-4o- 
2024–08-06 and apply supervised multi-task learning across three 
branches—satellite-house, satellite-neighborhood, and street-view. 
Training is conducted for three epochs with a batch size of 5, a 
learning rate of 1 × 10-5, and the AdamW optimizer under a fixed 
random seed (42). The best checkpoint is selected based on validation F1 
score. For the vision-based baselines, both ViT and ResNet50 are 
implemented using the TIMM framework with pretrained ImageNet 
weights. ViT adopts the vit_base_patch16_224 architecture, and ResNet 
uses resnet50. Both models are trained for 10 epochs with a batch size of 
32, learning rate 3 × 10-4, and AdamW optimization. Input images are 
resized to 224 × 224 pixels and normalized to [0.5, 0.5, 0.5]. The 
Gemini baseline is configured in zero-shot mode under equivalent input 
settings for cross-model comparability.

As shown in Table 2, the fine-tuned model achieves significant im
provements: accuracy increases from 55.04 % to 80.83 %, and F1 score 
rises from 45.66 % to 79.77 %, consistently outperforming both the 
zero-shot GPT-4o baseline and other competitive vision models. This 
confirms the effectiveness of fine-tuning in enhancing predictive per
formance and underscores the robustness of our approach.

At the branch level, performance varies across characteristic groups. 
In the satellite house branch, swimming pool detection achieves 96.00 % 
accuracy (F1: 96.18 %), while roof type and green cover ratio both 
exceed 85 %, reflecting the visual clarity and distinctiveness of property- 

Fig. 6. BuildingMultiView pipeline with multithreaded annotation. Note: Each spatial branch uses dedicated scripts and prompts to extract specific characteristics. 
Outputs are automatically merged, cleaned, and exported into geo-formats for downstream analysis.

Z. Li et al.                                                                                                                                                                                                                                        International Journal of Applied Earth Observation and Geoinformation 146 (2026) 105034 

8 



Fig. 7. Study Area of BuildingMultiView. Note: This figure shows the five study cities—San Francisco, San Diego, Salt Lake City, Austin, and New York City—selected 
for their diverse climates and economic profiles. The main map highlights their locations and climate zones, with insets showing city boundaries and sample dis
tributions (2,000 buildings per city).
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level features in aerial imagery. In the satellite neighborhood branch, 
road density (83.41 %) and building group pattern perform solidly, but 
large building count is lower (72.50 %), likely due to inter-city variation 
in high-rise distribution and dataset imbalance. For the street-view 
branch, floor count (88.08 %) and property type (84.12 %) perform 
strongly, whereas wall-to-window ratio (76.25 %) and land use (76.31 
%) are less accurate, affected by occlusion, angle distortion, and 

semantic ambiguity in street-level imagery. These results indicate that 
while the model captures building characteristics effectively, refining 
characteristic definitions and expanding training datasets could further 
improve accuracy.

To further validate predictive performance, we conduct a manual 
inspection benchmark using 1,000 randomly sampled instances across 
five cities. Model predictions are compared to manually verified labels 

Table 2 
Performance of Different Task-Driven LLM Fine-Tuning Models and Competitive Baselines. This table summarizes the performance of fine-tuned models across 11 
building characteristics Evaluation metrics include Accuracy, Precision, Recall, and F1 Score, all calculated on a held-out test set. “Manual Interpretation” refers to the 
accuracy of human labeled results on sampled subsets. Fine-tuned models achieve substantial gains over the base GPT-4o and other competitive baselines (Vision 
Transformer, Gemini, ResNet50).

Branches Characteristics Accuracy Precision Recall F1 Score Manual Interpretation

Satellite House Level Swimming Pool 96.00 % 96.52 % 96.00 % 96.18 % 91.32 %
​ Roof Type 84.78 % 84.86 % 84.78 % 84.76 % 86.48 %
​ Green Cover Ratio 83.75 % 85.58 % 83.75 % 84.33 % 78.81 %
Satellite Neighbour Level Building Density 92.50 % 93.37 % 92.50 % 92.30 % 83.37 %
​ Large Building Count 72.50 % 76.67 % 72.50 % 72.07 % 78.35 %
​ Neighbor Group Pattern 85.00 % 87.25 % 85.00 % 85.69 % 83.37 %
​ Land Use 81.30 % 78.66 % 80.31 % 79.16 % 76.31 %
​ Road Density 94.98 % 94.94 % 94.98 % 94.96 % 87.68 %
Street-view Level Wall Window Ratio 77.80 % 75.95 % 77.81 % 76.24 % 76.25 %
​ Property Type 81.62 % 80.68 % 81.62 % 80.44 % 81.92 %
​ Floor Count 83.08 % 82.24 % 83.08 % 82.64 % 88.08 %
Fine-Tuning Models Avg 80.83 % 79.62 % 80.84 % 79.77 % 82.90 %
ChatGPT-4o 55.04 % 63.29 % 52.32 % 45.66 % N/A
Vision Transformer 72.80 % 64.28 % 72.80 % 66.63 % N/A
Gemini 52.86 % 55.68 % 50.14 % 13.27 % N/A
ResNet50 78.55 % 75.17 % 78.55 % 76.62 % N/A

Fig. 8. Representative Audit Samples from Five U.S. Cities.Note: This figure presents satellite and street-level imagery for five representative buildings selected 
across different U.S. cities as part of a manual interpretation audit. Red bounding boxes highlight the targe buildings evaluated for prediction accuracy. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for an objective accuracy assessment. As also shown in Table 2 “Manual 
Interpretation” line, the model demonstrates strong accuracy across 
most characteristics, with swimming pool detection (91.32 %), floor 
count (88.08 %), and road density (87.68 %) performing well. However, 
the wall-to-window ratio (76.25 %) and land use (76.31 %) show lower 
accuracy due to classification ambiguities and dataset variability.

To further address concerns regarding variability and statistical 
significance, we conducted additional experiments under 10 different 
random seeds (42–51) and applied stratified bootstrap resampling (B =
2000) to estimate 95 % confidence intervals. Compared with the base
line model (55.04 %), the fine-tuned model consistently outperformed 
with statistical significance (one-sided test, p < 0.001). Across all seeds, 
the average F1 score reached 76.35 % (95 % CI [74.19 %, 80.08 %]), 
demonstrating robust and stable improvements over the baseline.

To complement these large-scale validation metrics, we also perform 
a detailed manual interpretation audit on five representative buildings 
across distinct U.S. cities. As shown in Fig. 8, we compile satellite and 
street-view imagery across the three branches (satellite house, satellite 
neighborhood, and street-view) for each sample. Table 3.1 presents the 
predicted labels generated by the BuildingMultiView framework, while 
Table 3.2 documents the discrepancies identified through manual 
interpretation, and characteristics are marked in red reflect prediction 
errors in building characteristics.

The manual interpretation audit shows that the framework performs 
reliably across most building characteristics, demonstrating strong 
generalizability in diverse urban contexts. However, several mis
classifications emerge and are worth highlighting. In Austin, the pre
dicted property type is labeled as “Single Family,” yet the presence of a 
Greek-letter fraternity sign (“ΦΚЕ”) strongly suggests the building 
functions as a fraternity house—beyond what standard imagery alone 
can confidently resolve. In New York City, the model underestimates the 
floor count, likely due to limited perspective and occlusion common in 
narrow street-views, which hinder full facade visibility. The case in San 
Diego represents an extreme outlier: the target building is a high-end, 
secluded estate distinctly different from typical residential structures. 
The swimming pool is not detected, possibly because it is partially 
outside the 100 × 100 m aerial tile used for prediction. Additionally, 
street-view images of this property are blurred, contributing to inac
curacies in wall-to-window ratio and property type prediction.

Despite challenging cases, the framework correctly labels most 
characteristics even under atypical visual and environmental conditions, 
demonstrating strong robustness. The results also highlight the impor
tance of manual audits in identifying nuanced errors that may be 
overlooked by aggregate metrics. Overall, the BuildingMultiView 
framework effectively improves building characteristic extraction 
through multi-perspective data integration and fine-tuned learning.

4.2.2. Distribution and correlation analysis of building characteristics
This subsection summarizes the statistical profiles and spatial dis

tributions of key building characteristics, providing an overview of the 
constructed building- characteristic database. The analysis aims to 
describe the overall composition and variability of the automatically 
generated characteristics, thereby assessing the representativeness and 
interpretability of the dataset. By examining how these characteristics 
are distributed within and across cities, we identify major morphological 
patterns and validate whether the framework captures meaningful 
urban structures. The results presented in Figs. 9–11 illustrate the spatial 
distributions of eleven building characteristics in New York City, cross- 
city comparisons among five representative urban regions, and the 
correlation structure among all characteristics.

Spatial Distributions of Characteristics. This study collects street- 
view and satellite imagery to extract 11 key building-related charac
teristics across five U.S. cities, offering a comprehensive view of urban 
form and function. Among them, New York City is chosen for visuali
zation due to its diverse and vertical urban structure (Fig. 9). The spatial 
distributions of these characteristics reveal sharp contrasts between the 
dense urban core and peripheral areas. In Manhattan, building density 
and floor count reach their highest levels, flat roofs dominate, and large 
buildings cluster tightly, reflecting commercial and high-rise residential 
land use. Wall-to-window ratios are also elevated, indicating façade 
openness consistent with glass-intensive architecture. By contrast, outer 
boroughs such as Staten Island and parts of Queens exhibit more gabled 
and hipped roofs, lower densities, and higher green cover. Swimming 
pools, though sparse overall, appear more frequently in these low- 
density residential areas.

Property types also vary across space: central districts are dominated 
by apartments and condominiums, while peripheral neighborhoods 
display a more diverse mix, including single-family homes and town
houses. Land use transitions gradually from public and commercial 
zones in the core to green, transportation, and lower-density residential 
areas in the suburbs. Road density mirrors this gradient, with dense 
street networks in Manhattan giving way to more fragmented layouts 
outward. Building group patterns also shift from uniform or clustered 
forms in dense cores to more dispersed arrangements in peripheral 
zones.

Comparative Distribution. Fig. 10 compares urban building and 
environmental characteristics across five cities. Austin shows the highest 
green cover (60 %+), a high share of gabled and hipped roofs, frequent 
swimming pools, and predominantly single-family homes. Its building 
density is moderate, with few large buildings and a mostly uniform 
group pattern, reflecting suburban characteristics; New York City stands 
out with high building and road density, a dominance of flat roofs, 
frequent 3–5 story buildings, and high WWR values. It is primarily 
composed of apartments and condos, and has the largest buildings, 
typical of a dense vertical urban core; San Francisco exhibits mixed roof 

Table 3.1 
Predicted Building Characteristic Labels for Five Representative Building Samples. Red text highlights characteristics with prediction errors identified during manual 
interpretation.

City Austin New York San Diego San Francisco Salt Lake City

OSM ID 380,917,039 241,842,474 558,916,442 267,111,803 462,574,596
Latitude 30.2852095 40.6451466 32.8792244 37.7635182 40.7854052
Longitude − 97.7474545 − 73.9615802 − 117.2498552 − 122.4703935 − 111.9215708
Swimming Pool No No No No No
Roof Type Hipped Flat Hipped Flat Hipped
Green Cover Density 10–30 % 10–30 % 10–30 % 10–30 % 30–60 %
Building Density 25–100 % 25–100 % 0–10 % 25–100 % 10–25 %
Large Building Count 5–20 5–20 1–5 5–20 1–5
Building Group Pattern Uniform Uniform Clustered Uniform Uniform
Land Use Residential land Residential land Residential land Transportation land Residential land
Road Density 10–25 % 10–25 % 0–10 % 10–25 % 10–25 %
Wall Window Ratio 0–20 % 0–20 % 0–20 % 0–20 % 0–20 %
Property Type Single Family Apartment Single Family Single Family Single Family
Floor Count 2 2 1 2 1
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types, moderate green space, and a combination of residential and 
parkland land uses. It also features noticeable townhouse presence, high 
road density, and mostly clustered group patterns; San Diego shows 
balanced distributions in roof types and green cover, and land use favors 
residential and green areas, with a slight presence of swimming pools; 
Salt Lake City has the lowest building and road density, dominant sloped 
roofs, mostly single-family homes, and minimal large buildings. Its 
urban fabric is highly uniform, with relatively high vegetation and low 
vertical development.

Correlation Patterns. To explore the relationships among key 
Characteristics across five cities, we conduct a correlation analysis 
(Fig. 11). Several consistent patterns emerge across cities. Large building 
count strongly correlates with density (0.75–0.79), reflecting the con
centration of high-rises. Roof type aligns with building group pattern 
(0.38–0.42), indicating design consistency in clustered areas. Land use 
also correlates with group pattern (0.60–0.67), showing zoning’s impact 
on spatial layout. Wall-to-window ratio negatively correlates with 
density (− 0.28 to − 0.35), implying reduced facade openness in 
compact, energy-conscious zones.

In terms of city-specific patterns, New York City exhibits a strong 
correlation between floor count and wall-to-window ratio (0.62), indi
cating that taller buildings tend to have more enclosed facade styles. San 
Francisco shows a high correlation between roof type and land use 
(0.55), potentially due to its architectural controls and zoning con
straints. In Salt Lake City, green cover density has a relatively weak 
correlation with building density (0.32), which diverges from the gen
eral trend and reflects its dispersed, low-density development. San Diego 
displays strong alignment between building group pattern and large 
building count (0.61), suggesting its denser built zones are spatially 
clustered. In Austin, swimming pool presence is notably correlated with 
property type (0.59), which is consistent with its dominance of single- 
family housing and warm climate conditions.

4.2.3. Climate-Driven analysis of architectural and environmental 
characteristics

We then explore the relationships between building characteristics 
and regional climatic conditions, serving as a downstream analysis that 
demonstrates how the annotated data can be utilized to examine 
climate-responsive patterns in urban form. Since climate fundamentally 
shapes building form and urban environments, this analysis aims to test 
whether the proposed framework can capture such climate-driven reg
ularities. Establishing this linkage is critical for evaluating the trans
ferability and explanatory power of the workflow beyond the chosen 
case studies. Therefore, we cluster the five representative cities based on 
temperature and precipitation and incorporate LLM-inferred climate- 
responsive keywords to interpret architectural and environmental 
characteristics. By connecting the derived characteristics to exogenous 
climate conditions, this analysis verifies that the framework captures 
climate-consistent semantics and enhances interpretability and gener
alizability across regions (Figs. 12–13).

Clustering Based on Temperature and Precipitation. Our clus
tering analysis (Fig. 12) examines architectural and environmental 
characteristics across five cities, focusing on temperature and 
precipitation.

Warmer cities such as Austin and San Diego have higher green cover 

density, providing natural cooling and supporting sustainability goals. 
Cities with higher rainfall, such as San Francisco and New York City, 
adapt through efficient drainage systems and sloped roofs for durability 
in humid conditions. High precipitation also correlates with greater 
vegetation, emphasizing urban greenery’s role in climate adaptability. 
Roof types vary by climate, with flat roofs common in warmer regions 
for heat management and sloped roofs in colder areas for snow removal 
and structural stability.

Word Clouds of Climate-Responsive Characteristics. To explore 
the relationship between urban climates and building characteristics, we 
generate word clouds for five representative U.S. cities using LLM-based 
reasoning (Fig. 13). Each city reflects climate-adaptive architectural 
strategies. San Francisco (marine climate) emphasizes wind resistance, 
corrosion control, and compact, low-rise buildings suited to coastal and 
seismic conditions. San Diego (hot-dry) features water conservation, 
drought-tolerant landscaping, and passive cooling. Salt Lake City (cold 
climate) highlights insulation, snow mitigation, and heating efficiency. 
Austin (hot-humid) focuses on ventilation, reflective materials, and 
humidity control. New York City (mixed-humid) integrates insulation, 
ventilation, and energy-efficient design to address seasonal variability.

The consistency between extracted keywords and known climatic 
characteristics provides indirect validation of our framework’s 
reasoning capacity. These results suggest that the fine-tuned LLM cap
tures underlying climatic logic in built-environment semantics, 
revealing not only expected architectural adaptations (e.g., thermal 
insulation in cold zones) but also subtler patterns, such as the co- 
occurrence of wind and corrosion terms in marine cities or moisture- 
control language in dry and humid areas.

5. Discussion

5.1. Optimizing annotation accuracy through prompt engineering

Prompt engineering plays a key role in improving annotation accu
racy and data quality in large-scale built environment analysis. Well- 
structured prompts help language models capture nuanced character
istics while minimizing errors. In our previous work, the BuildingView 
framework (Li et al., 2024), we used a single merged prompt for zero- 
shot annotation, which minimized manual effort but increased model 
and pipeline complexity. While simple characteristics such as window 
color and floor count remained accurate, complex ones, involving 
architectural style and roof materials, suffered from misclassification 
due to the lack of targeted instructions.

To address these challenges, BuildingMultiView shifts from a single- 
prompt approach to a characteristic-specific strategy. Each character
istic receives a dedicated prompt with refined instructions and tailored 
examples to improve accuracy. This modular approach isolates tasks, 
reducing confusion and preventing errors in one characteristic from 
affecting others. For instance, a solar panel detection prompt can 
incorporate technical thresholds and examples of partially obscured 
panels, while a building style prompt can distinguish between historical 
and contemporary designs. By refining prompts, BuildingView-Turbo 
enhances precision and interoperability across building analysis.

This methodological shift from a unified prompt to a characteristic- 
specific approach raises the question of whether the observed 

Table 3.2 
Manual Audit Findings: Discrepancies Between Predicted and Observed Characteristics. Each row highlights the predicted label, visual assessment, and a concise 
explanation of the likely cause of misclassification.

City Characteristic Predicted Actual (Visual) Notes

Austin Property Type Single Family Shared Housing (Fraternity) Fraternity signage indicates non-single family usage
New York Floor Count 2 ≥3 Undercounted; upper floors obscured in street view
San Diego Swimming Pool No Yes Missed due to partial pool visibility outside the 100 × 100 m tile
San Diego Wall Window Ratio 0–20 % Higher (estimated visually) Underestimated due to occlusion and poor street-view angle
San Diego Property Type Single Family Likely Estate/Other Luxurious estate, possibly not typical single family
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improvements can be attributed to structural design rather than inci
dental factors. To provide quantitative evidence, we conducted ablation 
experiments comparing single-branch (characteristic-specific) and uni
fied models under both base and fine-tuned settings (Table 4).

The results clearly show that branch-wise fine-tuning achieves 

superior accuracy, precision, recall, and F1 score, supporting our claim 
that characteristic-specific prompts lead to more reliable and transfer
able annotations.

Another key advantage of this characteristic-specific approach is that 
it embodies a broader methodological contribution to multimodal urban 

Fig. 9. Distribution of 11 Key Building Characteristics in New York City.
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analytics. Existing studies have explored vision–language approaches 
for building analysis, but none have proposed a unified and interpret
able workflow for multi-scale building characteristic evaluation. For 
instance, Pan et al. (2024) demonstrated zero-shot building attribute 
extraction using vision–language models, but their approach was limited 
to single-view inference without structured adaptation. Yao et al. (2024) 
focused on façade condition assessment restricted to visual degradation, 
while Chen et al. (2025) introduced a multimodal framework for city- 
scale spatial intelligence that did not address micro-scale or building- 

level characterization. In contrast, our framework explicitly models 
multi-view complementarity, hierarchical fine-tuning, and prompt- 
controlled semantic alignment, establishing a systematic and repro
ducible workflow for cross-scale semantic reasoning. By enforcing 
branch-wise fine-tuning and semantic alignment across satellite and 
street-view imagery, the proposed design transforms multimodal adap
tation from task-specific optimization into a generalizable learning 
principle. This methodological rigor, coupled with comprehensive data 
design and interpretability, positions the framework as a bridge between 

Fig. 10. Comparative Distribution of Architectural and Environmental Characteristics in Five Cities.

Z. Li et al.                                                                                                                                                                                                                                        International Journal of Applied Earth Observation and Geoinformation 146 (2026) 105034 

14 



engineering implementation and analytical advancement in urban 
informatics.

Beyond accuracy and adaptability, the proposed framework also 
demonstrates computational efficiency and environmental sustainabil
ity. Across five representative U.S. cities, approximately 10,000 build
ings were processed for 11 characteristics, involving around 20,000 
Mapbox imagery requests and 10,000 Google Street View queries. The 
end-to-end workflow, including multi-attribute inference with OpenAI- 
4o, incurred an estimated total cost of about USD 700, corresponding 
to 70–110 million tokens, or roughly 640–1,000 tokens (≈0.6 cents) per 
building–characteristic unit. Following established methodologies for 
estimating AI energy consumption and emissions (Henderson et al., 
2020; Jegham et al., 2025), this workload equates to approximately 
5–15 kWh of electricity use and 2–6 kg CO2e in total, including both 
inference and imagery retrieval. These values indicate that the frame
work maintains a modest computational and carbon footprint while 
scaling efficiently across cities, supporting its practical and sustainable 
deployment for large-scale urban analysis (Samsi et al., 2023).

5.2. Limitations and Considerations

Our study presents a comprehensive framework for urban building 
characteristics extraction, incorporating multiple data perspectives and 
advanced predictive modeling. Throughout the development and 

validation process, we have carefully examined key challenges and their 
potential impact.

First, while the proposed framework demonstrates strong perfor
mance and generalizability, several potential directions for improve
ment remain, including enhancing multi-label representation, 
addressing data coverage and temporal inconsistencies, and expanding 
the framework’s analytical adaptability. The framework is inherently 
extensible due to its hierarchical and standardized structure, which or
ganizes building-centric characteristics into three analytical lev
els—building, block, and urban—each following a consistent three-step 
process: (1) defining the visual data source (e.g., satellite, aerial, or 
street-view imagery); (2) extracting relevant visual features (such as 
façade openness, greenery proportion, or roof reflectance); and (3) 
transforming these features into standardized quantitative characteris
tics within a unified range. Because every characteristic follows unified 
definition, extraction, and normalization procedures, each serves as an 
independent analytical module that can be directly extended. This 
modular design allows new visually discernible characteristics—such as 
façade texture complexity, shading distribution, or color composi
tion—to be seamlessly integrated by defining their data source and 
transformation rule, without altering the existing analytical logic. 
Furthermore, the hierarchical organization supports flexible aggrega
tion and weighting of characteristics across spatial levels, while stan
dardized references ensure compatibility across multiple imagery types 
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Fig. 11. Correlation Analysis Between Architectural and Environmental Characteristics in Five Cities.
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and resolutions. As new visual data and computational techniques 
continue to emerge, the framework can readily evolve to incorporate 
additional or non-visual characteristics, thereby enhancing its scalabil
ity, systematic comprehensiveness, and long-term adaptability for future 
multimodal urban analytics.

Another limitation concerns the treatment of multi-label building 
characteristics, as a single building may simultaneously exhibit multiple 
functional or physical attributes (e.g., a residential building with a 
swimming pool and a green roof). BuildingMultiView captures these 
diverse attributes through a three-branch, multi-level design: the 

Fig. 12. Clustering Analysis Based on Climate Factors: (A) Clustering by Annual Average Temperature, (B) Clustering by Annual Average Precipitation. Note: Colors 
denote the three clusters derived from the climate-factor clustering results, where cities sharing the same color are grouped into the same cluster in both panel (A) 
and panel (B).
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Satellite House branch focuses on individual-level features (e.g., roof 
type, swimming pool, green cover density), the Satellite Neighbor 
branch captures neighborhood-scale characteristics (e.g., building den
sity, land use, road density), and the Street View branch extracts façade 
and functional properties (e.g., property type, floor count, wall–window 
ratio). Although explicit multi-label annotation is not applied to every 
single building, the land use characteristic is modeled as a multi-label 
classification task based on the Multi-temporal Scene Classification 

and Change Detection Dataset (Zhou et al., 2024), which includes ten 
land-use categories such as Agricultural land, Residential land, Com
mercial land, and Green space. This multi-level structure already en
ables the framework to recognize coexisting attributes at different 
spatial scales. In future work, we will further improve the handling of 
multi-label and mixed-use cases by incorporating multimodal 
transformer-based fusion and multi-label learning strategies (Zhou et al., 
2023) to jointly model correlated features across remote sensing, POI, 

Fig. 12. (continued).
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and street-view modalities, thereby enhancing the scalability and 
generalization of the proposed framework.

A further consideration involves the uneven global coverage of OSM 
building footprints and street-view imagery. While OSM exhibits sub
stantial regional disparities, with higher completeness in Europe and 
North America and lower coverage across many regions in the Global 
South, and street-view data show similar spatial heterogeneity, these 
limitations are less critical in our experiments because the study area is 
restricted to U.S. cities, where both datasets are relatively complete and 
reliable (Herfort et al., 2023; Fan et al., 2025).When extending the 
framework to a global scale, however, this issue should not be viewed 
merely as a constraint requiring fallback mechanisms. Instead, it high
lights the extensibility of the multi-perspective design. A key strength of 
BuildingMultiView is that the Satellite House and Satellite Neighbor 
branches rely on satellite imagery, one of the most universally available 
data sources, which allows the workflow to function robustly in regions 
with limited street-view coverage. More importantly, the modular and 
standardized image–prompt–label architecture enables seamless inte
gration of emerging global datasets such as the Global Building Atlas 
(Zhu et al., 2025) and OpenBuildingMap (Oostwegel et al., 2025). These 
datasets combine OpenStreetMap, Microsoft’s Global ML Footprints, 
and Google Open Buildings to provide harmonized, semantically rich, 
and near-global building coverage with uniform completeness and po
sitional accuracy. Incorporating such datasets not only fills spatial gaps 

but also strengthens the framework’s geographic transferability beyond 
well-mapped regions. For areas lacking street-view imagery, synthetic 
street-level perspectives derived from high-resolution remote sensing 
and complementary crowdsourced platforms such as Mapillary and 
KartaView can provide additional façade information, particularly in 
places where proprietary sources like Google Street View are unavai
lable (Hou & Biljecki, 2022). Together, these capabilities demonstrate 
that the BuildingMultiView framework is not limited to a specific set of 
inputs but is capable of evolving alongside future data ecosystems, 
enhancing its scalability and adaptability for global multimodal urban 
analytics.

Finally, an important consideration for further improvement is the 
temporal inconsistency among OSM, satellite, and street-view imagery, 
since these sources follow independent update cycles and may lag 
behind real-world changes. As a result, localized discrepancies may 
occur in characteristics such as roof type, wall–window ratio, or floor 
counts when buildings are renovated or re-purposed. These local errors 
can propagate to downstream analyses: for example, energy simulation 
results may be biased if envelope or fenestration attributes are wrong 
(Nouri et al., 2024); land-use classification may mislabel building 
functions when the functional use attribute is outdated; and socio- 
economic inference models that rely on built-form proxies could be 
skewed by such attribute errors. Nevertheless, both our empirical results 
and recent multi-source building dataset research suggest that while 
temporal mismatches introduce noise at the attribute level, their influ
ence on macro-scale morphology or pattern-level metrics is limited. For 
instance, the CMAB dataset (Zhang et al., 2025) employs multi-source 
imagery and street-view data to derive multi-attribute building char
acteristics and demonstrates stable performance across cities despite 
temporal heterogeneity. Similarly, the HISDAC-US project (Leyk & Uhl, 
2018) integrates parcel, remote sensing, and building datasets across 
decades and acknowledges temporal misalignment while preserving 
consistency in large-scale settlement analyses. In our case, despite the 
heterogeneous temporal provenance of the data, the fine-tuned model 
maintains stable predictive performance, with an average F1 score of 
76.35 % (95 % CI [74.19 %, 80.08 %]) across ten random seeds, and 
strong accuracy for key characteristics such as swimming pool (91.32 %) 
and floor count (88.08 %). These results demonstrate that the 

Fig. 13. Climate-Responsive Word Clouds.

Table 4 
Ablation study comparing single-branch and unified models under base and fine- 
tuned settings.

Model Accuracy Precision Recall F1 Score

Single-Branch (fine-tuning) 80.83 % 79.62 % 80.84 % 79.77 %
Single-Branch (base model) 55.04 % 63.29 % 52.32 % 45.66 %
Unified Model (fine-tuning) 72.46 % 65.42 % 59.57 % 59.74 %
Unified Model (base model) 27.75 % 9.19 % 10.16 % 9.02 %

Note: Results demonstrate that branch-wise fine-tuning consistently out
performs the unified approach across accuracy, precision, recall, and F1 score, 
highlighting the advantages of characteristic-specific prompts for reliable and 
transferable building annotation.
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BuildingMultiView framework is resilient to temporal inconsistencies 
when applied to large-scale urban morphology and functional pattern 
analysis. Looking ahead, integrating temporal metadata (e.g., capture 
dates) to weight attribute confidence, as well as incorporating auto
mated change-detection modules to identify potentially outdated an
notations, would strengthen the framework’s robustness.

6. Conclusion

This study introduces BuildingMultiView, a unified framework that 
integrates satellite and street-view imagery with fine-tuned large lan
guage models to extract multi-scale, building-centric characteristics. By 
leveraging structured image–prompt–label triplets and tailored fine- 
tuning strategies, the model enables accurate, transferable, and auto
mated annotation of 11 key characteristics across spatial levels. Applied 
across five U.S. cities spanning distinct climate zones, the framework 
achieves substantial improvements in predictive performance and re
veals spatial, functional, and climate-responsive patterns in the built 
environment. BuildingMultiView also demonstrates the feasibility of 
combining vision-language models with multi-perspective urban imag
ery for large-scale, standardized building analysis. Its modular pipeline 
and open dataset offer a scalable foundation for future applications in 
urban planning, energy modeling, and climate adaptation. This work 
contributes both a methodological advance in characteristic extraction 
and a reproducible infrastructure to support data-driven urban research 
and decision making.
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Fig. A1. Representative Prompt Samples for BuildingMultiView.
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