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Buildings play a crucial role in shaping urban environments, influencing their physical, functional, and aesthetic
characteristics. However, urban analytics is frequently limited by datasets lacking essential semantic details as
well as fragmentation across diverse and incompatible data sources. To address these challenges, we conducted a
comprehensive meta-analysis of 6,285 publications (2019-2024). From this review, we identified 11 key visually
discernible building characteristics grouped into three branches: satellite house, satellite neighborhood, and
street-view. Based on this structured characteristic system, we introduce BuildingMultiView, an innovative
framework leveraging fine-tuned Large Language Models (LLMs) to systematically extract semantically detailed
building characteristics from integrated satellite and street-view imagery. Using structured image—prompt-label
triplets, the model efficiently annotates characteristics at multiple spatial scales. These characteristics include
swimming pools, roof types, building density, wall-window ratio, and property types. Together, they provide a
comprehensive and multi-perspective building database. Experiments conducted across five cities in the USA
with diverse architecture and urban form, San Francisco, San Diego, Salt Lake City, Austin, and New York City,
demonstrate significant performance improvements, with an F1 score of 79.77% compared to the untuned base
version of ChatGPT’s 45.66%. These results reveal diverse urban building patterns and correlations between
architectural and environmental characteristics, showcasing the framework’s capability to analyze both macro-
scale and micro-scale urban building data. By integrating multi-perspective data sources with cutting-edge LLMs,
BuildingMultiView enhances building data extraction, offering a scalable tool for urban planners to address
sustainability, infrastructure, and human-centered design, enabling smarter, resilient cities.

1. Introduction investigated 140 open government geospatial datasets across 28 coun-

tries and found that only half included more than one building charac-

Urban built environments have experienced unprecedented growth,
shaped by an interplay of socio-cultural, economic, and technological
factors, resulting in diverse urban landscapes (Liang et al., 2024; Coburn
et al., 2017). At the core of these environments, building characteristics
play a critical role in determining urban form, function, and perfor-
mance. Accurately quantifying such characteristics is essential for
analyzing spatial morphology, transportation efficiency, energy use, and
social equity (Ashik et al., 2024; Li & Li, 2024). However, acquiring key
building characteristics (e.g. number of floors, function) remains a
major challenge for urban analytics. For example, Biljecki et al. (2021)

teristic. These characteristics are essential for energy modeling,
resilience analysis, and socio-spatial equity studies but are often missing
or hard to access.

The usability of current building data is constrained by two key
limitations. First, such information, even when available, is typically
incomplete. For instance, OpenStreetMap (OSM), one of the most widely
used open datasets, in most cases, beyond geometric footprints, it does
not have any semantic information about buildings (Biljecki et al., 2023;
Knezevic et al., 2022). Second, building-related data is fragmented
across heterogeneous sources. These sources differ in format, geographic
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coverage, and accessibility (Memduhoglu & Basaraner, 2023). These
limitations pose significant barriers to consistent, scalable, and seman-
tically rich building analysis. Therefore, establishing a comprehensive
and extensible framework to systematically extract interpretable and
multi-perspective building characteristics is essential.

To address these limitations, urban imagery, particularly satellite
and street-view imagery, offers a promising avenue for acquiring richer
and more consistent building information. These modalities provide
complementary perspectives. Satellite imagery enables macro-scale
monitoring of urban morphology and land cover, for example through
vegetation indices or nighttime luminosity. In contrast, street-view data
captures fine-grained ground-level details relevant to human experience
and building facades (Mashala et al., 2023; Ashik et al., 2024). However,
these sources are typically processed in isolation, resulting in frag-
mented workflows and limited semantic richness. Thus, integrating
them is essential to build semantically rich and scalable building
datasets.

Moreover, researchers have proposed a range of computer vision
approaches to extract building characteristics from urban imagery.
These include CNN-based methods for building footprint detection (e.g.,
Faster R-CNN, YOLO), segmentation networks for evaluating walkability
and facade transparency (e.g., DeepLabV3 + ), and image classification
models for land-use inference (e.g., ResNet, VGGNet). Yet, such models
demand large volumes of labeled data and frequent retraining, limiting
their scalability and adaptability to new tasks or regions (Birgani et al.,
2024). Furthermore, they often operate within a single data modality,
failing to leverage the complementary strengths of heterogeneous
sources thus reinforcing the fragmentation issue noted above. The
advent of large language models (LLMs) opens new opportunities to
tackle both the incompleteness and fragmentation challenges. Initially
designed for textual tasks, LLMs have evolved to handle multimodal
inputs through vision-language pretraining and alignment techniques.
These models can interpret both structured imagery and textual meta-
data, offering a unified and adaptable architecture for cross-source
analysis (Yan et al., 2023). Compared with traditional CNNs, LLMs
provide greater scalability, require less task-specific retraining, and offer
more flexible interaction interfaces (Zhang et al., 2024). However, these
sources are typically processed in isolation, resulting in fragmented
workflows and limited semantic richness. Bridging these modalities is
essential for generating semantically rich, spatially explicit, and scalable
building characteristic datasets.

To fill these gaps, we propose BuildingMultiView, a unified frame-
work that leverages fine-tuned LLMs to extract detailed building char-
acteristics in a holistic manner from both satellite and street-view
imagery. Based on a meta-analysis, we identify 11 key characteristics
across multiple spatial levels and design image-prompt-label triplets for
task-specific fine-tuning of GPT-4o0. This framework bridges fragmented
data modalities and enhances semantic richness. The framework is also
applied across five U.S. cities spanning diverse climate zones and urban
forms, resulting in a representative multi-perspective building charac-
teristics dataset.

Our contributions are threefold. First, we construct a structured
characteristics system informed by a meta-analysis of the literature, and
develop BuildingMultiView, a framework that systematically integrates
satellite and street-view imagery to address the incompleteness of
existing datasets by generating detailed and interpretable building
characteristics across multiple spatial scales. Second, we fine-tune GPT-
40 using multimodal image-prompt-label triplets and task-specific
prompt engineering. This enables the model to learn from both visual
and contextual cues, improving generalizability across geographic set-
tings and spatial levels (house, neighborhood, street), while also helping
to bridge fragmented data modalities and modeling processes. Third, we
construct a large-scale building characteristics dataset consisting of over
110,000 annotations covering 10,000 buildings in five U.S. cities span-
ning diverse climate zones. Compared to existing platforms such as
OSM, our dataset offers semantically richer, and interoperable building
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descriptors, facilitating downstream applications in energy modeling,
climate adaptation, and human-centered urban planning.

2. Literature review
2.1. Perspectives and characteristics for comprehensive building analysis

Urban building characteristics extraction has primarily been
approached from two perspectives: satellite remote sensing and street-
view imagery. Satellite data enables large-scale mapping and spatial
analysis, supporting tasks such as land use classification, structural
delineation, and change detection (Zhao et al., 2021; Li et al., 2022). It
allows the extraction of key spatial characteristics such as roof type,
building footprint, parking availability, and swimming pool presence,
which are closely tied to energy performance, land use efficiency, and
urban heat regulation (Lee et al., 2014; Jadhav & Gore, 2016; Demir
et al., 2021).

In contrast, street-view imagery offers a human-scale perspective
that captures detailed architectural and functional attributes often
invisible from above. This includes characteristics such as building type,
window-to-wall ratio, architectural style, and floor count—factors
crucial for understanding facade design, energy use, and regulatory
compliance (Kang et al., 2018; Huang & Gurney, 2016; Alwetaishi &
Benjeddou, 2021). The combination of both views enhances our un-
derstanding of buildings not only as spatial units but also as functional,
culturally embedded, and energy-relevant structures.

While many studies have examined these characteristics in isolation,
recent research highlights the need for semantic-rich, multi-perspective
datasets that integrate both physical and functional attributes (Biljecki
& Chow, 2022). For instance, multi-source fusion has been applied to
detect abandoned buildings (Zou & Wang, 2022) or assess flood
vulnerability (Xing et al., 2023), but a comprehensive, globally scalable
building characteristics database remains largely absent. Bridging this
gap calls for improved data fusion and automation techniques. Inte-
grating satellite remote sensing and street-view data offers a scalable
and effective approach for capturing both spatial structures and facade-
level details in the built environment.

2.2. Advanced methods for building information extraction

In recent decades, scholars have shifted from traditional urban
building studies to computer vision, automating tasks like building
classification and information extraction (Starzynska-Grzes et al., 2023;
Wang et al., 2021). However, complex backgrounds and diverse exte-
riors make reusable building extraction challenging, such as CNN-based
methods (e.g., Faster R-CNN, DeepLabV3-, ResNet) are widely used for
specific tasks but often fail to transfer effectively across different cities
(Yang et al., 2018). Transformer-based models such as Swin Transformer
and SegFormer improve multi-scale reasoning and semantic segmenta-
tion accuracy, particularly in remote sensing, but remain computation-
ally expensive and often lack generalization across data modalities
(Wang et al., 2022). These challenges have spurred growing interest in
vision-language models that support prompt-based, multi-modal
learning.

Recent years, LLMs have been widely applied for building informa-
tion extraction by integrating semantic, geometric, and regulatory in-
sights (Rillig et al., 2023; Wang et al., 2024). They enable scalable
automation in GIS data processing (Zhang et al., 2024), simulation
modeling (Xiao & Xu, 2024; Zhu et al., 2024), and geospatial annotation
(Lietal., 2024). A key application is regulatory compliance, where GPT-
based frameworks parse building codes and align them with BIM/IFC
models, reducing errors and expediting approvals (Peng & Liu, 2023).
LLMs also improve document intelligence, extracting insights from
construction reports and maintenance manuals to enhance risk man-
agement (Shahinmoghadam et al., 2024). Beyond text-based tasks,
multimodal models such as BLIP-2 and Pall integrate visual and
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linguistic data for automated facade analysis and structural classifica-
tion (Yao et al., 2025; Li et al., 2023). Additionally, combining LLMs
with knowledge graphs supports urban planning by identifying corre-
lations between building density, land use, and socioeconomic factors
(Fu et al., 2024; Pusch and Tim, 2024). Extending this direction, the
OpenFACADES framework leverages multimodal LLMs and street-level
imagery to automatically enrich building profiles with semantic and
geometric attributes, demonstrating robust performance across diverse
cities and supporting fine-grained urban analysis (Liang et al., 2025).
These advancements highlight LLMs' role in large-scale building data
integration, driving efficient, sustainable, and data-driven built envi-
ronment analysis.

3. Methodology

We develop BuildingMultiView, a framework for extracting building-
centric characteristics using satellite and street-view imagery. The
workflow includes three steps: (1) constructing a multi-level building
characteristics system through a meta-analysis of recent literature; (2)
fine-tuning large language models with multimodal data and prompts;
and (3) developing an automated pipeline for data collection and
annotation. The following sections provide a detailed breakdown of
each component.

3.1. Building centric characteristics system construction through Meta-
Analysis

3.1.1. Meta-Analysis of building centric characteristics

To identify and standardize the building characteristics that are most
commonly used in building environment research, we conduct a sys-
tematic meta-analysis of scholarly works published between 2019 and
2024 to ensure methodological rigor and transparency. For that, we
follow the typical approach of systematic literature reviews: we select
relevant keywords and search for a set of papers, after which we filter
papers relevant for our study, and then extract relevant information
from them. An initial search is performed on November 15, 2024, within
the Web of Science database using the keywords “building exterior,”
“building characteristics,” and “building surroundings,” yielding 6,285
studies broadly related to building and urban form analysis. To capture
the multidimensional nature of building-related research, these works
are categorized into three conceptual themes—human, energy, and
green—which together reflect how building characteristics relate to

Branches Characteristics
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social, energy, and ecological aspects of the urban environment. Incor-
porating these additional keywords results in 4,683 relevant publica-
tions (544 under human, 4,115 under energy, and 523 under green).

In alignment with our study’s focus on image-based analytics, we
further adopt a filtering criterion emphasizing visually discernible
characteristics—that is, building characteristics that can be objectively
identified or inferred from visual data such as satellite or street-view
imagery (e.g., roof type, building density, wall-window ratio, and
facade transparency). This approach follows established practices in
similar multimodal urban analytics frameworks, such as those devel-
oped by Biljecki and Chow (2022) for building morphology character-
istics, which adopt a similar literature review analytical framework to
ensure reproducibility and interoperability. Through this systematic
refinement, we identify 54 studies that explicitly examine visual or
facade-level features of buildings and ultimately retain 39 publications
providing quantifiable and visually observable characteristics suitable
for integration into the characteristic system.

Given our comprehensive review of building centric characteristics,
we have identified and summarized the key characteristics that re-
searchers find intriguing, which are presented in Fig. 1.

The Satellite House branch represents high-resolution satellite im-
agery centered on each building, covering a spatial extent of 100 m x
100 m. This branch is designed to capture characteristics observable
from above the top, providing contextual information around individual
buildings. Based on this imagery, several top-level-related characteris-
tics are extracted, including roof type, swimming pool presence, and
green cover density, which together describe residential form, surface
materials, and immediate landscape composition. The Satellite Neigh-
borhood branch represents 1000 m x 1000 m satellite imagery centered
on each building cluster, capturing the broader spatial organization and
development context of the surrounding urban area. This branch focuses
on neighborhood-scale characteristics that describe the intensity,
structure, and function of built environments. Specifically, five key
characteristics are derived: building density, large-building count,
building-group pattern, land use, and road density. Together, these
characteristics illustrate how buildings are spatially arranged and how
different land functions interact within the urban fabric. The Street-
View branch utilizes ground-level imagery to capture the built envi-
ronment from a pedestrian perspective, emphasizing features directly
perceived and experienced by humans. This branch focuses on archi-
tectural and visual characteristics observable from the street facade. Key
characteristics include wall-window ratio, property type, and floor
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Fig. 1. The Characteristics and Ground Truth Source of Building-centric Database. Note: The left side lists 11 key building-related characteristics grouped under three
visual data branches, Satellite House, Satellite Neighbor and Street-view, along with their corresponding ground truth data sources. These ground truth datasets are
used to generate image-prompt-label triplets for fine-tuning the LLM. The right side illustrates the spatial scope and data types involved across the three branches.
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count, which together describe structural form, building use, and ver-
tical scale. These characteristics are essential for evaluating thermal
performance, architectural style, and population density.

3.1.2. Ground truth construction based on Meta-Analysis

Based on the characteristic system identified through the previous
meta-analysis, we collect and construct a corresponding ground truth
dataset to support the subsequent fine-tuning of large language models
(LLMs). This ground truth is organized across three major branches: (1)
satellite house, (2) satellite neighbor, and (3) street-view level charac-
teristics. Table 1 provides a summary of the characteristics, classifica-
tion categories, and ground truth sources for each branch. Detailed
descriptions and examples of each characteristic are presented in the
following sections.

Satellite House Branch focuses on characteristics extracted from
rooftop-level features visible in satellite imagery. Fig. 2 presents repre-
sentative visual examples for each classification level under the three
characteristics, highlighting their observable variations in satellite
views.

Specifically, Swimming Pool (A) is sourced from the Kaggle Swim-
ming Pool Detection Database (Coelho et al., 2021) and reflects the
availability of recreational amenities, which are often associated with
neighborhood socioeconomic status. Roof Type (B) is derived from the
Roof Type Recognition Database (Alidoost & Arefi, 2018), capturing
structural forms that adapt to climate and affect building performance
(Wang et al., 2022; Zhang et al., 2021). Green Cover Density (C) is ob-
tained from the Multi-temporal Scene Classification and Change
Detection Dataset (Shao et al., 2020), representing the extent of vege-
tative cover and its role in supporting urban ecological health (Hami
et al., 2019; Santamouris and Osmond, 2020).

Satellite Neighbor Branch includes five characteristics derived from
building footprints, land cover, and road networks. These features
describe spatial structure, urban morphology, and infrastructure distri-
bution. Fig. 3 presents representative visual examples for each class
within this branch, illustrating their observable patterns in overhead
satellite imagery.

Building Density, Large Building Count, and Building Group Pattern
(D) are derived from the Building Footprint Segmentation Dataset
(Maggiori et al., 2017). Building density measures the proportion of land
covered by buildings, indicating urbanization levels and land-use effi-
ciency (Yang et al., 2021); large building count reflects the prevalence of
commercial, industrial, or high-rise residential structures (Jaller et al.,
2015) ); and building group pattern classifies spatial arrangements,
where clustered patterns indicate compact urban design, random pat-
terns suggest unregulated development, and uniform patterns align with
grid-based planning. Land Use (E), obtained from the Multi-temporal

Table 1
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Swimming Pool (A)

0 (No)
Roof Type (B)

0 (Flat)
Green Cover Density (

@

C)

¥

0 (0-10%) 1 (10-30%) 2 (30-60%) 3 (60% and more)

Fig. 2. Visual Examples of Classification Levels in the Satellite House Branch.
Note: This figure shows sample satellite images for three characteristics: (A)
Swimming Pool, (B) Roof Type, and (C) Green Cover Density. Sources: Coelho
etal., 2021, Alidoost & Arefi, 2018, Shao et al., 2020. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Scene Classification and Change Detection Dataset (Zhou et al., 2024),
categorizes land into ten types for planning and regulatory purposes (Li
etal., 2024). Finally, Road Density (F) is derived from the Massachusetts
Roads Dataset (Ranzato et al., 2013), which serves as a training and
reference dataset for defining the spatial distribution of road networks as
a characteristic of transportation accessibility (Sahitya et al., 2020).The
road density is calculated as the ratio of the road mask area to the total
area, expressed as:

RoadMaskArea

RoadDensity TotalArea

(€8]
Street-view branch includes visual characteristics directly perceived
from the pedestrian level, capturing facade elements and building ty-
pologies. Fig. 4 presents sample images across all classes of this branch,
showcasing the observable differences in street-level appearance.

The Overview of Characteristics and Class Labels Used for LLM Fine-Tuning with 11 Ground Truth Sources.

Branches Characteristics Class

Groundtruth Source

Satellite House ~ Swimming Pool No 0, Yes 1

Kaggle Swimming Pool Detection
Database

Satellite House ~ Roof Type flat 0, gabled 1, hipped 2 Roof Type Recognition Database
Satellite House Green Cover 0-10 % 0, 10-30 % 1, 30-60 % 2, 60 % and more 3 Multi-temporal Scene Classification
Density and Change Detection

Satellite Building Density 0-10 % 0, 10-25 % 1, 25-100 % 2 Building Footprint Segmentation
Neighbour Dataset

Satellite Large Building 00, 1-51, 5-20 2, 20 and more than 3 Building Footprint Segmentation
Neighbour Count Dataset

Satellite Building Group clustered 0, random 1, uniform 2 Building Footprint Segmentation
Neighbour Pattern Dataset

Satellite Land Use agriculturalland 0, bareland 1, educationalland 2, greenspace 3, industrialland 4, Multi-temporal Scene Classification
Neighbour publiccommercialland 5, residentialland 6, transportationland 7, waterbody 8, woodland 9 and Change Detection

Satellite Road Density 0-10 % 0, 10-25 % 1, 25-100 % 2 Massachusetts Roads Dataset
Neighbour

Wall Window Ratio
Property Type
Floor Count

Street-view
Street-view

Street-view Numeric

0-20 % 0, 20-40 % 1, 40-60 % 2, 60-100 % 3
Single Family 0, Apartment 1, Multi-Family 2, Manufactured 3, Condo 4, Townhouse 5, other 6

MIT Window Detection Dataset
Rentcast House Trading Database
Rentcast House Trading Database
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0(0-10%)
Large Building Count (D 2)

1 (10-25%)

0(0) 1(1-5)
Building Group Pattern (D 3)

0 (Clustered) 1 (Random)

Land Use (E)

5 (Commercial land)

Road Density (F)

1(10-25%)

0(0-10%)

2(5-20)

1 (25%-100%)
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2(20-100%)

3 (20 and more)

2 (Uniform)

3 (Green space) 4 (Industrial lan)

8 (Water body)

9 (Wood land)

Fig. 3. Visual Examples of Classification Levels in the Satellite Neighbor Branch. Note: This figure displays representative satellite images across five characteristics:
(D) Building Density, Large Building Count, and Building Group Pattern; (E) Land Use; and (F) Road Density. Sources: Maggiori et al., 2017, Zhou et al., 2024.

Specifically, Wall Window Ratio (G), sourced from the MIT Window
Detection Dataset (Simone et al., 2024), reflects the proportion of win-
dow area to wall surface, which affects ventilation, energy efficiency,
and natural lighting conditions (Veillette et al., 2021).. The wall-
window ratio is calculated as the ratio of the total window area to the
total wall area, expressed as:

) . WindowArea
WallWindowRatio = m (2)

Property Type and Floor Count (H) are obtained from the Rentcast
House Trading Database (RentCast, 2020), which provides information
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Wall Window Ratio (G)

0 (0-20%)
Property Type (H 1)

wy/ﬁ

2 (40-60%)

0 (Single Family)
Floor Count (H 2)

1 (Apartment) 2 (Multi-Family)

3 (60-100%)
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3 (Manufactured) 4 (Condo) 5 (Townhouse)

4 and more

Fig. 4. Visual Examples of Classification Levels in the Street-view Branch. Note: This figure displays representative images for: (G) Wall Window Ratio, (H1) Property

Type, and (H2) Floor Count. Sources: Simone et al., 2024, RentCast, 2020.

on building usage types and vertical scale. Property type is categorized
into discrete classes, while floor count is recorded as a numerical value
representing the number of stories in each building (Grace et al., 2004).

3.2. LLM Fine-Tuning

Fine-tuning LLMs is crucial for adapting pre-trained models to
specialized tasks (Wei et al., 2023). In this study, we fine-tune GPT-40 on
a multi-branch dataset comprising satellite house, satellite neighbor-
hood, and street-view imagery, each labeled with structured ground-
truth characteristics. For each characteristic, we design task-specific
prompts to guide the model in interpreting spatial and visual charac-
teristics. As shown in Fig. 5, the framework follows a two-step process:
(1) pre-processing and formatting the data into image-prompt-label
triples, and (2) fine-tuning GPT-40 with carefully designed task-
specific prompts (Representative Prompt Samples are provided in
Fig. Al).

First, we pre-process the ground truth datasets into standardized
image-prompt-label triplets. Each sample contains a visual input, a
task-specific natural language prompt, and a structured label. We design
prompts to match specific characteristics: binary for swimming pool
detection, categorical for roof type classification, and range-based for
vegetation cover. To ensure semantic consistency, we constrain model
outputs to a strict format (e.g., Filename: <name>, Type: <label > ),
simplifying downstream parsing. The dataset is split into training (60
%), validation (20 %), and test (20 %) sets, ensuring balanced coverage
across all characteristics and cities.

In the second step, we fine-tune GPT-40 (base model: gpt-4o-
2024-08-06) using a supervised multi-task learning scheme. The fine-
tuned model was trained on approximately 110,000 image-
—prompt-label triplets across three data branches: satellite-house, sat-
ellite-neighborhood, and street-view. Rather than adopting a unified
prompt or joint training scheme, we apply a branch-wise fine-tuning
strategy in which each characteristic is treated as an independent task
with customized prompts, label schemas, and objectives. The prompt
templates (see Fig. Al. Representative Prompt Samples for Building-
MultiView) are designed to guide the model’s attention toward view-

specific cues such as roof structure, facade materials, and spatial den-
sity, while maintaining a consistent output schema across branches.
Fine-tuning is performed for three epochs using a batch size of 5, a
learning rate of 1 x 10°°, and the AdamW optimizer, with a fixed random
seed (42) to ensure reproducibility. Model checkpoints are selected
based on the highest validation F1 score on the held-out split. Evaluation
metrics include accuracy, precision, recall, and F1 score, computed at
the characteristic level.

3.3. Automated annotation framework for building characteristics

Building on the previous section, we develop a automate urban
building characteristic generation framework using satellite and street-
view imagery. As illustrated in Fig. 6, by integrating fine-tuned LLMs, it
streamlines data collection, annotation, and analysis, producing a fine-
grained building-centric characteristics dataset.

Our implementation begins by collecting geospatial inputs from
multiple public APIs. OpenStreetMap (OSM) building footprints have
been systematically evaluated for positional accuracy, completeness,
and attribute reliability, showing high data quality in well-mapped re-
gions such as North America and Western Europe, while global analyses
of 13,189 urban centers found 1,848 cities exceeding 80 % completeness
and 9,163 below 20 %, with higher coverage in Europe & Central Asia
and North America (Herfort et al., 2023).These regions are among the
best-mapped parts of the world, where continuous volunteer contribu-
tions and frequent updates ensure near-complete coverage of the built
environment (Biljecki et al., 2023; Zhang & Zhu, 2018). Such well-
established data quality makes OSM a reliable and widely accepted
foundation for large-scale urban analysis and machine-learning-based
annotation tasks. Accordingly, our case studies focus on cities in the
United States and Western Europe, where OSM provides consistent and
authoritative representations of building footprints suitable for robust
model development and evaluation. Building footprints are retrieved
from OpenStreetMap using the Overpass API, filtered by geometry type
and minimum area thresholds to ensure urban relevance. Bounding
boxes or city names are resolved into precise geometries, addresses, and
heights via the Nominatim API. Each building polygon is associated with
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Fig. 5. The Workflow and prompts of fine-tuning LLMs. Note: The diagram presents an LLM-based framework for satellite and street-view image analysis, with three
branches (house, neighbor, and street-view) fine-tuned for extracting key information on buildings. For illustration purposes, three representative characteristics are
selected from each branch to demonstrate the structure of the image-prompt-label triplets used in the fine-tuning process.
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Fig. 6. BuildingMultiView pipeline with multithreaded annotation. Note: Each spatial branch uses dedicated scripts and prompts to extract specific characteristics.
Outputs are automatically merged, cleaned, and exported into geo-formats for downstream analysis.

its centroid, which serves as the anchor point for image collection. For
satellite imagery, we query Mapbox’s static image API at dual resolu-
tions (100 m2 for house level, 1 km2 for neighborhood level); for street-
view imagery, the Google Street View API fetches panoramas within a
30-meter radius of each centroid, prioritizing front-facing facades using
compass metadata when available. All retrieved data are structured into
a JSONL-format annotation-ready dataset, indexed by building ID.

In addition, automatic annotation is performed via a multi-threaded
GPT-40 pipeline, optimized for batch image-prompt processing. Each
image is paired with a task-specific prompt template based on the
characteristic type and image source. Post-processing includes spatial
merging of annotations with raw geometry, removal of null or ambig-
uous predictions, and transformation into standardized geo-formats
(CSV, GeoJSON, Shapefile). The annotation framework supports multi-
threaded processing (via Python’s concurrent.futures) and includes an
error logging and retry mechanism to handle API limits or LLM timeouts.
All outputs are publicly available on Hugging Face with version control,
enabling reproducibility and future use in built environment studies.

4. Experiment
4.1. Study area and sampling data

To ensure consistent data sources and demonstrate the workflow’s
transferability, we select the United States as the study region for its
high-quality, openly accessible, and standardized datasets (e.g., building
information, climatic classifications, and street-view imagery). These
resources enable comparability across cities, making the U.S. an effec-
tive testbed for method validation. Within this context, representative
cities are selected across different climatic zones to capture diverse
environmental and urban conditions. Following the U.S. Department of
Energy’s Building America Program (Antonopoulos et al., 2022) and
high-GDP urban centers (U.S. BEA, 2022), five cities are chosen: San
Francisco (marine), San Diego (hot-dry), Salt Lake City (cold), Austin
(humid-hot), and New York City (mixed-humid). Fig. 7 presents the
geographic distribution of the five cities across climate zones, with inset
maps showing city boundaries and sampling locations. A total of 10,000
samples are collected, with 2,000 data points from each city.

4.2. Result and analysis

We present the results and analytical findings derived from the an-
notated building dataset covering five representative climate zones
across the United States. We organize the analysis into three parts to

comprehensively evaluate the framework and interpret the extracted
building information. The first part focuses on the classification per-
formance and validation results (Section 4.2.1), which confirm the ac-
curacy and robustness of the automated annotation process. The second
part summarizes the statistical profiles and spatial distributions of key
building characteristics (Section 4.2.2), providing an overview of the
constructed database. The third part explores the relationships between
building characteristics and regional climatic conditions (Section 4.2.3),
serving as a downstream analysis that demonstrates how the annotated
data can be utilized to examine climate-responsive patterns in urban
form.

4.2.1. Classification performance and validation

To evaluate our model’s reliability, we compare the fine-tuned
model against the original GPT-40 without task-specific tuning, as
well as several competitive baselines including Vision Transformer,
Gemini, and ResNet50, using a held-out test set. The dataset is split into
80 % for training and 20 % for testing, with no overlapping building
instances. All characteristics are assessed using standard classification
metrics, including accuracy, precision, recall, and F1 score.

In the fine-tuning process, we start from the base model gpt-4o-
2024-08-06 and apply supervised multi-task learning across three
branches—satellite-house, satellite-neighborhood, and street-view.
Training is conducted for three epochs with a batch size of 5, a
learning rate of 1 x 107, and the AdamW optimizer under a fixed
random seed (42). The best checkpoint is selected based on validation F1
score. For the vision-based baselines, both ViT and ResNet50 are
implemented using the TIMM framework with pretrained ImageNet
weights. ViT adopts the vit_base_patch16_224 architecture, and ResNet
uses resnet50. Both models are trained for 10 epochs with a batch size of
32, learning rate 3 x 10™%, and AdamW optimization. Input images are
resized to 224 x 224 pixels and normalized to [0.5, 0.5, 0.5]. The
Gemini baseline is configured in zero-shot mode under equivalent input
settings for cross-model comparability.

As shown in Table 2, the fine-tuned model achieves significant im-
provements: accuracy increases from 55.04 % to 80.83 %, and F1 score
rises from 45.66 % to 79.77 %, consistently outperforming both the
zero-shot GPT-40 baseline and other competitive vision models. This
confirms the effectiveness of fine-tuning in enhancing predictive per-
formance and underscores the robustness of our approach.

At the branch level, performance varies across characteristic groups.
In the satellite house branch, swimming pool detection achieves 96.00 %
accuracy (F1: 96.18 %), while roof type and green cover ratio both
exceed 85 %, reflecting the visual clarity and distinctiveness of property-
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Fig. 7. Study Area of BuildingMultiView. Note: This figure shows the five study cities—San Francisco, San Diego, Salt Lake City, Austin, and New York City—selected
for their diverse climates and economic profiles. The main map highlights their locations and climate zones, with insets showing city boundaries and sample dis-
tributions (2,000 buildings per city).
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Performance of Different Task-Driven LLM Fine-Tuning Models and Competitive Baselines. This table summarizes the performance of fine-tuned models across 11
building characteristics Evaluation metrics include Accuracy, Precision, Recall, and F1 Score, all calculated on a held-out test set. “Manual Interpretation” refers to the
accuracy of human labeled results on sampled subsets. Fine-tuned models achieve substantial gains over the base GPT-40 and other competitive baselines (Vision

Transformer, Gemini, ResNet50).

Branches Characteristics Accuracy Precision Recall F1 Score Manual Interpretation
Satellite House Level Swimming Pool 96.00 % 96.52 % 96.00 % 96.18 % 91.32 %
Roof Type 84.78 % 84.86 % 84.78 % 84.76 % 86.48 %
Green Cover Ratio 83.75 % 85.58 % 83.75 % 84.33 % 78.81 %
Satellite Neighbour Level Building Density 92.50 % 93.37 % 92.50 % 92.30 % 83.37 %
Large Building Count 72.50 % 76.67 % 72.50 % 72.07 % 78.35 %
Neighbor Group Pattern 85.00 % 87.25 % 85.00 % 85.69 % 83.37 %
Land Use 81.30 % 78.66 % 80.31 % 79.16 % 76.31 %
Road Density 94.98 % 94.94 % 94.98 % 94.96 % 87.68 %
Street-view Level Wall Window Ratio 77.80 % 75.95 % 77.81 % 76.24 % 76.25 %
Property Type 81.62 % 80.68 % 81.62 % 80.44 % 81.92 %
Floor Count 83.08 % 82.24 % 83.08 % 82.64 % 88.08 %
Fine-Tuning Models Avg 80.83 % 79.62 % 80.84 % 79.77 % 82.90 %
ChatGPT-40 55.04 % 63.29 % 52.32 % 45.66 % N/A
Vision Transformer 72.80 % 64.28 % 72.80 % 66.63 % N/A
Gemini 52.86 % 55.68 % 50.14 % 13.27 % N/A
ResNet50 78.55 % 75.17 % 78.55 % 76.62 % N/A

level features in aerial imagery. In the satellite neighborhood branch,
road density (83.41 %) and building group pattern perform solidly, but
large building count is lower (72.50 %), likely due to inter-city variation
in high-rise distribution and dataset imbalance. For the street-view
branch, floor count (88.08 %) and property type (84.12 %) perform
strongly, whereas wall-to-window ratio (76.25 %) and land use (76.31
%) are less accurate, affected by occlusion, angle distortion, and

semantic ambiguity in street-level imagery. These results indicate that
while the model captures building characteristics effectively, refining
characteristic definitions and expanding training datasets could further
improve accuracy.

To further validate predictive performance, we conduct a manual
inspection benchmark using 1,000 randomly sampled instances across
five cities. Model predictions are compared to manually verified labels

Salt Lake City, UT (OSM ID: 462574596)

Fig. 8. Representative Audit Samples from Five U.S. Cities.Note: This figure presents satellite and street-level imagery for five representative buildings selected
across different U.S. cities as part of a manual interpretation audit. Red bounding boxes highlight the targe buildings evaluated for prediction accuracy. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

10



Z. Lietal

for an objective accuracy assessment. As also shown in Table 2 “Manual
Interpretation” line, the model demonstrates strong accuracy across
most characteristics, with swimming pool detection (91.32 %), floor
count (88.08 %), and road density (87.68 %) performing well. However,
the wall-to-window ratio (76.25 %) and land use (76.31 %) show lower
accuracy due to classification ambiguities and dataset variability.

To further address concerns regarding variability and statistical
significance, we conducted additional experiments under 10 different
random seeds (42-51) and applied stratified bootstrap resampling (B =
2000) to estimate 95 % confidence intervals. Compared with the base-
line model (55.04 %), the fine-tuned model consistently outperformed
with statistical significance (one-sided test, p < 0.001). Across all seeds,
the average F1 score reached 76.35 % (95 % CI [74.19 %, 80.08 %]),
demonstrating robust and stable improvements over the baseline.

To complement these large-scale validation metrics, we also perform
a detailed manual interpretation audit on five representative buildings
across distinct U.S. cities. As shown in Fig. 8, we compile satellite and
street-view imagery across the three branches (satellite house, satellite
neighborhood, and street-view) for each sample. Table 3.1 presents the
predicted labels generated by the BuildingMultiView framework, while
Table 3.2 documents the discrepancies identified through manual
interpretation, and characteristics are marked in red reflect prediction
errors in building characteristics.

The manual interpretation audit shows that the framework performs
reliably across most building characteristics, demonstrating strong
generalizability in diverse urban contexts. However, several mis-
classifications emerge and are worth highlighting. In Austin, the pre-
dicted property type is labeled as “Single Family,” yet the presence of a
Greek-letter fraternity sign (“®KE”) strongly suggests the building
functions as a fraternity house—beyond what standard imagery alone
can confidently resolve. In New York City, the model underestimates the
floor count, likely due to limited perspective and occlusion common in
narrow street-views, which hinder full facade visibility. The case in San
Diego represents an extreme outlier: the target building is a high-end,
secluded estate distinctly different from typical residential structures.
The swimming pool is not detected, possibly because it is partially
outside the 100 x 100 m aerial tile used for prediction. Additionally,
street-view images of this property are blurred, contributing to inac-
curacies in wall-to-window ratio and property type prediction.

Despite challenging cases, the framework correctly labels most
characteristics even under atypical visual and environmental conditions,
demonstrating strong robustness. The results also highlight the impor-
tance of manual audits in identifying nuanced errors that may be
overlooked by aggregate metrics. Overall, the BuildingMultiView
framework effectively improves building characteristic extraction
through multi-perspective data integration and fine-tuned learning.
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4.2.2. Distribution and correlation analysis of building characteristics

This subsection summarizes the statistical profiles and spatial dis-
tributions of key building characteristics, providing an overview of the
constructed building- characteristic database. The analysis aims to
describe the overall composition and variability of the automatically
generated characteristics, thereby assessing the representativeness and
interpretability of the dataset. By examining how these characteristics
are distributed within and across cities, we identify major morphological
patterns and validate whether the framework captures meaningful
urban structures. The results presented in Figs. 9-11 illustrate the spatial
distributions of eleven building characteristics in New York City, cross-
city comparisons among five representative urban regions, and the
correlation structure among all characteristics.

Spatial Distributions of Characteristics. This study collects street-
view and satellite imagery to extract 11 key building-related charac-
teristics across five U.S. cities, offering a comprehensive view of urban
form and function. Among them, New York City is chosen for visuali-
zation due to its diverse and vertical urban structure (Fig. 9). The spatial
distributions of these characteristics reveal sharp contrasts between the
dense urban core and peripheral areas. In Manhattan, building density
and floor count reach their highest levels, flat roofs dominate, and large
buildings cluster tightly, reflecting commercial and high-rise residential
land use. Wall-to-window ratios are also elevated, indicating facade
openness consistent with glass-intensive architecture. By contrast, outer
boroughs such as Staten Island and parts of Queens exhibit more gabled
and hipped roofs, lower densities, and higher green cover. Swimming
pools, though sparse overall, appear more frequently in these low-
density residential areas.

Property types also vary across space: central districts are dominated
by apartments and condominiums, while peripheral neighborhoods
display a more diverse mix, including single-family homes and town-
houses. Land use transitions gradually from public and commercial
zones in the core to green, transportation, and lower-density residential
areas in the suburbs. Road density mirrors this gradient, with dense
street networks in Manhattan giving way to more fragmented layouts
outward. Building group patterns also shift from uniform or clustered
forms in dense cores to more dispersed arrangements in peripheral
zones.

Comparative Distribution. Fig. 10 compares urban building and
environmental characteristics across five cities. Austin shows the highest
green cover (60 %-+), a high share of gabled and hipped roofs, frequent
swimming pools, and predominantly single-family homes. Its building
density is moderate, with few large buildings and a mostly uniform
group pattern, reflecting suburban characteristics; New York City stands
out with high building and road density, a dominance of flat roofs,
frequent 3-5 story buildings, and high WWR values. It is primarily
composed of apartments and condos, and has the largest buildings,
typical of a dense vertical urban core; San Francisco exhibits mixed roof

Table 3.1
Predicted Building Characteristic Labels for Five Representative Building Samples. Red text highlights characteristics with prediction errors identified during manual
interpretation.
City Austin New York San Diego San Francisco Salt Lake City
OSM ID 380,917,039 241,842,474 558,916,442 267,111,803 462,574,596
Latitude 30.2852095 40.6451466 32.8792244 37.7635182 40.7854052
Longitude —97.7474545 —73.9615802 —117.2498552 —122.4703935 —111.9215708
Swimming Pool No No No No No
Roof Type Hipped Flat Hipped Flat Hipped
Green Cover Density 10-30 % 10-30 % 10-30 % 10-30 % 30-60 %
Building Density 25-100 % 25-100 % 0-10 % 25-100 % 10-25 %
Large Building Count 5-20 5-20 1-5 5-20 1-5
Building Group Pattern Uniform Uniform Clustered Uniform Uniform
Land Use Residential land Residential land Residential land Transportation land Residential land
Road Density 10-25 % 10-25 % 0-10 % 10-25 % 10-25 %
Wall Window Ratio 0-20 % 0-20 % 0-20 % 0-20 % 0-20 %
Property Type Single Family Apartment Single Family Single Family Single Family
Floor Count 2 2 1 2 1

11
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Table 3.2
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Manual Audit Findings: Discrepancies Between Predicted and Observed Characteristics. Each row highlights the predicted label, visual assessment, and a concise

explanation of the likely cause of misclassification.

City Characteristic Predicted Actual (Visual) Notes

Austin Property Type Single Family Shared Housing (Fraternity) Fraternity signage indicates non-single family usage

New York Floor Count 2 >3 Undercounted; upper floors obscured in street view

San Diego Swimming Pool No Yes Missed due to partial pool visibility outside the 100 x 100 m tile
San Diego Wall Window Ratio 0-20 % Higher (estimated visually) Underestimated due to occlusion and poor street-view angle

San Diego Property Type Single Family Likely Estate/Other Luxurious estate, possibly not typical single family

types, moderate green space, and a combination of residential and
parkland land uses. It also features noticeable townhouse presence, high
road density, and mostly clustered group patterns; San Diego shows
balanced distributions in roof types and green cover, and land use favors
residential and green areas, with a slight presence of swimming pools;
Salt Lake City has the lowest building and road density, dominant sloped
roofs, mostly single-family homes, and minimal large buildings. Its
urban fabric is highly uniform, with relatively high vegetation and low
vertical development.

Correlation Patterns. To explore the relationships among key
Characteristics across five cities, we conduct a correlation analysis
(Fig. 11). Several consistent patterns emerge across cities. Large building
count strongly correlates with density (0.75-0.79), reflecting the con-
centration of high-rises. Roof type aligns with building group pattern
(0.38-0.42), indicating design consistency in clustered areas. Land use
also correlates with group pattern (0.60-0.67), showing zoning’s impact
on spatial layout. Wall-to-window ratio negatively correlates with
density (—0.28 to —0.35), implying reduced facade openness in
compact, energy-conscious zones.

In terms of city-specific patterns, New York City exhibits a strong
correlation between floor count and wall-to-window ratio (0.62), indi-
cating that taller buildings tend to have more enclosed facade styles. San
Francisco shows a high correlation between roof type and land use
(0.55), potentially due to its architectural controls and zoning con-
straints. In Salt Lake City, green cover density has a relatively weak
correlation with building density (0.32), which diverges from the gen-
eral trend and reflects its dispersed, low-density development. San Diego
displays strong alignment between building group pattern and large
building count (0.61), suggesting its denser built zones are spatially
clustered. In Austin, swimming pool presence is notably correlated with
property type (0.59), which is consistent with its dominance of single-
family housing and warm climate conditions.

4.2.3. Climate-Driven analysis of architectural and environmental
characteristics

We then explore the relationships between building characteristics
and regional climatic conditions, serving as a downstream analysis that
demonstrates how the annotated data can be utilized to examine
climate-responsive patterns in urban form. Since climate fundamentally
shapes building form and urban environments, this analysis aims to test
whether the proposed framework can capture such climate-driven reg-
ularities. Establishing this linkage is critical for evaluating the trans-
ferability and explanatory power of the workflow beyond the chosen
case studies. Therefore, we cluster the five representative cities based on
temperature and precipitation and incorporate LLM-inferred climate-
responsive keywords to interpret architectural and environmental
characteristics. By connecting the derived characteristics to exogenous
climate conditions, this analysis verifies that the framework captures
climate-consistent semantics and enhances interpretability and gener-
alizability across regions (Figs. 12-13).

Clustering Based on Temperature and Precipitation. Our clus-
tering analysis (Fig. 12) examines architectural and environmental
characteristics across five cities, focusing on temperature and
precipitation.

Warmer cities such as Austin and San Diego have higher green cover

12

density, providing natural cooling and supporting sustainability goals.
Cities with higher rainfall, such as San Francisco and New York City,
adapt through efficient drainage systems and sloped roofs for durability
in humid conditions. High precipitation also correlates with greater
vegetation, emphasizing urban greenery’s role in climate adaptability.
Roof types vary by climate, with flat roofs common in warmer regions
for heat management and sloped roofs in colder areas for snow removal
and structural stability.

Word Clouds of Climate-Responsive Characteristics. To explore
the relationship between urban climates and building characteristics, we
generate word clouds for five representative U.S. cities using LLM-based
reasoning (Fig. 13). Each city reflects climate-adaptive architectural
strategies. San Francisco (marine climate) emphasizes wind resistance,
corrosion control, and compact, low-rise buildings suited to coastal and
seismic conditions. San Diego (hot-dry) features water conservation,
drought-tolerant landscaping, and passive cooling. Salt Lake City (cold
climate) highlights insulation, snow mitigation, and heating efficiency.
Austin (hot-humid) focuses on ventilation, reflective materials, and
humidity control. New York City (mixed-humid) integrates insulation,
ventilation, and energy-efficient design to address seasonal variability.

The consistency between extracted keywords and known climatic
characteristics provides indirect validation of our framework’s
reasoning capacity. These results suggest that the fine-tuned LLM cap-
tures underlying climatic logic in built-environment semantics,
revealing not only expected architectural adaptations (e.g., thermal
insulation in cold zones) but also subtler patterns, such as the co-
occurrence of wind and corrosion terms in marine cities or moisture-
control language in dry and humid areas.

5. Discussion
5.1. Optimizing annotation accuracy through prompt engineering

Prompt engineering plays a key role in improving annotation accu-
racy and data quality in large-scale built environment analysis. Well-
structured prompts help language models capture nuanced character-
istics while minimizing errors. In our previous work, the BuildingView
framework (Li et al., 2024), we used a single merged prompt for zero-
shot annotation, which minimized manual effort but increased model
and pipeline complexity. While simple characteristics such as window
color and floor count remained accurate, complex ones, involving
architectural style and roof materials, suffered from misclassification
due to the lack of targeted instructions.

To address these challenges, BuildingMultiView shifts from a single-
prompt approach to a characteristic-specific strategy. Each character-
istic receives a dedicated prompt with refined instructions and tailored
examples to improve accuracy. This modular approach isolates tasks,
reducing confusion and preventing errors in one characteristic from
affecting others. For instance, a solar panel detection prompt can
incorporate technical thresholds and examples of partially obscured
panels, while a building style prompt can distinguish between historical
and contemporary designs. By refining prompts, BuildingView-Turbo
enhances precision and interoperability across building analysis.

This methodological shift from a unified prompt to a characteristic-
specific approach raises the question of whether the observed
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Fig. 9. Distribution of 11 Key Building Characteristics in New York City.

improvements can be attributed to structural design rather than inci-
dental factors. To provide quantitative evidence, we conducted ablation
experiments comparing single-branch (characteristic-specific) and uni-
fied models under both base and fine-tuned settings (Table 4).

The results clearly show that branch-wise fine-tuning achieves
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superior accuracy, precision, recall, and F1 score, supporting our claim
that characteristic-specific prompts lead to more reliable and transfer-
able annotations.

Another key advantage of this characteristic-specific approach is that
it embodies a broader methodological contribution to multimodal urban
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analytics. Existing studies have explored vision-language approaches
for building analysis, but none have proposed a unified and interpret-
able workflow for multi-scale building characteristic evaluation. For
instance, Pan et al. (2024) demonstrated zero-shot building attribute
extraction using vision-language models, but their approach was limited
to single-view inference without structured adaptation. Yao et al. (2024)
focused on fagade condition assessment restricted to visual degradation,
while Chen et al. (2025) introduced a multimodal framework for city-
scale spatial intelligence that did not address micro-scale or building-

level characterization. In contrast, our framework explicitly models
multi-view complementarity, hierarchical fine-tuning, and prompt-
controlled semantic alignment, establishing a systematic and repro-
ducible workflow for cross-scale semantic reasoning. By enforcing
branch-wise fine-tuning and semantic alignment across satellite and
street-view imagery, the proposed design transforms multimodal adap-
tation from task-specific optimization into a generalizable learning
principle. This methodological rigor, coupled with comprehensive data
design and interpretability, positions the framework as a bridge between
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engineering implementation and analytical advancement in urban
informatics.

Beyond accuracy and adaptability, the proposed framework also
demonstrates computational efficiency and environmental sustainabil-
ity. Across five representative U.S. cities, approximately 10,000 build-
ings were processed for 11 characteristics, involving around 20,000
Mapbox imagery requests and 10,000 Google Street View queries. The
end-to-end workflow, including multi-attribute inference with OpenAlI-
4o, incurred an estimated total cost of about USD 700, corresponding
to 70-110 million tokens, or roughly 640-1,000 tokens (0.6 cents) per
building—characteristic unit. Following established methodologies for
estimating Al energy consumption and emissions (Henderson et al.,
2020; Jegham et al., 2025), this workload equates to approximately
5-15 kWh of electricity use and 2-6 kg COse in total, including both
inference and imagery retrieval. These values indicate that the frame-
work maintains a modest computational and carbon footprint while
scaling efficiently across cities, supporting its practical and sustainable
deployment for large-scale urban analysis (Samsi et al., 2023).

5.2. Limitations and Considerations

Our study presents a comprehensive framework for urban building
characteristics extraction, incorporating multiple data perspectives and
advanced predictive modeling. Throughout the development and
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validation process, we have carefully examined key challenges and their
potential impact.

First, while the proposed framework demonstrates strong perfor-
mance and generalizability, several potential directions for improve-
ment remain, including enhancing multi-label representation,
addressing data coverage and temporal inconsistencies, and expanding
the framework’s analytical adaptability. The framework is inherently
extensible due to its hierarchical and standardized structure, which or-
ganizes building-centric characteristics into three analytical lev-
els—building, block, and urban—each following a consistent three-step
process: (1) defining the visual data source (e.g., satellite, aerial, or
street-view imagery); (2) extracting relevant visual features (such as
facade openness, greenery proportion, or roof reflectance); and (3)
transforming these features into standardized quantitative characteris-
tics within a unified range. Because every characteristic follows unified
definition, extraction, and normalization procedures, each serves as an
independent analytical module that can be directly extended. This
modular design allows new visually discernible characteristics—such as
facade texture complexity, shading distribution, or color composi-
tion—to be seamlessly integrated by defining their data source and
transformation rule, without altering the existing analytical logic.
Furthermore, the hierarchical organization supports flexible aggrega-
tion and weighting of characteristics across spatial levels, while stan-
dardized references ensure compatibility across multiple imagery types



Z. Lietal

International Journal of Applied Earth Observation and Geoinformation 146 (2026) 105034

&7l Auygin Augin Augtin
0.
% San Qiego San Qiego San giego
g
£
g San ancisco San F@ncisco San Fgucisco
S NewYork City New York City “ New York City
g Salt Lake City Salt Lake City Salt Lge City
z
Swimming Pool Roof Type Green Cover Density
o+ ‘ ,
< Austin Augin Austin
0
- | . "
E’ San giego San giego San Jiego
B
Q l
B .l
ﬁ San lecisco San ancism San Fw]cisco
% “ New York City New York City W New York City
g Salt Lake City Salt Lake City Salt Lake City
<
Building Density Large Building Count Building Group Pattern
o= . A ,
o AWm Augtin Au&tm
Oy
5
E . San glego San Qlego San glego
0
2 ‘
B
g San Figncisco San Frgncisco San Figncisco
% . New York City ! New York City New York City
g Salt Lake City Salt Lake City Salt Lake City
-4 3 .
<
Land Use ‘Road Density Wall Window Ratio '
Auggin Austin
San Giego San iego

Salt Lake City

Average Temperature (°C)

New York City

San Frgncisco

Salt L*e City

beperty Tﬁ)e )

(A)

San Frgncisco

New York City

Floor Count

Fig. 12. Clustering Analysis Based on Climate Factors: (A) Clustering by Annual Average Temperature, (B) Clustering by Annual Average Precipitation. Note: Colors
denote the three clusters derived from the climate-factor clustering results, where cities sharing the same color are grouped into the same cluster in both panel (A)

and panel (B).

and resolutions. As new visual data and computational techniques
continue to emerge, the framework can readily evolve to incorporate
additional or non-visual characteristics, thereby enhancing its scalabil-
ity, systematic comprehensiveness, and long-term adaptability for future
multimodal urban analytics.
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Another limitation concerns the treatment of multi-label building
characteristics, as a single building may simultaneously exhibit multiple
functional or physical attributes (e.g., a residential building with a
swimming pool and a green roof). BuildingMultiView captures these
diverse attributes through a three-branch, multi-level design: the
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Fig. 12. (continued).

Satellite House branch focuses on individual-level features (e.g., roof
type, swimming pool, green cover density), the Satellite Neighbor
branch captures neighborhood-scale characteristics (e.g., building den-
sity, land use, road density), and the Street View branch extracts facade
and functional properties (e.g., property type, floor count, wall-window
ratio). Although explicit multi-label annotation is not applied to every
single building, the land use characteristic is modeled as a multi-label
classification task based on the Multi-temporal Scene Classification
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and Change Detection Dataset (Zhou et al., 2024), which includes ten
land-use categories such as Agricultural land, Residential land, Com-
mercial land, and Green space. This multi-level structure already en-
ables the framework to recognize coexisting attributes at different
spatial scales. In future work, we will further improve the handling of
multi-label and mixed-use cases by incorporating multimodal
transformer-based fusion and multi-label learning strategies (Zhou et al.,
2023) to jointly model correlated features across remote sensing, POI,



Z. Lietal

1 San Francisco

Singleistory
Hipped Roof

4 Austin

2 San Diego

International Journal of Applied Earth Observation and Geoinformation 146 (2026) 105034

ate

Gabled Roof
Insulation Heating

Energy ¢t

Heating ‘Syst'em

3 Salt Lake

5 New York

Fig. 13. Climate-Responsive Word Clouds.

Table 4
Ablation study comparing single-branch and unified models under base and fine-
tuned settings.

Model Accuracy Precision Recall F1 Score
Single-Branch (fine-tuning) 80.83 % 79.62 % 80.84 % 79.77 %
Single-Branch (base model) 55.04 % 63.29 % 52.32 % 45.66 %
Unified Model (fine-tuning) 72.46 % 65.42 % 59.57 % 59.74 %
Unified Model (base model) 27.75 % 9.19 % 10.16 % 9.02 %

Note: Results demonstrate that branch-wise fine-tuning consistently out-
performs the unified approach across accuracy, precision, recall, and F1 score,
highlighting the advantages of characteristic-specific prompts for reliable and
transferable building annotation.

and street-view modalities, thereby enhancing the scalability and
generalization of the proposed framework.

A further consideration involves the uneven global coverage of OSM
building footprints and street-view imagery. While OSM exhibits sub-
stantial regional disparities, with higher completeness in Europe and
North America and lower coverage across many regions in the Global
South, and street-view data show similar spatial heterogeneity, these
limitations are less critical in our experiments because the study area is
restricted to U.S. cities, where both datasets are relatively complete and
reliable (Herfort et al.,, 2023; Fan et al., 2025).When extending the
framework to a global scale, however, this issue should not be viewed
merely as a constraint requiring fallback mechanisms. Instead, it high-
lights the extensibility of the multi-perspective design. A key strength of
BuildingMultiView is that the Satellite House and Satellite Neighbor
branches rely on satellite imagery, one of the most universally available
data sources, which allows the workflow to function robustly in regions
with limited street-view coverage. More importantly, the modular and
standardized image-prompt-label architecture enables seamless inte-
gration of emerging global datasets such as the Global Building Atlas
(Zhu et al., 2025) and OpenBuildingMap (Oostwegel et al., 2025). These
datasets combine OpenStreetMap, Microsoft’s Global ML Footprints,
and Google Open Buildings to provide harmonized, semantically rich,
and near-global building coverage with uniform completeness and po-
sitional accuracy. Incorporating such datasets not only fills spatial gaps
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but also strengthens the framework’s geographic transferability beyond
well-mapped regions. For areas lacking street-view imagery, synthetic
street-level perspectives derived from high-resolution remote sensing
and complementary crowdsourced platforms such as Mapillary and
KartaView can provide additional facade information, particularly in
places where proprietary sources like Google Street View are unavai-
lable (Hou & Biljecki, 2022). Together, these capabilities demonstrate
that the BuildingMultiView framework is not limited to a specific set of
inputs but is capable of evolving alongside future data ecosystems,
enhancing its scalability and adaptability for global multimodal urban
analytics.

Finally, an important consideration for further improvement is the
temporal inconsistency among OSM, satellite, and street-view imagery,
since these sources follow independent update cycles and may lag
behind real-world changes. As a result, localized discrepancies may
occur in characteristics such as roof type, wall-window ratio, or floor
counts when buildings are renovated or re-purposed. These local errors
can propagate to downstream analyses: for example, energy simulation
results may be biased if envelope or fenestration attributes are wrong
(Nouri et al., 2024); land-use classification may mislabel building
functions when the functional use attribute is outdated; and socio-
economic inference models that rely on built-form proxies could be
skewed by such attribute errors. Nevertheless, both our empirical results
and recent multi-source building dataset research suggest that while
temporal mismatches introduce noise at the attribute level, their influ-
ence on macro-scale morphology or pattern-level metrics is limited. For
instance, the CMAB dataset (Zhang et al., 2025) employs multi-source
imagery and street-view data to derive multi-attribute building char-
acteristics and demonstrates stable performance across cities despite
temporal heterogeneity. Similarly, the HISDAC-US project (Leyk & Uhl,
2018) integrates parcel, remote sensing, and building datasets across
decades and acknowledges temporal misalignment while preserving
consistency in large-scale settlement analyses. In our case, despite the
heterogeneous temporal provenance of the data, the fine-tuned model
maintains stable predictive performance, with an average F1 score of
76.35 % (95 % CI [74.19 %, 80.08 %]) across ten random seeds, and
strong accuracy for key characteristics such as swimming pool (91.32 %)
and floor count (88.08 %). These results demonstrate that the
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BuildingMultiView framework is resilient to temporal inconsistencies
when applied to large-scale urban morphology and functional pattern
analysis. Looking ahead, integrating temporal metadata (e.g., capture
dates) to weight attribute confidence, as well as incorporating auto-
mated change-detection modules to identify potentially outdated an-
notations, would strengthen the framework’s robustness.

6. Conclusion

This study introduces BuildingMultiView, a unified framework that
integrates satellite and street-view imagery with fine-tuned large lan-
guage models to extract multi-scale, building-centric characteristics. By
leveraging structured image-prompt-label triplets and tailored fine-
tuning strategies, the model enables accurate, transferable, and auto-
mated annotation of 11 key characteristics across spatial levels. Applied
across five U.S. cities spanning distinct climate zones, the framework
achieves substantial improvements in predictive performance and re-
veals spatial, functional, and climate-responsive patterns in the built
environment. BuildingMultiView also demonstrates the feasibility of
combining vision-language models with multi-perspective urban imag-
ery for large-scale, standardized building analysis. Its modular pipeline
and open dataset offer a scalable foundation for future applications in
urban planning, energy modeling, and climate adaptation. This work
contributes both a methodological advance in characteristic extraction
and a reproducible infrastructure to support data-driven urban research
and decision making.
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